Home | History | Annotate | Download | only in glsl
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21  * DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 /**
     25  * \file ast_to_hir.c
     26  * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
     27  *
     28  * During the conversion to HIR, the majority of the symantic checking is
     29  * preformed on the program.  This includes:
     30  *
     31  *    * Symbol table management
     32  *    * Type checking
     33  *    * Function binding
     34  *
     35  * The majority of this work could be done during parsing, and the parser could
     36  * probably generate HIR directly.  However, this results in frequent changes
     37  * to the parser code.  Since we do not assume that every system this complier
     38  * is built on will have Flex and Bison installed, we have to store the code
     39  * generated by these tools in our version control system.  In other parts of
     40  * the system we've seen problems where a parser was changed but the generated
     41  * code was not committed, merge conflicts where created because two developers
     42  * had slightly different versions of Bison installed, etc.
     43  *
     44  * I have also noticed that running Bison generated parsers in GDB is very
     45  * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
     46  * well 'print $1' in GDB.
     47  *
     48  * As a result, my preference is to put as little C code as possible in the
     49  * parser (and lexer) sources.
     50  */
     51 
     52 #include "glsl_symbol_table.h"
     53 #include "glsl_parser_extras.h"
     54 #include "ast.h"
     55 #include "compiler/glsl_types.h"
     56 #include "util/hash_table.h"
     57 #include "main/macros.h"
     58 #include "main/shaderobj.h"
     59 #include "ir.h"
     60 #include "ir_builder.h"
     61 #include "builtin_functions.h"
     62 
     63 using namespace ir_builder;
     64 
     65 static void
     66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
     67                                exec_list *instructions);
     68 static void
     69 remove_per_vertex_blocks(exec_list *instructions,
     70                          _mesa_glsl_parse_state *state, ir_variable_mode mode);
     71 
     72 /**
     73  * Visitor class that finds the first instance of any write-only variable that
     74  * is ever read, if any
     75  */
     76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
     77 {
     78 public:
     79    read_from_write_only_variable_visitor() : found(NULL)
     80    {
     81    }
     82 
     83    virtual ir_visitor_status visit(ir_dereference_variable *ir)
     84    {
     85       if (this->in_assignee)
     86          return visit_continue;
     87 
     88       ir_variable *var = ir->variable_referenced();
     89       /* We can have memory_write_only set on both images and buffer variables,
     90        * but in the former there is a distinction between reads from
     91        * the variable itself (write_only) and from the memory they point to
     92        * (memory_write_only), while in the case of buffer variables there is
     93        * no such distinction, that is why this check here is limited to
     94        * buffer variables alone.
     95        */
     96       if (!var || var->data.mode != ir_var_shader_storage)
     97          return visit_continue;
     98 
     99       if (var->data.memory_write_only) {
    100          found = var;
    101          return visit_stop;
    102       }
    103 
    104       return visit_continue;
    105    }
    106 
    107    ir_variable *get_variable() {
    108       return found;
    109    }
    110 
    111    virtual ir_visitor_status visit_enter(ir_expression *ir)
    112    {
    113       /* .length() doesn't actually read anything */
    114       if (ir->operation == ir_unop_ssbo_unsized_array_length)
    115          return visit_continue_with_parent;
    116 
    117       return visit_continue;
    118    }
    119 
    120 private:
    121    ir_variable *found;
    122 };
    123 
    124 void
    125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
    126 {
    127    _mesa_glsl_initialize_variables(instructions, state);
    128 
    129    state->symbols->separate_function_namespace = state->language_version == 110;
    130 
    131    state->current_function = NULL;
    132 
    133    state->toplevel_ir = instructions;
    134 
    135    state->gs_input_prim_type_specified = false;
    136    state->tcs_output_vertices_specified = false;
    137    state->cs_input_local_size_specified = false;
    138 
    139    /* Section 4.2 of the GLSL 1.20 specification states:
    140     * "The built-in functions are scoped in a scope outside the global scope
    141     *  users declare global variables in.  That is, a shader's global scope,
    142     *  available for user-defined functions and global variables, is nested
    143     *  inside the scope containing the built-in functions."
    144     *
    145     * Since built-in functions like ftransform() access built-in variables,
    146     * it follows that those must be in the outer scope as well.
    147     *
    148     * We push scope here to create this nesting effect...but don't pop.
    149     * This way, a shader's globals are still in the symbol table for use
    150     * by the linker.
    151     */
    152    state->symbols->push_scope();
    153 
    154    foreach_list_typed (ast_node, ast, link, & state->translation_unit)
    155       ast->hir(instructions, state);
    156 
    157    detect_recursion_unlinked(state, instructions);
    158    detect_conflicting_assignments(state, instructions);
    159 
    160    state->toplevel_ir = NULL;
    161 
    162    /* Move all of the variable declarations to the front of the IR list, and
    163     * reverse the order.  This has the (intended!) side effect that vertex
    164     * shader inputs and fragment shader outputs will appear in the IR in the
    165     * same order that they appeared in the shader code.  This results in the
    166     * locations being assigned in the declared order.  Many (arguably buggy)
    167     * applications depend on this behavior, and it matches what nearly all
    168     * other drivers do.
    169     */
    170    foreach_in_list_safe(ir_instruction, node, instructions) {
    171       ir_variable *const var = node->as_variable();
    172 
    173       if (var == NULL)
    174          continue;
    175 
    176       var->remove();
    177       instructions->push_head(var);
    178    }
    179 
    180    /* Figure out if gl_FragCoord is actually used in fragment shader */
    181    ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
    182    if (var != NULL)
    183       state->fs_uses_gl_fragcoord = var->data.used;
    184 
    185    /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
    186     *
    187     *     If multiple shaders using members of a built-in block belonging to
    188     *     the same interface are linked together in the same program, they
    189     *     must all redeclare the built-in block in the same way, as described
    190     *     in section 4.3.7 "Interface Blocks" for interface block matching, or
    191     *     a link error will result.
    192     *
    193     * The phrase "using members of a built-in block" implies that if two
    194     * shaders are linked together and one of them *does not use* any members
    195     * of the built-in block, then that shader does not need to have a matching
    196     * redeclaration of the built-in block.
    197     *
    198     * This appears to be a clarification to the behaviour established for
    199     * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
    200     * version.
    201     *
    202     * The definition of "interface" in section 4.3.7 that applies here is as
    203     * follows:
    204     *
    205     *     The boundary between adjacent programmable pipeline stages: This
    206     *     spans all the outputs in all compilation units of the first stage
    207     *     and all the inputs in all compilation units of the second stage.
    208     *
    209     * Therefore this rule applies to both inter- and intra-stage linking.
    210     *
    211     * The easiest way to implement this is to check whether the shader uses
    212     * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
    213     * remove all the relevant variable declaration from the IR, so that the
    214     * linker won't see them and complain about mismatches.
    215     */
    216    remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
    217    remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
    218 
    219    /* Check that we don't have reads from write-only variables */
    220    read_from_write_only_variable_visitor v;
    221    v.run(instructions);
    222    ir_variable *error_var = v.get_variable();
    223    if (error_var) {
    224       /* It would be nice to have proper location information, but for that
    225        * we would need to check this as we process each kind of AST node
    226        */
    227       YYLTYPE loc;
    228       memset(&loc, 0, sizeof(loc));
    229       _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
    230                        error_var->name);
    231    }
    232 }
    233 
    234 
    235 static ir_expression_operation
    236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
    237                                   struct _mesa_glsl_parse_state *state)
    238 {
    239    switch (to->base_type) {
    240    case GLSL_TYPE_FLOAT:
    241       switch (from->base_type) {
    242       case GLSL_TYPE_INT: return ir_unop_i2f;
    243       case GLSL_TYPE_UINT: return ir_unop_u2f;
    244       default: return (ir_expression_operation)0;
    245       }
    246 
    247    case GLSL_TYPE_UINT:
    248       if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
    249           && !state->MESA_shader_integer_functions_enable)
    250          return (ir_expression_operation)0;
    251       switch (from->base_type) {
    252          case GLSL_TYPE_INT: return ir_unop_i2u;
    253          default: return (ir_expression_operation)0;
    254       }
    255 
    256    case GLSL_TYPE_DOUBLE:
    257       if (!state->has_double())
    258          return (ir_expression_operation)0;
    259       switch (from->base_type) {
    260       case GLSL_TYPE_INT: return ir_unop_i2d;
    261       case GLSL_TYPE_UINT: return ir_unop_u2d;
    262       case GLSL_TYPE_FLOAT: return ir_unop_f2d;
    263       case GLSL_TYPE_INT64: return ir_unop_i642d;
    264       case GLSL_TYPE_UINT64: return ir_unop_u642d;
    265       default: return (ir_expression_operation)0;
    266       }
    267 
    268    case GLSL_TYPE_UINT64:
    269       if (!state->has_int64())
    270          return (ir_expression_operation)0;
    271       switch (from->base_type) {
    272       case GLSL_TYPE_INT: return ir_unop_i2u64;
    273       case GLSL_TYPE_UINT: return ir_unop_u2u64;
    274       case GLSL_TYPE_INT64: return ir_unop_i642u64;
    275       default: return (ir_expression_operation)0;
    276       }
    277 
    278    case GLSL_TYPE_INT64:
    279       if (!state->has_int64())
    280          return (ir_expression_operation)0;
    281       switch (from->base_type) {
    282       case GLSL_TYPE_INT: return ir_unop_i2i64;
    283       default: return (ir_expression_operation)0;
    284       }
    285 
    286    default: return (ir_expression_operation)0;
    287    }
    288 }
    289 
    290 
    291 /**
    292  * If a conversion is available, convert one operand to a different type
    293  *
    294  * The \c from \c ir_rvalue is converted "in place".
    295  *
    296  * \param to     Type that the operand it to be converted to
    297  * \param from   Operand that is being converted
    298  * \param state  GLSL compiler state
    299  *
    300  * \return
    301  * If a conversion is possible (or unnecessary), \c true is returned.
    302  * Otherwise \c false is returned.
    303  */
    304 static bool
    305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
    306                           struct _mesa_glsl_parse_state *state)
    307 {
    308    void *ctx = state;
    309    if (to->base_type == from->type->base_type)
    310       return true;
    311 
    312    /* Prior to GLSL 1.20, there are no implicit conversions */
    313    if (!state->is_version(120, 0))
    314       return false;
    315 
    316    /* ESSL does not allow implicit conversions */
    317    if (state->es_shader)
    318       return false;
    319 
    320    /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
    321     *
    322     *    "There are no implicit array or structure conversions. For
    323     *    example, an array of int cannot be implicitly converted to an
    324     *    array of float.
    325     */
    326    if (!to->is_numeric() || !from->type->is_numeric())
    327       return false;
    328 
    329    /* We don't actually want the specific type `to`, we want a type
    330     * with the same base type as `to`, but the same vector width as
    331     * `from`.
    332     */
    333    to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
    334                                 from->type->matrix_columns);
    335 
    336    ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
    337    if (op) {
    338       from = new(ctx) ir_expression(op, to, from, NULL);
    339       return true;
    340    } else {
    341       return false;
    342    }
    343 }
    344 
    345 
    346 static const struct glsl_type *
    347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
    348                        bool multiply,
    349                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    350 {
    351    const glsl_type *type_a = value_a->type;
    352    const glsl_type *type_b = value_b->type;
    353 
    354    /* From GLSL 1.50 spec, page 56:
    355     *
    356     *    "The arithmetic binary operators add (+), subtract (-),
    357     *    multiply (*), and divide (/) operate on integer and
    358     *    floating-point scalars, vectors, and matrices."
    359     */
    360    if (!type_a->is_numeric() || !type_b->is_numeric()) {
    361       _mesa_glsl_error(loc, state,
    362                        "operands to arithmetic operators must be numeric");
    363       return glsl_type::error_type;
    364    }
    365 
    366 
    367    /*    "If one operand is floating-point based and the other is
    368     *    not, then the conversions from Section 4.1.10 "Implicit
    369     *    Conversions" are applied to the non-floating-point-based operand."
    370     */
    371    if (!apply_implicit_conversion(type_a, value_b, state)
    372        && !apply_implicit_conversion(type_b, value_a, state)) {
    373       _mesa_glsl_error(loc, state,
    374                        "could not implicitly convert operands to "
    375                        "arithmetic operator");
    376       return glsl_type::error_type;
    377    }
    378    type_a = value_a->type;
    379    type_b = value_b->type;
    380 
    381    /*    "If the operands are integer types, they must both be signed or
    382     *    both be unsigned."
    383     *
    384     * From this rule and the preceeding conversion it can be inferred that
    385     * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
    386     * The is_numeric check above already filtered out the case where either
    387     * type is not one of these, so now the base types need only be tested for
    388     * equality.
    389     */
    390    if (type_a->base_type != type_b->base_type) {
    391       _mesa_glsl_error(loc, state,
    392                        "base type mismatch for arithmetic operator");
    393       return glsl_type::error_type;
    394    }
    395 
    396    /*    "All arithmetic binary operators result in the same fundamental type
    397     *    (signed integer, unsigned integer, or floating-point) as the
    398     *    operands they operate on, after operand type conversion. After
    399     *    conversion, the following cases are valid
    400     *
    401     *    * The two operands are scalars. In this case the operation is
    402     *      applied, resulting in a scalar."
    403     */
    404    if (type_a->is_scalar() && type_b->is_scalar())
    405       return type_a;
    406 
    407    /*   "* One operand is a scalar, and the other is a vector or matrix.
    408     *      In this case, the scalar operation is applied independently to each
    409     *      component of the vector or matrix, resulting in the same size
    410     *      vector or matrix."
    411     */
    412    if (type_a->is_scalar()) {
    413       if (!type_b->is_scalar())
    414          return type_b;
    415    } else if (type_b->is_scalar()) {
    416       return type_a;
    417    }
    418 
    419    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
    420     * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
    421     * handled.
    422     */
    423    assert(!type_a->is_scalar());
    424    assert(!type_b->is_scalar());
    425 
    426    /*   "* The two operands are vectors of the same size. In this case, the
    427     *      operation is done component-wise resulting in the same size
    428     *      vector."
    429     */
    430    if (type_a->is_vector() && type_b->is_vector()) {
    431       if (type_a == type_b) {
    432          return type_a;
    433       } else {
    434          _mesa_glsl_error(loc, state,
    435                           "vector size mismatch for arithmetic operator");
    436          return glsl_type::error_type;
    437       }
    438    }
    439 
    440    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
    441     * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
    442     * <vector, vector> have been handled.  At least one of the operands must
    443     * be matrix.  Further, since there are no integer matrix types, the base
    444     * type of both operands must be float.
    445     */
    446    assert(type_a->is_matrix() || type_b->is_matrix());
    447    assert(type_a->is_float() || type_a->is_double());
    448    assert(type_b->is_float() || type_b->is_double());
    449 
    450    /*   "* The operator is add (+), subtract (-), or divide (/), and the
    451     *      operands are matrices with the same number of rows and the same
    452     *      number of columns. In this case, the operation is done component-
    453     *      wise resulting in the same size matrix."
    454     *    * The operator is multiply (*), where both operands are matrices or
    455     *      one operand is a vector and the other a matrix. A right vector
    456     *      operand is treated as a column vector and a left vector operand as a
    457     *      row vector. In all these cases, it is required that the number of
    458     *      columns of the left operand is equal to the number of rows of the
    459     *      right operand. Then, the multiply (*) operation does a linear
    460     *      algebraic multiply, yielding an object that has the same number of
    461     *      rows as the left operand and the same number of columns as the right
    462     *      operand. Section 5.10 "Vector and Matrix Operations" explains in
    463     *      more detail how vectors and matrices are operated on."
    464     */
    465    if (! multiply) {
    466       if (type_a == type_b)
    467          return type_a;
    468    } else {
    469       const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
    470 
    471       if (type == glsl_type::error_type) {
    472          _mesa_glsl_error(loc, state,
    473                           "size mismatch for matrix multiplication");
    474       }
    475 
    476       return type;
    477    }
    478 
    479 
    480    /*    "All other cases are illegal."
    481     */
    482    _mesa_glsl_error(loc, state, "type mismatch");
    483    return glsl_type::error_type;
    484 }
    485 
    486 
    487 static const struct glsl_type *
    488 unary_arithmetic_result_type(const struct glsl_type *type,
    489                              struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    490 {
    491    /* From GLSL 1.50 spec, page 57:
    492     *
    493     *    "The arithmetic unary operators negate (-), post- and pre-increment
    494     *     and decrement (-- and ++) operate on integer or floating-point
    495     *     values (including vectors and matrices). All unary operators work
    496     *     component-wise on their operands. These result with the same type
    497     *     they operated on."
    498     */
    499    if (!type->is_numeric()) {
    500       _mesa_glsl_error(loc, state,
    501                        "operands to arithmetic operators must be numeric");
    502       return glsl_type::error_type;
    503    }
    504 
    505    return type;
    506 }
    507 
    508 /**
    509  * \brief Return the result type of a bit-logic operation.
    510  *
    511  * If the given types to the bit-logic operator are invalid, return
    512  * glsl_type::error_type.
    513  *
    514  * \param value_a LHS of bit-logic op
    515  * \param value_b RHS of bit-logic op
    516  */
    517 static const struct glsl_type *
    518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
    519                       ast_operators op,
    520                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    521 {
    522    const glsl_type *type_a = value_a->type;
    523    const glsl_type *type_b = value_b->type;
    524 
    525    if (!state->check_bitwise_operations_allowed(loc)) {
    526       return glsl_type::error_type;
    527    }
    528 
    529    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
    530     *
    531     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
    532     *     (|). The operands must be of type signed or unsigned integers or
    533     *     integer vectors."
    534     */
    535    if (!type_a->is_integer_32_64()) {
    536       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
    537                         ast_expression::operator_string(op));
    538       return glsl_type::error_type;
    539    }
    540    if (!type_b->is_integer_32_64()) {
    541       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
    542                        ast_expression::operator_string(op));
    543       return glsl_type::error_type;
    544    }
    545 
    546    /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
    547     * make sense for bitwise operations, as they don't operate on floats.
    548     *
    549     * GLSL 4.0 added implicit int -> uint conversions, which are relevant
    550     * here.  It wasn't clear whether or not we should apply them to bitwise
    551     * operations.  However, Khronos has decided that they should in future
    552     * language revisions.  Applications also rely on this behavior.  We opt
    553     * to apply them in general, but issue a portability warning.
    554     *
    555     * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
    556     */
    557    if (type_a->base_type != type_b->base_type) {
    558       if (!apply_implicit_conversion(type_a, value_b, state)
    559           && !apply_implicit_conversion(type_b, value_a, state)) {
    560          _mesa_glsl_error(loc, state,
    561                           "could not implicitly convert operands to "
    562                           "`%s` operator",
    563                           ast_expression::operator_string(op));
    564          return glsl_type::error_type;
    565       } else {
    566          _mesa_glsl_warning(loc, state,
    567                             "some implementations may not support implicit "
    568                             "int -> uint conversions for `%s' operators; "
    569                             "consider casting explicitly for portability",
    570                             ast_expression::operator_string(op));
    571       }
    572       type_a = value_a->type;
    573       type_b = value_b->type;
    574    }
    575 
    576    /*     "The fundamental types of the operands (signed or unsigned) must
    577     *     match,"
    578     */
    579    if (type_a->base_type != type_b->base_type) {
    580       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
    581                        "base type", ast_expression::operator_string(op));
    582       return glsl_type::error_type;
    583    }
    584 
    585    /*     "The operands cannot be vectors of differing size." */
    586    if (type_a->is_vector() &&
    587        type_b->is_vector() &&
    588        type_a->vector_elements != type_b->vector_elements) {
    589       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
    590                        "different sizes", ast_expression::operator_string(op));
    591       return glsl_type::error_type;
    592    }
    593 
    594    /*     "If one operand is a scalar and the other a vector, the scalar is
    595     *     applied component-wise to the vector, resulting in the same type as
    596     *     the vector. The fundamental types of the operands [...] will be the
    597     *     resulting fundamental type."
    598     */
    599    if (type_a->is_scalar())
    600        return type_b;
    601    else
    602        return type_a;
    603 }
    604 
    605 static const struct glsl_type *
    606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
    607                     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    608 {
    609    const glsl_type *type_a = value_a->type;
    610    const glsl_type *type_b = value_b->type;
    611 
    612    if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
    613       return glsl_type::error_type;
    614    }
    615 
    616    /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
    617     *
    618     *    "The operator modulus (%) operates on signed or unsigned integers or
    619     *    integer vectors."
    620     */
    621    if (!type_a->is_integer_32_64()) {
    622       _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
    623       return glsl_type::error_type;
    624    }
    625    if (!type_b->is_integer_32_64()) {
    626       _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
    627       return glsl_type::error_type;
    628    }
    629 
    630    /*    "If the fundamental types in the operands do not match, then the
    631     *    conversions from section 4.1.10 "Implicit Conversions" are applied
    632     *    to create matching types."
    633     *
    634     * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
    635     * int -> uint conversion rules.  Prior to that, there were no implicit
    636     * conversions.  So it's harmless to apply them universally - no implicit
    637     * conversions will exist.  If the types don't match, we'll receive false,
    638     * and raise an error, satisfying the GLSL 1.50 spec, page 56:
    639     *
    640     *    "The operand types must both be signed or unsigned."
    641     */
    642    if (!apply_implicit_conversion(type_a, value_b, state) &&
    643        !apply_implicit_conversion(type_b, value_a, state)) {
    644       _mesa_glsl_error(loc, state,
    645                        "could not implicitly convert operands to "
    646                        "modulus (%%) operator");
    647       return glsl_type::error_type;
    648    }
    649    type_a = value_a->type;
    650    type_b = value_b->type;
    651 
    652    /*    "The operands cannot be vectors of differing size. If one operand is
    653     *    a scalar and the other vector, then the scalar is applied component-
    654     *    wise to the vector, resulting in the same type as the vector. If both
    655     *    are vectors of the same size, the result is computed component-wise."
    656     */
    657    if (type_a->is_vector()) {
    658       if (!type_b->is_vector()
    659           || (type_a->vector_elements == type_b->vector_elements))
    660       return type_a;
    661    } else
    662       return type_b;
    663 
    664    /*    "The operator modulus (%) is not defined for any other data types
    665     *    (non-integer types)."
    666     */
    667    _mesa_glsl_error(loc, state, "type mismatch");
    668    return glsl_type::error_type;
    669 }
    670 
    671 
    672 static const struct glsl_type *
    673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
    674                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    675 {
    676    const glsl_type *type_a = value_a->type;
    677    const glsl_type *type_b = value_b->type;
    678 
    679    /* From GLSL 1.50 spec, page 56:
    680     *    "The relational operators greater than (>), less than (<), greater
    681     *    than or equal (>=), and less than or equal (<=) operate only on
    682     *    scalar integer and scalar floating-point expressions."
    683     */
    684    if (!type_a->is_numeric()
    685        || !type_b->is_numeric()
    686        || !type_a->is_scalar()
    687        || !type_b->is_scalar()) {
    688       _mesa_glsl_error(loc, state,
    689                        "operands to relational operators must be scalar and "
    690                        "numeric");
    691       return glsl_type::error_type;
    692    }
    693 
    694    /*    "Either the operands' types must match, or the conversions from
    695     *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
    696     *    operand, after which the types must match."
    697     */
    698    if (!apply_implicit_conversion(type_a, value_b, state)
    699        && !apply_implicit_conversion(type_b, value_a, state)) {
    700       _mesa_glsl_error(loc, state,
    701                        "could not implicitly convert operands to "
    702                        "relational operator");
    703       return glsl_type::error_type;
    704    }
    705    type_a = value_a->type;
    706    type_b = value_b->type;
    707 
    708    if (type_a->base_type != type_b->base_type) {
    709       _mesa_glsl_error(loc, state, "base type mismatch");
    710       return glsl_type::error_type;
    711    }
    712 
    713    /*    "The result is scalar Boolean."
    714     */
    715    return glsl_type::bool_type;
    716 }
    717 
    718 /**
    719  * \brief Return the result type of a bit-shift operation.
    720  *
    721  * If the given types to the bit-shift operator are invalid, return
    722  * glsl_type::error_type.
    723  *
    724  * \param type_a Type of LHS of bit-shift op
    725  * \param type_b Type of RHS of bit-shift op
    726  */
    727 static const struct glsl_type *
    728 shift_result_type(const struct glsl_type *type_a,
    729                   const struct glsl_type *type_b,
    730                   ast_operators op,
    731                   struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
    732 {
    733    if (!state->check_bitwise_operations_allowed(loc)) {
    734       return glsl_type::error_type;
    735    }
    736 
    737    /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
    738     *
    739     *     "The shift operators (<<) and (>>). For both operators, the operands
    740     *     must be signed or unsigned integers or integer vectors. One operand
    741     *     can be signed while the other is unsigned."
    742     */
    743    if (!type_a->is_integer_32_64()) {
    744       _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
    745                        "integer vector", ast_expression::operator_string(op));
    746      return glsl_type::error_type;
    747 
    748    }
    749    if (!type_b->is_integer()) {
    750       _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
    751                        "integer vector", ast_expression::operator_string(op));
    752      return glsl_type::error_type;
    753    }
    754 
    755    /*     "If the first operand is a scalar, the second operand has to be
    756     *     a scalar as well."
    757     */
    758    if (type_a->is_scalar() && !type_b->is_scalar()) {
    759       _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
    760                        "second must be scalar as well",
    761                        ast_expression::operator_string(op));
    762      return glsl_type::error_type;
    763    }
    764 
    765    /* If both operands are vectors, check that they have same number of
    766     * elements.
    767     */
    768    if (type_a->is_vector() &&
    769       type_b->is_vector() &&
    770       type_a->vector_elements != type_b->vector_elements) {
    771       _mesa_glsl_error(loc, state, "vector operands to operator %s must "
    772                        "have same number of elements",
    773                        ast_expression::operator_string(op));
    774      return glsl_type::error_type;
    775    }
    776 
    777    /*     "In all cases, the resulting type will be the same type as the left
    778     *     operand."
    779     */
    780    return type_a;
    781 }
    782 
    783 /**
    784  * Returns the innermost array index expression in an rvalue tree.
    785  * This is the largest indexing level -- if an array of blocks, then
    786  * it is the block index rather than an indexing expression for an
    787  * array-typed member of an array of blocks.
    788  */
    789 static ir_rvalue *
    790 find_innermost_array_index(ir_rvalue *rv)
    791 {
    792    ir_dereference_array *last = NULL;
    793    while (rv) {
    794       if (rv->as_dereference_array()) {
    795          last = rv->as_dereference_array();
    796          rv = last->array;
    797       } else if (rv->as_dereference_record())
    798          rv = rv->as_dereference_record()->record;
    799       else if (rv->as_swizzle())
    800          rv = rv->as_swizzle()->val;
    801       else
    802          rv = NULL;
    803    }
    804 
    805    if (last)
    806       return last->array_index;
    807 
    808    return NULL;
    809 }
    810 
    811 /**
    812  * Validates that a value can be assigned to a location with a specified type
    813  *
    814  * Validates that \c rhs can be assigned to some location.  If the types are
    815  * not an exact match but an automatic conversion is possible, \c rhs will be
    816  * converted.
    817  *
    818  * \return
    819  * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
    820  * Otherwise the actual RHS to be assigned will be returned.  This may be
    821  * \c rhs, or it may be \c rhs after some type conversion.
    822  *
    823  * \note
    824  * In addition to being used for assignments, this function is used to
    825  * type-check return values.
    826  */
    827 static ir_rvalue *
    828 validate_assignment(struct _mesa_glsl_parse_state *state,
    829                     YYLTYPE loc, ir_rvalue *lhs,
    830                     ir_rvalue *rhs, bool is_initializer)
    831 {
    832    /* If there is already some error in the RHS, just return it.  Anything
    833     * else will lead to an avalanche of error message back to the user.
    834     */
    835    if (rhs->type->is_error())
    836       return rhs;
    837 
    838    /* In the Tessellation Control Shader:
    839     * If a per-vertex output variable is used as an l-value, it is an error
    840     * if the expression indicating the vertex number is not the identifier
    841     * `gl_InvocationID`.
    842     */
    843    if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
    844       ir_variable *var = lhs->variable_referenced();
    845       if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
    846          ir_rvalue *index = find_innermost_array_index(lhs);
    847          ir_variable *index_var = index ? index->variable_referenced() : NULL;
    848          if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
    849             _mesa_glsl_error(&loc, state,
    850                              "Tessellation control shader outputs can only "
    851                              "be indexed by gl_InvocationID");
    852             return NULL;
    853          }
    854       }
    855    }
    856 
    857    /* If the types are identical, the assignment can trivially proceed.
    858     */
    859    if (rhs->type == lhs->type)
    860       return rhs;
    861 
    862    /* If the array element types are the same and the LHS is unsized,
    863     * the assignment is okay for initializers embedded in variable
    864     * declarations.
    865     *
    866     * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
    867     * is handled by ir_dereference::is_lvalue.
    868     */
    869    const glsl_type *lhs_t = lhs->type;
    870    const glsl_type *rhs_t = rhs->type;
    871    bool unsized_array = false;
    872    while(lhs_t->is_array()) {
    873       if (rhs_t == lhs_t)
    874          break; /* the rest of the inner arrays match so break out early */
    875       if (!rhs_t->is_array()) {
    876          unsized_array = false;
    877          break; /* number of dimensions mismatch */
    878       }
    879       if (lhs_t->length == rhs_t->length) {
    880          lhs_t = lhs_t->fields.array;
    881          rhs_t = rhs_t->fields.array;
    882          continue;
    883       } else if (lhs_t->is_unsized_array()) {
    884          unsized_array = true;
    885       } else {
    886          unsized_array = false;
    887          break; /* sized array mismatch */
    888       }
    889       lhs_t = lhs_t->fields.array;
    890       rhs_t = rhs_t->fields.array;
    891    }
    892    if (unsized_array) {
    893       if (is_initializer) {
    894          return rhs;
    895       } else {
    896          _mesa_glsl_error(&loc, state,
    897                           "implicitly sized arrays cannot be assigned");
    898          return NULL;
    899       }
    900    }
    901 
    902    /* Check for implicit conversion in GLSL 1.20 */
    903    if (apply_implicit_conversion(lhs->type, rhs, state)) {
    904       if (rhs->type == lhs->type)
    905          return rhs;
    906    }
    907 
    908    _mesa_glsl_error(&loc, state,
    909                     "%s of type %s cannot be assigned to "
    910                     "variable of type %s",
    911                     is_initializer ? "initializer" : "value",
    912                     rhs->type->name, lhs->type->name);
    913 
    914    return NULL;
    915 }
    916 
    917 static void
    918 mark_whole_array_access(ir_rvalue *access)
    919 {
    920    ir_dereference_variable *deref = access->as_dereference_variable();
    921 
    922    if (deref && deref->var) {
    923       deref->var->data.max_array_access = deref->type->length - 1;
    924    }
    925 }
    926 
    927 static bool
    928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
    929               const char *non_lvalue_description,
    930               ir_rvalue *lhs, ir_rvalue *rhs,
    931               ir_rvalue **out_rvalue, bool needs_rvalue,
    932               bool is_initializer,
    933               YYLTYPE lhs_loc)
    934 {
    935    void *ctx = state;
    936    bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
    937 
    938    ir_variable *lhs_var = lhs->variable_referenced();
    939    if (lhs_var)
    940       lhs_var->data.assigned = true;
    941 
    942    if (!error_emitted) {
    943       if (non_lvalue_description != NULL) {
    944          _mesa_glsl_error(&lhs_loc, state,
    945                           "assignment to %s",
    946                           non_lvalue_description);
    947          error_emitted = true;
    948       } else if (lhs_var != NULL && (lhs_var->data.read_only ||
    949                  (lhs_var->data.mode == ir_var_shader_storage &&
    950                   lhs_var->data.memory_read_only))) {
    951          /* We can have memory_read_only set on both images and buffer variables,
    952           * but in the former there is a distinction between assignments to
    953           * the variable itself (read_only) and to the memory they point to
    954           * (memory_read_only), while in the case of buffer variables there is
    955           * no such distinction, that is why this check here is limited to
    956           * buffer variables alone.
    957           */
    958          _mesa_glsl_error(&lhs_loc, state,
    959                           "assignment to read-only variable '%s'",
    960                           lhs_var->name);
    961          error_emitted = true;
    962       } else if (lhs->type->is_array() &&
    963                  !state->check_version(120, 300, &lhs_loc,
    964                                        "whole array assignment forbidden")) {
    965          /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
    966           *
    967           *    "Other binary or unary expressions, non-dereferenced
    968           *     arrays, function names, swizzles with repeated fields,
    969           *     and constants cannot be l-values."
    970           *
    971           * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
    972           */
    973          error_emitted = true;
    974       } else if (!lhs->is_lvalue(state)) {
    975          _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
    976          error_emitted = true;
    977       }
    978    }
    979 
    980    ir_rvalue *new_rhs =
    981       validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
    982    if (new_rhs != NULL) {
    983       rhs = new_rhs;
    984 
    985       /* If the LHS array was not declared with a size, it takes it size from
    986        * the RHS.  If the LHS is an l-value and a whole array, it must be a
    987        * dereference of a variable.  Any other case would require that the LHS
    988        * is either not an l-value or not a whole array.
    989        */
    990       if (lhs->type->is_unsized_array()) {
    991          ir_dereference *const d = lhs->as_dereference();
    992 
    993          assert(d != NULL);
    994 
    995          ir_variable *const var = d->variable_referenced();
    996 
    997          assert(var != NULL);
    998 
    999          if (var->data.max_array_access >= rhs->type->array_size()) {
   1000             /* FINISHME: This should actually log the location of the RHS. */
   1001             _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
   1002                              "previous access",
   1003                              var->data.max_array_access);
   1004          }
   1005 
   1006          var->type = glsl_type::get_array_instance(lhs->type->fields.array,
   1007                                                    rhs->type->array_size());
   1008          d->type = var->type;
   1009       }
   1010       if (lhs->type->is_array()) {
   1011          mark_whole_array_access(rhs);
   1012          mark_whole_array_access(lhs);
   1013       }
   1014    }
   1015 
   1016    /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
   1017     * but not post_inc) need the converted assigned value as an rvalue
   1018     * to handle things like:
   1019     *
   1020     * i = j += 1;
   1021     */
   1022    if (needs_rvalue) {
   1023       ir_rvalue *rvalue;
   1024       if (!error_emitted) {
   1025          ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
   1026                                                  ir_var_temporary);
   1027          instructions->push_tail(var);
   1028          instructions->push_tail(assign(var, rhs));
   1029 
   1030          ir_dereference_variable *deref_var =
   1031             new(ctx) ir_dereference_variable(var);
   1032          instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
   1033          rvalue = new(ctx) ir_dereference_variable(var);
   1034       } else {
   1035          rvalue = ir_rvalue::error_value(ctx);
   1036       }
   1037       *out_rvalue = rvalue;
   1038    } else {
   1039       if (!error_emitted)
   1040          instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
   1041       *out_rvalue = NULL;
   1042    }
   1043 
   1044    return error_emitted;
   1045 }
   1046 
   1047 static ir_rvalue *
   1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
   1049 {
   1050    void *ctx = ralloc_parent(lvalue);
   1051    ir_variable *var;
   1052 
   1053    var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
   1054                               ir_var_temporary);
   1055    instructions->push_tail(var);
   1056 
   1057    instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
   1058                                                   lvalue));
   1059 
   1060    return new(ctx) ir_dereference_variable(var);
   1061 }
   1062 
   1063 
   1064 ir_rvalue *
   1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
   1066 {
   1067    (void) instructions;
   1068    (void) state;
   1069 
   1070    return NULL;
   1071 }
   1072 
   1073 bool
   1074 ast_node::has_sequence_subexpression() const
   1075 {
   1076    return false;
   1077 }
   1078 
   1079 void
   1080 ast_node::set_is_lhs(bool /* new_value */)
   1081 {
   1082 }
   1083 
   1084 void
   1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
   1086                                        struct _mesa_glsl_parse_state *state)
   1087 {
   1088    (void)hir(instructions, state);
   1089 }
   1090 
   1091 void
   1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
   1093                                          struct _mesa_glsl_parse_state *state)
   1094 {
   1095    (void)hir(instructions, state);
   1096 }
   1097 
   1098 static ir_rvalue *
   1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
   1100 {
   1101    int join_op;
   1102    ir_rvalue *cmp = NULL;
   1103 
   1104    if (operation == ir_binop_all_equal)
   1105       join_op = ir_binop_logic_and;
   1106    else
   1107       join_op = ir_binop_logic_or;
   1108 
   1109    switch (op0->type->base_type) {
   1110    case GLSL_TYPE_FLOAT:
   1111    case GLSL_TYPE_FLOAT16:
   1112    case GLSL_TYPE_UINT:
   1113    case GLSL_TYPE_INT:
   1114    case GLSL_TYPE_BOOL:
   1115    case GLSL_TYPE_DOUBLE:
   1116    case GLSL_TYPE_UINT64:
   1117    case GLSL_TYPE_INT64:
   1118    case GLSL_TYPE_UINT16:
   1119    case GLSL_TYPE_INT16:
   1120       return new(mem_ctx) ir_expression(operation, op0, op1);
   1121 
   1122    case GLSL_TYPE_ARRAY: {
   1123       for (unsigned int i = 0; i < op0->type->length; i++) {
   1124          ir_rvalue *e0, *e1, *result;
   1125 
   1126          e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
   1127                                                 new(mem_ctx) ir_constant(i));
   1128          e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
   1129                                                 new(mem_ctx) ir_constant(i));
   1130          result = do_comparison(mem_ctx, operation, e0, e1);
   1131 
   1132          if (cmp) {
   1133             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
   1134          } else {
   1135             cmp = result;
   1136          }
   1137       }
   1138 
   1139       mark_whole_array_access(op0);
   1140       mark_whole_array_access(op1);
   1141       break;
   1142    }
   1143 
   1144    case GLSL_TYPE_STRUCT: {
   1145       for (unsigned int i = 0; i < op0->type->length; i++) {
   1146          ir_rvalue *e0, *e1, *result;
   1147          const char *field_name = op0->type->fields.structure[i].name;
   1148 
   1149          e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
   1150                                                  field_name);
   1151          e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
   1152                                                  field_name);
   1153          result = do_comparison(mem_ctx, operation, e0, e1);
   1154 
   1155          if (cmp) {
   1156             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
   1157          } else {
   1158             cmp = result;
   1159          }
   1160       }
   1161       break;
   1162    }
   1163 
   1164    case GLSL_TYPE_ERROR:
   1165    case GLSL_TYPE_VOID:
   1166    case GLSL_TYPE_SAMPLER:
   1167    case GLSL_TYPE_IMAGE:
   1168    case GLSL_TYPE_INTERFACE:
   1169    case GLSL_TYPE_ATOMIC_UINT:
   1170    case GLSL_TYPE_SUBROUTINE:
   1171    case GLSL_TYPE_FUNCTION:
   1172       /* I assume a comparison of a struct containing a sampler just
   1173        * ignores the sampler present in the type.
   1174        */
   1175       break;
   1176    }
   1177 
   1178    if (cmp == NULL)
   1179       cmp = new(mem_ctx) ir_constant(true);
   1180 
   1181    return cmp;
   1182 }
   1183 
   1184 /* For logical operations, we want to ensure that the operands are
   1185  * scalar booleans.  If it isn't, emit an error and return a constant
   1186  * boolean to avoid triggering cascading error messages.
