Home | History | Annotate | Download | only in common
      1 /*
      2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
      3  *
      4  * This source code is subject to the terms of the BSD 2 Clause License and
      5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
      6  * was not distributed with this source code in the LICENSE file, you can
      7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
      8  * Media Patent License 1.0 was not distributed with this source code in the
      9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
     10  */
     11 
     12 #ifndef AOM_AV1_COMMON_ONYXC_INT_H_
     13 #define AOM_AV1_COMMON_ONYXC_INT_H_
     14 
     15 #include "config/aom_config.h"
     16 #include "config/av1_rtcd.h"
     17 
     18 #include "aom/internal/aom_codec_internal.h"
     19 #include "aom_util/aom_thread.h"
     20 #include "av1/common/alloccommon.h"
     21 #include "av1/common/av1_loopfilter.h"
     22 #include "av1/common/entropy.h"
     23 #include "av1/common/entropymode.h"
     24 #include "av1/common/entropymv.h"
     25 #include "av1/common/enums.h"
     26 #include "av1/common/frame_buffers.h"
     27 #include "av1/common/mv.h"
     28 #include "av1/common/quant_common.h"
     29 #include "av1/common/restoration.h"
     30 #include "av1/common/tile_common.h"
     31 #include "av1/common/timing.h"
     32 #include "av1/common/odintrin.h"
     33 #include "av1/encoder/hash_motion.h"
     34 #include "aom_dsp/grain_synthesis.h"
     35 #include "aom_dsp/grain_table.h"
     36 #ifdef __cplusplus
     37 extern "C" {
     38 #endif
     39 
     40 #if defined(__clang__) && defined(__has_warning)
     41 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
     42 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]]  // NOLINT
     43 #endif
     44 #elif defined(__GNUC__) && __GNUC__ >= 7
     45 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough))  // NOLINT
     46 #endif
     47 
     48 #ifndef AOM_FALLTHROUGH_INTENDED
     49 #define AOM_FALLTHROUGH_INTENDED \
     50   do {                           \
     51   } while (0)
     52 #endif
     53 
     54 #define CDEF_MAX_STRENGTHS 16
     55 
     56 /* Constant values while waiting for the sequence header */
     57 #define FRAME_ID_LENGTH 15
     58 #define DELTA_FRAME_ID_LENGTH 14
     59 
     60 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
     61 // Extra frame context which is always kept at default values
     62 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
     63 #define PRIMARY_REF_BITS 3
     64 #define PRIMARY_REF_NONE 7
     65 
     66 #define NUM_PING_PONG_BUFFERS 2
     67 
     68 #define MAX_NUM_TEMPORAL_LAYERS 8
     69 #define MAX_NUM_SPATIAL_LAYERS 4
     70 /* clang-format off */
     71 // clang-format seems to think this is a pointer dereference and not a
     72 // multiplication.
     73 #define MAX_NUM_OPERATING_POINTS \
     74   MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS
     75 /* clang-format on*/
     76 
     77 // TODO(jingning): Turning this on to set up transform coefficient
     78 // processing timer.
     79 #define TXCOEFF_TIMER 0
     80 #define TXCOEFF_COST_TIMER 0
     81 
     82 enum {
     83   SINGLE_REFERENCE = 0,
     84   COMPOUND_REFERENCE = 1,
     85   REFERENCE_MODE_SELECT = 2,
     86   REFERENCE_MODES = 3,
     87 } UENUM1BYTE(REFERENCE_MODE);
     88 
     89 enum {
     90   /**
     91    * Frame context updates are disabled
     92    */
     93   REFRESH_FRAME_CONTEXT_DISABLED,
     94   /**
     95    * Update frame context to values resulting from backward probability
     96    * updates based on entropy/counts in the decoded frame
     97    */
     98   REFRESH_FRAME_CONTEXT_BACKWARD,
     99 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
    100 
    101 #define MFMV_STACK_SIZE 3
    102 typedef struct {
    103   int_mv mfmv0;
    104   uint8_t ref_frame_offset;
    105 } TPL_MV_REF;
    106 
    107 typedef struct {
    108   int_mv mv;
    109   MV_REFERENCE_FRAME ref_frame;
    110 } MV_REF;
    111 
    112 
    113 typedef struct RefCntBuffer {
    114   // For a RefCntBuffer, the following are reference-holding variables:
    115   // - cm->ref_frame_map[]
    116   // - cm->cur_frame
    117   // - cm->scaled_ref_buf[] (encoder only)
    118   // - cm->next_ref_frame_map[] (decoder only)
    119   // - pbi->output_frame_index[] (decoder only)
    120   // With that definition, 'ref_count' is the number of reference-holding
    121   // variables that are currently referencing this buffer.