   1187  */
   1188 static ir_rvalue *
   1189 get_scalar_boolean_operand(exec_list *instructions,
   1190                            struct _mesa_glsl_parse_state *state,
   1191                            ast_expression *parent_expr,
   1192                            int operand,
   1193                            const char *operand_name,
   1194                            bool *error_emitted)
   1195 {
   1196    ast_expression *expr = parent_expr->subexpressions[operand];
   1197    void *ctx = state;
   1198    ir_rvalue *val = expr->hir(instructions, state);
   1199 
   1200    if (val->type->is_boolean() && val->type->is_scalar())
   1201       return val;
   1202 
   1203    if (!*error_emitted) {
   1204       YYLTYPE loc = expr->get_location();
   1205       _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
   1206                        operand_name,
   1207                        parent_expr->operator_string(parent_expr->oper));
   1208       *error_emitted = true;
   1209    }
   1210 
   1211    return new(ctx) ir_constant(true);
   1212 }
   1213 
   1214 /**
   1215  * If name refers to a builtin array whose maximum allowed size is less than
   1216  * size, report an error and return true.  Otherwise return false.
   1217  */
   1218 void
   1219 check_builtin_array_max_size(const char *name, unsigned size,
   1220                              YYLTYPE loc, struct _mesa_glsl_parse_state *state)
   1221 {
   1222    if ((strcmp("gl_TexCoord", name) == 0)
   1223        && (size > state->Const.MaxTextureCoords)) {
   1224       /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
   1225        *
   1226        *     "The size [of gl_TexCoord] can be at most
   1227        *     gl_MaxTextureCoords."
   1228        */
   1229       _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
   1230                        "be larger than gl_MaxTextureCoords (%u)",
   1231                        state->Const.MaxTextureCoords);
   1232    } else if (strcmp("gl_ClipDistance", name) == 0) {
   1233       state->clip_dist_size = size;
   1234       if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
   1235          /* From section 7.1 (Vertex Shader Special Variables) of the
   1236           * GLSL 1.30 spec:
   1237           *
   1238           *   "The gl_ClipDistance array is predeclared as unsized and
   1239           *   must be sized by the shader either redeclaring it with a
   1240           *   size or indexing it only with integral constant
   1241           *   expressions. ... The size can be at most
   1242           *   gl_MaxClipDistances."
   1243           */
   1244          _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
   1245                           "be larger than gl_MaxClipDistances (%u)",
   1246                           state->Const.MaxClipPlanes);
   1247       }
   1248    } else if (strcmp("gl_CullDistance", name) == 0) {
   1249       state->cull_dist_size = size;
   1250       if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
   1251          /* From the ARB_cull_distance spec:
   1252           *
   1253           *   "The gl_CullDistance array is predeclared as unsized and
   1254           *    must be sized by the shader either redeclaring it with
   1255           *    a size or indexing it only with integral constant
   1256           *    expressions. The size determines the number and set of
   1257           *    enabled cull distances and can be at most
   1258           *    gl_MaxCullDistances."
   1259           */
   1260          _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
   1261                           "be larger than gl_MaxCullDistances (%u)",
   1262                           state->Const.MaxClipPlanes);
   1263       }
   1264    }
   1265 }
   1266 
   1267 /**
   1268  * Create the constant 1, of a which is appropriate for incrementing and
   1269  * decrementing values of the given GLSL type.  For example, if type is vec4,
   1270  * this creates a constant value of 1.0 having type float.
   1271  *
   1272  * If the given type is invalid for increment and decrement operators, return
   1273  * a floating point 1--the error will be detected later.
   1274  */
   1275 static ir_rvalue *
   1276 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
   1277 {
   1278    switch (type->base_type) {
   1279    case GLSL_TYPE_UINT:
   1280       return new(ctx) ir_constant((unsigned) 1);
   1281    case GLSL_TYPE_INT:
   1282       return new(ctx) ir_constant(1);
   1283    case GLSL_TYPE_UINT64:
   1284       return new(ctx) ir_constant((uint64_t) 1);
   1285    case GLSL_TYPE_INT64:
   1286       return new(ctx) ir_constant((int64_t) 1);
   1287    default:
   1288    case GLSL_TYPE_FLOAT:
   1289       return new(ctx) ir_constant(1.0f);
   1290    }
   1291 }
   1292 
   1293 ir_rvalue *
   1294 ast_expression::hir(exec_list *instructions,
   1295                     struct _mesa_glsl_parse_state *state)
   1296 {
   1297    return do_hir(instructions, state, true);
   1298 }
   1299 
   1300 void
   1301 ast_expression::hir_no_rvalue(exec_list *instructions,
   1302                               struct _mesa_glsl_parse_state *state)
   1303 {
   1304    do_hir(instructions, state, false);
   1305 }
   1306 
   1307 void
   1308 ast_expression::set_is_lhs(bool new_value)
   1309 {
   1310    /* is_lhs is tracked only to print "variable used uninitialized" warnings,
   1311     * if we lack an identifier we can just skip it.
   1312     */
   1313    if (this->primary_expression.identifier == NULL)
   1314       return;
   1315 
   1316    this->is_lhs = new_value;
   1317 
   1318    /* We need to go through the subexpressions tree to cover cases like
   1319     * ast_field_selection
   1320     */
   1321    if (this->subexpressions[0] != NULL)
   1322       this->subexpressions[0]->set_is_lhs(new_value);
   1323 }
   1324 
   1325 ir_rvalue *
   1326 ast_expression::do_hir(exec_list *instructions,
   1327                        struct _mesa_glsl_parse_state *state,
   1328                        bool needs_rvalue)
   1329 {
   1330    void *ctx = state;
   1331    static const int operations[AST_NUM_OPERATORS] = {
   1332       -1,               /* ast_assign doesn't convert to ir_expression. */
   1333       -1,               /* ast_plus doesn't convert to ir_expression. */
   1334       ir_unop_neg,
   1335       ir_binop_add,
   1336       ir_binop_sub,
   1337       ir_binop_mul,
   1338       ir_binop_div,
   1339       ir_binop_mod,
   1340       ir_binop_lshift,
   1341       ir_binop_rshift,
   1342       ir_binop_less,
   1343       ir_binop_less,    /* This is correct.  See the ast_greater case below. */
   1344       ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
   1345       ir_binop_gequal,
   1346       ir_binop_all_equal,
   1347       ir_binop_any_nequal,
   1348       ir_binop_bit_and,
   1349       ir_binop_bit_xor,
   1350       ir_binop_bit_or,
   1351       ir_unop_bit_not,
   1352       ir_binop_logic_and,
   1353       ir_binop_logic_xor,
   1354       ir_binop_logic_or,
   1355       ir_unop_logic_not,
   1356 
   1357       /* Note: The following block of expression types actually convert
   1358        * to multiple IR instructions.
   1359        */
   1360       ir_binop_mul,     /* ast_mul_assign */
   1361       ir_binop_div,     /* ast_div_assign */
   1362       ir_binop_mod,     /* ast_mod_assign */
   1363       ir_binop_add,     /* ast_add_assign */
   1364       ir_binop_sub,     /* ast_sub_assign */
   1365       ir_binop_lshift,  /* ast_ls_assign */
   1366       ir_binop_rshift,  /* ast_rs_assign */
   1367       ir_binop_bit_and, /* ast_and_assign */
   1368       ir_binop_bit_xor, /* ast_xor_assign */
   1369       ir_binop_bit_or,  /* ast_or_assign */
   1370 
   1371       -1,               /* ast_conditional doesn't convert to ir_expression. */
   1372       ir_binop_add,     /* ast_pre_inc. */
   1373       ir_binop_sub,     /* ast_pre_dec. */
   1374       ir_binop_add,     /* ast_post_inc. */
   1375       ir_binop_sub,     /* ast_post_dec. */
   1376       -1,               /* ast_field_selection doesn't conv to ir_expression. */
   1377       -1,               /* ast_array_index doesn't convert to ir_expression. */
   1378       -1,               /* ast_function_call doesn't conv to ir_expression. */
   1379       -1,               /* ast_identifier doesn't convert to ir_expression. */
   1380       -1,               /* ast_int_constant doesn't convert to ir_expression. */
   1381       -1,               /* ast_uint_constant doesn't conv to ir_expression. */
   1382       -1,               /* ast_float_constant doesn't conv to ir_expression. */
   1383       -1,               /* ast_bool_constant doesn't conv to ir_expression. */
   1384       -1,               /* ast_sequence doesn't convert to ir_expression. */
   1385       -1,               /* ast_aggregate shouldn't ever even get here. */
   1386    };
   1387    ir_rvalue *result = NULL;
   1388    ir_rvalue *op[3];
   1389    const struct glsl_type *type, *orig_type;
   1390    bool error_emitted = false;
   1391    YYLTYPE loc;
   1392 
   1393    loc = this->get_location();
   1394 
   1395    switch (this->oper) {
   1396    case ast_aggregate:
   1397       assert(!"ast_aggregate: Should never get here.");
   1398       break;
   1399 
   1400    case ast_assign: {
   1401       this->subexpressions[0]->set_is_lhs(true);
   1402       op[0] = this->subexpressions[0]->hir(instructions, state);
   1403       op[1] = this->subexpressions[1]->hir(instructions, state);
   1404 
   1405       error_emitted =
   1406          do_assignment(instructions, state,
   1407                        this->subexpressions[0]->non_lvalue_description,
   1408                        op[0], op[1], &result, needs_rvalue, false,
   1409                        this->subexpressions[0]->get_location());
   1410       break;
   1411    }
   1412 
   1413    case ast_plus:
   1414       op[0] = this->subexpressions[0]->hir(instructions, state);
   1415 
   1416       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
   1417 
   1418       error_emitted = type->is_error();
   1419 
   1420       result = op[0];
   1421       break;
   1422 
   1423    case ast_neg:
   1424       op[0] = this->subexpressions[0]->hir(instructions, state);
   1425 
   1426       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
   1427 
   1428       error_emitted = type->is_error();
   1429 
   1430       result = new(ctx) ir_expression(operations[this->oper], type,
   1431                                       op[0], NULL);
   1432       break;
   1433 
   1434    case ast_add:
   1435    case ast_sub:
   1436    case ast_mul:
   1437    case ast_div:
   1438       op[0] = this->subexpressions[0]->hir(instructions, state);
   1439       op[1] = this->subexpressions[1]->hir(instructions, state);
   1440 
   1441       type = arithmetic_result_type(op[0], op[1],
   1442                                     (this->oper == ast_mul),
   1443                                     state, & loc);
   1444       error_emitted = type->is_error();
   1445 
   1446       result = new(ctx) ir_expression(operations[this->oper], type,
   1447                                       op[0], op[1]);
   1448       break;
   1449 
   1450    case ast_mod:
   1451       op[0] = this->subexpressions[0]->hir(instructions, state);
   1452       op[1] = this->subexpressions[1]->hir(instructions, state);
   1453 
   1454       type = modulus_result_type(op[0], op[1], state, &loc);
   1455 
   1456       assert(operations[this->oper] == ir_binop_mod);
   1457 
   1458       result = new(ctx) ir_expression(operations[this->oper], type,
   1459                                       op[0], op[1]);
   1460       error_emitted = type->is_error();
   1461       break;
   1462 
   1463    case ast_lshift:
   1464    case ast_rshift:
   1465        if (!state->check_bitwise_operations_allowed(&loc)) {
   1466           error_emitted = true;
   1467        }
   1468 
   1469        op[0] = this->subexpressions[0]->hir(instructions, state);
   1470        op[1] = this->subexpressions[1]->hir(instructions, state);
   1471        type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
   1472                                 &loc);
   1473        result = new(ctx) ir_expression(operations[this->oper], type,
   1474                                        op[0], op[1]);
   1475        error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
   1476        break;
   1477 
   1478    case ast_less:
   1479    case ast_greater:
   1480    case ast_lequal:
   1481    case ast_gequal:
   1482       op[0] = this->subexpressions[0]->hir(instructions, state);
   1483       op[1] = this->subexpressions[1]->hir(instructions, state);
   1484 
   1485       type = relational_result_type(op[0], op[1], state, & loc);
   1486 
   1487       /* The relational operators must either generate an error or result
   1488        * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
   1489        */
   1490       assert(type->is_error()
   1491              || (type->is_boolean() && type->is_scalar()));
   1492 
   1493       /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
   1494        * the arguments and use < or >=.
   1495        */
   1496       if (this->oper == ast_greater || this->oper == ast_lequal) {
   1497          ir_rvalue *const tmp = op[0];
   1498          op[0] = op[1];
   1499          op[1] = tmp;
   1500       }
   1501 
   1502       result = new(ctx) ir_expression(operations[this->oper], type,
   1503                                       op[0], op[1]);
   1504       error_emitted = type->is_error();
   1505       break;
   1506 
   1507    case ast_nequal:
   1508    case ast_equal:
   1509       op[0] = this->subexpressions[0]->hir(instructions, state);
   1510       op[1] = this->subexpressions[1]->hir(instructions, state);
   1511 
   1512       /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
   1513        *
   1514        *    "The equality operators equal (==), and not equal (!=)
   1515        *    operate on all types. They result in a scalar Boolean. If
   1516        *    the operand types do not match, then there must be a
   1517        *    conversion from Section 4.1.10 "Implicit Conversions"
   1518        *    applied to one operand that can make them match, in which
   1519        *    case this conversion is done."
   1520        */
   1521 
   1522       if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
   1523          _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
   1524                          "no operation `%1$s' exists that takes a left-hand "
   1525                          "operand of type 'void' or a right operand of type "
   1526                          "'void'", (this->oper == ast_equal) ? "==" : "!=");
   1527          error_emitted = true;
   1528       } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
   1529            && !apply_implicit_conversion(op[1]->type, op[0], state))
   1530           || (op[0]->type != op[1]->type)) {
   1531          _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
   1532                           "type", (this->oper == ast_equal) ? "==" : "!=");
   1533          error_emitted = true;
   1534       } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
   1535                  !state->check_version(120, 300, &loc,
   1536                                        "array comparisons forbidden")) {
   1537          error_emitted = true;
   1538       } else if ((op[0]->type->contains_subroutine() ||
   1539                   op[1]->type->contains_subroutine())) {
   1540          _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
   1541          error_emitted = true;
   1542       } else if ((op[0]->type->contains_opaque() ||
   1543                   op[1]->type->contains_opaque())) {
   1544          _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
   1545          error_emitted = true;
   1546       }
   1547 
   1548       if (error_emitted) {
   1549          result = new(ctx) ir_constant(false);
   1550       } else {
   1551          result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
   1552          assert(result->type == glsl_type::bool_type);
   1553       }
   1554       break;
   1555 
   1556    case ast_bit_and:
   1557    case ast_bit_xor:
   1558    case ast_bit_or:
   1559       op[0] = this->subexpressions[0]->hir(instructions, state);
   1560       op[1] = this->subexpressions[1]->hir(instructions, state);
   1561       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
   1562       result = new(ctx) ir_expression(operations[this->oper], type,
   1563                                       op[0], op[1]);
   1564       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
   1565       break;
   1566 
   1567    case ast_bit_not:
   1568       op[0] = this->subexpressions[0]->hir(instructions, state);
   1569 
   1570       if (!state->check_bitwise_operations_allowed(&loc)) {
   1571          error_emitted = true;
   1572       }
   1573 
   1574       if (!op[0]->type->is_integer_32_64()) {
   1575          _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
   1576          error_emitted = true;
   1577       }
   1578 
   1579       type = error_emitted ? glsl_type::error_type : op[0]->type;
   1580       result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
   1581       break;
   1582 
   1583    case ast_logic_and: {
   1584       exec_list rhs_instructions;
   1585       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
   1586                                          "LHS", &error_emitted);
   1587       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
   1588                                          "RHS", &error_emitted);
   1589 
   1590       if (rhs_instructions.is_empty()) {
   1591          result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
   1592       } else {
   1593          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
   1594                                                        "and_tmp",
   1595                                                        ir_var_temporary);
   1596          instructions->push_tail(tmp);
   1597 
   1598          ir_if *const stmt = new(ctx) ir_if(op[0]);
   1599          instructions->push_tail(stmt);
   1600 
   1601          stmt->then_instructions.append_list(&rhs_instructions);
   1602          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
   1603          ir_assignment *const then_assign =
   1604             new(ctx) ir_assignment(then_deref, op[1]);
   1605          stmt->then_instructions.push_tail(then_assign);
   1606 
   1607          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
   1608          ir_assignment *const else_assign =
   1609             new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
   1610          stmt->else_instructions.push_tail(else_assign);
   1611 
   1612          result = new(ctx) ir_dereference_variable(tmp);
   1613       }
   1614       break;
   1615    }
   1616 
   1617    case ast_logic_or: {
   1618       exec_list rhs_instructions;
   1619       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
   1620                                          "LHS", &error_emitted);
   1621       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
   1622                                          "RHS", &error_emitted);
   1623 
   1624       if (rhs_instructions.is_empty()) {
   1625          result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
   1626       } else {
   1627          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
   1628                                                        "or_tmp",
   1629                                                        ir_var_temporary);
   1630          instructions->push_tail(tmp);
   1631 
   1632          ir_if *const stmt = new(ctx) ir_if(op[0]);
   1633          instructions->push_tail(stmt);
   1634 
   1635          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
   1636          ir_assignment *const then_assign =
   1637             new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
   1638          stmt->then_instructions.push_tail(then_assign);
   1639 
   1640          stmt->else_instructions.append_list(&rhs_instructions);
   1641          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
   1642          ir_assignment *const else_assign =
   1643             new(ctx) ir_assignment(else_deref, op[1]);
   1644          stmt->else_instructions.push_tail(else_assign);
   1645 
   1646          result = new(ctx) ir_dereference_variable(tmp);
   1647       }
   1648       break;
   1649    }
   1650 
   1651    case ast_logic_xor:
   1652       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
   1653        *
   1654        *    "The logical binary operators and (&&), or ( | | ), and
   1655        *     exclusive or (^^). They operate only on two Boolean
   1656        *     expressions and result in a Boolean expression."
   1657        */
   1658       op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
   1659                                          &error_emitted);
   1660       op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
   1661                                          &error_emitted);
   1662 
   1663       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
   1664                                       op[0], op[1]);
   1665       break;
   1666 
   1667    case ast_logic_not:
   1668       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
   1669                                          "operand", &error_emitted);
   1670 
   1671       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
   1672                                       op[0], NULL);
   1673       break;
   1674 
   1675    case ast_mul_assign:
   1676    case ast_div_assign:
   1677    case ast_add_assign:
   1678    case ast_sub_assign: {
   1679       this->subexpressions[0]->set_is_lhs(true);
   1680       op[0] = this->subexpressions[0]->hir(instructions, state);
   1681       op[1] = this->subexpressions[1]->hir(instructions, state);
   1682 
   1683       orig_type = op[0]->type;
   1684       type = arithmetic_result_type(op[0], op[1],
   1685                                     (this->oper == ast_mul_assign),
   1686                                     state, & loc);
   1687 
   1688       if (type != orig_type) {
   1689          _mesa_glsl_error(& loc, state,
   1690                           "could not implicitly convert "
   1691                           "%s to %s", type->name, orig_type->name);
   1692          type = glsl_type::error_type;
   1693       }
   1694 
   1695       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
   1696                                                    op[0], op[1]);
   1697 
   1698       error_emitted =
   1699          do_assignment(instructions, state,
   1700                        this->subexpressions[0]->non_lvalue_description,
   1701                        op[0]->clone(ctx, NULL), temp_rhs,
   1702                        &result, needs_rvalue, false,
   1703                        this->subexpressions[0]->get_location());
   1704 
   1705       /* GLSL 1.10 does not allow array assignment.  However, we don't have to
   1706        * explicitly test for this because none of the binary expression
   1707        * operators allow array operands either.
   1708        */
   1709 
   1710       break;
   1711    }
   1712 
   1713    case ast_mod_assign: {
   1714       this->subexpressions[0]->set_is_lhs(true);
   1715       op[0] = this->subexpressions[0]->hir(instructions, state);
   1716       op[1] = this->subexpressions[1]->hir(instructions, state);
   1717 
   1718       orig_type = op[0]->type;
   1719       type = modulus_result_type(op[0], op[1], state, &loc);
   1720 
   1721       if (type != orig_type) {
   1722          _mesa_glsl_error(& loc, state,
   1723                           "could not implicitly convert "
   1724                           "%s to %s", type->name, orig_type->name);
   1725          type = glsl_type::error_type;
   1726       }
   1727 
   1728       assert(operations[this->oper] == ir_binop_mod);
   1729 
   1730       ir_rvalue *temp_rhs;
   1731       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
   1732                                         op[0], op[1]);
   1733 
   1734       error_emitted =
   1735          do_assignment(instructions, state,
   1736                        this->subexpressions[0]->non_lvalue_description,
   1737                        op[0]->clone(ctx, NULL), temp_rhs,
   1738                        &result, needs_rvalue, false,
   1739                        this->subexpressions[0]->get_location());
   1740       break;
   1741    }
   1742 
   1743    case ast_ls_assign:
   1744    case ast_rs_assign: {
   1745       this->subexpressions[0]->set_is_lhs(true);
   1746       op[0] = this->subexpressions[0]->hir(instructions, state);
   1747       op[1] = this->subexpressions[1]->hir(instructions, state);
   1748       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
   1749                                &loc);
   1750       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
   1751                                                    type, op[0], op[1]);
   1752       error_emitted =
   1753          do_assignment(instructions, state,
   1754                        this->subexpressions[0]->non_lvalue_description,
   1755                        op[0]->clone(ctx, NULL), temp_rhs,
   1756                        &result, needs_rvalue, false,
   1757                        this->subexpressions[0]->get_location());
   1758       break;
   1759    }
   1760 
   1761    case ast_and_assign:
   1762    case ast_xor_assign:
   1763    case ast_or_assign: {
   1764       this->subexpressions[0]->set_is_lhs(true);
   1765       op[0] = this->subexpressions[0]->hir(instructions, state);
   1766       op[1] = this->subexpressions[1]->hir(instructions, state);
   1767 
   1768       orig_type = op[0]->type;
   1769       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
   1770 
   1771       if (type != orig_type) {
   1772          _mesa_glsl_error(& loc, state,
   1773                           "could not implicitly convert "
   1774                           "%s to %s", type->name, orig_type->name);
   1775          type = glsl_type::error_type;
   1776       }
   1777 
   1778       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
   1779                                                    type, op[0], op[1]);
   1780       error_emitted =
   1781          do_assignment(instructions, state,
   1782                        this->subexpressions[0]->non_lvalue_description,
   1783                        op[0]->clone(ctx, NULL), temp_rhs,
   1784                        &result, needs_rvalue, false,
   1785                        this->subexpressions[0]->get_location());
   1786       break;
   1787    }
   1788 
   1789    case ast_conditional: {
   1790       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
   1791        *
   1792        *    "The ternary selection operator (?:). It operates on three
   1793        *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
   1794        *    first expression, which must result in a scalar Boolean."
   1795        */
   1796       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
   1797                                          "condition", &error_emitted);
   1798 
   1799       /* The :? operator is implemented by generating an anonymous temporary
   1800        * followed by an if-statement.  The last instruction in each branch of
   1801        * the if-statement assigns a value to the anonymous temporary.  This
   1802        * temporary is the r-value of the expression.
   1803        */
   1804       exec_list then_instructions;
   1805       exec_list else_instructions;
   1806 
   1807       op[1] = this->subexpressions[1]->hir(&then_instructions, state);
   1808       op[2] = this->subexpressions[2]->hir(&else_instructions, state);
   1809 
   1810       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
   1811        *
   1812        *     "The second and third expressions can be any type, as
   1813        *     long their types match, or there is a conversion in
   1814        *     Section 4.1.10 "Implicit Conversions" that can be applied
   1815        *     to one of the expressions to make their types match. This
   1816        *     resulting matching type is the type of the entire
   1817        *     expression."
   1818        */
   1819       if ((!apply_implicit_conversion(op[1]->type, op[2], state)
   1820           && !apply_implicit_conversion(op[2]->type, op[1], state))
   1821           || (op[1]->type != op[2]->type)) {
   1822          YYLTYPE loc = this->subexpressions[1]->get_location();
   1823 
   1824          _mesa_glsl_error(& loc, state, "second and third operands of ?: "
   1825                           "operator must have matching types");
   1826          error_emitted = true;
   1827          type = glsl_type::error_type;
   1828       } else {
   1829          type = op[1]->type;
   1830       }
   1831 
   1832       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
   1833        *
   1834        *    "The second and third expressions must be the same type, but can
   1835        *    be of any type other than an array."
   1836        */
   1837       if (type->is_array() &&
   1838           !state->check_version(120, 300, &loc,
   1839                                 "second and third operands of ?: operator "
   1840                                 "cannot be arrays")) {
   1841          error_emitted = true;
   1842       }
   1843 
   1844       /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
   1845        *
   1846        *  "Except for array indexing, structure member selection, and
   1847        *   parentheses, opaque variables are not allowed to be operands in
   1848        *   expressions; such use results in a compile-time error."
   1849        */
   1850       if (type->contains_opaque()) {
   1851          _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
   1852                           "of the ?: operator");
   1853          error_emitted = true;
   1854       }
   1855 
   1856       ir_constant *cond_val = op[0]->constant_expression_value(ctx);
   1857 
   1858       if (then_instructions.is_empty()
   1859           && else_instructions.is_empty()
   1860           && cond_val != NULL) {
   1861          result = cond_val->value.b[0] ? op[1] : op[2];
   1862       } else {
   1863          /* The copy to conditional_tmp reads the whole array. */
   1864          if (type->is_array()) {
   1865             mark_whole_array_access(op[1]);
   1866             mark_whole_array_access(op[2]);
   1867          }
   1868 
   1869          ir_variable *const tmp =
   1870             new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
   1871          instructions->push_tail(tmp);
   1872 
   1873          ir_if *const stmt = new(ctx) ir_if(op[0]);
   1874          instructions->push_tail(stmt);
   1875 
   1876          then_instructions.move_nodes_to(& stmt->then_instructions);
   1877          ir_dereference *const then_deref =
   1878             new(ctx) ir_dereference_variable(tmp);
   1879          ir_assignment *const then_assign =
   1880             new(ctx) ir_assignment(then_deref, op[1]);
   1881          stmt->then_instructions.push_tail(then_assign);
   1882 
   1883          else_instructions.move_nodes_to(& stmt->else_instructions);
   1884          ir_dereference *const else_deref =
   1885             new(ctx) ir_dereference_variable(tmp);
   1886          ir_assignment *const else_assign =
   1887             new(ctx) ir_assignment(else_deref, op[2]);
   1888          stmt->else_instructions.push_tail(else_assign);
   1889 
   1890          result = new(ctx) ir_dereference_variable(tmp);
   1891       }
   1892       break;
   1893    }
   1894 
   1895    case ast_pre_inc:
   1896    case ast_pre_dec: {
   1897       this->non_lvalue_description = (this->oper == ast_pre_inc)
   1898          ? "pre-increment operation" : "pre-decrement operation";
   1899 
   1900       op[0] = this->subexpressions[0]->hir(instructions, state);
   1901       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
   1902 
   1903       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
   1904 
   1905       ir_rvalue *temp_rhs;
   1906       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
   1907                                         op[0], op[1]);
   1908 
   1909       error_emitted =
   1910          do_assignment(instructions, state,
   1911                        this->subexpressions[0]->non_lvalue_description,
   1912                        op[0]->clone(ctx, NULL), temp_rhs,
   1913                        &result, needs_rvalue, false,
   1914                        this->subexpressions[0]->get_location());
   1915       break;
   1916    }
   1917 
   1918    case ast_post_inc:
   1919    case ast_post_dec: {
   1920       this->non_lvalue_description = (this->oper == ast_post_inc)
   1921          ? "post-increment operation" : "post-decrement operation";
   1922       op[0] = this->subexpressions[0]->hir(instructions, state);
   1923       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
   1924 
   1925       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
   1926 
   1927       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
   1928 
   1929       ir_rvalue *temp_rhs;
   1930       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
   1931                                         op[0], op[1]);
   1932 
   1933       /* Get a temporary of a copy of the lvalue before it's modified.
   1934        * This may get thrown away later.
   1935        */
   1936       result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
   1937 
   1938       ir_rvalue *junk_rvalue;
   1939       error_emitted =
   1940          do_assignment(instructions, state,
   1941                        this->subexpressions[0]->non_lvalue_description,
   1942                        op[0]->clone(ctx, NULL), temp_rhs,
   1943                        &junk_rvalue, false, false,
   1944                        this->subexpressions[0]->get_location());
   1945 
   1946       break;
   1947    }
   1948 
   1949    case ast_field_selection:
   1950       result = _mesa_ast_field_selection_to_hir(this, instructions, state);
   1951       break;
   1952 
   1953    case ast_array_index: {
   1954       YYLTYPE index_loc = subexpressions[1]->get_location();
   1955 
   1956       /* Getting if an array is being used uninitialized is beyond what we get
   1957        * from ir_value.data.assigned. Setting is_lhs as true would force to
   1958        * not raise a uninitialized warning when using an array
   1959        */
   1960       subexpressions[0]->set_is_lhs(true);
   1961       op[0] = subexpressions[0]->hir(instructions, state);
   1962       op[1] = subexpressions[1]->hir(instructions, state);
   1963 
   1964       result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
   1965                                             loc, index_loc);
   1966 
   1967       if (result->type->is_error())
   1968          error_emitted = true;
   1969 
   1970       break;
   1971    }
   1972 
   1973    case ast_unsized_array_dim:
   1974       assert(!"ast_unsized_array_dim: Should never get here.");
   1975       break;
   1976 
   1977    case ast_function_call:
   1978       /* Should *NEVER* get here.  ast_function_call should always be handled
   1979        * by ast_function_expression::hir.
   1980        */
   1981       assert(0);
   1982       break;
   1983 
   1984    case ast_identifier: {
   1985       /* ast_identifier can appear several places in a full abstract syntax
   1986        * tree.  This particular use must be at location specified in the grammar
   1987        * as 'variable_identifier'.
   1988        */
   1989       ir_variable *var =
   1990          state->symbols->get_variable(this->primary_expression.identifier);
   1991 
   1992       if (var == NULL) {
   1993          /* the identifier might be a subroutine name */
   1994          char *sub_name;
   1995          sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
   1996          var = state->symbols->get_variable(sub_name);
   1997          ralloc_free(sub_name);
   1998       }
   1999 
   2000       if (var != NULL) {
   2001          var->data.used = true;
   2002          result = new(ctx) ir_dereference_variable(var);
   2003 
   2004          if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
   2005              && !this->is_lhs
   2006              && result->variable_referenced()->data.assigned != true
   2007              && !is_gl_identifier(var->name)) {
   2008             _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
   2009                                this->primary_expression.identifier);
   2010          }
   2011       } else {
   2012          _mesa_glsl_error(& loc, state, "`%s' undeclared",
   2013                           this->primary_expression.identifier);
   2014 
   2015          result = ir_rvalue::error_value(ctx);
   2016          error_emitted = true;
   2017       }
   2018       break;
   2019    }
   2020 
   2021    case ast_int_constant:
   2022       result = new(ctx) ir_constant(this->primary_expression.int_constant);
   2023       break;
   2024 
   2025    case ast_uint_constant:
   2026       result = new(ctx) ir_constant(this->primary_expression.uint_constant);
   2027       break;
   2028 
   2029    case ast_float_constant:
   2030       result = new(ctx) ir_constant(this->primary_expression.float_constant);
   2031       break;
   2032 
   2033    case ast_bool_constant:
   2034       result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
   2035       break;
   2036 
   2037    case ast_double_constant:
   2038       result = new(ctx) ir_constant(this->primary_expression.double_constant);
   2039       break;
   2040 
   2041    case ast_uint64_constant:
   2042       result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
   2043       break;
   2044 
   2045    case ast_int64_constant:
   2046       result = new(ctx) ir_constant(this->primary_expression.int64_constant);
   2047       break;
   2048 
   2049    case ast_sequence: {
   2050       /* It should not be possible to generate a sequence in the AST without
   2051        * any expressions in it.
   2052        */
   2053       assert(!this->expressions.is_empty());
   2054 
   2055       /* The r-value of a sequence is the last expression in the sequence.  If
   2056        * the other expressions in the sequence do not have side-effects (and
   2057        * therefore add instructions to the instruction list), they get dropped
   2058        * on the floor.
   2059        */
   2060       exec_node *previous_tail = NULL;
   2061       YYLTYPE previous_operand_loc = loc;
   2062 
   2063       foreach_list_typed (ast_node, ast, link, &this->expressions) {
   2064          /* If one of the operands of comma operator does not generate any
   2065           * code, we want to emit a warning.  At each pass through the loop
   2066           * previous_tail will point to the last instruction in the stream
   2067           * *before* processing the previous operand.  Naturally,
   2068           * instructions->get_tail_raw() will point to the last instruction in
   2069           * the stream *after* processing the previous operand.  If the two
   2070           * pointers match, then the previous operand had no effect.
   2071           *
   2072           * The warning behavior here differs slightly from GCC.  GCC will
   2073           * only emit a warning if none of the left-hand operands have an
   2074           * effect.  However, it will emit a warning for each.  I believe that
   2075           * there are some cases in C (especially with GCC extensions) where
   2076           * it is useful to have an intermediate step in a sequence have no
   2077           * effect, but I don't think these cases exist in GLSL.  Either way,
   2078           * it would be a giant hassle to replicate that behavior.
   2079           */
   2080          if (previous_tail == instructions->get_tail_raw()) {
   2081             _mesa_glsl_warning(&previous_operand_loc, state,
   2082                                "left-hand operand of comma expression has "
   2083                                "no effect");
   2084          }
   2085 
   2086          /* The tail is directly accessed instead of using the get_tail()
   2087           * method for performance reasons.  get_tail() has extra code to
   2088           * return NULL when the list is empty.  We don't care about that
   2089           * here, so using get_tail_raw() is fine.
   2090           */
   2091          previous_tail = instructions->get_tail_raw();
   2092          previous_operand_loc = ast->get_location();
   2093 
   2094          result = ast->hir(instructions, state);
   2095       }
   2096 
   2097       /* Any errors should have already been emitted in the loop above.
   2098        */
   2099       error_emitted = true;
   2100       break;
   2101    }
   2102    }
   2103    type = NULL; /* use result->type, not type. */
   2104    assert(result != NULL || !needs_rvalue);
   2105 
   2106    if (result && result->type->is_error() && !error_emitted)
   2107       _mesa_glsl_error(& loc, state, "type mismatch");
   2108 
   2109    return result;
   2110 }
   2111 
   2112 bool
   2113 ast_expression::has_sequence_subexpression() const
   2114 {
   2115    switch (this->oper) {
   2116    case ast_plus:
   2117    case ast_neg:
   2118    case ast_bit_not:
   2119    case ast_logic_not:
   2120    case ast_pre_inc:
   2121    case ast_pre_dec:
   2122    case ast_post_inc:
   2123    case ast_post_dec:
   2124       return this->subexpressions[0]->has_sequence_subexpression();
   2125 
   2126    case ast_assign:
   2127    case ast_add:
   2128    case ast_sub:
   2129    case ast_mul:
   2130    case ast_div:
   2131    case ast_mod:
   2132    case ast_lshift:
   2133    case ast_rshift:
   2134    case ast_less:
   2135    case ast_greater:
   2136    case ast_lequal:
   2137    case ast_gequal:
   2138    case ast_nequal:
   2139    case ast_equal:
   2140    case ast_bit_and:
   2141    case ast_bit_xor:
   2142    case ast_bit_or:
   2143    case ast_logic_and:
   2144    case ast_logic_or:
   2145    case ast_logic_xor:
   2146    case ast_array_index:
   2147    case ast_mul_assign:
   2148    case ast_div_assign:
   2149    case ast_add_assign:
   2150    case ast_sub_assign:
   2151    case ast_mod_assign:
   2152    case ast_ls_assign:
   2153    case ast_rs_assign:
   2154    case ast_and_assign:
   2155    case ast_xor_assign:
   2156    case ast_or_assign:
   2157       return this->subexpressions[0]->has_sequence_subexpression() ||
   2158              this->subexpressions[1]->has_sequence_subexpression();
   2159 
   2160    case ast_conditional:
   2161       return this->subexpressions[0]->has_sequence_subexpression() ||
   2162              this->subexpressions[1]->has_sequence_subexpression() ||
   2163              this->subexpressions[2]->has_sequence_subexpression();
   2164 
   2165    case ast_sequence:
   2166       return true;
   2167 
   2168    case ast_field_selection:
   2169    case ast_identifier:
   2170    case ast_int_constant:
   2171    case ast_uint_constant:
   2172    case ast_float_constant:
   2173    case ast_bool_constant:
   2174    case ast_double_constant:
   2175    case ast_int64_constant:
   2176    case ast_uint64_constant:
   2177       return false;
   2178 
   2179    case ast_aggregate:
   2180       return false;
   2181 
   2182    case ast_function_call:
   2183       unreachable("should be handled by ast_function_expression::hir");
   2184 
   2185    case ast_unsized_array_dim:
   2186       unreachable("ast_unsized_array_dim: Should never get here.");
   2187    }
   2188 
   2189    return false;
   2190 }
   2191 
   2192 ir_rvalue *
   2193 ast_expression_statement::hir(exec_list *instructions,
   2194                               struct _mesa_glsl_parse_state *state)
   2195 {
   2196    /* It is possible to have expression statements that don't have an
   2197     * expression.  This is the solitary semicolon:
   2198     *
   2199     * for (i = 0; i < 5; i++)
   2200     *     ;
   2201     *
   2202     * In this case the expression will be NULL.  Test for NULL and don't do
   2203     * anything in that case.
   2204     */
   2205    if (expression != NULL)
   2206       expression->hir_no_rvalue(instructions, state);
   2207 
   2208    /* Statements do not have r-values.
   2209     */
   2210    return NULL;
   2211 }
   2212 
   2213 
   2214 ir_rvalue *
   2215 ast_compound_statement::hir(exec_list *instructions,
   2216                             struct _mesa_glsl_parse_state *state)
   2217 {
   2218    if (new_scope)
   2219       state->symbols->push_scope();
   2220 
   2221    foreach_list_typed (ast_node, ast, link, &this->statements)
   2222       ast->hir(instructions, state);
   2223 
   2224    if (new_scope)
   2225       state->symbols->pop_scope();
   2226 
   2227    /* Compound statements do not have r-values.
   2228     */
   2229    return NULL;
   2230 }
   2231 
   2232 /**
   2233  * Evaluate the given exec_node (which should be an ast_node representing
   2234  * a single array dimension) and return its integer value.
   2235  */
   2236 static unsigned
   2237 process_array_size(exec_node *node,
   2238                    struct _mesa_glsl_parse_state *state)
   2239 {
   2240    void *mem_ctx = state;
   2241 
   2242    exec_list dummy_instructions;
   2243 
   2244    ast_node *array_size = exec_node_data(ast_node, node, link);
   2245 
   2246    /**
   2247     * Dimensions other than the outermost dimension can by unsized if they
   2248     * are immediately sized by a constructor or initializer.
   2249     */
   2250    if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
   2251       return 0;
   2252 
   2253    ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
   2254    YYLTYPE loc = array_size->get_location();
   2255 
   2256    if (ir == NULL) {
   2257       _mesa_glsl_error(& loc, state,
   2258                        "array size could not be resolved");
   2259       return 0;
   2260    }
   2261 
   2262    if (!ir->type->is_integer()) {
   2263       _mesa_glsl_error(& loc, state,
   2264                        "array size must be integer type");
   2265       return 0;
   2266    }
   2267 
   2268    if (!ir->type->is_scalar()) {
   2269       _mesa_glsl_error(& loc, state,
   2270                        "array size must be scalar type");
   2271       return 0;
   2272    }
   2273 
   2274    ir_constant *const size = ir->constant_expression_value(mem_ctx);
   2275    if (size == NULL ||
   2276        (state->is_version(120, 300) &&
   2277         array_size->has_sequence_subexpression())) {
   2278       _mesa_glsl_error(& loc, state, "array size must be a "
   2279                        "constant valued expression");
   2280       return 0;
   2281    }
   2282 
   2283    if (size->value.i[0] <= 0) {
   2284       _mesa_glsl_error(& loc, state, "array size must be > 0");
   2285       return 0;
   2286    }
   2287 
   2288    assert(size->type == ir->type);
   2289 
   2290    /* If the array size is const (and we've verified that
   2291     * it is) then no instructions should have been emitted
   2292     * when we converted it to HIR. If they were emitted,
   2293     * then either the array size isn't const after all, or
   2294     * we are emitting unnecessary instructions.
   2295     */
   2296    assert(dummy_instructions.is_empty());
   2297 
   2298    return size->value.u[0];
   2299 }
   2300 
   2301 static const glsl_type *
   2302 process_array_type(YYLTYPE *loc, const glsl_type *base,
   2303                    ast_array_specifier *array_specifier,
   2304                    struct _mesa_glsl_parse_state *state)
   2305 {
   2306    const glsl_type *array_type = base;
   2307 
   2308    if (array_specifier != NULL) {
   2309       if (base->is_array()) {
   2310 
   2311          /* From page 19 (page 25) of the GLSL 1.20 spec:
   2312           *
   2313           * "Only one-dimensional arrays may be declared."
   2314           */
   2315          if (!state->check_arrays_of_arrays_allowed(loc)) {
   2316             return glsl_type::error_type;
   2317          }
   2318       }
   2319 
   2320       for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
   2321            !node->is_head_sentinel(); node = node->prev) {
   2322          unsigned array_size = process_array_size(node, state);
   2323          array_type = glsl_type::get_array_instance(array_type, array_size);
   2324       }
   2325    }
   2326 
   2327    return array_type;
   2328 }
   2329 
   2330 static bool
   2331 precision_qualifier_allowed(const glsl_type *type)
   2332 {
   2333    /* Precision qualifiers apply to floating point, integer and opaque
   2334     * types.
   2335     *
   2336     * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
   2337     *    "Any floating point or any integer declaration can have the type
   2338     *    preceded by one of these precision qualifiers [...] Literal
   2339     *    constants do not have precision qualifiers. Neither do Boolean
   2340     *    variables.
   2341     *
   2342     * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
   2343     * spec also says:
   2344     *
   2345     *     "Precision qualifiers are added for code portability with OpenGL
   2346     *     ES, not for functionality. They have the same syntax as in OpenGL
   2347     *     ES."
   2348     *
   2349     * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
   2350     *
   2351     *     "uniform lowp sampler2D sampler;
   2352     *     highp vec2 coord;
   2353     *     ...
   2354     *     lowp vec4 col = texture2D (sampler, coord);
   2355     *                                            // texture2D returns lowp"
   2356     *
   2357     * From this, we infer that GLSL 1.30 (and later) should allow precision
   2358     * qualifiers on sampler types just like float and integer types.
   2359     */
   2360    const glsl_type *const t = type->without_array();
   2361 
   2362    return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
   2363           !t->is_record();
   2364 }
   2365 
   2366 const glsl_type *
   2367 ast_type_specifier::glsl_type(const char **name,
   2368                               struct _mesa_glsl_parse_state *state) const
   2369 {
   2370    const struct glsl_type *type;
   2371 
   2372    if (this->type != NULL)
   2373       type = this->type;
   2374    else if (structure)
   2375       type = structure->type;
   2376    else
   2377       type = state->symbols->get_type(this->type_name);
   2378    *name = this->type_name;
   2379 
   2380    YYLTYPE loc = this->get_location();
   2381    type = process_array_type(&loc, type, this->array_specifier, state);
   2382 
   2383    return type;
   2384 }
   2385 
   2386 /**
   2387  * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
   2388  *
   2389  * "The precision statement
   2390  *
   2391  *    precision precision-qualifier type;
   2392  *
   2393  *  can be used to establish a default precision qualifier. The type field can
   2394  *  be either int or float or any of the sampler types, (...) If type is float,
   2395  *  the directive applies to non-precision-qualified floating point type
   2396  *  (scalar, vector, and matrix) declarations. If type is int, the directive
   2397  *  applies to all non-precision-qualified integer type (scalar, vector, signed,
   2398  *  and unsigned) declarations."
   2399  *
   2400  * We use the symbol table to keep the values of the default precisions for
   2401  * each 'type' in each scope and we use the 'type' string from the precision
   2402  * statement as key in the symbol table. When we want to retrieve the default
   2403  * precision associated with a given glsl_type we need to know the type string
   2404  * associated with it. This is what this function returns.
   2405  */
   2406 static const char *
   2407 get_type_name_for_precision_qualifier(const glsl_type *type)
   2408 {
   2409    switch (type->base_type) {
   2410    case GLSL_TYPE_FLOAT:
   2411       return "float";
   2412    case GLSL_TYPE_UINT:
   2413    case GLSL_TYPE_INT:
   2414       return "int";
   2415    case GLSL_TYPE_ATOMIC_UINT:
   2416       return "atomic_uint";
   2417    case GLSL_TYPE_IMAGE:
   2418    /* fallthrough */
   2419    case GLSL_TYPE_SAMPLER: {
   2420       const unsigned type_idx =
   2421          type->sampler_array + 2 * type->sampler_shadow;
   2422       const unsigned offset = type->is_sampler() ? 0 : 4;
   2423       assert(type_idx < 4);
   2424       switch (type->sampled_type) {
   2425       case GLSL_TYPE_FLOAT:
   2426          switch (type->sampler_dimensionality) {
   2427          case GLSL_SAMPLER_DIM_1D: {
   2428             assert(type->is_sampler());
   2429             static const char *const names[4] = {
   2430               "sampler1D", "sampler1DArray",
   2431               "sampler1DShadow", "sampler1DArrayShadow"
   2432             };
   2433             return names[type_idx];
   2434          }
   2435          case GLSL_SAMPLER_DIM_2D: {
   2436             static const char *const names[8] = {
   2437               "sampler2D", "sampler2DArray",
   2438               "sampler2DShadow", "sampler2DArrayShadow",
   2439               "image2D", "image2DArray", NULL, NULL
   2440             };
   2441             return names[offset + type_idx];
   2442          }
   2443          case GLSL_SAMPLER_DIM_3D: {
   2444             static const char *const names[8] = {
   2445               "sampler3D", NULL, NULL, NULL,
   2446               "image3D", NULL, NULL, NULL
   2447             };
   2448             return names[offset + type_idx];
   2449          }
   2450          case GLSL_SAMPLER_DIM_CUBE: {
   2451             static const char *const names[8] = {
   2452               "samplerCube", "samplerCubeArray",
   2453               "samplerCubeShadow", "samplerCubeArrayShadow",
   2454               "imageCube", NULL, NULL, NULL
   2455             };
   2456             return names[offset + type_idx];
   2457          }
   2458          case GLSL_SAMPLER_DIM_MS: {
   2459             assert(type->is_sampler());
   2460             static const char *const names[4] = {
   2461               "sampler2DMS", "sampler2DMSArray", NULL, NULL
   2462             };
   2463             return names[type_idx];
   2464          }
   2465          case GLSL_SAMPLER_DIM_RECT: {
   2466             assert(type->is_sampler());
   2467             static const char *const names[4] = {
   2468               "samplerRect", NULL, "samplerRectShadow", NULL
   2469             };
   2470             return names[type_idx];
   2471          }
   2472          case GLSL_SAMPLER_DIM_BUF: {
   2473             static const char *const names[8] = {
   2474               "samplerBuffer", NULL, NULL, NULL,
   2475               "imageBuffer", NULL, NULL, NULL
   2476             };
   2477             return names[offset + type_idx];
   2478          }
   2479          case GLSL_SAMPLER_DIM_EXTERNAL: {
   2480             assert(type->is_sampler());
   2481             static const char *const names[4] = {
   2482               "samplerExternalOES", NULL, NULL, NULL
   2483             };
   2484             return names[type_idx];
   2485          }
   2486          default:
   2487             unreachable("Unsupported sampler/image dimensionality");
   2488          } /* sampler/image float dimensionality */
   2489          break;
   2490       case GLSL_TYPE_INT:
   2491          switch (type->sampler_dimensionality) {
   2492          case GLSL_SAMPLER_DIM_1D: {
   2493             assert(type->is_sampler());
   2494             static const char *const names[4] = {
   2495               "isampler1D", "isampler1DArray", NULL, NULL
   2496             };
   2497             return names[type_idx];
   2498          }
   2499          case GLSL_SAMPLER_DIM_2D: {
   2500             static const char *const names[8] = {
   2501               "isampler2D", "isampler2DArray", NULL, NULL,
   2502               "iimage2D", "iimage2DArray", NULL, NULL
   2503             };
   2504             return names[offset + type_idx];
   2505          }
   2506          case GLSL_SAMPLER_DIM_3D: {
   2507             static const char *const names[8] = {
   2508               "isampler3D", NULL, NULL, NULL,
   2509               "iimage3D", NULL, NULL, NULL
   2510             };
   2511             return names[offset + type_idx];
   2512          }
   2513          case GLSL_SAMPLER_DIM_CUBE: {
   2514             static const char *const names[8] = {
   2515               "isamplerCube", "isamplerCubeArray", NULL, NULL,
   2516               "iimageCube", NULL, NULL, NULL
   2517             };
   2518             return names[offset + type_idx];
   2519          }
   2520          case GLSL_SAMPLER_DIM_MS: {
   2521             assert(type->is_sampler());
   2522             static const char *const names[4] = {
   2523               "isampler2DMS", "isampler2DMSArray", NULL, NULL
   2524             };
   2525             return names[type_idx];
   2526          }
   2527          case GLSL_SAMPLER_DIM_RECT: {
   2528             assert(type->is_sampler());
   2529             static const char *const names[4] = {
   2530               "isamplerRect", NULL, "isamplerRectShadow", NULL
   2531             };
   2532             return names[type_idx];
   2533          }
   2534          case GLSL_SAMPLER_DIM_BUF: {
   2535             static const char *const names[8] = {
   2536               "isamplerBuffer", NULL, NULL, NULL,
   2537               "iimageBuffer", NULL, NULL, NULL
   2538             };
   2539             return names[offset + type_idx];
   2540          }
   2541          default:
   2542             unreachable("Unsupported isampler/iimage dimensionality");
   2543          } /* sampler/image int dimensionality */
   2544          break;
   2545       case GLSL_TYPE_UINT:
   2546          switch (type->sampler_dimensionality) {
   2547          case GLSL_SAMPLER_DIM_1D: {
   2548             assert(type->is_sampler());
   2549             static const char *const names[4] = {
   2550               "usampler1D", "usampler1DArray", NULL, NULL
   2551             };
   2552             return names[type_idx];
   2553          }
   2554          case GLSL_SAMPLER_DIM_2D: {
   2555             static const char *const names[8] = {
   2556               "usampler2D", "usampler2DArray", NULL, NULL,
   2557               "uimage2D", "uimage2DArray", NULL, NULL
   2558             };
   2559             return names[offset + type_idx];
   2560          }
   2561          case GLSL_SAMPLER_DIM_3D: {
   2562             static const char *const names[8] = {
   2563               "usampler3D", NULL, NULL, NULL,
   2564               "uimage3D", NULL, NULL, NULL
   2565             };
   2566             return names[offset + type_idx];
   2567          }
   2568          case GLSL_SAMPLER_DIM_CUBE: {
   2569             static const char *const names[8] = {
   2570               "usamplerCube", "usamplerCubeArray", NULL, NULL,
   2571               "uimageCube", NULL, NULL, NULL
   2572             };
   2573             return names[offset + type_idx];
   2574          }
   2575          case GLSL_SAMPLER_DIM_MS: {
   2576             assert(type->is_sampler());
   2577             static const char *const names[4] = {
   2578               "usampler2DMS", "usampler2DMSArray", NULL, NULL
   2579             };
   2580             return names[type_idx];
   2581          }
   2582          case GLSL_SAMPLER_DIM_RECT: {
   2583             assert(type->is_sampler());
   2584             static const char *const names[4] = {
   2585               "usamplerRect", NULL, "usamplerRectShadow", NULL
   2586             };
   2587             return names[type_idx];
   2588          }
   2589          case GLSL_SAMPLER_DIM_BUF: {
   2590             static const char *const names[8] = {
   2591               "usamplerBuffer", NULL, NULL, NULL,
   2592               "uimageBuffer", NULL, NULL, NULL
   2593             };
   2594             return names[offset + type_idx];
   2595          }
   2596          default:
   2597             unreachable("Unsupported usampler/uimage dimensionality");
   2598          } /* sampler/image uint dimensionality */
   2599          break;
   2600       default:
   2601          unreachable("Unsupported sampler/image type");
   2602       } /* sampler/image type */
   2603       break;
   2604    } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
   2605    break;
   2606    default:
   2607       unreachable("Unsupported type");
   2608    } /* base type */
   2609 }
   2610 
   2611 static unsigned
   2612 select_gles_precision(unsigned qual_precision,
   2613                       const glsl_type *type,
   2614                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
   2615 {
   2616    /* Precision qualifiers do not have any meaning in Desktop GLSL.
   2617     * In GLES we take the precision from the type qualifier if present,
   2618     * otherwise, if the type of the variable allows precision qualifiers at
   2619     * all, we look for the default precision qualifier for that type in the
   2620     * current scope.
   2621     */
   2622    assert(state->es_shader);
   2623 
   2624    unsigned precision = GLSL_PRECISION_NONE;
   2625    if (qual_precision) {
   2626       precision = qual_precision;
   2627    } else if (precision_qualifier_allowed(type)) {
   2628       const char *type_name =
   2629          get_type_name_for_precision_qualifier(type->without_array());
   2630       assert(type_name != NULL);
   2631 
   2632       precision =
   2633          state->symbols->get_default_precision_qualifier(type_name);
   2634       if (precision == ast_precision_none) {
   2635          _mesa_glsl_error(loc, state,
   2636                           "No precision specified in this scope for type `%s'",
   2637                           type->name);
   2638       }
   2639    }
   2640 
   2641 
   2642    /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
   2643     *
   2644     *    "The default precision of all atomic types is highp. It is an error to
   2645     *    declare an atomic type with a different precision or to specify the
   2646     *    default precision for an atomic type to be lowp or mediump."
   2647     */
   2648    if (type->is_atomic_uint() && precision != ast_precision_high) {
   2649       _mesa_glsl_error(loc, state,
   2650                        "atomic_uint can only have highp precision qualifier");
   2651    }
   2652 
   2653    return precision;
   2654 }
   2655 
   2656 const glsl_type *
   2657 ast_fully_specified_type::glsl_type(const char **name,
   2658                                     struct _mesa_glsl_parse_state *state) const
   2659 {
   2660    return this->specifier->glsl_type(name, state);
   2661 }
   2662 
   2663 /**
   2664  * Determine whether a toplevel variable declaration declares a varying.  This
   2665  * function operates by examining the variable's mode and the shader target,
   2666  * so it correctly identifies linkage variables regardless of whether they are
   2667  * declared using the deprecated "varying" syntax or the new "in/out" syntax.
   2668  *
   2669  * Passing a non-toplevel variable declaration (e.g. a function parameter) to
   2670  * this function will produce undefined results.
   2671  */
   2672 static bool
   2673 is_varying_var(ir_variable *var, gl_shader_stage target)
   2674 {
   2675    switch (target) {
   2676    case MESA_SHADER_VERTEX:
   2677       return var->data.mode == ir_var_shader_out;
   2678    case MESA_SHADER_FRAGMENT:
   2679       return var->data.mode == ir_var_shader_in;
   2680    default:
   2681       return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
   2682    }
   2683 }
   2684 
   2685 static bool
   2686 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
   2687 {
   2688    if (is_varying_var(var, state->stage))
   2689       return true;
   2690 
   2691    /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
   2692     * "Only variables output from a vertex shader can be candidates
   2693     * for invariance".
   2694     */
   2695    if (!state->is_version(130, 0))
   2696       return false;
   2697 
   2698    /*
   2699     * Later specs remove this language - so allowed invariant
   2700     * on fragment shader outputs as well.
   2701     */
   2702    if (state->stage == MESA_SHADER_FRAGMENT &&
   2703        var->data.mode == ir_var_shader_out)
   2704       return true;
   2705    return false;
   2706 }
   2707 
   2708 /**
   2709  * Matrix layout qualifiers are only allowed on certain types
   2710  */
   2711 static void
   2712 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
   2713                                 YYLTYPE *loc,
   2714                                 const glsl_type *type,
   2715                                 ir_variable *var)
   2716 {
   2717    if (var && !var->is_in_buffer_block()) {
   2718       /* Layout qualifiers may only apply to interface blocks and fields in
   2719        * them.
   2720        */
   2721       _mesa_glsl_error(loc, state,
   2722                        "uniform block layout qualifiers row_major and "
   2723                        "column_major may not be applied to variables "
   2724                        "outside of uniform blocks");
   2725    } else if (!type->without_array()->is_matrix()) {
   2726       /* The OpenGL ES 3.0 conformance tests did not originally allow
   2727        * matrix layout qualifiers on non-matrices.  However, the OpenGL
   2728        * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
   2729        * amended to specifically allow these layouts on all types.  Emit
   2730        * a warning so that people know their code may not be portable.
   2731        */
   2732       _mesa_glsl_warning(loc, state,
   2733                          "uniform block layout qualifiers row_major and "
   2734                          "column_major applied to non-matrix types may "
   2735                          "be rejected by older compilers");
   2736    }
   2737 }
   2738 
   2739 static bool
   2740 validate_xfb_buffer_qualifier(YYLTYPE *loc,
   2741                               struct _mesa_glsl_parse_state *state,
   2742                               unsigned xfb_buffer) {
   2743    if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
   2744       _mesa_glsl_error(loc, state,
   2745                        "invalid xfb_buffer specified %d is larger than "
   2746                        "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
   2747                        xfb_buffer,
   2748                        state->Const.MaxTransformFeedbackBuffers - 1);
   2749       return false;
   2750    }
   2751 
   2752    return true;
   2753 }
   2754 
   2755 /* From the ARB_enhanced_layouts spec:
   2756  *
   2757  *    "Variables and block members qualified with *xfb_offset* can be
   2758  *    scalars, vectors, matrices, structures, and (sized) arrays of these.
   2759  *    The offset must be a multiple of the size of the first component of
   2760  *    the first qualified variable or block member, or a compile-time error
   2761  *    results.  Further, if applied to an aggregate containing a double,
   2762  *    the offset must also be a multiple of 8, and the space taken in the
   2763  *    buffer will be a multiple of 8.
   2764  */
   2765 static bool
   2766 validate_xfb_offset_qualifier(YYLTYPE *loc,
   2767                               struct _mesa_glsl_parse_state *state,
   2768                               int xfb_offset, const glsl_type *type,
   2769                               unsigned component_size) {
   2770   const glsl_type *t_without_array = type->without_array();
   2771 
   2772    if (xfb_offset != -1 && type->is_unsized_array()) {
   2773       _mesa_glsl_error(loc, state,
   2774                        "xfb_offset can't be used with unsized arrays.");
   2775       return false;
   2776    }
   2777 
   2778    /* Make sure nested structs don't contain unsized arrays, and validate
   2779     * any xfb_offsets on interface members.
   2780     */
   2781    if (t_without_array->is_record() || t_without_array->is_interface())
   2782       for (unsigned int i = 0; i < t_without_array->length; i++) {
   2783          const glsl_type *member_t = t_without_array->fields.structure[i].type;
   2784 
   2785          /* When the interface block doesn't have an xfb_offset qualifier then
   2786           * we apply the component size rules at the member level.
   2787           */
   2788          if (xfb_offset == -1)
   2789             component_size = member_t->contains_double() ? 8 : 4;
   2790 
   2791          int xfb_offset = t_without_array->fields.structure[i].offset;
   2792          validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
   2793                                        component_size);
   2794       }
   2795 
   2796   /* Nested structs or interface block without offset may not have had an
   2797    * offset applied yet so return.
   2798    */
   2799    if (xfb_offset == -1) {
   2800      return true;
   2801    }
   2802 
   2803    if (xfb_offset % component_size) {
   2804       _mesa_glsl_error(loc, state,
   2805                        "invalid qualifier xfb_offset=%d must be a multiple "
   2806                        "of the first component size of the first qualified "
   2807                        "variable or block member. Or double if an aggregate "
   2808                        "that contains a double (%d).",
   2809                        xfb_offset, component_size);
   2810       return false;
   2811    }
   2812 
   2813    return true;
   2814 }
   2815 
   2816 static bool
   2817 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
   2818                           unsigned stream)
   2819 {
   2820    if (stream >= state->ctx->Const.MaxVertexStreams) {
   2821       _mesa_glsl_error(loc, state,
   2822                        "invalid stream specified %d is larger than "
   2823                        "MAX_VERTEX_STREAMS - 1 (%d).",
   2824                        stream, state->ctx->Const.MaxVertexStreams - 1);
   2825       return false;
   2826    }
   2827 
   2828    return true;
   2829 }
   2830 
   2831 static void
   2832 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
   2833                        YYLTYPE *loc,
   2834                        ir_variable *var,
   2835                        const glsl_type *type,
   2836                        const ast_type_qualifier *qual)
   2837 {
   2838    if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
   2839       _mesa_glsl_error(loc, state,
   2840                        "the \"binding\" qualifier only applies to uniforms and "
   2841                        "shader storage buffer objects");
   2842       return;
   2843    }
   2844 
   2845    unsigned qual_binding;
   2846    if (!process_qualifier_constant(state, loc, "binding", qual->binding,
   2847                                    &qual_binding)) {
   2848       return;
   2849    }
   2850 
   2851    const struct gl_context *const ctx = state->ctx;
   2852    unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
   2853    unsigned max_index = qual_binding + elements - 1;
   2854    const glsl_type *base_type = type->without_array();
   2855 
   2856    if (base_type->is_interface()) {
   2857       /* UBOs.  From page 60 of the GLSL 4.20 specification:
   2858        * "If the binding point for any uniform block instance is less than zero,
   2859        *  or greater than or equal to the implementation-dependent maximum
   2860        *  number of uniform buffer bindings, a compilation error will occur.
   2861        *  When the binding identifier is used with a uniform block instanced as
   2862        *  an array of size N, all elements of the array from binding through
   2863        *  binding + N  1 must be within this range."
   2864        *
   2865        * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
   2866        */
   2867       if (qual->flags.q.uniform &&
   2868          max_index >= ctx->Const.MaxUniformBufferBindings) {
   2869          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
   2870                           "the maximum number of UBO binding points (%d)",
   2871                           qual_binding, elements,
   2872                           ctx->Const.MaxUniformBufferBindings);
   2873          return;
   2874       }
   2875 
   2876       /* SSBOs. From page 67 of the GLSL 4.30 specification:
   2877        * "If the binding point for any uniform or shader storage block instance
   2878        *  is less than zero, or greater than or equal to the
   2879        *  implementation-dependent maximum number of uniform buffer bindings, a
   2880        *  compile-time error will occur. When the binding identifier is used
   2881        *  with a uniform or shader storage block instanced as an array of size
   2882        *  N, all elements of the array from binding through binding + N  1 must
   2883        *  be within this range."
   2884        */
   2885       if (qual->flags.q.buffer &&
   2886          max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
   2887          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
   2888                           "the maximum number of SSBO binding points (%d)",
   2889                           qual_binding, elements,
   2890                           ctx->Const.MaxShaderStorageBufferBindings);
   2891          return;
   2892       }
   2893    } else if (base_type->is_sampler()) {
   2894       /* Samplers.  From page 63 of the GLSL 4.20 specification:
   2895        * "If the binding is less than zero, or greater than or equal to the
   2896        *  implementation-dependent maximum supported number of units, a
   2897        *  compilation error will occur. When the binding identifier is used
   2898        *  with an array of size N, all elements of the array from binding
   2899        *  through binding + N - 1 must be within this range."
   2900        */
   2901       unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
   2902 
   2903       if (max_index >= limit) {
   2904          _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
   2905                           "exceeds the maximum number of texture image units "
   2906                           "(%u)", qual_binding, elements, limit);
   2907 
   2908          return;
   2909       }
   2910    } else if (base_type->contains_atomic()) {
   2911       assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
   2912       if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
   2913          _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
   2914                           "maximum number of atomic counter buffer bindings "
   2915                           "(%u)", qual_binding,
   2916                           ctx->Const.MaxAtomicBufferBindings);
   2917 
   2918          return;
   2919       }
   2920    } else if ((state->is_version(420, 310) ||
   2921                state->ARB_shading_language_420pack_enable) &&
   2922               base_type->is_image()) {
   2923       assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
   2924       if (max_index >= ctx->Const.MaxImageUnits) {
   2925          _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
   2926                           "maximum number of image units (%d)", max_index,
   2927                           ctx->Const.MaxImageUnits);
   2928          return;
   2929       }
   2930 
   2931    } else {
   2932       _mesa_glsl_error(loc, state,
   2933                        "the \"binding\" qualifier only applies to uniform "
   2934                        "blocks, storage blocks, opaque variables, or arrays "
   2935                        "thereof");
   2936       return;
   2937    }
   2938 
   2939    var->data.explicit_binding = true;
   2940    var->data.binding = qual_binding;
   2941 
   2942    return;
   2943 }
   2944 
   2945 static void
   2946 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
   2947                                            YYLTYPE *loc,
   2948                                            const glsl_interp_mode interpolation,
   2949                                            const struct glsl_type *var_type,
   2950                                            ir_variable_mode mode)
   2951 {
   2952    if (state->stage != MESA_SHADER_FRAGMENT ||
   2953        interpolation == INTERP_MODE_FLAT ||
   2954        mode != ir_var_shader_in)
   2955       return;
   2956 
   2957    /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
   2958     * so must integer vertex outputs.
   2959     *
   2960     * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
   2961     *    "Fragment shader inputs that are signed or unsigned integers or
   2962     *    integer vectors must be qualified with the interpolation qualifier
   2963     *    flat."
   2964     *
   2965     * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
   2966     *    "Fragment shader inputs that are, or contain, signed or unsigned
   2967     *    integers or integer vectors must be qualified with the
   2968     *    interpolation qualifier flat."
   2969     *
   2970     * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
   2971     *    "Vertex shader outputs that are, or contain, signed or unsigned
   2972     *    integers or integer vectors must be qualified with the
   2973     *    interpolation qualifier flat."
   2974     *
   2975     * Note that prior to GLSL 1.50, this requirement applied to vertex
   2976     * outputs rather than fragment inputs.  That creates problems in the
   2977     * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
   2978     * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
   2979     * apply the restriction to both vertex outputs and fragment inputs.
   2980     *
   2981     * Note also that the desktop GLSL specs are missing the text "or
   2982     * contain"; this is presumably an oversight, since there is no
   2983     * reasonable way to interpolate a fragment shader input that contains
   2984     * an integer. See Khronos bug #15671.
   2985     */
   2986    if (state->is_version(130, 300)
   2987        && var_type->contains_integer()) {
   2988       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
   2989                        "an integer, then it must be qualified with 'flat'");
   2990    }
   2991 
   2992    /* Double fragment inputs must be qualified with 'flat'.
   2993     *
   2994     * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
   2995     *    "This extension does not support interpolation of double-precision
   2996     *    values; doubles used as fragment shader inputs must be qualified as
   2997     *    "flat"."
   2998     *
   2999     * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
   3000     *    "Fragment shader inputs that are signed or unsigned integers, integer
   3001     *    vectors, or any double-precision floating-point type must be
   3002     *    qualified with the interpolation qualifier flat."
   3003     *
   3004     * Note that the GLSL specs are missing the text "or contain"; this is
   3005     * presumably an oversight. See Khronos bug #15671.
   3006     *
   3007     * The 'double' type does not exist in GLSL ES so far.
   3008     */
   3009    if (state->has_double()
   3010        && var_type->contains_double()) {
   3011       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
   3012                        "a double, then it must be qualified with 'flat'");
   3013    }
   3014 
   3015    /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
   3016     *
   3017     * From section 4.3.4 of the ARB_bindless_texture spec:
   3018     *
   3019     *    "(modify last paragraph, p. 35, allowing samplers and images as
   3020     *     fragment shader inputs) ... Fragment inputs can only be signed and
   3021     *     unsigned integers and integer vectors, floating point scalars,
   3022     *     floating-point vectors, matrices, sampler and image types, or arrays
   3023     *     or structures of these.  Fragment shader inputs that are signed or
   3024     *     unsigned integers, integer vectors, or any double-precision floating-
   3025     *     point type, or any sampler or image type must be qualified with the
   3026     *     interpolation qualifier "flat"."
   3027     */
   3028    if (state->has_bindless()
   3029        && (var_type->contains_sampler() || var_type->contains_image())) {
   3030       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
   3031                        "a bindless sampler (or image), then it must be "
   3032                        "qualified with 'flat'");
   3033    }
   3034 }
   3035 
   3036 static void
   3037 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
   3038                                  YYLTYPE *loc,
   3039                                  const glsl_interp_mode interpolation,
   3040                                  const struct ast_type_qualifier *qual,
   3041                                  const struct glsl_type *var_type,
   3042                                  ir_variable_mode mode)
   3043 {
   3044    /* Interpolation qualifiers can only apply to shader inputs or outputs, but
   3045     * not to vertex shader inputs nor fragment shader outputs.
   3046     *
   3047     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
   3048     *    "Outputs from a vertex shader (out) and inputs to a fragment
   3049     *    shader (in) can be further qualified with one or more of these
   3050     *    interpolation qualifiers"
   3051     *    ...
   3052     *    "These interpolation qualifiers may only precede the qualifiers in,
   3053     *    centroid in, out, or centroid out in a declaration. They do not apply
   3054     *    to the deprecated storage qualifiers varying or centroid
   3055     *    varying. They also do not apply to inputs into a vertex shader or
   3056     *    outputs from a fragment shader."
   3057     *
   3058     * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
   3059     *    "Outputs from a shader (out) and inputs to a shader (in) can be
   3060     *    further qualified with one of these interpolation qualifiers."
   3061     *    ...
   3062     *    "These interpolation qualifiers may only precede the qualifiers
   3063     *    in, centroid in, out, or centroid out in a declaration. They do
   3064     *    not apply to inputs into a vertex shader or outputs from a
   3065     *    fragment shader."
   3066     */
   3067    if (state->is_version(130, 300)
   3068        && interpolation != INTERP_MODE_NONE) {
   3069       const char *i = interpolation_string(interpolation);
   3070       if (mode != ir_var_shader_in && mode != ir_var_shader_out)
   3071          _mesa_glsl_error(loc, state,
   3072                           "interpolation qualifier `%s' can only be applied to "
   3073                           "shader inputs or outputs.", i);
   3074 
   3075       switch (state->stage) {
   3076       case MESA_SHADER_VERTEX:
   3077          if (mode == ir_var_shader_in) {
   3078             _mesa_glsl_error(loc, state,
   3079                              "interpolation qualifier '%s' cannot be applied to "
   3080                              "vertex shader inputs", i);
   3081          }
   3082          break;
   3083       case MESA_SHADER_FRAGMENT:
   3084          if (mode == ir_var_shader_out) {
   3085             _mesa_glsl_error(loc, state,
   3086                              "interpolation qualifier '%s' cannot be applied to "
   3087                              "fragment shader outputs", i);
   3088          }
   3089          break;
   3090       default:
   3091          break;
   3092       }
   3093    }
   3094 
   3095    /* Interpolation qualifiers cannot be applied to 'centroid' and
   3096     * 'centroid varying'.
   3097     *
   3098     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
   3099     *    "interpolation qualifiers may only precede the qualifiers in,
   3100     *    centroid in, out, or centroid out in a declaration. They do not apply
   3101     *    to the deprecated storage qualifiers varying or centroid varying."
   3102     *
   3103     * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
   3104     */
   3105    if (state->is_version(130, 0)
   3106        && interpolation != INTERP_MODE_NONE
   3107        && qual->flags.q.varying) {
   3108 
   3109       const char *i = interpolation_string(interpolation);
   3110       const char *s;
   3111       if (qual->flags.q.centroid)
   3112          s = "centroid varying";
   3113       else
   3114          s = "varying";
   3115 
   3116       _mesa_glsl_error(loc, state,
   3117                        "qualifier '%s' cannot be applied to the "
   3118                        "deprecated storage qualifier '%s'", i, s);
   3119    }
   3120 
   3121    validate_fragment_flat_interpolation_input(state, loc, interpolation,
   3122                                               var_type, mode);
   3123 }
   3124 
   3125 static glsl_interp_mode
   3126 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
   3127                                   const struct glsl_type *var_type,
   3128                                   ir_variable_mode mode,
   3129                                   struct _mesa_glsl_parse_state *state,
   3130                                   YYLTYPE *loc)
   3131 {
   3132    glsl_interp_mode interpolation;
   3133    if (qual->flags.q.flat)
   3134       interpolation = INTERP_MODE_FLAT;
   3135    else if (qual->flags.q.noperspective)
   3136       interpolation = INTERP_MODE_NOPERSPECTIVE;
   3137    else if (qual->flags.q.smooth)
   3138       interpolation = INTERP_MODE_SMOOTH;
   3139    else
   3140       interpolation = INTERP_MODE_NONE;
   3141 
   3142    validate_interpolation_qualifier(state, loc,
   3143                                     interpolation,
   3144                                     qual, var_type, mode);
   3145 
   3146    return interpolation;
   3147 }
   3148 
   3149 
   3150 static void
   3151 apply_explicit_location(const struct ast_type_qualifier *qual,
   3152                         ir_variable *var,
   3153                         struct _mesa_glsl_parse_state *state,
   3154                         YYLTYPE *loc)
   3155 {
   3156    bool fail = false;
   3157 
   3158    unsigned qual_location;
   3159    if (!process_qualifier_constant(state, loc, "location", qual->location,
   3160                                    &qual_location)) {
   3161       return;
   3162    }
   3163 
   3164    /* Checks for GL_ARB_explicit_uniform_location. */
   3165    if (qual->flags.q.uniform) {
   3166       if (!state->check_explicit_uniform_location_allowed(loc, var))
   3167          return;
   3168 
   3169       const struct gl_context *const ctx = state->ctx;
   3170       unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
   3171 
   3172       if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
   3173          _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
   3174                           ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
   3175                           ctx->Const.MaxUserAssignableUniformLocations);
   3176          return;
   3177       }
   3178 
   3179       var->data.explicit_location = true;
   3180       var->data.location = qual_location;
   3181       return;
   3182    }
   3183 
   3184    /* Between GL_ARB_explicit_attrib_location an
   3185     * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
   3186     * stage can be assigned explicit locations.  The checking here associates
   3187     * the correct extension with the correct stage's input / output:
   3188     *
   3189     *                     input            output
   3190     *                     -----            ------
   3191     * vertex              explicit_loc     sso
   3192     * tess control        sso              sso
   3193     * tess eval           sso              sso
   3194     * geometry            sso              sso
   3195     * fragment            sso              explicit_loc
   3196     */
   3197    switch (state->stage) {
   3198    case MESA_SHADER_VERTEX:
   3199       if (var->data.mode == ir_var_shader_in) {
   3200          if (!state->check_explicit_attrib_location_allowed(loc, var))
   3201             return;
   3202 
   3203          break;
   3204       }
   3205 
   3206       if (var->data.mode == ir_var_shader_out) {
   3207          if (!state->check_separate_shader_objects_allowed(loc, var))
   3208             return;
   3209 
   3210          break;
   3211       }
   3212 
   3213       fail = true;
   3214       break;
   3215 
   3216    case MESA_SHADER_TESS_CTRL:
   3217    case MESA_SHADER_TESS_EVAL:
   3218    case MESA_SHADER_GEOMETRY:
   3219       if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
   3220          if (!state->check_separate_shader_objects_allowed(loc, var))
   3221             return;
   3222 
   3223          break;
   3224       }
   3225 
   3226       fail = true;
   3227       break;
   3228 
   3229    case MESA_SHADER_FRAGMENT:
   3230       if (var->data.mode == ir_var_shader_in) {
   3231          if (!state->check_separate_shader_objects_allowed(loc, var))
   3232             return;
   3233 
   3234          break;
   3235       }
   3236 
   3237       if (var->data.mode == ir_var_shader_out) {
   3238          if (!state->check_explicit_attrib_location_allowed(loc, var))
   3239             return;
   3240 
   3241          break;
   3242       }
   3243 
   3244       fail = true;
   3245       break;
   3246 
   3247    case MESA_SHADER_COMPUTE:
   3248       _mesa_glsl_error(loc, state,
   3249                        "compute shader variables cannot be given "
   3250                        "explicit locations");
   3251       return;
   3252    default:
   3253       fail = true;
   3254       break;
   3255    };
   3256 
   3257    if (fail) {
   3258       _mesa_glsl_error(loc, state,
   3259                        "%s cannot be given an explicit location in %s shader",
   3260                        mode_string(var),
   3261       _mesa_shader_stage_to_string(state->stage));
   3262    } else {
   3263       var->data.explicit_location = true;
   3264 
   3265       switch (state->stage) {
   3266       case MESA_SHADER_VERTEX:
   3267          var->data.location = (var->data.mode == ir_var_shader_in)
   3268             ? (qual_location + VERT_ATTRIB_GENERIC0)
   3269             : (qual_location + VARYING_SLOT_VAR0);
   3270          break;
   3271 
   3272       case MESA_SHADER_TESS_CTRL:
   3273       case MESA_SHADER_TESS_EVAL:
   3274       case MESA_SHADER_GEOMETRY:
   3275          if (var->data.patch)
   3276             var->data.location = qual_location + VARYING_SLOT_PATCH0;
   3277          else
   3278             var->data.location = qual_location + VARYING_SLOT_VAR0;
   3279          break;
   3280 
   3281       case MESA_SHADER_FRAGMENT:
   3282          var->data.location = (var->data.mode == ir_var_shader_out)
   3283             ? (qual_location + FRAG_RESULT_DATA0)
   3284             : (qual_location + VARYING_SLOT_VAR0);
   3285          break;
   3286       default:
   3287          assert(!"Unexpected shader type");
   3288          break;
   3289       }
   3290 
   3291       /* Check if index was set for the uniform instead of the function */
   3292       if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
   3293          _mesa_glsl_error(loc, state, "an index qualifier can only be "
   3294                           "used with subroutine functions");
   3295          return;
   3296       }
   3297 
   3298       unsigned qual_index;
   3299       if (qual->flags.q.explicit_index &&
   3300           process_qualifier_constant(state, loc, "index", qual->index,
   3301                                      &qual_index)) {
   3302          /* From the GLSL 4.30 specification, section 4.4.2 (Output
   3303           * Layout Qualifiers):
   3304           *
   3305           * "It is also a compile-time error if a fragment shader
   3306           *  sets a layout index to less than 0 or greater than 1."
   3307           *
   3308           * Older specifications don't mandate a behavior; we take
   3309           * this as a clarification and always generate the error.
   3310           */
   3311          if (qual_index > 1) {
   3312             _mesa_glsl_error(loc, state,
   3313                              "explicit index may only be 0 or 1");
   3314          } else {
   3315             var->data.explicit_index = true;
   3316             var->data.index = qual_index;
   3317          }
   3318       }
   3319    }
   3320 }
   3321 
   3322 static bool
   3323 validate_storage_for_sampler_image_types(ir_variable *var,
   3324                                          struct _mesa_glsl_parse_state *state,
   3325                                          YYLTYPE *loc)
   3326 {
   3327    /* From section 4.1.7 of the GLSL 4.40 spec:
   3328     *
   3329     *    "[Opaque types] can only be declared as function
   3330     *     parameters or uniform-qualified variables."
   3331     *
   3332     * From section 4.1.7 of the ARB_bindless_texture spec:
   3333     *
   3334     *    "Samplers may be declared as shader inputs and outputs, as uniform
   3335     *     variables, as temporary variables, and as function parameters."
   3336     *
   3337     * From section 4.1.X of the ARB_bindless_texture spec:
   3338     *
   3339     *    "Images may be declared as shader inputs and outputs, as uniform
   3340     *     variables, as temporary variables, and as function parameters."
   3341     */
   3342    if (state->has_bindless()) {
   3343       if (var->data.mode != ir_var_auto &&
   3344           var->data.mode != ir_var_uniform &&
   3345           var->data.mode != ir_var_shader_in &&
   3346           var->data.mode != ir_var_shader_out &&
   3347           var->data.mode != ir_var_function_in &&
   3348           var->data.mode != ir_var_function_out &&
   3349           var->data.mode != ir_var_function_inout) {
   3350          _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
   3351                          "only be declared as shader inputs and outputs, as "
   3352                          "uniform variables, as temporary variables and as "
   3353                          "function parameters");
   3354          return false;
   3355       }
   3356    } else {
   3357       if (var->data.mode != ir_var_uniform &&
   3358           var->data.mode != ir_var_function_in) {
   3359          _mesa_glsl_error(loc, state, "image/sampler variables may only be "
   3360                           "declared as function parameters or "
   3361                           "uniform-qualified global variables");
   3362          return false;
   3363       }
   3364    }
   3365    return true;
   3366 }
   3367 
   3368 static bool
   3369 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
   3370                                    YYLTYPE *loc,
   3371                                    const struct ast_type_qualifier *qual,
   3372                                    const glsl_type *type)
   3373 {
   3374    /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
   3375     *
   3376     * "Memory qualifiers are only supported in the declarations of image
   3377     *  variables, buffer variables, and shader storage blocks; it is an error
   3378     *  to use such qualifiers in any other declarations.
   3379     */
   3380    if (!type->is_image() && !qual->flags.q.buffer) {
   3381       if (qual->flags.q.read_only ||
   3382           qual->flags.q.write_only ||
   3383           qual->flags.q.coherent ||
   3384           qual->flags.q._volatile ||
   3385           qual->flags.q.restrict_flag) {
   3386          _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
   3387                           "in the declarations of image variables, buffer "
   3388                           "variables, and shader storage blocks");
   3389          return false;
   3390       }
   3391    }
   3392    return true;
   3393 }
   3394 
   3395 static bool
   3396 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
   3397                                          YYLTYPE *loc,
   3398                                          const struct ast_type_qualifier *qual,
   3399                                          const glsl_type *type)
   3400 {
   3401    /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
   3402     *
   3403     * "Format layout qualifiers can be used on image variable declarations
   3404     *  (those declared with a basic type  having image  in its keyword)."
   3405     */
   3406    if (!type->is_image() && qual->flags.q.explicit_image_format) {
   3407       _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
   3408                        "applied to images");
   3409       return false;
   3410    }
   3411    return true;
   3412 }
   3413 
   3414 static void
   3415 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
   3416                                   ir_variable *var,
   3417                                   struct _mesa_glsl_parse_state *state,
   3418                                   YYLTYPE *loc)
   3419 {
   3420    const glsl_type *base_type = var->type->without_array();
   3421 
   3422    if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
   3423        !validate_memory_qualifier_for_type(state, loc, qual, base_type))
   3424       return;
   3425 
   3426    if (!base_type->is_image())
   3427       return;
   3428 
   3429    if (!validate_storage_for_sampler_image_types(var, state, loc))
   3430       return;
   3431 
   3432    var->data.memory_read_only |= qual->flags.q.read_only;
   3433    var->data.memory_write_only |= qual->flags.q.write_only;
   3434    var->data.memory_coherent |= qual->flags.q.coherent;
   3435    var->data.memory_volatile |= qual->flags.q._volatile;
   3436    var->data.memory_restrict |= qual->flags.q.restrict_flag;
   3437 
   3438    if (qual->flags.q.explicit_image_format) {
   3439       if (var->data.mode == ir_var_function_in) {
   3440          _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
   3441                           "image function parameters");
   3442       }
   3443 
   3444       if (qual->image_base_type != base_type->sampled_type) {
   3445          _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
   3446                           "data type of the image");
   3447       }
   3448 
   3449       var->data.image_format = qual->image_format;
   3450    } else {
   3451       if (var->data.mode == ir_var_uniform) {
   3452          if (state->es_shader) {
   3453             _mesa_glsl_error(loc, state, "all image uniforms must have a "
   3454                              "format layout qualifier");
   3455          } else if (!qual->flags.q.write_only) {
   3456             _mesa_glsl_error(loc, state, "image uniforms not qualified with "
   3457                              "`writeonly' must have a format layout qualifier");
   3458          }
   3459       }
   3460       var->data.image_format = GL_NONE;
   3461    }
   3462 
   3463    /* From page 70 of the GLSL ES 3.1 specification:
   3464     *
   3465     * "Except for image variables qualified with the format qualifiers r32f,
   3466     *  r32i, and r32ui, image variables must specify either memory qualifier
   3467     *  readonly or the memory qualifier writeonly."
   3468     */
   3469    if (state->es_shader &&
   3470        var->data.image_format != GL_R32F &&
   3471        var->data.image_format != GL_R32I &&
   3472        var->data.image_format != GL_R32UI &&
   3473        !var->data.memory_read_only &&
   3474        !var->data.memory_write_only) {
   3475       _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
   3476                        "r32i or r32ui must be qualified `readonly' or "
   3477                        "`writeonly'");
   3478    }
   3479 }
   3480 
   3481 static inline const char*
   3482 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
   3483 {
   3484    if (origin_upper_left && pixel_center_integer)
   3485       return "origin_upper_left, pixel_center_integer";
   3486    else if (origin_upper_left)
   3487       return "origin_upper_left";
   3488    else if (pixel_center_integer)
   3489       return "pixel_center_integer";
   3490    else
   3491       return " ";
   3492 }
   3493 
   3494 static inline bool
   3495 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
   3496                                        const struct ast_type_qualifier *qual)
   3497 {
   3498    /* If gl_FragCoord was previously declared, and the qualifiers were
   3499     * different in any way, return true.
   3500     */
   3501    if (state->fs_redeclares_gl_fragcoord) {
   3502       return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
   3503          || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
   3504    }
   3505 
   3506    return false;
   3507 }
   3508 
   3509 static inline void
   3510 validate_array_dimensions(const glsl_type *t,
   3511                           struct _mesa_glsl_parse_state *state,
   3512                           YYLTYPE *loc) {
   3513    if (t->is_array()) {
   3514       t = t->fields.array;
   3515       while (t->is_array()) {
   3516          if (t->is_unsized_array()) {
   3517             _mesa_glsl_error(loc, state,
   3518                              "only the outermost array dimension can "
   3519                              "be unsized",
   3520                              t->name);
   3521             break;
   3522          }
   3523          t = t->fields.array;
   3524       }
   3525    }
   3526 }
   3527 
   3528 static void
   3529 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
   3530                                      ir_variable *var,
   3531                                      struct _mesa_glsl_parse_state *state,
   3532                                      YYLTYPE *loc)
   3533 {
   3534    bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
   3535                                qual->flags.q.bindless_image ||
   3536                                qual->flags.q.bound_sampler ||
   3537                                qual->flags.q.bound_image;
   3538 
   3539    /* The ARB_bindless_texture spec says:
   3540     *
   3541     * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
   3542     *  spec"
   3543     *
   3544     * "If these layout qualifiers are applied to other types of default block
   3545     *  uniforms, or variables with non-uniform storage, a compile-time error
   3546     *  will be generated."
   3547     */
   3548    if (has_local_qualifiers && !qual->flags.q.uniform) {
   3549       _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
   3550                        "can only be applied to default block uniforms or "
   3551                        "variables with uniform storage");
   3552       return;
   3553    }
   3554 
   3555    /* The ARB_bindless_texture spec doesn't state anything in this situation,
   3556     * but it makes sense to only allow bindless_sampler/bound_sampler for
   3557     * sampler types, and respectively bindless_image/bound_image for image
   3558     * types.
   3559     */
   3560    if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
   3561        !var->type->contains_sampler()) {
   3562       _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
   3563                        "be applied to sampler types");
   3564       return;
   3565    }
   3566 
   3567    if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
   3568        !var->type->contains_image()) {
   3569       _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
   3570                        "applied to image types");
   3571       return;
   3572    }
   3573 
   3574    /* The bindless_sampler/bindless_image (and respectively
   3575     * bound_sampler/bound_image) layout qualifiers can be set at global and at
   3576     * local scope.
   3577     */
   3578    if (var->type->contains_sampler() || var->type->contains_image()) {
   3579       var->data.bindless = qual->flags.q.bindless_sampler ||
   3580                            qual->flags.q.bindless_image ||
   3581                            state->bindless_sampler_specified ||
   3582                            state->bindless_image_specified;
   3583 
   3584       var->data.bound = qual->flags.q.bound_sampler ||
   3585                         qual->flags.q.bound_image ||
   3586                         state->bound_sampler_specified ||
   3587                         state->bound_image_specified;
   3588    }
   3589 }
   3590 
   3591 static void
   3592 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
   3593                                    ir_variable *var,
   3594                                    struct _mesa_glsl_parse_state *state,
   3595                                    YYLTYPE *loc)
   3596 {
   3597    if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
   3598 
   3599       /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
   3600        *
   3601        *    "Within any shader, the first redeclarations of gl_FragCoord
   3602        *     must appear before any use of gl_FragCoord."
   3603        *
   3604        * Generate a compiler error if above condition is not met by the
   3605        * fragment shader.
   3606        */
   3607       ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
   3608       if (earlier != NULL &&
   3609           earlier->data.used &&
   3610           !state->fs_redeclares_gl_fragcoord) {
   3611          _mesa_glsl_error(loc, state,
   3612                           "gl_FragCoord used before its first redeclaration "
   3613                           "in fragment shader");
   3614       }
   3615 
   3616       /* Make sure all gl_FragCoord redeclarations specify the same layout
   3617        * qualifiers.
   3618        */
   3619       if (is_conflicting_fragcoord_redeclaration(state, qual)) {
   3620          const char *const qual_string =
   3621             get_layout_qualifier_string(qual->flags.q.origin_upper_left,
   3622                                         qual->flags.q.pixel_center_integer);
   3623 
   3624          const char *const state_string =
   3625             get_layout_qualifier_string(state->fs_origin_upper_left,
   3626                                         state->fs_pixel_center_integer);
   3627 
   3628          _mesa_glsl_error(loc, state,
   3629                           "gl_FragCoord redeclared with different layout "
   3630                           "qualifiers (%s) and (%s) ",
   3631                           state_string,
   3632                           qual_string);
   3633       }
   3634       state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
   3635       state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
   3636       state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
   3637          !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
   3638       state->fs_redeclares_gl_fragcoord =
   3639          state->fs_origin_upper_left ||
   3640          state->fs_pixel_center_integer ||
   3641          state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
   3642    }
   3643 
   3644    var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
   3645    var->data.origin_upper_left = qual->flags.q.origin_upper_left;
   3646    if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
   3647        && (strcmp(var->name, "gl_FragCoord") != 0)) {
   3648       const char *const qual_string = (qual->flags.q.origin_upper_left)
   3649          ? "origin_upper_left" : "pixel_center_integer";
   3650 
   3651       _mesa_glsl_error(loc, state,
   3652                        "layout qualifier `%s' can only be applied to "
   3653                        "fragment shader input `gl_FragCoord'",
   3654                        qual_string);
   3655    }
   3656 
   3657    if (qual->flags.q.explicit_location) {
   3658       apply_explicit_location(qual, var, state, loc);
   3659 
   3660       if (qual->flags.q.explicit_component) {
   3661          unsigned qual_component;
   3662          if (process_qualifier_constant(state, loc, "component",
   3663                                         qual->component, &qual_component)) {
   3664             const glsl_type *type = var->type->without_array();
   3665             unsigned components = type->component_slots();
   3666 
   3667             if (type->is_matrix() || type->is_record()) {
   3668                _mesa_glsl_error(loc, state, "component layout qualifier "
   3669                                 "cannot be applied to a matrix, a structure, "
   3670                                 "a block, or an array containing any of "
   3671                                 "these.");
   3672             } else if (qual_component != 0 &&
   3673                 (qual_component + components - 1) > 3) {
   3674                _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
   3675                                 (qual_component + components - 1));
   3676             } else if (qual_component == 1 && type->is_64bit()) {
   3677                /* We don't bother checking for 3 as it should be caught by the
   3678                 * overflow check above.
   3679                 */
   3680                _mesa_glsl_error(loc, state, "doubles cannot begin at "
   3681                                 "component 1 or 3");
   3682             } else {
   3683                var->data.explicit_component = true;
   3684                var->data.location_frac = qual_component;
   3685             }
   3686          }
   3687       }
   3688    } else if (qual->flags.q.explicit_index) {
   3689       if (!qual->subroutine_list)
   3690          _mesa_glsl_error(loc, state,
   3691                           "explicit index requires explicit location");
   3692    } else if (qual->flags.q.explicit_component) {
   3693       _mesa_glsl_error(loc, state,
   3694                        "explicit component requires explicit location");
   3695    }
   3696 
   3697    if (qual->flags.q.explicit_binding) {
   3698       apply_explicit_binding(state, loc, var, var->type, qual);
   3699    }
   3700 
   3701    if (state->stage == MESA_SHADER_GEOMETRY &&
   3702        qual->flags.q.out && qual->flags.q.stream) {
   3703       unsigned qual_stream;
   3704       if (process_qualifier_constant(state, loc, "stream", qual->stream,
   3705                                      &qual_stream) &&
   3706           validate_stream_qualifier(loc, state, qual_stream)) {
   3707          var->data.stream = qual_stream;
   3708       }
   3709    }
   3710 
   3711    if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
   3712       unsigned qual_xfb_buffer;
   3713       if (process_qualifier_constant(state, loc, "xfb_buffer",
   3714                                      qual->xfb_buffer, &qual_xfb_buffer) &&
   3715           validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
   3716          var->data.xfb_buffer = qual_xfb_buffer;
   3717          if (qual->flags.q.explicit_xfb_buffer)
   3718             var->data.explicit_xfb_buffer = true;
   3719       }
   3720    }
   3721 
   3722    if (qual->flags.q.explicit_xfb_offset) {
   3723       unsigned qual_xfb_offset;
   3724       unsigned component_size = var->type->contains_double() ? 8 : 4;
   3725 
   3726       if (process_qualifier_constant(state, loc, "xfb_offset",
   3727                                      qual->offset, &qual_xfb_offset) &&
   3728           validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
   3729                                         var->type, component_size)) {
   3730          var->data.offset = qual_xfb_offset;
   3731          var->data.explicit_xfb_offset = true;
   3732       }
   3733    }
   3734 
   3735    if (qual->flags.q.explicit_xfb_stride) {
   3736       unsigned qual_xfb_stride;
   3737       if (process_qualifier_constant(state, loc, "xfb_stride",
   3738                                      qual->xfb_stride, &qual_xfb_stride)) {
   3739          var->data.xfb_stride = qual_xfb_stride;
   3740          var->data.explicit_xfb_stride = true;
   3741       }
   3742    }
   3743 
   3744    if (var->type->contains_atomic()) {
   3745       if (var->data.mode == ir_var_uniform) {
   3746          if (var->data.explicit_binding) {
   3747             unsigned *offset =
   3748                &state->atomic_counter_offsets[var->data.binding];
   3749 
   3750             if (*offset % ATOMIC_COUNTER_SIZE)
   3751                _mesa_glsl_error(loc, state,
   3752                                 "misaligned atomic counter offset");
   3753 
   3754             var->data.offset = *offset;
   3755             *offset += var->type->atomic_size();
   3756 
   3757          } else {
   3758             _mesa_glsl_error(loc, state,
   3759                              "atomic counters require explicit binding point");
   3760          }
   3761       } else if (var->data.mode != ir_var_function_in) {
   3762          _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
   3763                           "function parameters or uniform-qualified "
   3764                           "global variables");
   3765       }
   3766    }
   3767 
   3768    if (var->type->contains_sampler() &&
   3769        !validate_storage_for_sampler_image_types(var, state, loc))
   3770       return;
   3771 
   3772    /* Is the 'layout' keyword used with parameters that allow relaxed checking.
   3773     * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
   3774     * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
   3775     * allowed the layout qualifier to be used with 'varying' and 'attribute'.
   3776     * These extensions and all following extensions that add the 'layout'
   3777     * keyword have been modified to require the use of 'in' or 'out'.
   3778     *
   3779     * The following extension do not allow the deprecated keywords:
   3780     *
   3781     *    GL_AMD_conservative_depth
   3782     *    GL_ARB_conservative_depth
   3783     *    GL_ARB_gpu_shader5
   3784     *    GL_ARB_separate_shader_objects
   3785     *    GL_ARB_tessellation_shader
   3786     *    GL_ARB_transform_feedback3
   3787     *    GL_ARB_uniform_buffer_object
   3788     *
   3789     * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
   3790     * allow layout with the deprecated keywords.
   3791     */
   3792    const bool relaxed_layout_qualifier_checking =
   3793       state->ARB_fragment_coord_conventions_enable;
   3794 
   3795    const bool uses_deprecated_qualifier = qual->flags.q.attribute
   3796       || qual->flags.q.varying;
   3797    if (qual->has_layout() && uses_deprecated_qualifier) {
   3798       if (relaxed_layout_qualifier_checking) {
   3799          _mesa_glsl_warning(loc, state,
   3800                             "`layout' qualifier may not be used with "
   3801                             "`attribute' or `varying'");
   3802       } else {
   3803          _mesa_glsl_error(loc, state,
   3804                           "`layout' qualifier may not be used with "
   3805                           "`attribute' or `varying'");
   3806       }
   3807    }
   3808 
   3809    /* Layout qualifiers for gl_FragDepth, which are enabled by extension
   3810     * AMD_conservative_depth.
   3811     */
   3812    if (qual->flags.q.depth_type
   3813        && !state->is_version(420, 0)
   3814        && !state->AMD_conservative_depth_enable
   3815        && !state->ARB_conservative_depth_enable) {
   3816        _mesa_glsl_error(loc, state,
   3817                         "extension GL_AMD_conservative_depth or "
   3818                         "GL_ARB_conservative_depth must be enabled "
   3819                         "to use depth layout qualifiers");
   3820    } else if (qual->flags.q.depth_type
   3821               && strcmp(var->name, "gl_FragDepth") != 0) {
   3822        _mesa_glsl_error(loc, state,
   3823                         "depth layout qualifiers can be applied only to "
   3824                         "gl_FragDepth");
   3825    }
   3826 
   3827    switch (qual->depth_type) {
   3828    case ast_depth_any:
   3829       var->data.depth_layout = ir_depth_layout_any;
   3830       break;
   3831    case ast_depth_greater:
   3832       var->data.depth_layout = ir_depth_layout_greater;
   3833       break;
   3834    case ast_depth_less:
   3835       var->data.depth_layout = ir_depth_layout_less;
   3836       break;
   3837    case ast_depth_unchanged:
   3838       var->data.depth_layout = ir_depth_layout_unchanged;
   3839       break;
   3840    default:
   3841       var->data.depth_layout = ir_depth_layout_none;
   3842       break;
   3843    }
   3844 
   3845    if (qual->flags.q.std140 ||
   3846        qual->flags.q.std430 ||
   3847        qual->flags.q.packed ||
   3848        qual->flags.q.shared) {
   3849       _mesa_glsl_error(loc, state,
   3850                        "uniform and shader storage block layout qualifiers "
   3851                        "std140, std430, packed, and shared can only be "
   3852                        "applied to uniform or shader storage blocks, not "
   3853                        "members");
   3854    }
   3855 
   3856    if (qual->flags.q.row_major || qual->flags.q.column_major) {
   3857       validate_matrix_layout_for_type(state, loc, var->type, var);
   3858    }
   3859 
   3860    /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
   3861     * Inputs):
   3862     *
   3863     *  "Fragment shaders also allow the following layout qualifier on in only
   3864     *   (not with variable declarations)
   3865     *     layout-qualifier-id
   3866     *        early_fragment_tests
   3867     *   [...]"
   3868     */
   3869    if (qual->flags.q.early_fragment_tests) {
   3870       _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
   3871                        "valid in fragment shader input layout declaration.");
   3872    }
   3873 
   3874    if (qual->flags.q.inner_coverage) {
   3875       _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
   3876                        "valid in fragment shader input layout declaration.");
   3877    }
   3878 
   3879    if (qual->flags.q.post_depth_coverage) {
   3880       _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
   3881                        "valid in fragment shader input layout declaration.");
   3882    }
   3883 
   3884    if (state->has_bindless())
   3885       apply_bindless_qualifier_to_variable(qual, var, state, loc);
   3886 }
   3887 
   3888 static void
   3889 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
   3890                                  ir_variable *var,
   3891                                  struct _mesa_glsl_parse_state *state,
   3892                                  YYLTYPE *loc,
   3893                                  bool is_parameter)
   3894 {
   3895    STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
   3896 
   3897    if (qual->flags.q.invariant) {
   3898       if (var->data.used) {
   3899          _mesa_glsl_error(loc, state,
   3900                           "variable `%s' may not be redeclared "
   3901                           "`invariant' after being used",
   3902                           var->name);
   3903       } else {
   3904          var->data.invariant = 1;
   3905       }
   3906    }
   3907 
   3908    if (qual->flags.q.precise) {
   3909       if (var->data.used) {
   3910          _mesa_glsl_error(loc, state,
   3911                           "variable `%s' may not be redeclared "
   3912                           "`precise' after being used",
   3913                           var->name);
   3914       } else {
   3915          var->data.precise = 1;
   3916       }
   3917    }
   3918 
   3919    if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
   3920       _mesa_glsl_error(loc, state,
   3921                        "`subroutine' may only be applied to uniforms, "
   3922                        "subroutine type declarations, or function definitions");
   3923    }
   3924 
   3925    if (qual->flags.q.constant || qual->flags.q.attribute
   3926        || qual->flags.q.uniform
   3927        || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
   3928       var->data.read_only = 1;
   3929 
   3930    if (qual->flags.q.centroid)
   3931       var->data.centroid = 1;
   3932 
   3933    if (qual->flags.q.sample)
   3934       var->data.sample = 1;
   3935 
   3936    /* Precision qualifiers do not hold any meaning in Desktop GLSL */
   3937    if (state->es_shader) {
   3938       var->data.precision =
   3939          select_gles_precision(qual->precision, var->type, state, loc);
   3940    }
   3941 
   3942    if (qual->flags.q.patch)
   3943       var->data.patch = 1;
   3944 
   3945    if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
   3946       var->type = glsl_type::error_type;
   3947       _mesa_glsl_error(loc, state,
   3948                        "`attribute' variables may not be declared in the "
   3949                        "%s shader",
   3950                        _mesa_shader_stage_to_string(state->stage));
   3951    }
   3952 
   3953    /* Disallow layout qualifiers which may only appear on layout declarations. */
   3954    if (qual->flags.q.prim_type) {
   3955       _mesa_glsl_error(loc, state,
   3956                        "Primitive type may only be specified on GS input or output "
   3957                        "layout declaration, not on variables.");
   3958    }
   3959 
   3960    /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
   3961     *
   3962     *     "However, the const qualifier cannot be used with out or inout."
   3963     *
   3964     * The same section of the GLSL 4.40 spec further clarifies this saying:
   3965     *
   3966     *     "The const qualifier cannot be used with out or inout, or a
   3967     *     compile-time error results."
   3968     */
   3969    if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
   3970       _mesa_glsl_error(loc, state,
   3971                        "`const' may not be applied to `out' or `inout' "
   3972                        "function parameters");
   3973    }
   3974 
   3975    /* If there is no qualifier that changes the mode of the variable, leave
   3976     * the setting alone.
   3977     */
   3978    assert(var->data.mode != ir_var_temporary);
   3979    if (qual->flags.q.in && qual->flags.q.out)
   3980       var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
   3981    else if (qual->flags.q.in)
   3982       var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
   3983    else if (qual->flags.q.attribute
   3984             || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
   3985       var->data.mode = ir_var_shader_in;
   3986    else if (qual->flags.q.out)
   3987       var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
   3988    else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
   3989       var->data.mode = ir_var_shader_out;
   3990    else if (qual->flags.q.uniform)
   3991       var->data.mode = ir_var_uniform;
   3992    else if (qual->flags.q.buffer)
   3993       var->data.mode = ir_var_shader_storage;
   3994    else if (qual->flags.q.shared_storage)
   3995       var->data.mode = ir_var_shader_shared;
   3996 
   3997    var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
   3998                                qual->flags.q.in && qual->flags.q.out;
   3999 
   4000    if (!is_parameter && is_varying_var(var, state->stage)) {
   4001       /* User-defined ins/outs are not permitted in compute shaders. */
   4002       if (state->stage == MESA_SHADER_COMPUTE) {
   4003          _mesa_glsl_error(loc, state,
   4004                           "user-defined input and output variables are not "
   4005                           "permitted in compute shaders");
   4006       }
   4007 
   4008       /* This variable is being used to link data between shader stages (in
   4009        * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
   4010        * that is allowed for such purposes.
   4011        *
   4012        * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
   4013        *
   4014        *     "The varying qualifier can be used only with the data types
   4015        *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
   4016        *     these."
   4017        *
   4018        * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
   4019        * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
   4020        *
   4021        *     "Fragment inputs can only be signed and unsigned integers and
   4022        *     integer vectors, float, floating-point vectors, matrices, or
   4023        *     arrays of these. Structures cannot be input.
   4024        *
   4025        * Similar text exists in the section on vertex shader outputs.
   4026        *
   4027        * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
   4028        * 3.00 spec allows structs as well.  Varying structs are also allowed
   4029        * in GLSL 1.50.
   4030        *
   4031        * From section 4.3.4 of the ARB_bindless_texture spec:
   4032        *
   4033        *     "(modify third paragraph of the section to allow sampler and image
   4034        *     types) ...  Vertex shader inputs can only be float,
   4035        *     single-precision floating-point scalars, single-precision
   4036        *     floating-point vectors, matrices, signed and unsigned integers
   4037        *     and integer vectors, sampler and image types."
   4038        *
   4039        * From section 4.3.6 of the ARB_bindless_texture spec:
   4040        *
   4041        *     "Output variables can only be floating-point scalars,
   4042        *     floating-point vectors, matrices, signed or unsigned integers or
   4043        *     integer vectors, sampler or image types, or arrays or structures
   4044        *     of any these."
   4045        */
   4046       switch (var->type->without_array()->base_type) {
   4047       case GLSL_TYPE_FLOAT:
   4048          /* Ok in all GLSL versions */
   4049          break;
   4050       case GLSL_TYPE_UINT:
   4051       case GLSL_TYPE_INT:
   4052          if (state->is_version(130, 300))
   4053             break;
   4054          _mesa_glsl_error(loc, state,
   4055                           "varying variables must be of base type float in %s",
   4056                           state->get_version_string());
   4057          break;
   4058       case GLSL_TYPE_STRUCT:
   4059          if (state->is_version(150, 300))
   4060             break;
   4061          _mesa_glsl_error(loc, state,
   4062                           "varying variables may not be of type struct");
   4063          break;
   4064       case GLSL_TYPE_DOUBLE:
   4065       case GLSL_TYPE_UINT64:
   4066       case GLSL_TYPE_INT64:
   4067          break;
   4068       case GLSL_TYPE_SAMPLER:
   4069       case GLSL_TYPE_IMAGE:
   4070          if (state->has_bindless())
   4071             break;
   4072          /* fallthrough */
   4073       default:
   4074          _mesa_glsl_error(loc, state, "illegal type for a varying variable");
   4075          break;
   4076       }
   4077    }
   4078 
   4079    if (state->all_invariant && var->data.mode == ir_var_shader_out)
   4080       var->data.invariant = true;
   4081 
   4082    var->data.interpolation =
   4083       interpret_interpolation_qualifier(qual, var->type,
   4084                                         (ir_variable_mode) var->data.mode,
   4085                                         state, loc);
   4086 
   4087    /* Does the declaration use the deprecated 'attribute' or 'varying'
   4088     * keywords?
   4089     */
   4090    const bool uses_deprecated_qualifier = qual->flags.q.attribute
   4091       || qual->flags.q.varying;
   4092 
   4093 
   4094    /* Validate auxiliary storage qualifiers */
   4095 
   4096    /* From section 4.3.4 of the GLSL 1.30 spec:
   4097     *    "It is an error to use centroid in in a vertex shader."
   4098     *
   4099     * From section 4.3.4 of the GLSL ES 3.00 spec:
   4100     *    "It is an error to use centroid in or interpolation qualifiers in
   4101     *    a vertex shader input."
   4102     */
   4103 
   4104    /* Section 4.3.6 of the GLSL 1.30 specification states:
   4105     * "It is an error to use centroid out in a fragment shader."
   4106     *
   4107     * The GL_ARB_shading_language_420pack extension specification states:
   4108     * "It is an error to use auxiliary storage qualifiers or interpolation
   4109     *  qualifiers on an output in a fragment shader."
   4110     */
   4111    if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
   4112       _mesa_glsl_error(loc, state,
   4113                        "sample qualifier may only be used on `in` or `out` "
   4114                        "variables between shader stages");
   4115    }
   4116    if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
   4117       _mesa_glsl_error(loc, state,
   4118                        "centroid qualifier may only be used with `in', "
   4119                        "`out' or `varying' variables between shader stages");
   4120    }
   4121 
   4122    if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
   4123       _mesa_glsl_error(loc, state,
   4124                        "the shared storage qualifiers can only be used with "
   4125                        "compute shaders");
   4126    }
   4127 
   4128    apply_image_qualifier_to_variable(qual, var, state, loc);
   4129 }
   4130 
   4131 /**
   4132  * Get the variable that is being redeclared by this declaration or if it
   4133  * does not exist, the current declared variable.
   4134  *
   4135  * Semantic checks to verify the validity of the redeclaration are also
   4136  * performed.  If semantic checks fail, compilation error will be emitted via
   4137  * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
   4138  *
   4139  * \returns
   4140  * A pointer to an existing variable in the current scope if the declaration
   4141  * is a redeclaration, current variable otherwise. \c is_declared boolean
   4142  * will return \c true if the declaration is a redeclaration, \c false
   4143  * otherwise.
   4144  */
   4145 static ir_variable *
   4146 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
   4147                               struct _mesa_glsl_parse_state *state,
   4148                               bool allow_all_redeclarations,
   4149                               bool *is_redeclaration)
   4150 {
   4151    ir_variable *var = *var_ptr;
   4152 
   4153    /* Check if this declaration is actually a re-declaration, either to
   4154     * resize an array or add qualifiers to an existing variable.
   4155     *
   4156     * This is allowed for variables in the current scope, or when at
   4157     * global scope (for built-ins in the implicit outer scope).
   4158     */
   4159    ir_variable *earlier = state->symbols->get_variable(var->name);
   4160    if (earlier == NULL ||
   4161        (state->current_function != NULL &&
   4162        !state->symbols->name_declared_this_scope(var->name))) {
   4163       *is_redeclaration = false;
   4164       return var;
   4165    }
   4166 
   4167    *is_redeclaration = true;
   4168 
   4169    /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
   4170     *
   4171     * "It is legal to declare an array without a size and then
   4172     *  later re-declare the same name as an array of the same
   4173     *  type and specify a size."
   4174     */
   4175    if (earlier->type->is_unsized_array() && var->type->is_array()
   4176        && (var->type->fields.array == earlier->type->fields.array)) {
   4177       /* FINISHME: This doesn't match the qualifiers on the two
   4178        * FINISHME: declarations.  It's not 100% clear whether this is
   4179        * FINISHME: required or not.
   4180        */
   4181 
   4182       const int size = var->type->array_size();
   4183       check_builtin_array_max_size(var->name, size, loc, state);
   4184       if ((size > 0) && (size <= earlier->data.max_array_access)) {
   4185          _mesa_glsl_error(& loc, state, "array size must be > %u due to "
   4186                           "previous access",
   4187                           earlier->data.max_array_access);
   4188       }
   4189 
   4190       earlier->type = var->type;
   4191       delete var;
   4192       var = NULL;
   4193       *var_ptr = NULL;
   4194    } else if ((state->ARB_fragment_coord_conventions_enable ||
   4195               state->is_version(150, 0))
   4196               && strcmp(var->name, "gl_FragCoord") == 0
   4197               && earlier->type == var->type
   4198               && var->data.mode == ir_var_shader_in) {
   4199       /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
   4200        * qualifiers.
   4201        */
   4202       earlier->data.origin_upper_left = var->data.origin_upper_left;
   4203       earlier->data.pixel_center_integer = var->data.pixel_center_integer;
   4204 
   4205       /* According to section 4.3.7 of the GLSL 1.30 spec,
   4206        * the following built-in varaibles can be redeclared with an
   4207        * interpolation qualifier:
   4208        *    * gl_FrontColor
   4209        *    * gl_BackColor
   4210        *    * gl_FrontSecondaryColor
   4211        *    * gl_BackSecondaryColor
   4212        *    * gl_Color
   4213        *    * gl_SecondaryColor
   4214        */
   4215    } else if (state->is_version(130, 0)
   4216               && (strcmp(var->name, "gl_FrontColor") == 0
   4217                   || strcmp(var->name, "gl_BackColor") == 0
   4218                   || strcmp(var->name, "gl_FrontSecondaryColor") == 0
   4219                   || strcmp(var->name, "gl_BackSecondaryColor") == 0
   4220                   || strcmp(var->name, "gl_Color") == 0
   4221                   || strcmp(var->name, "gl_SecondaryColor") == 0)
   4222               && earlier->type == var->type
   4223               && earlier->data.mode == var->data.mode) {
   4224       earlier->data.interpolation = var->data.interpolation;
   4225 
   4226       /* Layout qualifiers for gl_FragDepth. */
   4227    } else if ((state->is_version(420, 0) ||
   4228                state->AMD_conservative_depth_enable ||
   4229                state->ARB_conservative_depth_enable)
   4230               && strcmp(var->name, "gl_FragDepth") == 0
   4231               && earlier->type == var->type
   4232               && earlier->data.mode == var->data.mode) {
   4233 
   4234       /** From the AMD_conservative_depth spec:
   4235        *     Within any shader, the first redeclarations of gl_FragDepth
   4236        *     must appear before any use of gl_FragDepth.
   4237        */
   4238       if (earlier->data.used) {
   4239          _mesa_glsl_error(&loc, state,
   4240                           "the first redeclaration of gl_FragDepth "
   4241                           "must appear before any use of gl_FragDepth");
   4242       }
   4243 
   4244       /* Prevent inconsistent redeclaration of depth layout qualifier. */
   4245       if (earlier->data.depth_layout != ir_depth_layout_none
   4246           && earlier->data.depth_layout != var->data.depth_layout) {
   4247             _mesa_glsl_error(&loc, state,
   4248                              "gl_FragDepth: depth layout is declared here "
   4249                              "as '%s, but it was previously declared as "
   4250                              "'%s'",
   4251                              depth_layout_string(var->data.depth_layout),
   4252                              depth_layout_string(earlier->data.depth_layout));
   4253       }
   4254 
   4255       earlier->data.depth_layout = var->data.depth_layout;
   4256 
   4257    } else if (state->has_framebuffer_fetch() &&
   4258               strcmp(var->name, "gl_LastFragData") == 0 &&
   4259               var->type == earlier->type &&
   4260               var->data.mode == ir_var_auto) {
   4261       /* According to the EXT_shader_framebuffer_fetch spec:
   4262        *
   4263        *   "By default, gl_LastFragData is declared with the mediump precision
   4264        *    qualifier. This can be changed by redeclaring the corresponding
   4265        *    variables with the desired precision qualifier."
   4266        */
   4267       earlier->data.precision = var->data.precision;
   4268 
   4269    } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
   4270               state->allow_builtin_variable_redeclaration) {
   4271       /* Allow verbatim redeclarations of built-in variables. Not explicitly
   4272        * valid, but some applications do it.
   4273        */
   4274       if (earlier->data.mode != var->data.mode &&
   4275           !(earlier->data.mode == ir_var_system_value &&
   4276             var->data.mode == ir_var_shader_in)) {
   4277          _mesa_glsl_error(&loc, state,
   4278                           "redeclaration of `%s' with incorrect qualifiers",
   4279                           var->name);
   4280       } else if (earlier->type != var->type) {
   4281          _mesa_glsl_error(&loc, state,
   4282                           "redeclaration of `%s' has incorrect type",
   4283                           var->name);
   4284       }
   4285    } else if (allow_all_redeclarations) {
   4286       if (earlier->data.mode != var->data.mode) {
   4287          _mesa_glsl_error(&loc, state,
   4288                           "redeclaration of `%s' with incorrect qualifiers",
   4289                           var->name);
   4290       } else if (earlier->type != var->type) {
   4291          _mesa_glsl_error(&loc, state,
   4292                           "redeclaration of `%s' has incorrect type",
   4293                           var->name);
   4294       }
   4295    } else {
   4296       _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
   4297    }
   4298 
   4299    return earlier;
   4300 }
   4301 
   4302 /**
   4303  * Generate the IR for an initializer in a variable declaration
   4304  */
   4305 static ir_rvalue *
   4306 process_initializer(ir_variable *var, ast_declaration *decl,
   4307                     ast_fully_specified_type *type,
   4308                     exec_list *initializer_instructions,
   4309                     struct _mesa_glsl_parse_state *state)
   4310 {
   4311    void *mem_ctx = state;
   4312    ir_rvalue *result = NULL;
   4313 
   4314    YYLTYPE initializer_loc = decl->initializer->get_location();
   4315 
   4316    /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
   4317     *
   4318     *    "All uniform variables are read-only and are initialized either
   4319     *    directly by an application via API commands, or indirectly by
   4320     *    OpenGL."
   4321     */
   4322    if (var->data.mode == ir_var_uniform) {
   4323       state->check_version(120, 0, &initializer_loc,
   4324                            "cannot initialize uniform %s",
   4325                            var->name);
   4326    }
   4327 
   4328    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
   4329     *
   4330     *    "Buffer variables cannot have initializers."
   4331     */
   4332    if (var->data.mode == ir_var_shader_storage) {
   4333       _mesa_glsl_error(&initializer_loc, state,
   4334                        "cannot initialize buffer variable %s",
   4335                        var->name);
   4336    }
   4337 
   4338    /* From section 4.1.7 of the GLSL 4.40 spec:
   4339     *
   4340     *    "Opaque variables [...] are initialized only through the
   4341     *     OpenGL API; they cannot be declared with an initializer in a
   4342     *     shader."
   4343     *
   4344     * From section 4.1.7 of the ARB_bindless_texture spec:
   4345     *
   4346     *    "Samplers may be declared as shader inputs and outputs, as uniform
   4347     *     variables, as temporary variables, and as function parameters."
   4348     *
   4349     * From section 4.1.X of the ARB_bindless_texture spec:
   4350     *
   4351     *    "Images may be declared as shader inputs and outputs, as uniform
   4352     *     variables, as temporary variables, and as function parameters."
   4353     */
   4354    if (var->type->contains_atomic() ||
   4355        (!state->has_bindless() && var->type->contains_opaque())) {
   4356       _mesa_glsl_error(&initializer_loc, state,
   4357                        "cannot initialize %s variable %s",
   4358                        var->name, state->has_bindless() ? "atomic" : "opaque");
   4359    }
   4360 
   4361    if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
   4362       _mesa_glsl_error(&initializer_loc, state,
   4363                        "cannot initialize %s shader input / %s %s",
   4364                        _mesa_shader_stage_to_string(state->stage),
   4365                        (state->stage == MESA_SHADER_VERTEX)
   4366                        ? "attribute" : "varying",
   4367                        var->name);
   4368    }
   4369 
   4370    if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
   4371       _mesa_glsl_error(&initializer_loc, state,
   4372                        "cannot initialize %s shader output %s",
   4373                        _mesa_shader_stage_to_string(state->stage),
   4374                        var->name);
   4375    }
   4376 
   4377    /* If the initializer is an ast_aggregate_initializer, recursively store
   4378     * type information from the LHS into it, so that its hir() function can do
   4379     * type checking.
   4380     */
   4381    if (decl->initializer->oper == ast_aggregate)
   4382       _mesa_ast_set_aggregate_type(var->type, decl->initializer);
   4383 
   4384    ir_dereference *const lhs = new(state) ir_dereference_variable(var);
   4385    ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
   4386 
   4387    /* Calculate the constant value if this is a const or uniform
   4388     * declaration.
   4389     *
   4390     * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
   4391     *
   4392     *     "Declarations of globals without a storage qualifier, or with
   4393     *     just the const qualifier, may include initializers, in which case
   4394     *     they will be initialized before the first line of main() is
   4395     *     executed.  Such initializers must be a constant expression."
   4396     *
   4397     * The same section of the GLSL ES 3.00.4 spec has similar language.
   4398     */
   4399    if (type->qualifier.flags.q.constant
   4400        || type->qualifier.flags.q.uniform
   4401        || (state->es_shader && state->current_function == NULL)) {
   4402       ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
   4403                                                lhs, rhs, true);
   4404       if (new_rhs != NULL) {
   4405          rhs = new_rhs;
   4406 
   4407          /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
   4408           * says:
   4409           *
   4410           *     "A constant expression is one of
   4411           *
   4412           *        ...
   4413           *
   4414           *        - an expression formed by an operator on operands that are
   4415           *          all constant expressions, including getting an element of
   4416           *          a constant array, or a field of a constant structure, or
   4417           *          components of a constant vector.  However, the sequence
   4418           *          operator ( , ) and the assignment operators ( =, +=, ...)
   4419           *          are not included in the operators that can create a
   4420           *          constant expression."
   4421           *
   4422           * Section 12.43 (Sequence operator and constant expressions) says:
   4423           *
   4424           *     "Should the following construct be allowed?
   4425           *
   4426           *         float a[2,3];
   4427           *
   4428           *     The expression within the brackets uses the sequence operator
   4429           *     (',') and returns the integer 3 so the construct is declaring
   4430           *     a single-dimensional array of size 3.  In some languages, the
   4431           *     construct declares a two-dimensional array.  It would be
   4432           *     preferable to make this construct illegal to avoid confusion.
   4433           *
   4434           *     One possibility is to change the definition of the sequence
   4435           *     operator so that it does not return a constant-expression and
   4436           *     hence cannot be used to declare an array size.
   4437           *
   4438           *     RESOLUTION: The result of a sequence operator is not a
   4439           *     constant-expression."
   4440           *
   4441           * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
   4442           * contains language almost identical to the section 4.3.3 in the
   4443           * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
   4444           * versions.
   4445           */
   4446          ir_constant *constant_value =
   4447             rhs->constant_expression_value(mem_ctx);
   4448 
   4449          if (!constant_value ||
   4450              (state->is_version(430, 300) &&
   4451               decl->initializer->has_sequence_subexpression())) {
   4452             const char *const variable_mode =
   4453                (type->qualifier.flags.q.constant)
   4454                ? "const"
   4455                : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
   4456 
   4457             /* If ARB_shading_language_420pack is enabled, initializers of
   4458              * const-qualified local variables do not have to be constant
   4459              * expressions. Const-qualified global variables must still be
   4460              * initialized with constant expressions.
   4461              */
   4462             if (!state->has_420pack()
   4463                 || state->current_function == NULL) {
   4464                _mesa_glsl_error(& initializer_loc, state,
   4465                                 "initializer of %s variable `%s' must be a "
   4466                                 "constant expression",
   4467                                 variable_mode,
   4468                                 decl->identifier);
   4469                if (var->type->is_numeric()) {
   4470                   /* Reduce cascading errors. */
   4471                   var->constant_value = type->qualifier.flags.q.constant
   4472                      ? ir_constant::zero(state, var->type) : NULL;
   4473                }
   4474             }
   4475          } else {
   4476             rhs = constant_value;
   4477             var->constant_value = type->qualifier.flags.q.constant
   4478                ? constant_value : NULL;
   4479          }
   4480       } else {
   4481          if (var->type->is_numeric()) {
   4482             /* Reduce cascading errors. */
   4483             rhs = var->constant_value = type->qualifier.flags.q.constant
   4484                ? ir_constant::zero(state, var->type) : NULL;
   4485          }
   4486       }
   4487    }
   4488 
   4489    if (rhs && !rhs->type->is_error()) {
   4490       bool temp = var->data.read_only;
   4491       if (type->qualifier.flags.q.constant)
   4492          var->data.read_only = false;
   4493 
   4494       /* Never emit code to initialize a uniform.
   4495        */
   4496       const glsl_type *initializer_type;
   4497       if (!type->qualifier.flags.q.uniform) {
   4498          do_assignment(initializer_instructions, state,
   4499                        NULL,
   4500                        lhs, rhs,
   4501                        &result, true,
   4502                        true,
   4503                        type->get_location());
   4504          initializer_type = result->type;
   4505       } else
   4506          initializer_type = rhs->type;
   4507 
   4508       var->constant_initializer = rhs->constant_expression_value(mem_ctx);
   4509       var->data.has_initializer = true;
   4510 
   4511       /* If the declared variable is an unsized array, it must inherrit
   4512        * its full type from the initializer.  A declaration such as
   4513        *
   4514        *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
   4515        *
   4516        * becomes
   4517        *
   4518        *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
   4519        *
   4520        * The assignment generated in the if-statement (below) will also
   4521        * automatically handle this case for non-uniforms.
   4522        *
   4523        * If the declared variable is not an array, the types must
   4524        * already match exactly.  As a result, the type assignment
   4525        * here can be done unconditionally.  For non-uniforms the call
   4526        * to do_assignment can change the type of the initializer (via
   4527        * the implicit conversion rules).  For uniforms the initializer
   4528        * must be a constant expression, and the type of that expression
   4529        * was validated above.
   4530        */
   4531       var->type = initializer_type;
   4532 
   4533       var->data.read_only = temp;
   4534    }
   4535 
   4536    return result;
   4537 }
   4538 
   4539 static void
   4540 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
   4541                                        YYLTYPE loc, ir_variable *var,
   4542                                        unsigned num_vertices,
   4543                                        unsigned *size,
   4544                                        const char *var_category)
   4545 {
   4546    if (var->type->is_unsized_array()) {
   4547       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
   4548        *
   4549        *   All geometry shader input unsized array declarations will be
   4550        *   sized by an earlier input layout qualifier, when present, as per
   4551        *   the following table.
   4552        *
   4553        * Followed by a table mapping each allowed input layout qualifier to
   4554        * the corresponding input length.
   4555        *
   4556        * Similarly for tessellation control shader outputs.
   4557        */
   4558       if (num_vertices != 0)
   4559          var->type = glsl_type::get_array_instance(var->type->fields.array,
   4560                                                    num_vertices);
   4561    } else {
   4562       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
   4563        * includes the following examples of compile-time errors:
   4564        *
   4565        *   // code sequence within one shader...
   4566        *   in vec4 Color1[];    // size unknown
   4567        *   ...Color1.length()...// illegal, length() unknown
   4568        *   in vec4 Color2[2];   // size is 2
   4569        *   ...Color1.length()...// illegal, Color1 still has no size
   4570        *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
   4571        *   layout(lines) in;    // legal, input size is 2, matching
   4572        *   in vec4 Color4[3];   // illegal, contradicts layout
   4573        *   ...
   4574        *
   4575        * To detect the case illustrated by Color3, we verify that the size of
   4576        * an explicitly-sized array matches the size of any previously declared
   4577        * explicitly-sized array.  To detect the case illustrated by Color4, we
   4578        * verify that the size of an explicitly-sized array is consistent with
   4579        * any previously declared input layout.
   4580        */
   4581       if (num_vertices != 0 && var->type->length != num_vertices) {
   4582          _mesa_glsl_error(&loc, state,
   4583                           "%s size contradicts previously declared layout "
   4584                           "(size is %u, but layout requires a size of %u)",
   4585                           var_category, var->type->length, num_vertices);
   4586       } else if (*size != 0 && var->type->length != *size) {
   4587          _mesa_glsl_error(&loc, state,
   4588                           "%s sizes are inconsistent (size is %u, but a "
   4589                           "previous declaration has size %u)",
   4590                           var_category, var->type->length, *size);
   4591       } else {
   4592          *size = var->type->length;
   4593       }
   4594    }
   4595 }
   4596 
   4597 static void
   4598 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
   4599                                     YYLTYPE loc, ir_variable *var)
   4600 {
   4601    unsigned num_vertices = 0;
   4602 
   4603    if (state->tcs_output_vertices_specified) {
   4604       if (!state->out_qualifier->vertices->
   4605              process_qualifier_constant(state, "vertices",
   4606                                         &num_vertices, false)) {
   4607          return;
   4608       }
   4609 
   4610       if (num_vertices > state->Const.MaxPatchVertices) {
   4611          _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
   4612                           "GL_MAX_PATCH_VERTICES", num_vertices);
   4613          return;
   4614       }
   4615    }
   4616 
   4617    if (!var->type->is_array() && !var->data.patch) {
   4618       _mesa_glsl_error(&loc, state,
   4619                        "tessellation control shader outputs must be arrays");
   4620 
   4621       /* To avoid cascading failures, short circuit the checks below. */
   4622       return;
   4623    }
   4624 
   4625    if (var->data.patch)
   4626       return;
   4627 
   4628    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
   4629                                           &state->tcs_output_size,
   4630                                           "tessellation control shader output");
   4631 }
   4632 
   4633 /**
   4634  * Do additional processing necessary for tessellation control/evaluation shader
   4635  * input declarations. This covers both interface block arrays and bare input
   4636  * variables.
   4637  */
   4638 static void
   4639 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
   4640                               YYLTYPE loc, ir_variable *var)
   4641 {
   4642    if (!var->type->is_array() && !var->data.patch) {
   4643       _mesa_glsl_error(&loc, state,
   4644                        "per-vertex tessellation shader inputs must be arrays");
   4645       /* Avoid cascading failures. */
   4646       return;
   4647    }
   4648 
   4649    if (var->data.patch)
   4650       return;
   4651 
   4652    /* The ARB_tessellation_shader spec says:
   4653     *
   4654     *    "Declaring an array size is optional.  If no size is specified, it
   4655     *     will be taken from the implementation-dependent maximum patch size
   4656     *     (gl_MaxPatchVertices).  If a size is specified, it must match the
   4657     *     maximum patch size; otherwise, a compile or link error will occur."
   4658     *
   4659     * This text appears twice, once for TCS inputs, and again for TES inputs.
   4660     */
   4661    if (var->type->is_unsized_array()) {
   4662       var->type = glsl_type::get_array_instance(var->type->fields.array,
   4663             state->Const.MaxPatchVertices);
   4664    } else if (var->type->length != state->Const.MaxPatchVertices) {
   4665       _mesa_glsl_error(&loc, state,
   4666                        "per-vertex tessellation shader input arrays must be "
   4667                        "sized to gl_MaxPatchVertices (%d).",
   4668                        state->Const.MaxPatchVertices);
   4669    }
   4670 }
   4671 
   4672 
   4673 /**
   4674  * Do additional processing necessary for geometry shader input declarations
   4675  * (this covers both interface blocks arrays and bare input variables).
   4676  */
   4677 static void
   4678 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
   4679                                   YYLTYPE loc, ir_variable *var)
   4680 {
   4681    unsigned num_vertices = 0;
   4682 
   4683    if (state->gs_input_prim_type_specified) {
   4684       num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
   4685    }
   4686 
   4687    /* Geometry shader input variables must be arrays.  Caller should have
   4688     * reported an error for this.
   4689     */
   4690    if (!var->type->is_array()) {
   4691       assert(state->error);
   4692 
   4693       /* To avoid cascading failures, short circuit the checks below. */
   4694       return;
   4695    }
   4696 
   4697    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
   4698                                           &state->gs_input_size,
   4699                                           "geometry shader input");
   4700 }
   4701 
   4702 static void
   4703 validate_identifier(const char *identifier, YYLTYPE loc,
   4704                     struct _mesa_glsl_parse_state *state)
   4705 {
   4706    /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
   4707     *
   4708     *   "Identifiers starting with "gl_" are reserved for use by
   4709     *   OpenGL, and may not be declared in a shader as either a
   4710     *   variable or a function."
   4711     */
   4712    if (is_gl_identifier(identifier)) {
   4713       _mesa_glsl_error(&loc, state,
   4714                        "identifier `%s' uses reserved `gl_' prefix",
   4715                        identifier);
   4716    } else if (strstr(identifier, "__")) {
   4717       /* From page 14 (page 20 of the PDF) of the GLSL 1.10
   4718        * spec:
   4719        *
   4720        *     "In addition, all identifiers containing two
   4721        *      consecutive underscores (__) are reserved as
   4722        *      possible future keywords."
   4723        *
   4724        * The intention is that names containing __ are reserved for internal
   4725        * use by the implementation, and names prefixed with GL_ are reserved
   4726        * for use by Khronos.  Names simply containing __ are dangerous to use,
   4727        * but should be allowed.
   4728        *
   4729        * A future version of the GLSL specification will clarify this.
   4730        */
   4731       _mesa_glsl_warning(&loc, state,
   4732                          "identifier `%s' uses reserved `__' string",
   4733                          identifier);
   4734    }
   4735 }
   4736 
   4737 ir_rvalue *
   4738 ast_declarator_list::hir(exec_list *instructions,
   4739                          struct _mesa_glsl_parse_state *state)
   4740 {
   4741    void *ctx = state;
   4742    const struct glsl_type *decl_type;
   4743    const char *type_name = NULL;
   4744    ir_rvalue *result = NULL;
   4745    YYLTYPE loc = this->get_location();
   4746 
   4747    /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
   4748     *
   4749     *     "To ensure that a particular output variable is invariant, it is
   4750     *     necessary to use the invariant qualifier. It can either be used to
   4751     *     qualify a previously declared variable as being invariant
   4752     *
   4753     *         invariant gl_Position; // make existing gl_Position be invariant"
   4754     *
   4755     * In these cases the parser will set the 'invariant' flag in the declarator
   4756     * list, and the type will be NULL.
   4757     */
   4758    if (this->invariant) {
   4759       assert(this->type == NULL);
   4760 
   4761       if (state->current_function != NULL) {
   4762          _mesa_glsl_error(& loc, state,
   4763                           "all uses of `invariant' keyword must be at global "
   4764                           "scope");
   4765       }
   4766 
   4767       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
   4768          assert(decl->array_specifier == NULL);
   4769          assert(decl->initializer == NULL);
   4770 
   4771          ir_variable *const earlier =
   4772             state->symbols->get_variable(decl->identifier);
   4773          if (earlier == NULL) {
   4774             _mesa_glsl_error(& loc, state,
   4775                              "undeclared variable `%s' cannot be marked "
   4776                              "invariant", decl->identifier);
   4777          } else if (!is_allowed_invariant(earlier, state)) {
   4778             _mesa_glsl_error(&loc, state,
   4779                              "`%s' cannot be marked invariant; interfaces between "
   4780                              "shader stages only.", decl->identifier);
   4781          } else if (earlier->data.used) {
   4782             _mesa_glsl_error(& loc, state,
   4783                             "variable `%s' may not be redeclared "
   4784                             "`invariant' after being used",
   4785                             earlier->name);
   4786          } else {
   4787             earlier->data.invariant = true;
   4788          }
   4789       }
   4790 
   4791       /* Invariant redeclarations do not have r-values.
   4792        */
   4793       return NULL;
   4794    }
   4795 
   4796    if (this->precise) {
   4797       assert(this->type == NULL);
   4798 
   4799       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
   4800          assert(decl->array_specifier == NULL);
   4801          assert(decl->initializer == NULL);
   4802 
   4803          ir_variable *const earlier =
   4804             state->symbols->get_variable(decl->identifier);
   4805          if (earlier == NULL) {
   4806             _mesa_glsl_error(& loc, state,
   4807                              "undeclared variable `%s' cannot be marked "
   4808                              "precise", decl->identifier);
   4809          } else if (state->current_function != NULL &&
   4810                     !state->symbols->name_declared_this_scope(decl->identifier)) {
   4811             /* Note: we have to check if we're in a function, since
   4812              * builtins are treated as having come from another scope.
   4813              */
   4814             _mesa_glsl_error(& loc, state,
   4815                              "variable `%s' from an outer scope may not be "
   4816                              "redeclared `precise' in this scope",
   4817                              earlier->name);
   4818          } else if (earlier->data.used) {
   4819             _mesa_glsl_error(& loc, state,
   4820                              "variable `%s' may not be redeclared "
   4821                              "`precise' after being used",
   4822                              earlier->name);
   4823          } else {
   4824             earlier->data.precise = true;
   4825          }
   4826       }
   4827 
   4828       /* Precise redeclarations do not have r-values either. */
   4829       return NULL;
   4830    }
   4831 
   4832    assert(this->type != NULL);
   4833    assert(!this->invariant);
   4834    assert(!this->precise);
   4835 
   4836    /* The type specifier may contain a structure definition.  Process that
   4837     * before any of the variable declarations.
   4838     */
   4839    (void) this->type->specifier->hir(instructions, state);
   4840 
   4841    decl_type = this->type->glsl_type(& type_name, state);
   4842 
   4843    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
   4844     *    "Buffer variables may only be declared inside interface blocks
   4845     *    (section 4.3.9 Interface Blocks), which are then referred to as
   4846     *    shader storage blocks. It is a compile-time error to declare buffer
   4847     *    variables at global scope (outside a block)."
   4848     */
   4849    if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
   4850       _mesa_glsl_error(&loc, state,
   4851                        "buffer variables cannot be declared outside "
   4852                        "interface blocks");
   4853    }
   4854 
   4855    /* An offset-qualified atomic counter declaration sets the default
   4856     * offset for the next declaration within the same atomic counter
   4857     * buffer.
   4858     */
   4859    if (decl_type && decl_type->contains_atomic()) {
   4860       if (type->qualifier.flags.q.explicit_binding &&
   4861           type->qualifier.flags.q.explicit_offset) {
   4862          unsigned qual_binding;
   4863          unsigned qual_offset;
   4864          if (process_qualifier_constant(state, &loc, "binding",
   4865                                         type->qualifier.binding,
   4866                                         &qual_binding)
   4867              && process_qualifier_constant(state, &loc, "offset",
   4868                                         type->qualifier.offset,
   4869                                         &qual_offset)) {
   4870             state->atomic_counter_offsets[qual_binding] = qual_offset;
   4871          }
   4872       }
   4873 
   4874       ast_type_qualifier allowed_atomic_qual_mask;
   4875       allowed_atomic_qual_mask.flags.i = 0;
   4876       allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
   4877       allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
   4878       allowed_atomic_qual_mask.flags.q.uniform = 1;
   4879 
   4880       type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
   4881                                      "invalid layout qualifier for",
   4882                                      "atomic_uint");
   4883    }
   4884 
   4885    if (this->declarations.is_empty()) {
   4886       /* If there is no structure involved in the program text, there are two
   4887        * possible scenarios:
   4888        *
   4889        * - The program text contained something like 'vec4;'.  This is an
   4890        *   empty declaration.  It is valid but weird.  Emit a warning.
   4891        *
   4892        * - The program text contained something like 'S;' and 'S' is not the
   4893        *   name of a known structure type.  This is both invalid and weird.
   4894        *   Emit an error.
   4895        *
   4896        * - The program text contained something like 'mediump float;'
   4897        *   when the programmer probably meant 'precision mediump
   4898        *   float;' Emit a warning with a description of what they
   4899        *   probably meant to do.
   4900        *
   4901        * Note that if decl_type is NULL and there is a structure involved,
   4902        * there must have been some sort of error with the structure.  In this
   4903        * case we assume that an error was already generated on this line of
   4904        * code for the structure.  There is no need to generate an additional,
   4905        * confusing error.
   4906        */
   4907       assert(this->type->specifier->structure == NULL || decl_type != NULL
   4908              || state->error);
   4909 
   4910       if (decl_type == NULL) {
   4911          _mesa_glsl_error(&loc, state,
   4912                           "invalid type `%s' in empty declaration",
   4913                           type_name);
   4914       } else {
   4915          if (decl_type->is_array()) {
   4916             /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
   4917              * spec:
   4918              *
   4919              *    "... any declaration that leaves the size undefined is
   4920              *    disallowed as this would add complexity and there are no
   4921              *    use-cases."
   4922              */
   4923             if (state->es_shader && decl_type->is_unsized_array()) {
   4924                _mesa_glsl_error(&loc, state, "array size must be explicitly "
   4925                                 "or implicitly defined");
   4926             }
   4927 
   4928             /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
   4929              *
   4930              *    "The combinations of types and qualifiers that cause
   4931              *    compile-time or link-time errors are the same whether or not
   4932              *    the declaration is empty."
   4933              */
   4934             validate_array_dimensions(decl_type, state, &loc);
   4935          }
   4936 
   4937          if (decl_type->is_atomic_uint()) {
   4938             /* Empty atomic counter declarations are allowed and useful
   4939              * to set the default offset qualifier.
   4940              */
   4941             return NULL;
   4942          } else if (this->type->qualifier.precision != ast_precision_none) {
   4943             if (this->type->specifier->structure != NULL) {
   4944                _mesa_glsl_error(&loc, state,
   4945                                 "precision qualifiers can't be applied "
   4946                                 "to structures");
   4947             } else {
   4948                static const char *const precision_names[] = {
   4949                   "highp",
   4950                   "highp",
   4951                   "mediump",
   4952                   "lowp"
   4953                };
   4954 
   4955                _mesa_glsl_warning(&loc, state,
   4956                                   "empty declaration with precision "
   4957                                   "qualifier, to set the default precision, "
   4958                                   "use `precision %s %s;'",
   4959                                   precision_names[this->type->
   4960                                      qualifier.precision],
   4961                                   type_name);
   4962             }
   4963          } else if (this->type->specifier->structure == NULL) {
   4964             _mesa_glsl_warning(&loc, state, "empty declaration");
   4965          }
   4966       }
   4967    }
   4968 
   4969    foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
   4970       const struct glsl_type *var_type;
   4971       ir_variable *var;
   4972       const char *identifier = decl->identifier;
   4973       /* FINISHME: Emit a warning if a variable declaration shadows a
   4974        * FINISHME: declaration at a higher scope.
   4975        */
   4976 
   4977       if ((decl_type == NULL) || decl_type->is_void()) {
   4978          if (type_name != NULL) {
   4979             _mesa_glsl_error(& loc, state,
   4980                              "invalid type `%s' in declaration of `%s'",
   4981                              type_name, decl->identifier);
   4982          } else {
   4983             _mesa_glsl_error(& loc, state,
   4984                              "invalid type in declaration of `%s'",
   4985                              decl->identifier);
   4986          }
   4987          continue;
   4988       }
   4989 
   4990       if (this->type->qualifier.is_subroutine_decl()) {
   4991          const glsl_type *t;
   4992          const char *name;
   4993 
   4994          t = state->symbols->get_type(this->type->specifier->type_name);
   4995          if (!t)
   4996             _mesa_glsl_error(& loc, state,
   4997                              "invalid type in declaration of `%s'",
   4998                              decl->identifier);
   4999          name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
   5000 
   5001          identifier = name;
   5002 
   5003       }
   5004       var_type = process_array_type(&loc, decl_type, decl->array_specifier,
   5005                                     state);
   5006 
   5007       var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
   5008 
   5009       /* The 'varying in' and 'varying out' qualifiers can only be used with
   5010        * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
   5011        * yet.
   5012        */
   5013       if (this->type->qualifier.flags.q.varying) {
   5014          if (this->type->qualifier.flags.q.in) {
   5015             _mesa_glsl_error(& loc, state,
   5016                              "`varying in' qualifier in declaration of "
   5017                              "`%s' only valid for geometry shaders using "
   5018                              "ARB_geometry_shader4 or EXT_geometry_shader4",
   5019                              decl->identifier);
   5020          } else if (this->type->qualifier.flags.q.out) {
   5021             _mesa_glsl_error(& loc, state,
   5022                              "`varying out' qualifier in declaration of "
   5023                              "`%s' only valid for geometry shaders using "
   5024                              "ARB_geometry_shader4 or EXT_geometry_shader4",
   5025                              decl->identifier);
   5026          }
   5027       }
   5028 
   5029       /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
   5030        *
   5031        *     "Global variables can only use the qualifiers const,
   5032        *     attribute, uniform, or varying. Only one may be
   5033        *     specified.
   5034        *
   5035        *     Local variables can only use the qualifier const."
   5036        *
   5037        * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
   5038        * any extension that adds the 'layout' keyword.
   5039        */
   5040       if (!state->is_version(130, 300)
   5041           && !state->has_explicit_attrib_location()
   5042           && !state->has_separate_shader_objects()
   5043           && !state->ARB_fragment_coord_conventions_enable) {
   5044          if (this->type->qualifier.flags.q.out) {
   5045             _mesa_glsl_error(& loc, state,
   5046                              "`out' qualifier in declaration of `%s' "
   5047                              "only valid for function parameters in %s",
   5048                              decl->identifier, state->get_version_string());
   5049          }
   5050          if (this->type->qualifier.flags.q.in) {
   5051             _mesa_glsl_error(& loc, state,
   5052                              "`in' qualifier in declaration of `%s' "
   5053                              "only valid for function parameters in %s",
   5054                              decl->identifier, state->get_version_string());
   5055          }
   5056          /* FINISHME: Test for other invalid qualifiers. */
   5057       }
   5058 
   5059       apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
   5060                                        & loc, false);
   5061       apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
   5062                                          &loc);
   5063 
   5064       if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
   5065           && (var->type->is_numeric() || var->type->is_boolean())
   5066           && state->zero_init) {
   5067          const ir_constant_data data = { { 0 } };
   5068          var->data.has_initializer = true;
   5069          var->constant_initializer = new(var) ir_constant(var->type, &data);
   5070       }
   5071 
   5072       if (this->type->qualifier.flags.q.invariant) {
   5073          if (!is_allowed_invariant(var, state)) {
   5074             _mesa_glsl_error(&loc, state,
   5075                              "`%s' cannot be marked invariant; interfaces between "
   5076                              "shader stages only", var->name);
   5077          }
   5078       }
   5079 
   5080       if (state->current_function != NULL) {
   5081          const char *mode = NULL;
   5082          const char *extra = "";
   5083 
   5084          /* There is no need to check for 'inout' here because the parser will
   5085           * only allow that in function parameter lists.
   5086           */
   5087          if (this->type->qualifier.flags.q.attribute) {
   5088             mode = "attribute";
   5089          } else if (this->type->qualifier.is_subroutine_decl()) {
   5090             mode = "subroutine uniform";
   5091          } else if (this->type->qualifier.flags.q.uniform) {
   5092             mode = "uniform";
   5093          } else if (this->type->qualifier.flags.q.varying) {
   5094             mode = "varying";
   5095          } else if (this->type->qualifier.flags.q.in) {
   5096             mode = "in";
   5097             extra = " or in function parameter list";
   5098          } else if (this->type->qualifier.flags.q.out) {
   5099             mode = "out";
   5100             extra = " or in function parameter list";
   5101          }
   5102 
   5103          if (mode) {
   5104             _mesa_glsl_error(& loc, state,
   5105                              "%s variable `%s' must be declared at "
   5106                              "global scope%s",
   5107                              mode, var->name, extra);
   5108          }
   5109       } else if (var->data.mode == ir_var_shader_in) {
   5110          var->data.read_only = true;
   5111 
   5112          if (state->stage == MESA_SHADER_VERTEX) {
   5113             bool error_emitted = false;
   5114 
   5115             /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
   5116              *
   5117              *    "Vertex shader inputs can only be float, floating-point
   5118              *    vectors, matrices, signed and unsigned integers and integer
   5119              *    vectors. Vertex shader inputs can also form arrays of these
   5120              *    types, but not structures."
   5121              *
   5122              * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
   5123              *
   5124              *    "Vertex shader inputs can only be float, floating-point
   5125              *    vectors, matrices, signed and unsigned integers and integer
   5126              *    vectors. They cannot be arrays or structures."
   5127              *
   5128              * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
   5129              *
   5130              *    "The attribute qualifier can be used only with float,
   5131              *    floating-point vectors, and matrices. Attribute variables
   5132              *    cannot be declared as arrays or structures."
   5133              *
   5134              * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
   5135              *
   5136              *    "Vertex shader inputs can only be float, floating-point
   5137              *    vectors, matrices, signed and unsigned integers and integer
   5138              *    vectors. Vertex shader inputs cannot be arrays or
   5139              *    structures."
   5140              *
   5141              * From section 4.3.4 of the ARB_bindless_texture spec:
   5142              *
   5143              *    "(modify third paragraph of the section to allow sampler and
   5144              *    image types) ...  Vertex shader inputs can only be float,
   5145              *    single-precision floating-point scalars, single-precision
   5146              *    floating-point vectors, matrices, signed and unsigned
   5147              *    integers and integer vectors, sampler and image types."
   5148              */
   5149             const glsl_type *check_type = var->type->without_array();
   5150 
   5151             switch (check_type->base_type) {
   5152             case GLSL_TYPE_FLOAT:
   5153             break;
   5154             case GLSL_TYPE_UINT64:
   5155             case GLSL_TYPE_INT64:
   5156                break;
   5157             case GLSL_TYPE_UINT:
   5158             case GLSL_TYPE_INT:
   5159                if (state->is_version(120, 300))
   5160                   break;
   5161             case GLSL_TYPE_DOUBLE:
   5162                if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
   5163                   break;
   5164             case GLSL_TYPE_SAMPLER:
   5165                if (check_type->is_sampler() && state->has_bindless())
   5166                   break;
   5167             case GLSL_TYPE_IMAGE:
   5168                if (check_type->is_image() && state->has_bindless())
   5169                   break;
   5170             /* FALLTHROUGH */
   5171             default:
   5172                _mesa_glsl_error(& loc, state,
   5173                                 "vertex shader input / attribute cannot have "
   5174                                 "type %s`%s'",
   5175                                 var->type->is_array() ? "array of " : "",
   5176                                 check_type->name);
   5177                error_emitted = true;
   5178             }
   5179 
   5180             if (!error_emitted && var->type->is_array() &&
   5181                 !state->check_version(150, 0, &loc,
   5182                                       "vertex shader input / attribute "
   5183                                       "cannot have array type")) {
   5184                error_emitted = true;
   5185             }
   5186          } else if (state->stage == MESA_SHADER_GEOMETRY) {
   5187             /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
   5188              *
   5189              *     Geometry shader input variables get the per-vertex values
   5190              *     written out by vertex shader output variables of the same
   5191              *     names. Since a geometry shader operates on a set of
   5192              *     vertices, each input varying variable (or input block, see
   5193              *     interface blocks below) needs to be declared as an array.
   5194              */
   5195             if (!var->type->is_array()) {
   5196                _mesa_glsl_error(&loc, state,
   5197                                 "geometry shader inputs must be arrays");
   5198             }
   5199 
   5200             handle_geometry_shader_input_decl(state, loc, var);
   5201          } else if (state->stage == MESA_SHADER_FRAGMENT) {
   5202             /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
   5203              *
   5204              *     It is a compile-time error to declare a fragment shader
   5205              *     input with, or that contains, any of the following types:
   5206              *
   5207              *     * A boolean type
   5208              *     * An opaque type
   5209              *     * An array of arrays
   5210              *     * An array of structures
   5211              *     * A structure containing an array
   5212              *     * A structure containing a structure
   5213              */
   5214             if (state->es_shader) {
   5215                const glsl_type *check_type = var->type->without_array();
   5216                if (check_type->is_boolean() ||
   5217                    check_type->contains_opaque()) {
   5218                   _mesa_glsl_error(&loc, state,
   5219                                    "fragment shader input cannot have type %s",
   5220                                    check_type->name);
   5221                }
   5222                if (var->type->is_array() &&
   5223                    var->type->fields.array->is_array()) {
   5224                   _mesa_glsl_error(&loc, state,
   5225                                    "%s shader output "
   5226                                    "cannot have an array of arrays",
   5227                                    _mesa_shader_stage_to_string(state->stage));
   5228                }
   5229                if (var->type->is_array() &&
   5230                    var->type->fields.array->is_record()) {
   5231                   _mesa_glsl_error(&loc, state,
   5232                                    "fragment shader input "
   5233                                    "cannot have an array of structs");
   5234                }
   5235                if (var->type->is_record()) {
   5236                   for (unsigned i = 0; i < var->type->length; i++) {
   5237                      if (var->type->fields.structure[i].type->is_array() ||
   5238                          var->type->fields.structure[i].type->is_record())
   5239                         _mesa_glsl_error(&loc, state,
   5240                                          "fragment shader input cannot have "
   5241                                          "a struct that contains an "
   5242                                          "array or struct");
   5243                   }
   5244                }
   5245             }
   5246          } else if (state->stage == MESA_SHADER_TESS_CTRL ||
   5247                     state->stage == MESA_SHADER_TESS_EVAL) {
   5248             handle_tess_shader_input_decl(state, loc, var);
   5249          }
   5250       } else if (var->data.mode == ir_var_shader_out) {
   5251          const glsl_type *check_type = var->type->without_array();
   5252 
   5253          /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
   5254           *
   5255           *     It is a compile-time error to declare a fragment shader output
   5256           *     that contains any of the following:
   5257           *
   5258           *     * A Boolean type (bool, bvec2 ...)
   5259           *     * A double-precision scalar or vector (double, dvec2 ...)
   5260           *     * An opaque type
   5261           *     * Any matrix type
   5262           *     * A structure
   5263           */
   5264          if (state->stage == MESA_SHADER_FRAGMENT) {
   5265             if (check_type->is_record() || check_type->is_matrix())
   5266                _mesa_glsl_error(&loc, state,
   5267                                 "fragment shader output "
   5268                                 "cannot have struct or matrix type");
   5269             switch (check_type->base_type) {
   5270             case GLSL_TYPE_UINT:
   5271             case GLSL_TYPE_INT:
   5272             case GLSL_TYPE_FLOAT:
   5273                break;
   5274             default:
   5275                _mesa_glsl_error(&loc, state,
   5276                                 "fragment shader output cannot have "
   5277                                 "type %s", check_type->name);
   5278             }
   5279          }
   5280 
   5281          /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
   5282           *
   5283           *     It is a compile-time error to declare a vertex shader output
   5284           *     with, or that contains, any of the following types:
   5285           *
   5286           *     * A boolean type
   5287           *     * An opaque type
   5288           *     * An array of arrays
   5289           *     * An array of structures
   5290           *     * A structure containing an array
   5291           *     * A structure containing a structure
   5292           *
   5293           *     It is a compile-time error to declare a fragment shader output
   5294           *     with, or that contains, any of the following types:
   5295           *
   5296           *     * A boolean type
   5297           *     * An opaque type
   5298           *     * A matrix
   5299           *     * A structure
   5300           *     * An array of array
   5301           *
   5302           * ES 3.20 updates this to apply to tessellation and geometry shaders
   5303           * as well.  Because there are per-vertex arrays in the new stages,
   5304           * it strikes the "array of..." rules and replaces them with these:
   5305           *
   5306           *     * For per-vertex-arrayed variables (applies to tessellation
   5307           *       control, tessellation evaluation and geometry shaders):
   5308           *
   5309           *       * Per-vertex-arrayed arrays of arrays
   5310           *       * Per-vertex-arrayed arrays of structures
   5311           *
   5312           *     * For non-per-vertex-arrayed variables:
   5313           *
   5314           *       * An array of arrays
   5315           *       * An array of structures
   5316           *
   5317           * which basically says to unwrap the per-vertex aspect and apply
   5318           * the old rules.
   5319           */
   5320          if (state->es_shader) {
   5321             if (var->type->is_array() &&
   5322                 var->type->fields.array->is_array()) {
   5323                _mesa_glsl_error(&loc, state,
   5324                                 "%s shader output "
   5325                                 "cannot have an array of arrays",
   5326                                 _mesa_shader_stage_to_string(state->stage));
   5327             }
   5328             if (state->stage <= MESA_SHADER_GEOMETRY) {
   5329                const glsl_type *type = var->type;
   5330 
   5331                if (state->stage == MESA_SHADER_TESS_CTRL &&
   5332                    !var->data.patch && var->type->is_array()) {
   5333                   type = var->type->fields.array;
   5334                }
   5335 
   5336                if (type->is_array() && type->fields.array->is_record()) {
   5337                   _mesa_glsl_error(&loc, state,
   5338                                    "%s shader output cannot have "
   5339                                    "an array of structs",
   5340                                    _mesa_shader_stage_to_string(state->stage));
   5341                }
   5342                if (type->is_record()) {
   5343                   for (unsigned i = 0; i < type->length; i++) {
   5344                      if (type->fields.structure[i].type->is_array() ||
   5345                          type->fields.structure[i].type->is_record())
   5346                         _mesa_glsl_error(&loc, state,
   5347                                          "%s shader output cannot have a "
   5348                                          "struct that contains an "
   5349                                          "array or struct",
   5350                                          _mesa_shader_stage_to_string(state->stage));
   5351                   }
   5352                }
   5353             }
   5354          }
   5355 
   5356          if (state->stage == MESA_SHADER_TESS_CTRL) {
   5357             handle_tess_ctrl_shader_output_decl(state, loc, var);
   5358          }
   5359       } else if (var->type->contains_subroutine()) {
   5360          /* declare subroutine uniforms as hidden */
   5361          var->data.how_declared = ir_var_hidden;
   5362       }
   5363 
   5364       /* From section 4.3.4 of the GLSL 4.00 spec:
   5365        *    "Input variables may not be declared using the patch in qualifier
   5366        *    in tessellation control or geometry shaders."
   5367        *
   5368        * From section 4.3.6 of the GLSL 4.00 spec:
   5369        *    "It is an error to use patch out in a vertex, tessellation
   5370        *    evaluation, or geometry shader."
   5371        *
   5372        * This doesn't explicitly forbid using them in a fragment shader, but
   5373        * that's probably just an oversight.
   5374        */
   5375       if (state->stage != MESA_SHADER_TESS_EVAL
   5376           && this->type->qualifier.flags.q.patch
   5377           && this->type->qualifier.flags.q.in) {
   5378 
   5379          _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
   5380                           "tessellation evaluation shader");
   5381       }
   5382 
   5383       if (state->stage != MESA_SHADER_TESS_CTRL
   5384           && this->type->qualifier.flags.q.patch
   5385           && this->type->qualifier.flags.q.out) {
   5386 
   5387          _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
   5388                           "tessellation control shader");
   5389       }
   5390 
   5391       /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
   5392        */
   5393       if (this->type->qualifier.precision != ast_precision_none) {
   5394          state->check_precision_qualifiers_allowed(&loc);
   5395       }
   5396 
   5397       if (this->type->qualifier.precision != ast_precision_none &&
   5398           !precision_qualifier_allowed(var->type)) {
   5399          _mesa_glsl_error(&loc, state,
   5400                           "precision qualifiers apply only to floating point"
   5401                           ", integer and opaque types");
   5402       }
   5403 
   5404       /* From section 4.1.7 of the GLSL 4.40 spec:
   5405        *
   5406        *    "[Opaque types] can only be declared as function
   5407        *     parameters or uniform-qualified variables."
   5408        *
   5409        * From section 4.1.7 of the ARB_bindless_texture spec:
   5410        *
   5411        *    "Samplers may be declared as shader inputs and outputs, as uniform
   5412        *     variables, as temporary variables, and as function parameters."
   5413        *
   5414        * From section 4.1.X of the ARB_bindless_texture spec:
   5415        *
   5416        *    "Images may be declared as shader inputs and outputs, as uniform
   5417        *     variables, as temporary variables, and as function parameters."
   5418        */
   5419       if (!this->type->qualifier.flags.q.uniform &&
   5420           (var_type->contains_atomic() ||
   5421            (!state->has_bindless() && var_type->contains_opaque()))) {
   5422          _mesa_glsl_error(&loc, state,
   5423                           "%s variables must be declared uniform",
   5424                           state->has_bindless() ? "atomic" : "opaque");
   5425       }
   5426 
   5427       /* Process the initializer and add its instructions to a temporary
   5428        * list.  This list will be added to the instruction stream (below) after
   5429        * the declaration is added.  This is done because in some cases (such as
   5430        * redeclarations) the declaration may not actually be added to the
   5431        * instruction stream.
   5432        */
   5433       exec_list initializer_instructions;
   5434 
   5435       /* Examine var name here since var may get deleted in the next call */
   5436       bool var_is_gl_id = is_gl_identifier(var->name);
   5437 
   5438       bool is_redeclaration;
   5439       var = get_variable_being_redeclared(&var, decl->get_location(), state,
   5440                                           false /* allow_all_redeclarations */,
   5441                                           &is_redeclaration);
   5442       if (is_redeclaration) {
   5443          if (var_is_gl_id &&
   5444              var->data.how_declared == ir_var_declared_in_block) {
   5445             _mesa_glsl_error(&loc, state,
   5446                              "`%s' has already been redeclared using "
   5447                              "gl_PerVertex", var->name);
   5448          }
   5449          var->data.how_declared = ir_var_declared_normally;
   5450       }
   5451 
   5452       if (decl->initializer != NULL) {
   5453          result = process_initializer(var,
   5454                                       decl, this->type,
   5455                                       &initializer_instructions, state);
   5456       } else {
   5457          validate_array_dimensions(var_type, state, &loc);
   5458       }
   5459 
   5460       /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
   5461        *
   5462        *     "It is an error to write to a const variable outside of
   5463        *      its declaration, so they must be initialized when
   5464        *      declared."
   5465        */
   5466       if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
   5467          _mesa_glsl_error(& loc, state,
   5468                           "const declaration of `%s' must be initialized",
   5469                           decl->identifier);
   5470       }
   5471 
   5472       if (state->es_shader) {
   5473          const glsl_type *const t = var->type;
   5474 
   5475          /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
   5476           *
   5477           * The GL_OES_tessellation_shader spec says about inputs:
   5478           *
   5479           *    "Declaring an array size is optional. If no size is specified,
   5480           *     it will be taken from the implementation-dependent maximum
   5481           *     patch size (gl_MaxPatchVertices)."
   5482           *
   5483           * and about TCS outputs:
   5484           *
   5485           *    "If no size is specified, it will be taken from output patch
   5486           *     size declared in the shader."
   5487           *
   5488           * The GL_OES_geometry_shader spec says:
   5489           *
   5490           *    "All geometry shader input unsized array declarations will be
   5491           *     sized by an earlier input primitive layout qualifier, when
   5492           *     present, as per the following table."
   5493           */
   5494          const bool implicitly_sized =
   5495             (var->data.mode == ir_var_shader_in &&
   5496              state->stage >= MESA_SHADER_TESS_CTRL &&
   5497              state->stage <= MESA_SHADER_GEOMETRY) ||
   5498             (var->data.mode == ir_var_shader_out &&
   5499              state->stage == MESA_SHADER_TESS_CTRL);
   5500 
   5501          if (t->is_unsized_array() && !implicitly_sized)
   5502             /* Section 10.17 of the GLSL ES 1.00 specification states that
   5503              * unsized array declarations have been removed from the language.
   5504              * Arrays that are sized using an initializer are still explicitly
   5505              * sized.  However, GLSL ES 1.00 does not allow array
   5506              * initializers.  That is only allowed in GLSL ES 3.00.
   5507              *
   5508              * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
   5509              *
   5510              *     "An array type can also be formed without specifying a size
   5511              *     if the definition includes an initializer:
   5512              *
   5513              *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
   5514              *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
   5515              *
   5516              *         float a[5];
   5517              *         float b[] = a;"
   5518              */
   5519             _mesa_glsl_error(& loc, state,
   5520                              "unsized array declarations are not allowed in "
   5521                              "GLSL ES");
   5522       }
   5523 
   5524       /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
   5525        *
   5526        *    "It is a compile-time error to declare an unsized array of
   5527        *     atomic_uint"
   5528        */
   5529       if (var->type->is_unsized_array() &&
   5530           var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
   5531          _mesa_glsl_error(& loc, state,
   5532                           "Unsized array of atomic_uint is not allowed");
   5533       }
   5534 
   5535       /* If the declaration is not a redeclaration, there are a few additional
   5536        * semantic checks that must be applied.  In addition, variable that was
   5537        * created for the declaration should be added to the IR stream.
   5538        */
   5539       if (!is_redeclaration) {
   5540          validate_identifier(decl->identifier, loc, state);
   5541 
   5542          /* Add the variable to the symbol table.  Note that the initializer's
   5543           * IR was already processed earlier (though it hasn't been emitted
   5544           * yet), without the variable in scope.
   5545           *
   5546           * This differs from most C-like languages, but it follows the GLSL
   5547           * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
   5548           * spec:
   5549           *
   5550           *     "Within a declaration, the scope of a name starts immediately
   5551           *     after the initializer if present or immediately after the name
   5552           *     being declared if not."
   5553           */
   5554          if (!state->symbols->add_variable(var)) {
   5555             YYLTYPE loc = this->get_location();
   5556             _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
   5557                              "current scope", decl->identifier);
   5558             continue;
   5559          }
   5560 
   5561          /* Push the variable declaration to the top.  It means that all the
   5562           * variable declarations will appear in a funny last-to-first order,
   5563           * but otherwise we run into trouble if a function is prototyped, a
   5564           * global var is decled, then the function is defined with usage of
   5565           * the global var.  See glslparsertest's CorrectModule.frag.
   5566           */
   5567          instructions->push_head(var);
   5568       }
   5569 
   5570       instructions->append_list(&initializer_instructions);
   5571    }
   5572 
   5573 
   5574    /* Generally, variable declarations do not have r-values.  However,
   5575     * one is used for the declaration in
   5576     *
   5577     * while (bool b = some_condition()) {
   5578     *   ...
   5579     * }
   5580     *
   5581     * so we return the rvalue from the last seen declaration here.
   5582     */
   5583    return result;
   5584 }
   5585 
   5586 
   5587 ir_rvalue *
   5588 ast_parameter_declarator::hir(exec_list *instructions,
   5589                               struct _mesa_glsl_parse_state *state)
   5590 {
   5591    void *ctx = state;
   5592    const struct glsl_type *type;
   5593    const char *name = NULL;
   5594    YYLTYPE loc = this->get_location();
   5595 
   5596    type = this->type->glsl_type(& name, state);
   5597 
   5598    if (type == NULL) {
   5599       if (name != NULL) {
   5600          _mesa_glsl_error(& loc, state,
   5601                           "invalid type `%s' in declaration of `%s'",
   5602                           name, this->identifier);
   5603       } else {
   5604          _mesa_glsl_error(& loc, state,
   5605                           "invalid type in declaration of `%s'",
   5606                           this->identifier);
   5607       }
   5608 
   5609       type = glsl_type::error_type;
   5610    }
   5611 
   5612    /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
   5613     *
   5614     *    "Functions that accept no input arguments need not use void in the
   5615     *    argument list because prototypes (or definitions) are required and
   5616     *    therefore there is no ambiguity when an empty argument list "( )" is
   5617     *    declared. The idiom "(void)" as a parameter list is provided for
   5618     *    convenience."
   5619     *
   5620     * Placing this check here prevents a void parameter being set up
   5621     * for a function, which avoids tripping up checks for main taking
   5622     * parameters and lookups of an unnamed symbol.
   5623     */
   5624    if (type->is_void()) {
   5625       if (this->identifier != NULL)
   5626          _mesa_glsl_error(& loc, state,
   5627                           "named parameter cannot have type `void'");
   5628 
   5629       is_void = true;
   5630       return NULL;
   5631    }
   5632 
   5633    if (formal_parameter && (this->identifier == NULL)) {
   5634       _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
   5635       return NULL;
   5636    }
   5637 
   5638    /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
   5639     * call already handled the "vec4[..] foo" case.
   5640     */
   5641    type = process_array_type(&loc, type, this->array_specifier, state);
   5642 
   5643    if (!type->is_error() && type->is_unsized_array()) {
   5644       _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
   5645                        "a declared size");
   5646       type = glsl_type::error_type;
   5647    }
   5648 
   5649    is_void = false;
   5650    ir_variable *var = new(ctx)
   5651       ir_variable(type, this->identifier, ir_var_function_in);
   5652 
   5653    /* Apply any specified qualifiers to the parameter declaration.  Note that
   5654     * for function parameters the default mode is 'in'.
   5655     */
   5656    apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
   5657                                     true);
   5658 
   5659    /* From section 4.1.7 of the GLSL 4.40 spec:
   5660     *
   5661     *   "Opaque variables cannot be treated as l-values; hence cannot
   5662     *    be used as out or inout function parameters, nor can they be
   5663     *    assigned into."
   5664     *
   5665     * From section 4.1.7 of the ARB_bindless_texture spec:
   5666     *
   5667     *   "Samplers can be used as l-values, so can be assigned into and used
   5668     *    as "out" and "inout" function parameters."
   5669     *
   5670     * From section 4.1.X of the ARB_bindless_texture spec:
   5671     *
   5672     *   "Images can be used as l-values, so can be assigned into and used as
   5673     *    "out" and "inout" function parameters."
   5674     */
   5675    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
   5676        && (type->contains_atomic() ||
   5677            (!state->has_bindless() && type->contains_opaque()))) {
   5678       _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
   5679                        "contain %s variables",
   5680                        state->has_bindless() ? "atomic" : "opaque");
   5681       type = glsl_type::error_type;
   5682    }
   5683 
   5684    /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
   5685     *
   5686     *    "When calling a function, expressions that do not evaluate to
   5687     *     l-values cannot be passed to parameters declared as out or inout."
   5688     *
   5689     * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
   5690     *
   5691     *    "Other binary or unary expressions, non-dereferenced arrays,
   5692     *     function names, swizzles with repeated fields, and constants
   5693     *     cannot be l-values."
   5694     *
   5695     * So for GLSL 1.10, passing an array as an out or inout parameter is not
   5696     * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
   5697     */
   5698    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
   5699        && type->is_array()
   5700        && !state->check_version(120, 100, &loc,
   5701                                 "arrays cannot be out or inout parameters")) {
   5702       type = glsl_type::error_type;
   5703    }
   5704 
   5705    instructions->push_tail(var);
   5706 
   5707    /* Parameter declarations do not have r-values.
   5708     */
   5709    return NULL;
   5710 }
   5711 
   5712 
   5713 void
   5714 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
   5715                                             bool formal,
   5716                                             exec_list *ir_parameters,
   5717                                             _mesa_glsl_parse_state *state)
   5718 {
   5719    ast_parameter_declarator *void_param = NULL;
   5720    unsigned count = 0;
   5721 
   5722    foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
   5723       param->formal_parameter = formal;
   5724       param->hir(ir_parameters, state);
   5725 
   5726       if (param->is_void)
   5727          void_param = param;
   5728 
   5729       count++;
   5730    }
   5731 
   5732    if ((void_param != NULL) && (count > 1)) {
   5733       YYLTYPE loc = void_param->get_location();
   5734 
   5735       _mesa_glsl_error(& loc, state,
   5736                        "`void' parameter must be only parameter");
   5737    }
   5738 }
   5739 
   5740 
   5741 void
   5742 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
   5743 {
   5744    /* IR invariants disallow function declarations or definitions
   5745     * nested within other function definitions.  But there is no
   5746     * requirement about the relative order of function declarations
   5747     * and definitions with respect to one another.  So simply insert
   5748     * the new ir_function block at the end of the toplevel instruction
   5749     * list.
   5750     */
   5751    state->toplevel_ir->push_tail(f);
   5752 }
   5753 
   5754 
   5755 ir_rvalue *
   5756 ast_function::hir(exec_list *instructions,
   5757                   struct _mesa_glsl_parse_state *state)
   5758 {
   5759    void *ctx = state;
   5760    ir_function *f = NULL;
   5761    ir_function_signature *sig = NULL;
   5762    exec_list hir_parameters;
   5763    YYLTYPE loc = this->get_location();
   5764 
   5765    const char *const name = identifier;
   5766 
   5767    /* New functions are always added to the top-level IR instruction stream,
   5768     * so this instruction list pointer is ignored.  See also emit_function
   5769     * (called below).
   5770     */
   5771    (void) instructions;
   5772 
   5773    /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
   5774     *
   5775     *   "Function declarations (prototypes) cannot occur inside of functions;
   5776     *   they must be at global scope, or for the built-in functions, outside
   5777     *   the global scope."
   5778     *
   5779     * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
   5780     *
   5781     *   "User defined functions may only be defined within the global scope."
   5782     *
   5783     * Note that this language does not appear in GLSL 1.10.
   5784     */
   5785    if ((state->current_function != NULL) &&
   5786        state->is_version(120, 100)) {
   5787       YYLTYPE loc = this->get_location();
   5788       _mesa_glsl_error(&loc, state,
   5789                        "declaration of function `%s' not allowed within "
   5790                        "function body", name);
   5791    }
   5792 
   5793    validate_identifier(name, this->get_location(), state);
   5794 
   5795    /* Convert the list of function parameters to HIR now so that they can be
   5796     * used below to compare this function's signature with previously seen
   5797     * signatures for functions with the same name.
   5798     */
   5799    ast_parameter_declarator::parameters_to_hir(& this->parameters,
   5800                                                is_definition,
   5801                                                & hir_parameters, state);
   5802 
   5803    const char *return_type_name;
   5804    const glsl_type *return_type =
   5805       this->return_type->glsl_type(& return_type_name, state);
   5806 
   5807    if (!return_type) {
   5808       YYLTYPE loc = this->get_location();
   5809       _mesa_glsl_error(&loc, state,
   5810                        "function `%s' has undeclared return type `%s'",
   5811                        name, return_type_name);
   5812       return_type = glsl_type::error_type;
   5813    }
   5814 
   5815    /* ARB_shader_subroutine states:
   5816     *  "Subroutine declarations cannot be prototyped. It is an error to prepend
   5817     *   subroutine(...) to a function declaration."
   5818     */
   5819    if (this->return_type->qualifier.subroutine_list && !is_definition) {
   5820       YYLTYPE loc = this->get_location();
   5821       _mesa_glsl_error(&loc, state,
   5822                        "function declaration `%s' cannot have subroutine prepended",
   5823                        name);
   5824    }
   5825 
   5826    /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
   5827     * "No qualifier is allowed on the return type of a function."
   5828     */
   5829    if (this->return_type->has_qualifiers(state)) {
   5830       YYLTYPE loc = this->get_location();
   5831       _mesa_glsl_error(& loc, state,
   5832                        "function `%s' return type has qualifiers", name);
   5833    }
   5834 
   5835    /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
   5836     *
   5837     *     "Arrays are allowed as arguments and as the return type. In both
   5838     *     cases, the array must be explicitly sized."
   5839     */
   5840    if (return_type->is_unsized_array()) {
   5841       YYLTYPE loc = this->get_location();
   5842       _mesa_glsl_error(& loc, state,
   5843                        "function `%s' return type array must be explicitly "
   5844                        "sized", name);
   5845    }
   5846 
   5847    /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
   5848     *
   5849     *     "Arrays are allowed as arguments, but not as the return type. [...]
   5850     *      The return type can also be a structure if the structure does not
   5851     *      contain an array."
   5852     */
   5853    if (state->language_version == 100 && return_type->contains_array()) {
   5854       YYLTYPE loc = this->get_location();
   5855       _mesa_glsl_error(& loc, state,
   5856                        "function `%s' return type contains an array", name);
   5857    }
   5858 
   5859    /* From section 4.1.7 of the GLSL 4.40 spec:
   5860     *
   5861     *    "[Opaque types] can only be declared as function parameters
   5862     *     or uniform-qualified variables."
   5863     *
   5864     * The ARB_bindless_texture spec doesn't clearly state this, but as it says
   5865     * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
   5866     * (Images)", this should be allowed.
   5867     */
   5868    if (return_type->contains_atomic() ||
   5869        (!state->has_bindless() && return_type->contains_opaque())) {
   5870       YYLTYPE loc = this->get_location();
   5871       _mesa_glsl_error(&loc, state,
   5872                        "function `%s' return type can't contain an %s type",
   5873                        name, state->has_bindless() ? "atomic" : "opaque");
   5874    }
   5875 
   5876    /**/
   5877    if (return_type->is_subroutine()) {
   5878       YYLTYPE loc = this->get_location();
   5879       _mesa_glsl_error(&loc, state,
   5880                        "function `%s' return type can't be a subroutine type",
   5881                        name);
   5882    }
   5883 
   5884 
   5885    /* Create an ir_function if one doesn't already exist. */
   5886    f = state->symbols->get_function(name);
   5887    if (f == NULL) {
   5888       f = new(ctx) ir_function(name);
   5889       if (!this->return_type->qualifier.is_subroutine_decl()) {
   5890          if (!state->symbols->add_function(f)) {
   5891             /* This function name shadows a non-function use of the same name. */
   5892             YYLTYPE loc = this->get_location();
   5893             _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
   5894                              "non-function", name);
   5895             return NULL;
   5896          }
   5897       }
   5898       emit_function(state, f);
   5899    }
   5900 
   5901    /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
   5902     *
   5903     * "A shader cannot redefine or overload built-in functions."
   5904     *
   5905     * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
   5906     *
   5907     * "User code can overload the built-in functions but cannot redefine
   5908     * them."
   5909     */
   5910    if (state->es_shader) {
   5911       /* Local shader has no exact candidates; check the built-ins. */
   5912       _mesa_glsl_initialize_builtin_functions();
   5913       if (state->language_version >= 300 &&
   5914           _mesa_glsl_has_builtin_function(state, name)) {
   5915          YYLTYPE loc = this->get_location();
   5916          _mesa_glsl_error(& loc, state,
   5917                           "A shader cannot redefine or overload built-in "
   5918                           "function `%s' in GLSL ES 3.00", name);
   5919          return NULL;
   5920       }
   5921 
   5922       if (state->language_version == 100) {
   5923          ir_function_signature *sig =
   5924             _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
   5925          if (sig && sig->is_builtin()) {
   5926             _mesa_glsl_error(& loc, state,
   5927                              "A shader cannot redefine built-in "
   5928                              "function `%s' in GLSL ES 1.00", name);
   5929          }
   5930       }
   5931    }
   5932 
   5933    /* Verify that this function's signature either doesn't match a previously
   5934     * seen signature for a function with the same name, or, if a match is found,
   5935     * that the previously seen signature does not have an associated definition.
   5936     */
   5937    if (state->es_shader || f->has_user_signature()) {
   5938       sig = f->exact_matching_signature(state, &hir_parameters);
   5939       if (sig != NULL) {
   5940          const char *badvar = sig->qualifiers_match(&hir_parameters);
   5941          if (badvar != NULL) {
   5942             YYLTYPE loc = this->get_location();
   5943 
   5944             _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
   5945                              "qualifiers don't match prototype", name, badvar);
   5946          }
   5947 
   5948          if (sig->return_type != return_type) {
   5949             YYLTYPE loc = this->get_location();
   5950 
   5951             _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
   5952                              "match prototype", name);
   5953          }
   5954 
   5955          if (sig->is_defined) {
   5956             if (is_definition) {
   5957                YYLTYPE loc = this->get_location();
   5958                _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
   5959             } else {
   5960                /* We just encountered a prototype that exactly matches a
   5961                 * function that's already been defined.  This is redundant,
   5962                 * and we should ignore it.
   5963                 */
   5964                return NULL;
   5965             }
   5966          } else if (state->language_version == 100 && !is_definition) {
   5967             /* From the GLSL 1.00 spec, section 4.2.7:
   5968              *
   5969              *     "A particular variable, structure or function declaration
   5970              *      may occur at most once within a scope with the exception
   5971              *      that a single function prototype plus the corresponding
   5972              *      function definition are allowed."
   5973              */
   5974             YYLTYPE loc = this->get_location();
   5975             _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
   5976          }
   5977       }
   5978    }
   5979 
   5980    /* Verify the return type of main() */
   5981    if (strcmp(name, "main") == 0) {
   5982       if (! return_type->is_void()) {
   5983          YYLTYPE loc = this->get_location();
   5984 
   5985          _mesa_glsl_error(& loc, state, "main() must return void");
   5986       }
   5987 
   5988       if (!hir_parameters.is_empty()) {
   5989          YYLTYPE loc = this->get_location();
   5990 
   5991          _mesa_glsl_error(& loc, state, "main() must not take any parameters");
   5992       }
   5993    }
   5994 
   5995    /* Finish storing the information about this new function in its signature.
   5996     */
   5997    if (sig == NULL) {
   5998       sig = new(ctx) ir_function_signature(return_type);
   5999       f->add_signature(sig);
   6000    }
   6001 
   6002    sig->replace_parameters(&hir_parameters);
   6003    signature = sig;
   6004 
   6005    if (this->return_type->qualifier.subroutine_list) {
   6006       int idx;
   6007 
   6008       if (this->return_type->qualifier.flags.q.explicit_index) {
   6009          unsigned qual_index;
   6010          if (process_qualifier_constant(state, &loc, "index",
   6011                                         this->return_type->qualifier.index,
   6012                                         &qual_index)) {
   6013             if (!state->has_explicit_uniform_location()) {
   6014                _mesa_glsl_error(&loc, state, "subroutine index requires "
   6015                                 "GL_ARB_explicit_uniform_location or "
   6016                                 "GLSL 4.30");
   6017             } else if (qual_index >= MAX_SUBROUTINES) {
   6018                _mesa_glsl_error(&loc, state,
   6019                                 "invalid subroutine index (%d) index must "
   6020                                 "be a number between 0 and "
   6021                                 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
   6022                                 MAX_SUBROUTINES - 1);
   6023             } else {
   6024                f->subroutine_index = qual_index;
   6025             }
   6026          }
   6027       }
   6028 
   6029       f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
   6030       f->subroutine_types = ralloc_array(state, const struct glsl_type *,
   6031                                          f->num_subroutine_types);
   6032       idx = 0;
   6033       foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
   6034          const struct glsl_type *type;
   6035          /* the subroutine type must be already declared */
   6036          type = state->symbols->get_type(decl->identifier);
   6037          if (!type) {
   6038             _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
   6039          }
   6040 
   6041          for (int i = 0; i < state->num_subroutine_types; i++) {
   6042             ir_function *fn = state->subroutine_types[i];
   6043             ir_function_signature *tsig = NULL;
   6044 
   6045             if (strcmp(fn->name, decl->identifier))
   6046                continue;
   6047 
   6048             tsig = fn->matching_signature(state, &sig->parameters,
   6049                                           false);
   6050             if (!tsig) {
   6051                _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
   6052             } else {
   6053                if (tsig->return_type != sig->return_type) {
   6054                   _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
   6055                }
   6056             }
   6057          }
   6058          f->subroutine_types[idx++] = type;
   6059       }
   6060       state->subroutines = (ir_function **)reralloc(state, state->subroutines,
   6061                                                     ir_function *,
   6062                                                     state->num_subroutines + 1);
   6063       state->subroutines[state->num_subroutines] = f;
   6064       state->num_subroutines++;
   6065 
   6066    }
   6067 
   6068    if (this->return_type->qualifier.is_subroutine_decl()) {
   6069       if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
   6070          _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
   6071          return NULL;
   6072       }
   6073       state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
   6074                                                          ir_function *,
   6075                                                          state->num_subroutine_types + 1);
   6076       state->subroutine_types[state->num_subroutine_types] = f;
   6077       state->num_subroutine_types++;
   6078 
   6079       f->is_subroutine = true;
   6080    }
   6081 
   6082    /* Function declarations (prototypes) do not have r-values.
   6083     */
   6084    return NULL;
   6085 }
   6086 
   6087 
   6088 ir_rvalue *
   6089 ast_function_definition::hir(exec_list *instructions,
   6090                              struct _mesa_glsl_parse_state *state)
   6091 {
   6092    prototype->is_definition = true;
   6093    prototype->hir(instructions, state);
   6094 
   6095    ir_function_signature *signature = prototype->signature;
   6096    if (signature == NULL)
   6097       return NULL;
   6098 
   6099    assert(state->current_function == NULL);
   6100    state->current_function = signature;
   6101    state->found_return = false;
   6102 
   6103    /* Duplicate parameters declared in the prototype as concrete variables.
   6104     * Add these to the symbol table.
   6105     */
   6106    state->symbols->push_scope();
   6107    foreach_in_list(ir_variable, var, &signature->parameters) {
   6108       assert(var->as_variable() != NULL);
   6109 
   6110       /* The only way a parameter would "exist" is if two parameters have
   6111        * the same name.
   6112        */
   6113       if (state->symbols->name_declared_this_scope(var->name)) {
   6114          YYLTYPE loc = this->get_location();
   6115 
   6116          _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
   6117       } else {
   6118          state->symbols->add_variable(var);
   6119       }
   6120    }
   6121 
   6122    /* Convert the body of the function to HIR. */
   6123    this->body->hir(&signature->body, state);
   6124    signature->is_defined = true;
   6125 
   6126    state->symbols->pop_scope();
   6127 
   6128    assert(state->current_function == signature);
   6129    state->current_function = NULL;
   6130 
   6131    if (!signature->return_type->is_void() && !state->found_return) {
   6132       YYLTYPE loc = this->get_location();
   6133       _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
   6134                        "%s, but no return statement",
   6135                        signature->function_name(),
   6136                        signature->return_type->name);
   6137    }
   6138 
   6139    /* Function definitions do not have r-values.
   6140     */
   6141    return NULL;
   6142 }
   6143 
   6144 
   6145 ir_rvalue *
   6146 ast_jump_statement::hir(exec_list *instructions,
   6147                         struct _mesa_glsl_parse_state *state)
   6148 {
   6149    void *ctx = state;
   6150 
   6151    switch (mode) {
   6152    case ast_return: {
   6153       ir_return *inst;
   6154       assert(state->current_function);
   6155 
   6156       if (opt_return_value) {
   6157          ir_rvalue *ret = opt_return_value->hir(instructions, state);
   6158 
   6159          /* The value of the return type can be NULL if the shader says
   6160           * 'return foo();' and foo() is a function that returns void.
   6161           *
   6162           * NOTE: The GLSL spec doesn't say that this is an error.  The type
   6163           * of the return value is void.  If the return type of the function is
   6164           * also void, then this should compile without error.  Seriously.
   6165           */
   6166          const glsl_type *const ret_type =
   6167             (ret == NULL) ? glsl_type::void_type : ret->type;
   6168 
   6169          /* Implicit conversions are not allowed for return values prior to
   6170           * ARB_shading_language_420pack.
   6171           */
   6172          if (state->current_function->return_type != ret_type) {
   6173             YYLTYPE loc = this->get_location();
   6174 
   6175             if (state->has_420pack()) {
   6176                if (!apply_implicit_conversion(state->current_function->return_type,
   6177                                               ret, state)) {
   6178                   _mesa_glsl_error(& loc, state,
   6179                                    "could not implicitly convert return value "
   6180                                    "to %s, in function `%s'",
   6181                                    state->current_function->return_type->name,
   6182                                    state->current_function->function_name());
   6183                }
   6184             } else {
   6185                _mesa_glsl_error(& loc, state,
   6186                                 "`return' with wrong type %s, in function `%s' "
   6187                                 "returning %s",
   6188                                 ret_type->name,
   6189                                 state->current_function->function_name(),
   6190                                 state->current_function->return_type->name);
   6191             }
   6192          } else if (state->current_function->return_type->base_type ==
   6193                     GLSL_TYPE_VOID) {
   6194             YYLTYPE loc = this->get_location();
   6195 
   6196             /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
   6197              * specs add a clarification:
   6198              *
   6199              *    "A void function can only use return without a return argument, even if
   6200              *     the return argument has void type. Return statements only accept values:
   6201              *
   6202              *         void func1() { }
   6203              *         void func2() { return func1(); } // illegal return statement"
   6204              */
   6205             _mesa_glsl_error(& loc, state,
   6206                              "void functions can only use `return' without a "
   6207                              "return argument");
   6208          }
   6209 
   6210          inst = new(ctx) ir_return(ret);
   6211       } else {
   6212          if (state->current_function->return_type->base_type !=
   6213              GLSL_TYPE_VOID) {
   6214             YYLTYPE loc = this->get_location();
   6215 
   6216             _mesa_glsl_error(& loc, state,
   6217                              "`return' with no value, in function %s returning "
   6218                              "non-void",
   6219             state->current_function->function_name());
   6220          }
   6221          inst = new(ctx) ir_return;
   6222       }
   6223 
   6224       state->found_return = true;
   6225       instructions->push_tail(inst);
   6226       break;
   6227    }
   6228 
   6229    case ast_discard:
   6230       if (state->stage != MESA_SHADER_FRAGMENT) {
   6231          YYLTYPE loc = this->get_location();
   6232 
   6233          _mesa_glsl_error(& loc, state,
   6234                           "`discard' may only appear in a fragment shader");
   6235       }
   6236       instructions->push_tail(new(ctx) ir_discard);
   6237       break;
   6238 
   6239    case ast_break:
   6240    case ast_continue:
   6241       if (mode == ast_continue &&
   6242           state->loop_nesting_ast == NULL) {
   6243          YYLTYPE loc = this->get_location();
   6244 
   6245          _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
   6246       } else if (mode == ast_break &&
   6247          state->loop_nesting_ast == NULL &&
   6248          state->switch_state.switch_nesting_ast == NULL) {
   6249          YYLTYPE loc = this->get_location();
   6250 
   6251          _mesa_glsl_error(& loc, state,
   6252                           "break may only appear in a loop or a switch");
   6253       } else {
   6254          /* For a loop, inline the for loop expression again, since we don't
   6255           * know where near the end of the loop body the normal copy of it is
   6256           * going to be placed.  Same goes for the condition for a do-while
   6257           * loop.
   6258           */
   6259          if (state->loop_nesting_ast != NULL &&
   6260              mode == ast_continue && !state->switch_state.is_switch_innermost) {
   6261             if (state->loop_nesting_ast->rest_expression) {
   6262                state->loop_nesting_ast->rest_expression->hir(instructions,
   6263                                                              state);
   6264             }
   6265             if (state->loop_nesting_ast->mode ==
   6266                 ast_iteration_statement::ast_do_while) {
   6267                state->loop_nesting_ast->condition_to_hir(instructions, state);
   6268             }
   6269          }
   6270 
   6271          if (state->switch_state.is_switch_innermost &&
   6272              mode == ast_continue) {
   6273             /* Set 'continue_inside' to true. */
   6274             ir_rvalue *const true_val = new (ctx) ir_constant(true);
   6275             ir_dereference_variable *deref_continue_inside_var =
   6276                new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
   6277             instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
   6278                                                            true_val));
   6279 
   6280             /* Break out from the switch, continue for the loop will
   6281              * be called right after switch. */
   6282             ir_loop_jump *const jump =
   6283                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
   6284             instructions->push_tail(jump);
   6285 
   6286          } else if (state->switch_state.is_switch_innermost &&
   6287              mode == ast_break) {
   6288             /* Force break out of switch by inserting a break. */
   6289             ir_loop_jump *const jump =
   6290                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
   6291             instructions->push_tail(jump);
   6292          } else {
   6293             ir_loop_jump *const jump =
   6294                new(ctx) ir_loop_jump((mode == ast_break)
   6295                   ? ir_loop_jump::jump_break
   6296                   : ir_loop_jump::jump_continue);
   6297             instructions->push_tail(jump);
   6298          }
   6299       }
   6300 
   6301       break;
   6302    }
   6303 
   6304    /* Jump instructions do not have r-values.
   6305     */
   6306    return NULL;
   6307 }
   6308 
   6309 
   6310 ir_rvalue *
   6311 ast_selection_statement::hir(exec_list *instructions,
   6312                              struct _mesa_glsl_parse_state *state)
   6313 {
   6314    void *ctx = state;
   6315 
   6316    ir_rvalue *const condition = this->condition->hir(instructions, state);
   6317 
   6318    /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
   6319     *
   6320     *    "Any expression whose type evaluates to a Boolean can be used as the
   6321     *    conditional expression bool-expression. Vector types are not accepted
   6322     *    as the expression to if."
   6323     *
   6324     * The checks are separated so that higher quality diagnostics can be
   6325     * generated for cases where both rules are violated.
   6326     */
   6327    if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
   6328       YYLTYPE loc = this->condition->get_location();
   6329 
   6330       _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
   6331                        "boolean");
   6332    }
   6333 
   6334    ir_if *const stmt = new(ctx) ir_if(condition);
   6335 
   6336    if (then_statement != NULL) {
   6337       state->symbols->push_scope();
   6338       then_statement->hir(& stmt->then_instructions, state);
   6339       state->symbols->pop_scope();
   6340    }
   6341 
   6342    if (else_statement != NULL) {
   6343       state->symbols->push_scope();
   6344       else_statement->hir(& stmt->else_instructions, state);
   6345       state->symbols->pop_scope();
   6346    }
   6347 
   6348    instructions->push_tail(stmt);
   6349 
   6350    /* if-statements do not have r-values.
   6351     */
   6352    return NULL;
   6353 }
   6354 
   6355 
   6356 struct case_label {
   6357    /** Value of the case label. */
   6358    unsigned value;
   6359 
   6360    /** Does this label occur after the default? */
   6361    bool after_default;
   6362 
   6363    /**
   6364     * AST for the case label.
   6365     *
   6366     * This is only used to generate error messages for duplicate labels.
   6367     */
   6368    ast_expression *ast;
   6369 };
   6370 
   6371 /* Used for detection of duplicate case values, compare
   6372  * given contents directly.
   6373  */
   6374 static bool
   6375 compare_case_value(const void *a, const void *b)
   6376 {
   6377    return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
   6378 }
   6379 
   6380 
   6381 /* Used for detection of duplicate case values, just
   6382  * returns key contents as is.
   6383  */
   6384 static unsigned
   6385 key_contents(const void *key)
   6386 {
   6387    return ((struct case_label *) key)->value;
   6388 }
   6389 
   6390 
   6391 ir_rvalue *
   6392 ast_switch_statement::hir(exec_list *instructions,
   6393                           struct _mesa_glsl_parse_state *state)
   6394 {
   6395    void *ctx = state;
   6396 
   6397    ir_rvalue *const test_expression =
   6398       this->test_expression->hir(instructions, state);
   6399 
   6400    /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
   6401     *
   6402     *    "The type of init-expression in a switch statement must be a
   6403     *     scalar integer."
   6404     */
   6405    if (!test_expression->type->is_scalar() ||
   6406        !test_expression->type->is_integer()) {
   6407       YYLTYPE loc = this->test_expression->get_location();
   6408 
   6409       _mesa_glsl_error(& loc,
   6410                        state,
   6411                        "switch-statement expression must be scalar "
   6412                        "integer");
   6413       return NULL;
   6414    }
   6415 
   6416    /* Track the switch-statement nesting in a stack-like manner.
   6417     */
   6418    struct glsl_switch_state saved = state->switch_state;
   6419 
   6420    state->switch_state.is_switch_innermost = true;
   6421    state->switch_state.switch_nesting_ast = this;
   6422    state->switch_state.labels_ht =
   6423          _mesa_hash_table_create(NULL, key_contents,
   6424                                  compare_case_value);
   6425    state->switch_state.previous_default = NULL;
   6426 
   6427    /* Initalize is_fallthru state to false.
   6428     */
   6429    ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
   6430    state->switch_state.is_fallthru_var =
   6431       new(ctx) ir_variable(glsl_type::bool_type,
   6432                            "switch_is_fallthru_tmp",
   6433                            ir_var_temporary);
   6434    instructions->push_tail(state->switch_state.is_fallthru_var);
   6435 
   6436    ir_dereference_variable *deref_is_fallthru_var =
   6437       new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
   6438    instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
   6439                                                   is_fallthru_val));
   6440 
   6441    /* Initialize continue_inside state to false.
   6442     */
   6443    state->switch_state.continue_inside =
   6444       new(ctx) ir_variable(glsl_type::bool_type,
   6445                            "continue_inside_tmp",
   6446                            ir_var_temporary);
   6447    instructions->push_tail(state->switch_state.continue_inside);
   6448 
   6449    ir_rvalue *const false_val = new (ctx) ir_constant(false);
   6450    ir_dereference_variable *deref_continue_inside_var =
   6451       new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
   6452    instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
   6453                                                   false_val));
   6454 
   6455    state->switch_state.run_default =
   6456       new(ctx) ir_variable(glsl_type::bool_type,
   6457                              "run_default_tmp",
   6458                              ir_var_temporary);
   6459    instructions->push_tail(state->switch_state.run_default);
   6460 
   6461    /* Loop around the switch is used for flow control. */
   6462    ir_loop * loop = new(ctx) ir_loop();
   6463    instructions->push_tail(loop);
   6464 
   6465    /* Cache test expression.
   6466     */
   6467    test_to_hir(&loop->body_instructions, state);
   6468 
   6469    /* Emit code for body of switch stmt.
   6470     */
   6471    body->hir(&loop->body_instructions, state);
   6472 
   6473    /* Insert a break at the end to exit loop. */
   6474    ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
   6475    loop->body_instructions.push_tail(jump);
   6476 
   6477    /* If we are inside loop, check if continue got called inside switch. */
   6478    if (state->loop_nesting_ast != NULL) {
   6479       ir_dereference_variable *deref_continue_inside =
   6480          new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
   6481       ir_if *irif = new(ctx) ir_if(deref_continue_inside);
   6482       ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
   6483 
   6484       if (state->loop_nesting_ast != NULL) {
   6485          if (state->loop_nesting_ast->rest_expression) {
   6486             state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
   6487                                                           state);
   6488          }
   6489          if (state->loop_nesting_ast->mode ==
   6490              ast_iteration_statement::ast_do_while) {
   6491             state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
   6492          }
   6493       }
   6494       irif->then_instructions.push_tail(jump);
   6495       instructions->push_tail(irif);
   6496    }
   6497 
   6498    _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
   6499 
   6500    state->switch_state = saved;
   6501 
   6502    /* Switch statements do not have r-values. */
   6503    return NULL;
   6504 }
   6505 
   6506 
   6507 void
   6508 ast_switch_statement::test_to_hir(exec_list *instructions,
   6509                                   struct _mesa_glsl_parse_state *state)
   6510 {
   6511    void *ctx = state;
   6512 
   6513    /* set to true to avoid a duplicate "use of uninitialized variable" warning
   6514     * on the switch test case. The first one would be already raised when
   6515     * getting the test_expression at ast_switch_statement::hir
   6516     */
   6517    test_expression->set_is_lhs(true);
   6518    /* Cache value of test expression. */
   6519    ir_rvalue *const test_val = test_expression->hir(instructions, state);
   6520 
   6521    state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
   6522                                                        "switch_test_tmp",
   6523                                                        ir_var_temporary);
   6524    ir_dereference_variable *deref_test_var =
   6525       new(ctx) ir_dereference_variable(state->switch_state.test_var);
   6526 
   6527    instructions->push_tail(state->switch_state.test_var);
   6528    instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
   6529 }
   6530 
   6531 
   6532 ir_rvalue *
   6533 ast_switch_body::hir(exec_list *instructions,
   6534                      struct _mesa_glsl_parse_state *state)
   6535 {
   6536    if (stmts != NULL)
   6537       stmts->hir(instructions, state);
   6538 
   6539    /* Switch bodies do not have r-values. */
   6540    return NULL;
   6541 }
   6542 
   6543 ir_rvalue *
   6544 ast_case_statement_list::hir(exec_list *instructions,
   6545                              struct _mesa_glsl_parse_state *state)
   6546 {
   6547    exec_list default_case, after_default, tmp;
   6548 
   6549    foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
   6550       case_stmt->hir(&tmp, state);
   6551 
   6552       /* Default case. */
   6553       if (state->switch_state.previous_default && default_case.is_empty()) {
   6554          default_case.append_list(&tmp);
   6555          continue;
   6556       }
   6557 
   6558       /* If default case found, append 'after_default' list. */
   6559       if (!default_case.is_empty())
   6560          after_default.append_list(&tmp);
   6561       else
   6562          instructions->append_list(&tmp);
   6563    }
   6564 
   6565    /* Handle the default case. This is done here because default might not be
   6566     * the last case. We need to add checks against following cases first to see
   6567     * if default should be chosen or not.
   6568     */
   6569    if (!default_case.is_empty()) {
   6570       struct hash_entry *entry;
   6571       ir_factory body(instructions, state);
   6572 
   6573       ir_expression *cmp = NULL;
   6574 
   6575       hash_table_foreach(state->switch_state.labels_ht, entry) {
   6576          const struct case_label *const l = (struct case_label *) entry->data;
   6577 
   6578          /* If the switch init-value is the value of one of the labels that
   6579           * occurs after the default case, disable execution of the default
   6580           * case.
   6581           */
   6582          if (l->after_default) {
   6583             ir_constant *const cnst =
   6584                state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
   6585                ? body.constant(unsigned(l->value))
   6586                : body.constant(int(l->value));
   6587 
   6588             cmp = cmp == NULL
   6589                ? equal(cnst, state->switch_state.test_var)
   6590                : logic_or(cmp, equal(cnst, state->switch_state.test_var));
   6591          }
   6592       }
   6593 
   6594       if (cmp != NULL)
   6595          body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
   6596       else
   6597          body.emit(assign(state->switch_state.run_default, body.constant(true)));
   6598 
   6599       /* Append default case and all cases after it. */
   6600       instructions->append_list(&default_case);
   6601       instructions->append_list(&after_default);
   6602    }
   6603 
   6604    /* Case statements do not have r-values. */
   6605    return NULL;
   6606 }
   6607 
   6608 ir_rvalue *
   6609 ast_case_statement::hir(exec_list *instructions,
   6610                         struct _mesa_glsl_parse_state *state)
   6611 {
   6612    labels->hir(instructions, state);
   6613 
   6614    /* Guard case statements depending on fallthru state. */
   6615    ir_dereference_variable *const deref_fallthru_guard =
   6616       new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
   6617    ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
   6618 
   6619    foreach_list_typed (ast_node, stmt, link, & this->stmts)
   6620       stmt->hir(& test_fallthru->then_instructions, state);
   6621 
   6622    instructions->push_tail(test_fallthru);
   6623 
   6624    /* Case statements do not have r-values. */
   6625    return NULL;
   6626 }
   6627 
   6628 
   6629 ir_rvalue *
   6630 ast_case_label_list::hir(exec_list *instructions,
   6631                          struct _mesa_glsl_parse_state *state)
   6632 {
   6633    foreach_list_typed (ast_case_label, label, link, & this->labels)
   6634       label->hir(instructions, state);
   6635 
   6636    /* Case labels do not have r-values. */
   6637    return NULL;
   6638 }
   6639 
   6640 ir_rvalue *
   6641 ast_case_label::hir(exec_list *instructions,
   6642                     struct _mesa_glsl_parse_state *state)
   6643 {
   6644    ir_factory body(instructions, state);
   6645 
   6646    ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
   6647 
   6648    /* If not default case, ... */
   6649    if (this->test_value != NULL) {
   6650       /* Conditionally set fallthru state based on
   6651        * comparison of cached test expression value to case label.
   6652        */
   6653       ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
   6654       ir_constant *label_const =
   6655          label_rval->constant_expression_value(body.mem_ctx);
   6656 
   6657       if (!label_const) {
   6658          YYLTYPE loc = this->test_value->get_location();
   6659 
   6660          _mesa_glsl_error(& loc, state,
   6661                           "switch statement case label must be a "
   6662                           "constant expression");
   6663 
   6664          /* Stuff a dummy value in to allow processing to continue. */
   6665          label_const = body.constant(0);
   6666       } else {
   6667          hash_entry *entry =
   6668                _mesa_hash_table_search(state->switch_state.labels_ht,
   6669                                        &label_const->value.u[0]);
   6670 
   6671          if (entry) {
   6672             const struct case_label *const l =
   6673                (struct case_label *) entry->data;
   6674             const ast_expression *const previous_label = l->ast;
   6675             YYLTYPE loc = this->test_value->get_location();
   6676 
   6677             _mesa_glsl_error(& loc, state, "duplicate case value");
   6678 
   6679             loc = previous_label->get_location();
   6680             _mesa_glsl_error(& loc, state, "this is the previous case label");
   6681          } else {
   6682             struct case_label *l = ralloc(state->switch_state.labels_ht,
   6683                                           struct case_label);
   6684 
   6685             l->value = label_const->value.u[0];
   6686             l->after_default = state->switch_state.previous_default != NULL;
   6687             l->ast = this->test_value;
   6688 
   6689             _mesa_hash_table_insert(state->switch_state.labels_ht,
   6690                                     &label_const->value.u[0],
   6691                                     l);
   6692          }
   6693       }
   6694 
   6695       /* Create an r-value version of the ir_constant label here (after we may
   6696        * have created a fake one in error cases) that can be passed to
   6697        * apply_implicit_conversion below.
   6698        */
   6699       ir_rvalue *label = label_const;
   6700 
   6701       ir_rvalue *deref_test_var =
   6702          new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
   6703 
   6704       /*
   6705        * From GLSL 4.40 specification section 6.2 ("Selection"):
   6706        *
   6707        *     "The type of the init-expression value in a switch statement must
   6708        *     be a scalar int or uint. The type of the constant-expression value
   6709        *     in a case label also must be a scalar int or uint. When any pair
   6710        *     of these values is tested for "equal value" and the types do not
   6711        *     match, an implicit conversion will be done to convert the int to a
   6712        *     uint (see section 4.1.10 Implicit Conversions) before the compare
   6713        *     is done."
   6714        */
   6715       if (label->type != state->switch_state.test_var->type) {
   6716          YYLTYPE loc = this->test_value->get_location();
   6717 
   6718          const glsl_type *type_a = label->type;
   6719          const glsl_type *type_b = state->switch_state.test_var->type;
   6720 
   6721          /* Check if int->uint implicit conversion is supported. */
   6722          bool integer_conversion_supported =
   6723             glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
   6724                                                            state);
   6725 
   6726          if ((!type_a->is_integer() || !type_b->is_integer()) ||
   6727               !integer_conversion_supported) {
   6728             _mesa_glsl_error(&loc, state, "type mismatch with switch "
   6729                              "init-expression and case label (%s != %s)",
   6730                              type_a->name, type_b->name);
   6731          } else {
   6732             /* Conversion of the case label. */
   6733             if (type_a->base_type == GLSL_TYPE_INT) {
   6734                if (!apply_implicit_conversion(glsl_type::uint_type,
   6735                                               label, state))
   6736                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
   6737             } else {
   6738                /* Conversion of the init-expression value. */
   6739                if (!apply_implicit_conversion(glsl_type::uint_type,
   6740                                               deref_test_var, state))
   6741                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
   6742             }
   6743          }
   6744 
   6745          /* If the implicit conversion was allowed, the types will already be
   6746           * the same.  If the implicit conversion wasn't allowed, smash the
   6747           * type of the label anyway.  This will prevent the expression
   6748           * constructor (below) from failing an assertion.
   6749           */
   6750          label->type = deref_test_var->type;
   6751       }
   6752 
   6753       body.emit(assign(fallthru_var,
   6754                        logic_or(fallthru_var, equal(label, deref_test_var))));
   6755    } else { /* default case */
   6756       if (state->switch_state.previous_default) {
   6757          YYLTYPE loc = this->get_location();
   6758          _mesa_glsl_error(& loc, state,
   6759                           "multiple default labels in one switch");
   6760 
   6761          loc = state->switch_state.previous_default->get_location();
   6762          _mesa_glsl_error(& loc, state, "this is the first default label");
   6763       }
   6764       state->switch_state.previous_default = this;
   6765 
   6766       /* Set fallthru condition on 'run_default' bool. */
   6767       body.emit(assign(fallthru_var,
   6768                        logic_or(fallthru_var,
   6769                                 state->switch_state.run_default)));
   6770    }
   6771 
   6772    /* Case statements do not have r-values. */
   6773    return NULL;
   6774 }
   6775 
   6776 void
   6777 ast_iteration_statement::condition_to_hir(exec_list *instructions,
   6778                                           struct _mesa_glsl_parse_state *state)
   6779 {
   6780    void *ctx = state;
   6781 
   6782    if (condition != NULL) {
   6783       ir_rvalue *const cond =
   6784          condition->hir(instructions, state);
   6785 
   6786       if ((cond == NULL)
   6787           || !cond->type->is_boolean() || !cond->type->is_scalar()) {
   6788          YYLTYPE loc = condition->get_location();
   6789 
   6790          _mesa_glsl_error(& loc, state,
   6791                           "loop condition must be scalar boolean");
   6792       } else {
   6793          /* As the first code in the loop body, generate a block that looks
   6794           * like 'if (!condition) break;' as the loop termination condition.
   6795           */
   6796          ir_rvalue *const not_cond =
   6797             new(ctx) ir_expression(ir_unop_logic_not, cond);
   6798 
   6799          ir_if *const if_stmt = new(ctx) ir_if(not_cond);
   6800 
   6801          ir_jump *const break_stmt =
   6802             new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
   6803 
   6804          if_stmt->then_instructions.push_tail(break_stmt);
   6805          instructions->push_tail(if_stmt);
   6806       }
   6807    }
   6808 }
   6809 
   6810 
   6811 ir_rvalue *
   6812 ast_iteration_statement::hir(exec_list *instructions,
   6813                              struct _mesa_glsl_parse_state *state)
   6814 {
   6815    void *ctx = state;
   6816 
   6817    /* For-loops and while-loops start a new scope, but do-while loops do not.
   6818     */
   6819    if (mode != ast_do_while)
   6820       state->symbols->push_scope();
   6821 
   6822    if (init_statement != NULL)
   6823       init_statement->hir(instructions, state);
   6824 
   6825    ir_loop *const stmt = new(ctx) ir_loop();
   6826    instructions->push_tail(stmt);
   6827 
   6828    /* Track the current loop nesting. */
   6829    ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
   6830 
   6831    state->loop_nesting_ast = this;
   6832 
   6833    /* Likewise, indicate that following code is closest to a loop,
   6834     * NOT closest to a switch.
   6835     */
   6836    bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
   6837    state->switch_state.is_switch_innermost = false;
   6838 
   6839    if (mode != ast_do_while)
   6840       condition_to_hir(&stmt->body_instructions, state);
   6841 
   6842    if (body != NULL)
   6843       body->hir(& stmt->body_instructions, state);
   6844 
   6845    if (rest_expression != NULL)
   6846       rest_expression->hir(& stmt->body_instructions, state);
   6847 
   6848    if (mode == ast_do_while)
   6849       condition_to_hir(&stmt->body_instructions, state);
   6850 
   6851    if (mode != ast_do_while)
   6852       state->symbols->pop_scope();
   6853 
   6854    /* Restore previous nesting before returning. */
   6855    state->loop_nesting_ast = nesting_ast;
   6856    state->switch_state.is_switch_innermost = saved_is_switch_innermost;
   6857 
   6858    /* Loops do not have r-values.
   6859     */
   6860    return NULL;
   6861 }
   6862 
   6863 
   6864 /**
   6865  * Determine if the given type is valid for establishing a default precision
   6866  * qualifier.
   6867  *
   6868  * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
   6869  *
   6870  *     "The precision statement
   6871  *
   6872  *         precision precision-qualifier type;
   6873  *
   6874  *     can be used to establish a default precision qualifier. The type field
   6875  *     can be either int or float or any of the sampler types, and the
   6876  *     precision-qualifier can be lowp, mediump, or highp."
   6877  *
   6878  * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
   6879  * qualifiers on sampler types, but this seems like an oversight (since the
   6880  * intention of including these in GLSL 1.30 is to allow compatibility with ES
   6881  * shaders).  So we allow int, float, and all sampler types regardless of GLSL
   6882  * version.
   6883  */
   6884 static bool
   6885 is_valid_default_precision_type(const struct glsl_type *const type)
   6886 {
   6887    if (type == NULL)
   6888       return false;
   6889 
   6890    switch (type->base_type) {
   6891    case GLSL_TYPE_INT:
   6892    case GLSL_TYPE_FLOAT:
   6893       /* "int" and "float" are valid, but vectors and matrices are not. */
   6894       return type->vector_elements == 1 && type->matrix_columns == 1;
   6895    case GLSL_TYPE_SAMPLER:
   6896    case GLSL_TYPE_IMAGE:
   6897    case GLSL_TYPE_ATOMIC_UINT:
   6898       return true;
   6899    default:
   6900       return false;
   6901    }
   6902 }
   6903 
   6904 
   6905 ir_rvalue *
   6906 ast_type_specifier::hir(exec_list *instructions,
   6907                         struct _mesa_glsl_parse_state *state)
   6908 {
   6909    if (this->default_precision == ast_precision_none && this->structure == NULL)
   6910       return NULL;
   6911 
   6912    YYLTYPE loc = this->get_location();
   6913 
   6914    /* If this is a precision statement, check that the type to which it is
   6915     * applied is either float or int.
   6916     *
   6917     * From section 4.5.3 of the GLSL 1.30 spec:
   6918     *    "The precision statement
   6919     *       precision precision-qualifier type;
   6920     *    can be used to establish a default precision qualifier. The type
   6921     *    field can be either int or float [...].  Any other types or
   6922     *    qualifiers will result in an error.
   6923     */
   6924    if (this->default_precision != ast_precision_none) {
   6925       if (!state->check_precision_qualifiers_allowed(&loc))
   6926          return NULL;
   6927 
   6928       if (this->structure != NULL) {
   6929          _mesa_glsl_error(&loc, state,
   6930                           "precision qualifiers do not apply to structures");
   6931          return NULL;
   6932       }
   6933 
   6934       if (this->array_specifier != NULL) {
   6935          _mesa_glsl_error(&loc, state,
   6936                           "default precision statements do not apply to "
   6937                           "arrays");
   6938          return NULL;
   6939       }
   6940 
   6941       const struct glsl_type *const type =
   6942          state->symbols->get_type(this->type_name);
   6943       if (!is_valid_default_precision_type(type)) {
   6944          _mesa_glsl_error(&loc, state,
   6945                           "default precision statements apply only to "
   6946                           "float, int, and opaque types");
   6947          return NULL;
   6948       }
   6949 
   6950       if (state->es_shader) {
   6951          /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
   6952           * spec says:
   6953           *
   6954           *     "Non-precision qualified declarations will use the precision
   6955           *     qualifier specified in the most recent precision statement
   6956           *     that is still in scope. The precision statement has the same
   6957           *     scoping rules as variable declarations. If it is declared
   6958           *     inside a compound statement, its effect stops at the end of
   6959           *     the innermost statement it was declared in. Precision
   6960           *     statements in nested scopes override precision statements in
   6961           *     outer scopes. Multiple precision statements for the same basic
   6962           *     type can appear inside the same scope, with later statements
   6963           *     overriding earlier statements within that scope."
   6964           *
   6965           * Default precision specifications follow the same scope rules as
   6966           * variables.  So, we can track the state of the default precision
   6967           * qualifiers in the symbol table, and the rules will just work.  This
   6968           * is a slight abuse of the symbol table, but it has the semantics
   6969           * that we want.
   6970           */
   6971          state->symbols->add_default_precision_qualifier(this->type_name,
   6972                                                          this->default_precision);
   6973       }
   6974 
   6975       /* FINISHME: Translate precision statements into IR. */
   6976       return NULL;
   6977    }
   6978 
   6979    /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
   6980     * process_record_constructor() can do type-checking on C-style initializer
   6981     * expressions of structs, but ast_struct_specifier should only be translated
   6982     * to HIR if it is declaring the type of a structure.
   6983     *
   6984     * The ->is_declaration field is false for initializers of variables
   6985     * declared separately from the struct's type definition.
   6986     *
   6987     *    struct S { ... };              (is_declaration = true)
   6988     *    struct T { ... } t = { ... };  (is_declaration = true)
   6989     *    S s = { ... };                 (is_declaration = false)
   6990     */
   6991    if (this->structure != NULL && this->structure->is_declaration)
   6992       return this->structure->hir(instructions, state);
   6993 
   6994    return NULL;
   6995 }
   6996 
   6997 
   6998 /**
   6999  * Process a structure or interface block tree into an array of structure fields
   7000  *
   7001  * After parsing, where there are some syntax differnces, structures and
   7002  * interface blocks are almost identical.  They are similar enough that the
   7003  * AST for each can be processed the same way into a set of
   7004  * \c glsl_struct_field to describe the members.
   7005  *
   7006  * If we're processing an interface block, var_mode should be the type of the
   7007  * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
   7008  * ir_var_shader_storage).  If we're processing a structure, var_mode should be
   7009  * ir_var_auto.
   7010  *
   7011  * \return
   7012  * The number of fields processed.  A pointer to the array structure fields is
   7013  * stored in \c *fields_ret.
   7014  */
   7015 static unsigned
   7016 ast_process_struct_or_iface_block_members(exec_list *instructions,
   7017                                           struct _mesa_glsl_parse_state *state,
   7018                                           exec_list *declarations,
   7019                                           glsl_struct_field **fields_ret,
   7020                                           bool is_interface,
   7021                                           enum glsl_matrix_layout matrix_layout,
   7022                                           bool allow_reserved_names,
   7023                                           ir_variable_mode var_mode,
   7024                                           ast_type_qualifier *layout,
   7025                                           unsigned block_stream,
   7026                                           unsigned block_xfb_buffer,
   7027                                           unsigned block_xfb_offset,
   7028                                           unsigned expl_location,
   7029                                           unsigned expl_align)
   7030 {
   7031    unsigned decl_count = 0;
   7032    unsigned next_offset = 0;
   7033 
   7034    /* Make an initial pass over the list of fields to determine how
   7035     * many there are.  Each element in this list is an ast_declarator_list.
   7036     * This means that we actually need to count the number of elements in the
   7037     * 'declarations' list in each of the elements.
   7038     */
   7039    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
   7040       decl_count += decl_list->declarations.length();
   7041    }
   7042 
   7043    /* Allocate storage for the fields and process the field
   7044     * declarations.  As the declarations are processed, try to also convert
   7045     * the types to HIR.  This ensures that structure definitions embedded in
   7046     * other structure definitions or in interface blocks are processed.
   7047     */
   7048    glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
   7049                                                    decl_count);
   7050 
   7051    bool first_member = true;
   7052    bool first_member_has_explicit_location = false;
   7053 
   7054    unsigned i = 0;
   7055    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
   7056       const char *type_name;
   7057       YYLTYPE loc = decl_list->get_location();
   7058 
   7059       decl_list->type->specifier->hir(instructions, state);
   7060 
   7061       /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
   7062        *
   7063        *    "Anonymous structures are not supported; so embedded structures
   7064        *    must have a declarator. A name given to an embedded struct is
   7065        *    scoped at the same level as the struct it is embedded in."
   7066        *
   7067        * The same section of the  GLSL 1.20 spec says:
   7068        *
   7069        *    "Anonymous structures are not supported. Embedded structures are
   7070        *    not supported."
   7071        *
   7072        * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
   7073        * embedded structures in 1.10 only.
   7074        */
   7075       if (state->language_version != 110 &&
   7076           decl_list->type->specifier->structure != NULL)
   7077          _mesa_glsl_error(&loc, state,
   7078                           "embedded structure declarations are not allowed");
   7079 
   7080       const glsl_type *decl_type =
   7081          decl_list->type->glsl_type(& type_name, state);
   7082 
   7083       const struct ast_type_qualifier *const qual =
   7084          &decl_list->type->qualifier;
   7085 
   7086       /* From section 4.3.9 of the GLSL 4.40 spec:
   7087        *
   7088        *    "[In interface blocks] opaque types are not allowed."
   7089        *
   7090        * It should be impossible for decl_type to be NULL here.  Cases that
   7091        * might naturally lead to decl_type being NULL, especially for the
   7092        * is_interface case, will have resulted in compilation having
   7093        * already halted due to a syntax error.
   7094        */
   7095       assert(decl_type);
   7096 
   7097       if (is_interface) {
   7098          /* From section 4.3.7 of the ARB_bindless_texture spec:
   7099           *
   7100           *    "(remove the following bullet from the last list on p. 39,
   7101           *     thereby permitting sampler types in interface blocks; image
   7102           *     types are also permitted in blocks by this extension)"
   7103           *
   7104           *     * sampler types are not allowed
   7105           */
   7106          if (decl_type->contains_atomic() ||
   7107              (!state->has_bindless() && decl_type->contains_opaque())) {
   7108             _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
   7109                              "interface block contains %s variable",
   7110                              state->has_bindless() ? "atomic" : "opaque");
   7111          }
   7112       } else {
   7113          if (decl_type->contains_atomic()) {
   7114             /* From section 4.1.7.3 of the GLSL 4.40 spec:
   7115              *
   7116              *    "Members of structures cannot be declared as atomic counter
   7117              *     types."
   7118              */
   7119             _mesa_glsl_error(&loc, state, "atomic counter in structure");
   7120          }
   7121 
   7122          if (!state->has_bindless() && decl_type->contains_image()) {
   7123             /* FINISHME: Same problem as with atomic counters.
   7124              * FINISHME: Request clarification from Khronos and add
   7125              * FINISHME: spec quotation here.
   7126              */
   7127             _mesa_glsl_error(&loc, state, "image in structure");
   7128          }
   7129       }
   7130 
   7131       if (qual->flags.q.explicit_binding) {
   7132          _mesa_glsl_error(&loc, state,
   7133                           "binding layout qualifier cannot be applied "
   7134                           "to struct or interface block members");
   7135       }
   7136 
   7137       if (is_interface) {
   7138          if (!first_member) {
   7139             if (!layout->flags.q.explicit_location &&
   7140                 ((first_member_has_explicit_location &&
   7141                   !qual->flags.q.explicit_location) ||
   7142                  (!first_member_has_explicit_location &&
   7143                   qual->flags.q.explicit_location))) {
   7144                _mesa_glsl_error(&loc, state,
   7145                                 "when block-level location layout qualifier "
   7146                                 "is not supplied either all members must "
   7147                                 "have a location layout qualifier or all "
   7148                                 "members must not have a location layout "
   7149                                 "qualifier");
   7150             }
   7151          } else {
   7152             first_member = false;
   7153             first_member_has_explicit_location =
   7154                qual->flags.q.explicit_location;
   7155          }
   7156       }
   7157 
   7158       if (qual->flags.q.std140 ||
   7159           qual->flags.q.std430 ||
   7160           qual->flags.q.packed ||
   7161           qual->flags.q.shared) {
   7162          _mesa_glsl_error(&loc, state,
   7163                           "uniform/shader storage block layout qualifiers "
   7164                           "std140, std430, packed, and shared can only be "
   7165                           "applied to uniform/shader storage blocks, not "
   7166                           "members");
   7167       }
   7168 
   7169       if (qual->flags.q.constant) {
   7170          _mesa_glsl_error(&loc, state,
   7171                           "const storage qualifier cannot be applied "
   7172                           "to struct or interface block members");
   7173       }
   7174 
   7175       validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
   7176       validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
   7177 
   7178       /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
   7179        *
   7180        *   "A block member may be declared with a stream identifier, but
   7181        *   the specified stream must match the stream associated with the
   7182        *   containing block."
   7183        */
   7184       if (qual->flags.q.explicit_stream) {
   7185          unsigned qual_stream;
   7186          if (process_qualifier_constant(state, &loc, "stream",
   7187                                         qual->stream, &qual_stream) &&
   7188              qual_stream != block_stream) {
   7189             _mesa_glsl_error(&loc, state, "stream layout qualifier on "
   7190                              "interface block member does not match "
   7191                              "the interface block (%u vs %u)", qual_stream,
   7192                              block_stream);
   7193          }
   7194       }
   7195 
   7196       int xfb_buffer;
   7197       unsigned explicit_xfb_buffer = 0;
   7198       if (qual->flags.q.explicit_xfb_buffer) {
   7199          unsigned qual_xfb_buffer;
   7200          if (process_qualifier_constant(state, &loc, "xfb_buffer",
   7201                                         qual->xfb_buffer, &qual_xfb_buffer)) {
   7202             explicit_xfb_buffer = 1;
   7203             if (qual_xfb_buffer != block_xfb_buffer)
   7204                _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
   7205                                 "interface block member does not match "
   7206                                 "the interface block (%u vs %u)",
   7207                                 qual_xfb_buffer, block_xfb_buffer);
   7208          }
   7209          xfb_buffer = (int) qual_xfb_buffer;
   7210       } else {
   7211          if (layout)
   7212             explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
   7213          xfb_buffer = (int) block_xfb_buffer;
   7214       }
   7215 
   7216       int xfb_stride = -1;
   7217       if (qual->flags.q.explicit_xfb_stride) {
   7218          unsigned qual_xfb_stride;
   7219          if (process_qualifier_constant(state, &loc, "xfb_stride",
   7220                                         qual->xfb_stride, &qual_xfb_stride)) {
   7221             xfb_stride = (int) qual_xfb_stride;
   7222          }
   7223       }
   7224 
   7225       if (qual->flags.q.uniform && qual->has_interpolation()) {
   7226          _mesa_glsl_error(&loc, state,
   7227                           "interpolation qualifiers cannot be used "
   7228                           "with uniform interface blocks");
   7229       }
   7230 
   7231       if ((qual->flags.q.uniform || !is_interface) &&
   7232           qual->has_auxiliary_storage()) {
   7233          _mesa_glsl_error(&loc, state,
   7234                           "auxiliary storage qualifiers cannot be used "
   7235                           "in uniform blocks or structures.");
   7236       }
   7237 
   7238       if (qual->flags.q.row_major || qual->flags.q.column_major) {
   7239          if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
   7240             _mesa_glsl_error(&loc, state,
   7241                              "row_major and column_major can only be "
   7242                              "applied to interface blocks");
   7243          } else
   7244             validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
   7245       }
   7246 
   7247       foreach_list_typed (ast_declaration, decl, link,
   7248                           &decl_list->declarations) {
   7249          YYLTYPE loc = decl->get_location();
   7250 
   7251          if (!allow_reserved_names)
   7252             validate_identifier(decl->identifier, loc, state);
   7253 
   7254          const struct glsl_type *field_type =
   7255             process_array_type(&loc, decl_type, decl->array_specifier, state);
   7256          validate_array_dimensions(field_type, state, &loc);
   7257          fields[i].type = field_type;
   7258          fields[i].name = decl->identifier;
   7259          fields[i].interpolation =
   7260             interpret_interpolation_qualifier(qual, field_type,
   7261                                               var_mode, state, &loc);
   7262          fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
   7263          fields[i].sample = qual->flags.q.sample ? 1 : 0;
   7264          fields[i].patch = qual->flags.q.patch ? 1 : 0;
   7265          fields[i].precision = qual->precision;
   7266          fields[i].offset = -1;
   7267          fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
   7268          fields[i].xfb_buffer = xfb_buffer;
   7269          fields[i].xfb_stride = xfb_stride;
   7270 
   7271          if (qual->flags.q.explicit_location) {
   7272             unsigned qual_location;
   7273             if (process_qualifier_constant(state, &loc, "location",
   7274                                            qual->location, &qual_location)) {
   7275                fields[i].location = qual_location +
   7276                   (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
   7277                expl_location = fields[i].location +
   7278                   fields[i].type->count_attribute_slots(false);
   7279             }
   7280          } else {
   7281             if (layout && layout->flags.q.explicit_location) {
   7282                fields[i].location = expl_location;
   7283                expl_location += fields[i].type->count_attribute_slots(false);
   7284             } else {
   7285                fields[i].location = -1;
   7286             }
   7287          }
   7288 
   7289          /* Offset can only be used with std430 and std140 layouts an initial
   7290           * value of 0 is used for error detection.
   7291           */
   7292          unsigned align = 0;
   7293          unsigned size = 0;
   7294          if (layout) {
   7295             bool row_major;
   7296             if (qual->flags.q.row_major ||
   7297                 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
   7298                row_major = true;
   7299             } else {
   7300                row_major = false;
   7301             }
   7302 
   7303             if(layout->flags.q.std140) {
   7304                align = field_type->std140_base_alignment(row_major);
   7305                size = field_type->std140_size(row_major);
   7306             } else if (layout->flags.q.std430) {
   7307                align = field_type->std430_base_alignment(row_major);
   7308                size = field_type->std430_size(row_major);
   7309             }
   7310          }
   7311 
   7312          if (qual->flags.q.explicit_offset) {
   7313             unsigned qual_offset;
   7314             if (process_qualifier_constant(state, &loc, "offset",
   7315                                            qual->offset, &qual_offset)) {
   7316                if (align != 0 && size != 0) {
   7317                    if (next_offset > qual_offset)
   7318                       _mesa_glsl_error(&loc, state, "layout qualifier "
   7319                                        "offset overlaps previous member");
   7320 
   7321                   if (qual_offset % align) {
   7322                      _mesa_glsl_error(&loc, state, "layout qualifier offset "
   7323                                       "must be a multiple of the base "
   7324                                       "alignment of %s", field_type->name);
   7325                   }
   7326                   fields[i].offset = qual_offset;
   7327                   next_offset = glsl_align(qual_offset + size, align);
   7328                } else {
   7329                   _mesa_glsl_error(&loc, state, "offset can only be used "
   7330                                    "with std430 and std140 layouts");
   7331                }
   7332             }
   7333          }
   7334 
   7335          if (qual->flags.q.explicit_align || expl_align != 0) {
   7336             unsigned offset = fields[i].offset != -1 ? fields[i].offset :
   7337                next_offset;
   7338             if (align == 0 || size == 0) {
   7339                _mesa_glsl_error(&loc, state, "align can only be used with "
   7340                                 "std430 and std140 layouts");
   7341             } else if (qual->flags.q.explicit_align) {
   7342                unsigned member_align;
   7343                if (process_qualifier_constant(state, &loc, "align",
   7344                                               qual->align, &member_align)) {
   7345                   if (member_align == 0 ||
   7346                       member_align & (member_align - 1)) {
   7347                      _mesa_glsl_error(&loc, state, "align layout qualifier "
   7348                                       "in not a power of 2");
   7349                   } else {
   7350                      fields[i].offset = glsl_align(offset, member_align);
   7351                      next_offset = glsl_align(fields[i].offset + size, align);
   7352                   }
   7353                }
   7354             } else {
   7355                fields[i].offset = glsl_align(offset, expl_align);
   7356                next_offset = glsl_align(fields[i].offset + size, align);
   7357             }
   7358          } else if (!qual->flags.q.explicit_offset) {
   7359             if (align != 0 && size != 0)
   7360                next_offset = glsl_align(next_offset + size, align);
   7361          }
   7362 
   7363          /* From the ARB_enhanced_layouts spec:
   7364           *
   7365           *    "The given offset applies to the first component of the first
   7366           *    member of the qualified entity.  Then, within the qualified
   7367           *    entity, subsequent components are each assigned, in order, to
   7368           *    the next available offset aligned to a multiple of that
   7369           *    component's size.  Aggregate types are flattened down to the
   7370           *    component level to get this sequence of components."
   7371           */
   7372          if (qual->flags.q.explicit_xfb_offset) {
   7373             unsigned xfb_offset;
   7374             if (process_qualifier_constant(state, &loc, "xfb_offset",
   7375                                            qual->offset, &xfb_offset)) {
   7376                fields[i].offset = xfb_offset;
   7377                block_xfb_offset = fields[i].offset +
   7378                   4 * field_type->component_slots();
   7379             }
   7380          } else {
   7381             if (layout && layout->flags.q.explicit_xfb_offset) {
   7382                unsigned align = field_type->is_64bit() ? 8 : 4;
   7383                fields[i].offset = glsl_align(block_xfb_offset, align);
   7384                block_xfb_offset += 4 * field_type->component_slots();
   7385             }
   7386          }
   7387 
   7388          /* Propogate row- / column-major information down the fields of the
   7389           * structure or interface block.  Structures need this data because
   7390           * the structure may contain a structure that contains ... a matrix
   7391           * that need the proper layout.
   7392           */
   7393          if (is_interface && layout &&
   7394              (layout->flags.q.uniform || layout->flags.q.buffer) &&
   7395              (field_type->without_array()->is_matrix()
   7396               || field_type->without_array()->is_record())) {
   7397             /* If no layout is specified for the field, inherit the layout
   7398              * from the block.
   7399              */
   7400             fields[i].matrix_layout = matrix_layout;
   7401 
   7402             if (qual->flags.q.row_major)
   7403                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
   7404             else if (qual->flags.q.column_major)
   7405                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
   7406 
   7407             /* If we're processing an uniform or buffer block, the matrix
   7408              * layout must be decided by this point.
   7409              */
   7410             assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
   7411                    || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
   7412          }
   7413 
   7414          /* Memory qualifiers are allowed on buffer and image variables, while
   7415           * the format qualifier is only accepted for images.
   7416           */
   7417          if (var_mode == ir_var_shader_storage ||
   7418              field_type->without_array()->is_image()) {
   7419             /* For readonly and writeonly qualifiers the field definition,
   7420              * if set, overwrites the layout qualifier.
   7421              */
   7422             if (qual->flags.q.read_only || qual->flags.q.write_only) {
   7423                fields[i].memory_read_only = qual->flags.q.read_only;
   7424                fields[i].memory_write_only = qual->flags.q.write_only;
   7425             } else {
   7426                fields[i].memory_read_only =
   7427                   layout ? layout->flags.q.read_only : 0;
   7428                fields[i].memory_write_only =
   7429                   layout ? layout->flags.q.write_only : 0;
   7430             }
   7431 
   7432             /* For other qualifiers, we set the flag if either the layout
   7433              * qualifier or the field qualifier are set
   7434              */
   7435             fields[i].memory_coherent = qual->flags.q.coherent ||
   7436                                         (layout && layout->flags.q.coherent);
   7437             fields[i].memory_volatile = qual->flags.q._volatile ||
   7438                                         (layout && layout->flags.q._volatile);
   7439             fields[i].memory_restrict = qual->flags.q.restrict_flag ||
   7440                                         (layout && layout->flags.q.restrict_flag);
   7441 
   7442             if (field_type->without_array()->is_image()) {
   7443                if (qual->flags.q.explicit_image_format) {
   7444                   if (qual->image_base_type !=
   7445                       field_type->without_array()->sampled_type) {
   7446                      _mesa_glsl_error(&loc, state, "format qualifier doesn't "
   7447                                       "match the base data type of the image");
   7448                   }
   7449 
   7450                   fields[i].image_format = qual->image_format;
   7451                } else {
   7452                   if (!qual->flags.q.write_only) {
   7453                      _mesa_glsl_error(&loc, state, "image not qualified with "
   7454                                       "`writeonly' must have a format layout "
   7455                                       "qualifier");
   7456                   }
   7457 
   7458                   fields[i].image_format = GL_NONE;
   7459                }
   7460             }
   7461          }
   7462 
   7463          i++;
   7464       }
   7465    }
   7466 
   7467    assert(i == decl_count);
   7468 
   7469    *fields_ret = fields;
   7470    return decl_count;
   7471 }
   7472 
   7473 
   7474 ir_rvalue *
   7475 ast_struct_specifier::hir(exec_list *instructions,
   7476                           struct _mesa_glsl_parse_state *state)
   7477 {
   7478    YYLTYPE loc = this->get_location();
   7479 
   7480    unsigned expl_location = 0;
   7481    if (layout && layout->flags.q.explicit_location) {
   7482       if (!process_qualifier_constant(state, &loc, "location",
   7483                                       layout->location, &expl_location)) {
   7484          return NULL;
   7485       } else {
   7486          expl_location = VARYING_SLOT_VAR0 + expl_location;
   7487       }
   7488    }
   7489 
   7490    glsl_struct_field *fields;
   7491    unsigned decl_count =
   7492       ast_process_struct_or_iface_block_members(instructions,
   7493                                                 state,
   7494                                                 &this->declarations,
   7495                                                 &fields,
   7496                                                 false,
   7497                                                 GLSL_MATRIX_LAYOUT_INHERITED,
   7498                                                 false /* allow_reserved_names */,
   7499                                                 ir_var_auto,
   7500                                                 layout,
   7501                                                 0, /* for interface only */
   7502                                                 0, /* for interface only */
   7503                                                 0, /* for interface only */
   7504                                                 expl_location,
   7505                                                 0 /* for interface only */);
   7506 
   7507    validate_identifier(this->name, loc, state);
   7508 
   7509    type = glsl_type::get_record_instance(fields, decl_count, this->name);
   7510 
   7511    if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
   7512       const glsl_type *match = state->symbols->get_type(name);
   7513       /* allow struct matching for desktop GL - older UE4 does this */
   7514       if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
   7515          _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
   7516       else
   7517          _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
   7518    } else {
   7519       const glsl_type **s = reralloc(state, state->user_structures,
   7520                                      const glsl_type *,
   7521                                      state->num_user_structures + 1);
   7522       if (s != NULL) {
   7523          s[state->num_user_structures] = type;
   7524          state->user_structures = s;
   7525          state->num_user_structures++;
   7526       }
   7527    }
   7528 
   7529    /* Structure type definitions do not have r-values.
   7530     */
   7531    return NULL;
   7532 }
   7533 
   7534 
   7535 /**
   7536  * Visitor class which detects whether a given interface block has been used.
   7537  */
   7538 class interface_block_usage_visitor : public ir_hierarchical_visitor
   7539 {
   7540 public:
   7541    interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
   7542       : mode(mode), block(block), found(false)
   7543    {
   7544    }
   7545 
   7546    virtual ir_visitor_status visit(ir_dereference_variable *ir)
   7547    {
   7548       if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
   7549          found = true;
   7550          return visit_stop;
   7551       }
   7552       return visit_continue;
   7553    }
   7554 
   7555    bool usage_found() const
   7556    {
   7557       return this->found;
   7558    }
   7559 
   7560 private:
   7561    ir_variable_mode mode;
   7562    const glsl_type *block;
   7563    bool found;
   7564 };
   7565 
   7566 static bool
   7567 is_unsized_array_last_element(ir_variable *v)
   7568 {
   7569    const glsl_type *interface_type = v->get_interface_type();
   7570    int length = interface_type->length;
   7571 
   7572    assert(v->type->is_unsized_array());
   7573 
   7574    /* Check if it is the last element of the interface */
   7575    if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
   7576       return true;
   7577    return false;
   7578 }
   7579 
   7580 static void
   7581 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
   7582 {
   7583    var->data.memory_read_only = field.memory_read_only;
   7584    var->data.memory_write_only = field.memory_write_only;
   7585    var->data.memory_coherent = field.memory_coherent;
   7586    var->data.memory_volatile = field.memory_volatile;
   7587    var->data.memory_restrict = field.memory_restrict;
   7588 }
   7589 
   7590 ir_rvalue *
   7591 ast_interface_block::hir(exec_list *instructions,
   7592                          struct _mesa_glsl_parse_state *state)
   7593 {
   7594    YYLTYPE loc = this->get_location();
   7595 
   7596    /* Interface blocks must be declared at global scope */
   7597    if (state->current_function != NULL) {
   7598       _mesa_glsl_error(&loc, state,
   7599                        "Interface block `%s' must be declared "
   7600                        "at global scope",
   7601                        this->block_name);
   7602    }
   7603 
   7604    /* Validate qualifiers:
   7605     *
   7606     * - Layout Qualifiers as per the table in Section 4.4
   7607     *   ("Layout Qualifiers") of the GLSL 4.50 spec.
   7608     *
   7609     * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
   7610     *   GLSL 4.50 spec:
   7611     *
   7612     *     "Additionally, memory qualifiers may also be used in the declaration
   7613     *      of shader storage blocks"
   7614     *
   7615     * Note the table in Section 4.4 says std430 is allowed on both uniform and
   7616     * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
   7617     * Layout Qualifiers) of the GLSL 4.50 spec says:
   7618     *
   7619     *    "The std430 qualifier is supported only for shader storage blocks;
   7620     *    using std430 on a uniform block will result in a compile-time error."
   7621     */
   7622    ast_type_qualifier allowed_blk_qualifiers;
   7623    allowed_blk_qualifiers.flags.i = 0;
   7624    if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
   7625       allowed_blk_qualifiers.flags.q.shared = 1;
   7626       allowed_blk_qualifiers.flags.q.packed = 1;
   7627       allowed_blk_qualifiers.flags.q.std140 = 1;
   7628       allowed_blk_qualifiers.flags.q.row_major = 1;
   7629       allowed_blk_qualifiers.flags.q.column_major = 1;
   7630       allowed_blk_qualifiers.flags.q.explicit_align = 1;
   7631       allowed_blk_qualifiers.flags.q.explicit_binding = 1;
   7632       if (this->layout.flags.q.buffer) {
   7633          allowed_blk_qualifiers.flags.q.buffer = 1;
   7634          allowed_blk_qualifiers.flags.q.std430 = 1;
   7635          allowed_blk_qualifiers.flags.q.coherent = 1;
   7636          allowed_blk_qualifiers.flags.q._volatile = 1;
   7637          allowed_blk_qualifiers.flags.q.restrict_flag = 1;
   7638          allowed_blk_qualifiers.flags.q.read_only = 1;
   7639          allowed_blk_qualifiers.flags.q.write_only = 1;
   7640       } else {
   7641          allowed_blk_qualifiers.flags.q.uniform = 1;
   7642       }
   7643    } else {
   7644       /* Interface block */
   7645       assert(this->layout.flags.q.in || this->layout.flags.q.out);
   7646 
   7647       allowed_blk_qualifiers.flags.q.explicit_location = 1;
   7648       if (this->layout.flags.q.out) {
   7649          allowed_blk_qualifiers.flags.q.out = 1;
   7650          if (state->stage == MESA_SHADER_GEOMETRY ||
   7651           state->stage == MESA_SHADER_TESS_CTRL ||
   7652           state->stage == MESA_SHADER_TESS_EVAL ||
   7653           state->stage == MESA_SHADER_VERTEX ) {
   7654             allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
   7655             allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
   7656             allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
   7657             allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
   7658             allowed_blk_qualifiers.flags.q.xfb_stride = 1;
   7659             if (state->stage == MESA_SHADER_GEOMETRY) {
   7660                allowed_blk_qualifiers.flags.q.stream = 1;
   7661                allowed_blk_qualifiers.flags.q.explicit_stream = 1;
   7662             }
   7663             if (state->stage == MESA_SHADER_TESS_CTRL) {
   7664                allowed_blk_qualifiers.flags.q.patch = 1;
   7665             }
   7666          }
   7667       } else {
   7668          allowed_blk_qualifiers.flags.q.in = 1;
   7669          if (state->stage == MESA_SHADER_TESS_EVAL) {
   7670             allowed_blk_qualifiers.flags.q.patch = 1;
   7671          }
   7672       }
   7673    }
   7674 
   7675    this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
   7676                                "invalid qualifier for block",
   7677                                this->block_name);
   7678 
   7679    enum glsl_interface_packing packing;
   7680    if (this->layout.flags.q.std140) {
   7681       packing = GLSL_INTERFACE_PACKING_STD140;
   7682    } else if (this->layout.flags.q.packed) {
   7683       packing = GLSL_INTERFACE_PACKING_PACKED;
   7684    } else if (this->layout.flags.q.std430) {
   7685       packing = GLSL_INTERFACE_PACKING_STD430;
   7686    } else {
   7687       /* The default layout is shared.
   7688        */
   7689       packing = GLSL_INTERFACE_PACKING_SHARED;
   7690    }
   7691 
   7692    ir_variable_mode var_mode;
   7693    const char *iface_type_name;
   7694    if (this->layout.flags.q.in) {
   7695       var_mode = ir_var_shader_in;
   7696       iface_type_name = "in";
   7697    } else if (this->layout.flags.q.out) {
   7698       var_mode = ir_var_shader_out;
   7699       iface_type_name = "out";
   7700    } else if (this->layout.flags.q.uniform) {
   7701       var_mode = ir_var_uniform;
   7702       iface_type_name = "uniform";
   7703    } else if (this->layout.flags.q.buffer) {
   7704       var_mode = ir_var_shader_storage;
   7705       iface_type_name = "buffer";
   7706    } else {
   7707       var_mode = ir_var_auto;
   7708       iface_type_name = "UNKNOWN";
   7709       assert(!"interface block layout qualifier not found!");
   7710    }
   7711 
   7712    enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
   7713    if (this->layout.flags.q.row_major)
   7714       matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
   7715    else if (this->layout.flags.q.column_major)
   7716       matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
   7717 
   7718    bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
   7719    exec_list declared_variables;
   7720    glsl_struct_field *fields;
   7721 
   7722    /* For blocks that accept memory qualifiers (i.e. shader storage), verify
   7723     * that we don't have incompatible qualifiers
   7724     */
   7725    if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
   7726       _mesa_glsl_error(&loc, state,
   7727                        "Interface block sets both readonly and writeonly");
   7728    }
   7729 
   7730    unsigned qual_stream;
   7731    if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
   7732                                    &qual_stream) ||
   7733        !validate_stream_qualifier(&loc, state, qual_stream)) {
   7734       /* If the stream qualifier is invalid it doesn't make sense to continue
   7735        * on and try to compare stream layouts on member variables against it
   7736        * so just return early.
   7737        */
   7738       return NULL;
   7739    }
   7740 
   7741    unsigned qual_xfb_buffer;
   7742    if (!process_qualifier_constant(state, &loc, "xfb_buffer",
   7743                                    layout.xfb_buffer, &qual_xfb_buffer) ||
   7744        !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
   7745       return NULL;
   7746    }
   7747 
   7748    unsigned qual_xfb_offset;
   7749    if (layout.flags.q.explicit_xfb_offset) {
   7750       if (!process_qualifier_constant(state, &loc, "xfb_offset",
   7751                                       layout.offset, &qual_xfb_offset)) {
   7752          return NULL;
   7753       }
   7754    }
   7755 
   7756    unsigned qual_xfb_stride;
   7757    if (layout.flags.q.explicit_xfb_stride) {
   7758       if (!process_qualifier_constant(state, &loc, "xfb_stride",
   7759                                       layout.xfb_stride, &qual_xfb_stride)) {
   7760          return NULL;
   7761       }
   7762    }
   7763 
   7764    unsigned expl_location = 0;
   7765    if (layout.flags.q.explicit_location) {
   7766       if (!process_qualifier_constant(state, &loc, "location",
   7767                                       layout.location, &expl_location)) {
   7768          return NULL;
   7769       } else {
   7770          expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
   7771                                                      : VARYING_SLOT_VAR0;
   7772       }
   7773    }
   7774 
   7775    unsigned expl_align = 0;
   7776    if (layout.flags.q.explicit_align) {
   7777       if (!process_qualifier_constant(state, &loc, "align",
   7778                                       layout.align, &expl_align)) {
   7779          return NULL;
   7780       } else {
   7781          if (expl_align == 0 || expl_align & (expl_align - 1)) {
   7782             _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
   7783                              "power of 2.");
   7784             return NULL;
   7785          }
   7786       }
   7787    }
   7788 
   7789    unsigned int num_variables =
   7790       ast_process_struct_or_iface_block_members(&declared_variables,
   7791                                                 state,
   7792                                                 &this->declarations,
   7793                                                 &fields,
   7794                                                 true,
   7795                                                 matrix_layout,
   7796                                                 redeclaring_per_vertex,
   7797                                                 var_mode,
   7798                                                 &this->layout,
   7799                                                 qual_stream,
   7800                                                 qual_xfb_buffer,
   7801                                                 qual_xfb_offset,
   7802                                                 expl_location,
   7803                                                 expl_align);
   7804 
   7805    if (!redeclaring_per_vertex) {
   7806       validate_identifier(this->block_name, loc, state);
   7807 
   7808       /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
   7809        *
   7810        *     "Block names have no other use within a shader beyond interface
   7811        *     matching; it is a compile-time error to use a block name at global
   7812        *     scope for anything other than as a block name."
   7813        */
   7814       ir_variable *var = state->symbols->get_variable(this->block_name);
   7815       if (var && !var->type->is_interface()) {
   7816          _mesa_glsl_error(&loc, state, "Block name `%s' is "
   7817                           "already used in the scope.",
   7818                           this->block_name);
   7819       }
   7820    }
   7821 
   7822    const glsl_type *earlier_per_vertex = NULL;
   7823    if (redeclaring_per_vertex) {
   7824       /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
   7825        * the named interface block gl_in, we can find it by looking at the
   7826        * previous declaration of gl_in.  Otherwise we can find it by looking
   7827        * at the previous decalartion of any of the built-in outputs,
   7828        * e.g. gl_Position.
   7829        *
   7830        * Also check that the instance name and array-ness of the redeclaration
   7831        * are correct.
   7832        */
   7833       switch (var_mode) {
   7834       case ir_var_shader_in:
   7835          if (ir_variable *earlier_gl_in =
   7836              state->symbols->get_variable("gl_in")) {
   7837             earlier_per_vertex = earlier_gl_in->get_interface_type();
   7838          } else {
   7839             _mesa_glsl_error(&loc, state,
   7840                              "redeclaration of gl_PerVertex input not allowed "
   7841                              "in the %s shader",
   7842                              _mesa_shader_stage_to_string(state->stage));
   7843          }
   7844          if (this->instance_name == NULL ||
   7845              strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
   7846              !this->array_specifier->is_single_dimension()) {
   7847             _mesa_glsl_error(&loc, state,
   7848                              "gl_PerVertex input must be redeclared as "
   7849                              "gl_in[]");
   7850          }
   7851          break;
   7852       case ir_var_shader_out:
   7853          if (ir_variable *earlier_gl_Position =
   7854              state->symbols->get_variable("gl_Position")) {
   7855             earlier_per_vertex = earlier_gl_Position->get_interface_type();
   7856          } else if (ir_variable *earlier_gl_out =
   7857                state->symbols->get_variable("gl_out")) {
   7858             earlier_per_vertex = earlier_gl_out->get_interface_type();
   7859          } else {
   7860             _mesa_glsl_error(&loc, state,
   7861                              "redeclaration of gl_PerVertex output not "
   7862                              "allowed in the %s shader",
   7863                              _mesa_shader_stage_to_string(state->stage));
   7864          }
   7865          if (state->stage == MESA_SHADER_TESS_CTRL) {
   7866             if (this->instance_name == NULL ||
   7867                 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
   7868                _mesa_glsl_error(&loc, state,
   7869                                 "gl_PerVertex output must be redeclared as "
   7870                                 "gl_out[]");
   7871             }
   7872          } else {
   7873             if (this->instance_name != NULL) {
   7874                _mesa_glsl_error(&loc, state,
   7875                                 "gl_PerVertex output may not be redeclared with "
   7876                                 "an instance name");
   7877             }
   7878          }
   7879          break;
   7880       default:
   7881          _mesa_glsl_error(&loc, state,
   7882                           "gl_PerVertex must be declared as an input or an "
   7883                           "output");
   7884          break;
   7885       }
   7886 
   7887       if (earlier_per_vertex == NULL) {
   7888          /* An error has already been reported.  Bail out to avoid null
   7889           * dereferences later in this function.
   7890           */
   7891          return NULL;
   7892       }
   7893 
   7894       /* Copy locations from the old gl_PerVertex interface block. */
   7895       for (unsigned i = 0; i < num_variables; i++) {
   7896          int j = earlier_per_vertex->field_index(fields[i].name);
   7897          if (j == -1) {
   7898             _mesa_glsl_error(&loc, state,
   7899                              "redeclaration of gl_PerVertex must be a subset "
   7900                              "of the built-in members of gl_PerVertex");
   7901          } else {
   7902             fields[i].location =
   7903                earlier_per_vertex->fields.structure[j].location;
   7904             fields[i].offset =
   7905                earlier_per_vertex->fields.structure[j].offset;
   7906             fields[i].interpolation =
   7907                earlier_per_vertex->fields.structure[j].interpolation;
   7908             fields[i].centroid =
   7909                earlier_per_vertex->fields.structure[j].centroid;
   7910             fields[i].sample =
   7911                earlier_per_vertex->fields.structure[j].sample;
   7912             fields[i].patch =
   7913                earlier_per_vertex->fields.structure[j].patch;
   7914             fields[i].precision =
   7915                earlier_per_vertex->fields.structure[j].precision;
   7916             fields[i].explicit_xfb_buffer =
   7917                earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
   7918             fields[i].xfb_buffer =
   7919                earlier_per_vertex->fields.structure[j].xfb_buffer;
   7920             fields[i].xfb_stride =
   7921                earlier_per_vertex->fields.structure[j].xfb_stride;
   7922          }
   7923       }
   7924 
   7925       /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
   7926        * spec:
   7927        *
   7928        *     If a built-in interface block is redeclared, it must appear in
   7929        *     the shader before any use of any member included in the built-in
   7930        *     declaration, or a compilation error will result.
   7931        *
   7932        * This appears to be a clarification to the behaviour established for
   7933        * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
   7934        * regardless of GLSL version.
   7935        */
   7936       interface_block_usage_visitor v(var_mode, earlier_per_vertex);
   7937       v.run(instructions);
   7938       if (v.usage_found()) {
   7939          _mesa_glsl_error(&loc, state,
   7940                           "redeclaration of a built-in interface block must "
   7941                           "appear before any use of any member of the "
   7942                           "interface block");
   7943       }
   7944    }
   7945 
   7946    const glsl_type *block_type =
   7947       glsl_type::get_interface_instance(fields,
   7948                                         num_variables,
   7949                                         packing,
   7950                                         matrix_layout ==
   7951                                            GLSL_MATRIX_LAYOUT_ROW_MAJOR,
   7952                                         this->block_name);
   7953 
   7954    unsigned component_size = block_type->contains_double() ? 8 : 4;
   7955    int xfb_offset =
   7956       layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
   7957    validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
   7958                                  component_size);
   7959 
   7960    if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
   7961       YYLTYPE loc = this->get_location();
   7962       _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
   7963                        "already taken in the current scope",
   7964                        this->block_name, iface_type_name);
   7965    }
   7966 
   7967    /* Since interface blocks cannot contain statements, it should be
   7968     * impossible for the block to generate any instructions.
   7969     */
   7970    assert(declared_variables.is_empty());
   7971 
   7972    /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
   7973     *
   7974     *     Geometry shader input variables get the per-vertex values written
   7975     *     out by vertex shader output variables of the same names. Since a
   7976     *     geometry shader operates on a set of vertices, each input varying
   7977     *     variable (or input block, see interface blocks below) needs to be
   7978     *     declared as an array.
   7979     */
   7980    if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
   7981        var_mode == ir_var_shader_in) {
   7982       _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
   7983    } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
   7984                state->stage == MESA_SHADER_TESS_EVAL) &&
   7985               !this->layout.flags.q.patch &&
   7986               this->array_specifier == NULL &&
   7987               var_mode == ir_var_shader_in) {
   7988       _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
   7989    } else if (state->stage == MESA_SHADER_TESS_CTRL &&
   7990               !this->layout.flags.q.patch &&
   7991               this->array_specifier == NULL &&
   7992               var_mode == ir_var_shader_out) {
   7993       _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
   7994    }
   7995 
   7996 
   7997    /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
   7998     * says:
   7999     *
   8000     *     "If an instance name (instance-name) is used, then it puts all the
   8001     *     members inside a scope within its own name space, accessed with the
   8002     *     field selector ( . ) operator (analogously to structures)."
   8003     */
   8004    if (this->instance_name) {
   8005       if (redeclaring_per_vertex) {
   8006          /* When a built-in in an unnamed interface block is redeclared,
   8007           * get_variable_being_redeclared() calls
   8008           * check_builtin_array_max_size() to make sure that built-in array
   8009           * variables aren't redeclared to illegal sizes.  But we're looking
   8010           * at a redeclaration of a named built-in interface block.  So we
   8011           * have to manually call check_builtin_array_max_size() for all parts
   8012           * of the interface that are arrays.
   8013           */
   8014          for (unsigned i = 0; i < num_variables; i++) {
   8015             if (fields[i].type->is_array()) {
   8016                const unsigned size = fields[i].type->array_size();
   8017                check_builtin_array_max_size(fields[i].name, size, loc, state);
   8018             }
   8019          }
   8020       } else {
   8021          validate_identifier(this->instance_name, loc, state);
   8022       }
   8023 
   8024       ir_variable *var;
   8025 
   8026       if (this->array_specifier != NULL) {
   8027          const glsl_type *block_array_type =
   8028             process_array_type(&loc, block_type, this->array_specifier, state);
   8029 
   8030          /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
   8031           *
   8032           *     For uniform blocks declared an array, each individual array
   8033           *     element corresponds to a separate buffer object backing one
   8034           *     instance of the block. As the array size indicates the number
   8035           *     of buffer objects needed, uniform block array declarations
   8036           *     must specify an array size.
   8037           *
   8038           * And a few paragraphs later:
   8039           *
   8040           *     Geometry shader input blocks must be declared as arrays and
   8041           *     follow the array declaration and linking rules for all
   8042           *     geometry shader inputs. All other input and output block
   8043           *     arrays must specify an array size.
   8044           *
   8045           * The same applies to tessellation shaders.
   8046           *
   8047           * The upshot of this is that the only circumstance where an
   8048           * interface array size *doesn't* need to be specified is on a
   8049           * geometry shader input, tessellation control shader input,
   8050           * tessellation control shader output, and tessellation evaluation
   8051           * shader input.
   8052           */
   8053          if (block_array_type->is_unsized_array()) {
   8054             bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
   8055                                 state->stage == MESA_SHADER_TESS_CTRL ||
   8056                                 state->stage == MESA_SHADER_TESS_EVAL;
   8057             bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
   8058 
   8059             if (this->layout.flags.q.in) {
   8060                if (!allow_inputs)
   8061                   _mesa_glsl_error(&loc, state,
   8062                                    "unsized input block arrays not allowed in "
   8063                                    "%s shader",
   8064                                    _mesa_shader_stage_to_string(state->stage));
   8065             } else if (this->layout.flags.q.out) {
   8066                if (!allow_outputs)
   8067                   _mesa_glsl_error(&loc, state,
   8068                                    "unsized output block arrays not allowed in "
   8069                                    "%s shader",
   8070                                    _mesa_shader_stage_to_string(state->stage));
   8071             } else {
   8072                /* by elimination, this is a uniform block array */
   8073                _mesa_glsl_error(&loc, state,
   8074                                 "unsized uniform block arrays not allowed in "
   8075                                 "%s shader",
   8076                                 _mesa_shader_stage_to_string(state->stage));
   8077             }
   8078          }
   8079 
   8080          /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
   8081           *
   8082           *     * Arrays of arrays of blocks are not allowed
   8083           */
   8084          if (state->es_shader && block_array_type->is_array() &&
   8085              block_array_type->fields.array->is_array()) {
   8086             _mesa_glsl_error(&loc, state,
   8087                              "arrays of arrays interface blocks are "
   8088                              "not allowed");
   8089          }
   8090 
   8091          var = new(state) ir_variable(block_array_type,
   8092                                       this->instance_name,
   8093                                       var_mode);
   8094       } else {
   8095          var = new(state) ir_variable(block_type,
   8096                                       this->instance_name,
   8097                                       var_mode);
   8098       }
   8099 
   8100       var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
   8101          ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
   8102 
   8103       if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
   8104          var->data.read_only = true;
   8105 
   8106       var->data.patch = this->layout.flags.q.patch;
   8107 
   8108       if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
   8109          handle_geometry_shader_input_decl(state, loc, var);
   8110       else if ((state->stage == MESA_SHADER_TESS_CTRL ||
   8111            state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
   8112          handle_tess_shader_input_decl(state, loc, var);
   8113       else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
   8114          handle_tess_ctrl_shader_output_decl(state, loc, var);
   8115 
   8116       for (unsigned i = 0; i < num_variables; i++) {
   8117          if (var->data.mode == ir_var_shader_storage)
   8118             apply_memory_qualifiers(var, fields[i]);
   8119       }
   8120 
   8121       if (ir_variable *earlier =
   8122           state->symbols->get_variable(this->instance_name)) {
   8123          if (!redeclaring_per_vertex) {
   8124             _mesa_glsl_error(&loc, state, "`%s' redeclared",
   8125                              this->instance_name);
   8126          }
   8127          earlier->data.how_declared = ir_var_declared_normally;
   8128          earlier->type = var->type;
   8129          earlier->reinit_interface_type(block_type);
   8130          delete var;
   8131       } else {
   8132          if (this->layout.flags.q.explicit_binding) {
   8133             apply_explicit_binding(state, &loc, var, var->type,
   8134                                    &this->layout);
   8135          }
   8136 
   8137          var->data.stream = qual_stream;
   8138          if (layout.flags.q.explicit_location) {
   8139             var->data.location = expl_location;
   8140             var->data.explicit_location = true;
   8141          }
   8142 
   8143          state->symbols->add_variable(var);
   8144          instructions->push_tail(var);
   8145       }
   8146    } else {
   8147       /* In order to have an array size, the block must also be declared with
   8148        * an instance name.
   8149        */
   8150       assert(this->array_specifier == NULL);
   8151 
   8152       for (unsigned i = 0; i < num_variables; i++) {
   8153          ir_variable *var =
   8154             new(state) ir_variable(fields[i].type,
   8155                                    ralloc_strdup(state, fields[i].name),
   8156                                    var_mode);
   8157          var->data.interpolation = fields[i].interpolation;
   8158          var->data.centroid = fields[i].centroid;
   8159          var->data.sample = fields[i].sample;
   8160          var->data.patch = fields[i].patch;
   8161          var->data.stream = qual_stream;
   8162          var->data.location = fields[i].location;
   8163 
   8164          if (fields[i].location != -1)
   8165             var->data.explicit_location = true;
   8166 
   8167          var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
   8168          var->data.xfb_buffer = fields[i].xfb_buffer;
   8169 
   8170          if (fields[i].offset != -1)
   8171             var->data.explicit_xfb_offset = true;
   8172          var->data.offset = fields[i].offset;
   8173 
   8174          var->init_interface_type(block_type);
   8175 
   8176          if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
   8177             var->data.read_only = true;
   8178 
   8179          /* Precision qualifiers do not have any meaning in Desktop GLSL */
   8180          if (state->es_shader) {
   8181             var->data.precision =
   8182                select_gles_precision(fields[i].precision, fields[i].type,
   8183                                      state, &loc);
   8184          }
   8185 
   8186          if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
   8187             var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
   8188                ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
   8189          } else {
   8190             var->data.matrix_layout = fields[i].matrix_layout;
   8191          }
   8192 
   8193          if (var->data.mode == ir_var_shader_storage)
   8194             apply_memory_qualifiers(var, fields[i]);
   8195 
   8196          /* Examine var name here since var may get deleted in the next call */
   8197          bool var_is_gl_id = is_gl_identifier(var->name);
   8198 
   8199          if (redeclaring_per_vertex) {
   8200             bool is_redeclaration;
   8201             var =
   8202                get_variable_being_redeclared(&var, loc, state,
   8203                                              true /* allow_all_redeclarations */,
   8204                                              &is_redeclaration);
   8205             if (!var_is_gl_id || !is_redeclaration) {
   8206                _mesa_glsl_error(&loc, state,
   8207                                 "redeclaration of gl_PerVertex can only "
   8208                                 "include built-in variables");
   8209             } else if (var->data.how_declared == ir_var_declared_normally) {
   8210                _mesa_glsl_error(&loc, state,
   8211                                 "`%s' has already been redeclared",
   8212                                 var->name);
   8213             } else {
   8214                var->data.how_declared = ir_var_declared_in_block;
   8215                var->reinit_interface_type(block_type);
   8216             }
   8217             continue;
   8218          }
   8219 
   8220          if (state->symbols->get_variable(var->name) != NULL)
   8221             _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
   8222 
   8223          /* Propagate the "binding" keyword into this UBO/SSBO's fields.
   8224           * The UBO declaration itself doesn't get an ir_variable unless it
   8225           * has an instance name.  This is ugly.
   8226           */
   8227          if (this->layout.flags.q.explicit_binding) {
   8228             apply_explicit_binding(state, &loc, var,
   8229                                    var->get_interface_type(), &this->layout);
   8230          }
   8231 
   8232          if (var->type->is_unsized_array()) {
   8233             if (var->is_in_shader_storage_block() &&
   8234                 is_unsized_array_last_element(var)) {
   8235                var->data.from_ssbo_unsized_array = true;
   8236             } else {
   8237                /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
   8238                 *
   8239                 * "If an array is declared as the last member of a shader storage
   8240                 * block and the size is not specified at compile-time, it is
   8241                 * sized at run-time. In all other cases, arrays are sized only
   8242                 * at compile-time."
   8243                 *
   8244                 * In desktop GLSL it is allowed to have unsized-arrays that are
   8245                 * not last, as long as we can determine that they are implicitly
   8246                 * sized.
   8247                 */
   8248                if (state->es_shader) {
   8249                   _mesa_glsl_error(&loc, state, "unsized array `%s' "
   8250                                    "definition: only last member of a shader "
   8251                                    "storage block can be defined as unsized "
   8252                                    "array", fields[i].name);
   8253                }
   8254             }
   8255          }
   8256 
   8257          state->symbols->add_variable(var);
   8258          instructions->push_tail(var);
   8259       }
   8260 
   8261       if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
   8262          /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
   8263           *
   8264           *     It is also a compilation error ... to redeclare a built-in
   8265           *     block and then use a member from that built-in block that was
   8266           *     not included in the redeclaration.
   8267           *
   8268           * This appears to be a clarification to the behaviour established
   8269           * for gl_PerVertex by GLSL 1.50, therefore we implement this
   8270           * behaviour regardless of GLSL version.
   8271           *
   8272           * To prevent the shader from using a member that was not included in
   8273           * the redeclaration, we disable any ir_variables that are still
   8274           * associated with the old declaration of gl_PerVertex (since we've
   8275           * already updated all of the variables contained in the new
   8276           * gl_PerVertex to point to it).
   8277           *
   8278           * As a side effect this will prevent
   8279           * validate_intrastage_interface_blocks() from getting confused and
   8280           * thinking there are conflicting definitions of gl_PerVertex in the
   8281           * shader.
   8282           */
   8283          foreach_in_list_safe(ir_instruction, node, instructions) {
   8284             ir_variable *const var = node->as_variable();
   8285             if (var != NULL &&
   8286                 var->get_interface_type() == earlier_per_vertex &&
   8287                 var->data.mode == var_mode) {
   8288                if (var->data.how_declared == ir_var_declared_normally) {
   8289                   _mesa_glsl_error(&loc, state,
   8290                                    "redeclaration of gl_PerVertex cannot "
   8291                                    "follow a redeclaration of `%s'",
   8292                                    var->name);
   8293                }
   8294                state->symbols->disable_variable(var->name);
   8295                var->remove();
   8296             }
   8297          }
   8298       }
   8299    }
   8300 
   8301    return NULL;
   8302 }
   8303 
   8304 
   8305 ir_rvalue *
   8306 ast_tcs_output_layout::hir(exec_list *instructions,
   8307                            struct _mesa_glsl_parse_state *state)
   8308 {
   8309    YYLTYPE loc = this->get_location();
   8310 
   8311    unsigned num_vertices;
   8312    if (!state->out_qualifier->vertices->
   8313           process_qualifier_constant(state, "vertices", &num_vertices,
   8314                                      false)) {
   8315       /* return here to stop cascading incorrect error messages */
   8316      return NULL;
   8317    }
   8318 
   8319    /* If any shader outputs occurred before this declaration and specified an
   8320     * array size, make sure the size they specified is consistent with the
   8321     * primitive type.
   8322     */
   8323    if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
   8324       _mesa_glsl_error(&loc, state,
   8325                        "this tessellation control shader output layout "
   8326                        "specifies %u vertices, but a previous output "
   8327                        "is declared with size %u",
   8328                        num_vertices, state->tcs_output_size);
   8329       return NULL;
   8330    }
   8331 
   8332    state->tcs_output_vertices_specified = true;
   8333 
   8334    /* If any shader outputs occurred before this declaration and did not
   8335     * specify an array size, their size is determined now.
   8336     */
   8337    foreach_in_list (ir_instruction, node, instructions) {
   8338       ir_variable *var = node->as_variable();
   8339       if (var == NULL || var->data.mode != ir_var_shader_out)
   8340          continue;
   8341 
   8342       /* Note: Not all tessellation control shader output are arrays. */
   8343       if (!var->type->is_unsized_array() || var->data.patch)
   8344          continue;
   8345 
   8346       if (var->data.max_array_access >= (int)num_vertices) {
   8347          _mesa_glsl_error(&loc, state,
   8348                           "this tessellation control shader output layout "
   8349                           "specifies %u vertices, but an access to element "
   8350                           "%u of output `%s' already exists", num_vertices,
   8351                           var->data.max_array_access, var->name);
   8352       } else {
   8353          var->type = glsl_type::get_array_instance(var->type->fields.array,
   8354                                                    num_vertices);
   8355       }
   8356    }
   8357 
   8358    return NULL;
   8359 }
   8360 
   8361 
   8362 ir_rvalue *
   8363 ast_gs_input_layout::hir(exec_list *instructions,
   8364                          struct _mesa_glsl_parse_state *state)
   8365 {
   8366    YYLTYPE loc = this->get_location();
   8367 
   8368    /* Should have been prevented by the parser. */
   8369    assert(!state->gs_input_prim_type_specified
   8370           || state->in_qualifier->prim_type == this->prim_type);
   8371 
   8372    /* If any shader inputs occurred before this declaration and specified an
   8373     * array size, make sure the size they specified is consistent with the
   8374     * primitive type.
   8375     */
   8376    unsigned num_vertices = vertices_per_prim(this->prim_type);
   8377    if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
   8378       _mesa_glsl_error(&loc, state,
   8379                        "this geometry shader input layout implies %u vertices"
   8380                        " per primitive, but a previous input is declared"
   8381                        " with size %u", num_vertices, state->gs_input_size);
   8382       return NULL;
   8383    }
   8384 
   8385    state->gs_input_prim_type_specified = true;
   8386 
   8387    /* If any shader inputs occurred before this declaration and did not
   8388     * specify an array size, their size is determined now.
   8389     */
   8390    foreach_in_list(ir_instruction, node, instructions) {
   8391       ir_variable *var = node->as_variable();
   8392       if (var == NULL || var->data.mode != ir_var_shader_in)
   8393          continue;
   8394 
   8395       /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
   8396        * array; skip it.
   8397        */
   8398 
   8399       if (var->type->is_unsized_array()) {
   8400          if (var->data.max_array_access >= (int)num_vertices) {
   8401             _mesa_glsl_error(&loc, state,
   8402                              "this geometry shader input layout implies %u"
   8403                              " vertices, but an access to element %u of input"
   8404                              " `%s' already exists", num_vertices,
   8405                              var->data.max_array_access, var->name);
   8406          } else {
   8407             var->type = glsl_type::get_array_instance(var->type->fields.array,
   8408                                                       num_vertices);
   8409          }
   8410       }
   8411    }
   8412 
   8413    return NULL;
   8414 }
   8415 
   8416 
   8417 ir_rvalue *
   8418 ast_cs_input_layout::hir(exec_list *instructions,
   8419                          struct _mesa_glsl_parse_state *state)
   8420 {
   8421    YYLTYPE loc = this->get_location();
   8422 
   8423    /* From the ARB_compute_shader specification:
   8424     *
   8425     *     If the local size of the shader in any dimension is greater
   8426     *     than the maximum size supported by the implementation for that
   8427     *     dimension, a compile-time error results.
   8428     *
   8429     * It is not clear from the spec how the error should be reported if
   8430     * the total size of the work group exceeds
   8431     * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
   8432     * report it at compile time as well.
   8433     */
   8434    GLuint64 total_invocations = 1;
   8435    unsigned qual_local_size[3];
   8436    for (int i = 0; i < 3; i++) {
   8437 
   8438       char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
   8439                                              'x' + i);
   8440       /* Infer a local_size of 1 for unspecified dimensions */
   8441       if (this->local_size[i] == NULL) {
   8442          qual_local_size[i] = 1;
   8443       } else if (!this->local_size[i]->
   8444              process_qualifier_constant(state, local_size_str,
   8445                                         &qual_local_size[i], false)) {
   8446          ralloc_free(local_size_str);
   8447          return NULL;
   8448       }
   8449       ralloc_free(local_size_str);
   8450 
   8451       if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
   8452          _mesa_glsl_error(&loc, state,
   8453                           "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
   8454                           " (%d)", 'x' + i,
   8455                           state->ctx->Const.MaxComputeWorkGroupSize[i]);
   8456          break;
   8457       }
   8458       total_invocations *= qual_local_size[i];
   8459       if (total_invocations >
   8460           state->ctx->Const.MaxComputeWorkGroupInvocations) {
   8461          _mesa_glsl_error(&loc, state,
   8462                           "product of local_sizes exceeds "
   8463                           "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
   8464                           state->ctx->Const.MaxComputeWorkGroupInvocations);
   8465          break;
   8466       }
   8467    }
   8468 
   8469    /* If any compute input layout declaration preceded this one, make sure it
   8470     * was consistent with this one.
   8471     */
   8472    if (state->cs_input_local_size_specified) {
   8473       for (int i = 0; i < 3; i++) {
   8474          if (state->cs_input_local_size[i] != qual_local_size[i]) {
   8475             _mesa_glsl_error(&loc, state,
   8476                              "compute shader input layout does not match"
   8477                              " previous declaration");
   8478             return NULL;
   8479          }
   8480       }
   8481    }
   8482 
   8483    /* The ARB_compute_variable_group_size spec says:
   8484     *
   8485     *     If a compute shader including a *local_size_variable* qualifier also
   8486     *     declares a fixed local group size using the *local_size_x*,
   8487     *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
   8488     *     results
   8489     */
   8490    if (state->cs_input_local_size_variable_specified) {
   8491       _mesa_glsl_error(&loc, state,
   8492                        "compute shader can't include both a variable and a "
   8493                        "fixed local group size");
   8494       return NULL;
   8495    }
   8496 
   8497    state->cs_input_local_size_specified = true;
   8498    for (int i = 0; i < 3; i++)
   8499       state->cs_input_local_size[i] = qual_local_size[i];
   8500 
   8501    /* We may now declare the built-in constant gl_WorkGroupSize (see
   8502     * builtin_variable_generator::generate_constants() for why we didn't
   8503     * declare it earlier).
   8504     */
   8505    ir_variable *var = new(state->symbols)
   8506       ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
   8507    var->data.how_declared = ir_var_declared_implicitly;
   8508    var->data.read_only = true;
   8509    instructions->push_tail(var);
   8510    state->symbols->add_variable(var);
   8511    ir_constant_data data;
   8512    memset(&data, 0, sizeof(data));
   8513    for (int i = 0; i < 3; i++)
   8514       data.u[i] = qual_local_size[i];
   8515    var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
   8516    var->constant_initializer =
   8517       new(var) ir_constant(glsl_type::uvec3_type, &data);
   8518    var->data.has_initializer = true;
   8519 
   8520    return NULL;
   8521 }
   8522 
   8523 
   8524 static void
   8525 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
   8526                                exec_list *instructions)
   8527 {
   8528    bool gl_FragColor_assigned = false;
   8529    bool gl_FragData_assigned = false;
   8530    bool gl_FragSecondaryColor_assigned = false;
   8531    bool gl_FragSecondaryData_assigned = false;
   8532    bool user_defined_fs_output_assigned = false;
   8533    ir_variable *user_defined_fs_output = NULL;
   8534 
   8535    /* It would be nice to have proper location information. */
   8536    YYLTYPE loc;
   8537    memset(&loc, 0, sizeof(loc));
   8538 
   8539    foreach_in_list(ir_instruction, node, instructions) {
   8540       ir_variable *var = node->as_variable();
   8541 
   8542       if (!var || !var->data.assigned)
   8543          continue;
   8544 
   8545       if (strcmp(var->name, "gl_FragColor") == 0)
   8546          gl_FragColor_assigned = true;
   8547       else if (strcmp(var->name, "gl_FragData") == 0)
   8548          gl_FragData_assigned = true;
   8549         else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
   8550          gl_FragSecondaryColor_assigned = true;
   8551         else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
   8552          gl_FragSecondaryData_assigned = true;
   8553       else if (!is_gl_identifier(var->name)) {
   8554          if (state->stage == MESA_SHADER_FRAGMENT &&
   8555              var->data.mode == ir_var_shader_out) {
   8556             user_defined_fs_output_assigned = true;
   8557             user_defined_fs_output = var;
   8558          }
   8559       }
   8560    }
   8561 
   8562    /* From the GLSL 1.30 spec:
   8563     *
   8564     *     "If a shader statically assigns a value to gl_FragColor, it
   8565     *      may not assign a value to any element of gl_FragData. If a
   8566     *      shader statically writes a value to any element of
   8567     *      gl_FragData, it may not assign a value to
   8568     *      gl_FragColor. That is, a shader may assign values to either
   8569     *      gl_FragColor or gl_FragData, but not both. Multiple shaders
   8570     *      linked together must also consistently write just one of
   8571     *      these variables.  Similarly, if user declared output
   8572     *      variables are in use (statically assigned to), then the
   8573     *      built-in variables gl_FragColor and gl_FragData may not be
   8574     *      assigned to. These incorrect usages all generate compile
   8575     *      time errors."
   8576     */
   8577    if (gl_FragColor_assigned && gl_FragData_assigned) {
   8578       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8579                        "`gl_FragColor' and `gl_FragData'");
   8580    } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
   8581       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8582                        "`gl_FragColor' and `%s'",
   8583                        user_defined_fs_output->name);
   8584    } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
   8585       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8586                        "`gl_FragSecondaryColorEXT' and"
   8587                        " `gl_FragSecondaryDataEXT'");
   8588    } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
   8589       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8590                        "`gl_FragColor' and"
   8591                        " `gl_FragSecondaryDataEXT'");
   8592    } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
   8593       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8594                        "`gl_FragData' and"
   8595                        " `gl_FragSecondaryColorEXT'");
   8596    } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
   8597       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
   8598                        "`gl_FragData' and `%s'",
   8599                        user_defined_fs_output->name);
   8600    }
   8601 
   8602    if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
   8603        !state->EXT_blend_func_extended_enable) {
   8604       _mesa_glsl_error(&loc, state,
   8605                        "Dual source blending requires EXT_blend_func_extended");
   8606    }
   8607 }
   8608 
   8609 
   8610 static void
   8611 remove_per_vertex_blocks(exec_list *instructions,
   8612                          _mesa_glsl_parse_state *state, ir_variable_mode mode)
   8613 {
   8614    /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
   8615     * if it exists in this shader type.
   8616     */
   8617    const glsl_type *per_vertex = NULL;
   8618    switch (mode) {
   8619    case ir_var_shader_in:
   8620       if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
   8621          per_vertex = gl_in->get_interface_type();
   8622       break;
   8623    case ir_var_shader_out:
   8624       if (ir_variable *gl_Position =
   8625           state->symbols->get_variable("gl_Position")) {
   8626          per_vertex = gl_Position->get_interface_type();
   8627       }
   8628       break;
   8629    default:
   8630       assert(!"Unexpected mode");
   8631       break;
   8632    }
   8633 
   8634    /* If we didn't find a built-in gl_PerVertex interface block, then we don't
   8635     * need to do anything.
   8636     */
   8637    if (per_vertex == NULL)
   8638       return;
   8639 
   8640    /* If the interface block is used by the shader, then we don't need to do
   8641     * anything.
   8642     */
   8643    interface_block_usage_visitor v(mode, per_vertex);
   8644    v.run(instructions);
   8645    if (v.usage_found())
   8646       return;
   8647 
   8648    /* Remove any ir_variable declarations that refer to the interface block
   8649     * we're removing.
   8650     */
   8651    foreach_in_list_safe(ir_instruction, node, instructions) {
   8652       ir_variable *const var = node->as_variable();
   8653       if (var != NULL && var->get_interface_type() == per_vertex &&
   8654           var->data.mode == mode) {
   8655          state->symbols->disable_variable(var->name);
   8656          var->remove();
   8657       }
   8658    }
   8659 }
   8660