    122   // For example:
    123   // - suppose this buffer is at index 'k' in the buffer pool, and
    124   // - Total 'n' of the variables / array elements above have value 'k' (that
    125   // is, they are pointing to buffer at index 'k').
    126   // Then, pool->frame_bufs[k].ref_count = n.
    127   int ref_count;
    128 
    129   unsigned int order_hint;
    130   unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
    131 
    132   MV_REF *mvs;
    133   uint8_t *seg_map;
    134   struct segmentation seg;
    135   int mi_rows;
    136   int mi_cols;
    137   // Width and height give the size of the buffer (before any upscaling, unlike
    138   // the sizes that can be derived from the buf structure)
    139   int width;
    140   int height;
    141   WarpedMotionParams global_motion[REF_FRAMES];
    142   int showable_frame;  // frame can be used as show existing frame in future
    143   uint8_t film_grain_params_present;
    144   aom_film_grain_t film_grain_params;
    145   aom_codec_frame_buffer_t raw_frame_buffer;
    146   YV12_BUFFER_CONFIG buf;
    147   hash_table hash_table;
    148   FRAME_TYPE frame_type;
    149 
    150   // This is only used in the encoder but needs to be indexed per ref frame
    151   // so it's extremely convenient to keep it here.
    152   int interp_filter_selected[SWITCHABLE];
    153 
    154   // Inter frame reference frame delta for loop filter
    155   int8_t ref_deltas[REF_FRAMES];
    156 
    157   // 0 = ZERO_MV, MV
    158   int8_t mode_deltas[MAX_MODE_LF_DELTAS];
    159 
    160   FRAME_CONTEXT frame_context;
    161 } RefCntBuffer;
    162 
    163 typedef struct BufferPool {
    164 // Protect BufferPool from being accessed by several FrameWorkers at
    165 // the same time during frame parallel decode.
    166 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
    167 // TODO(wtc): Remove this. See
    168 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
    169 #if CONFIG_MULTITHREAD
    170   pthread_mutex_t pool_mutex;
    171 #endif
    172 
    173   // Private data associated with the frame buffer callbacks.
    174   void *cb_priv;
    175 
    176   aom_get_frame_buffer_cb_fn_t get_fb_cb;
    177   aom_release_frame_buffer_cb_fn_t release_fb_cb;
    178 
    179   RefCntBuffer frame_bufs[FRAME_BUFFERS];
    180 
    181   // Frame buffers allocated internally by the codec.
    182   InternalFrameBufferList int_frame_buffers;
    183 } BufferPool;
    184 
    185 typedef struct {
    186   int cdef_pri_damping;
    187   int cdef_sec_damping;
    188   int nb_cdef_strengths;
    189   int cdef_strengths[CDEF_MAX_STRENGTHS];
    190   int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
    191   int cdef_bits;
    192 } CdefInfo;
    193 
    194 typedef struct {
    195   int delta_q_present_flag;
    196   // Resolution of delta quant
    197   int delta_q_res;
    198   int delta_lf_present_flag;
    199   // Resolution of delta lf level
    200   int delta_lf_res;
    201   // This is a flag for number of deltas of loop filter level
    202   // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
    203   // 1: use separate deltas for each filter level
    204   int delta_lf_multi;
    205 } DeltaQInfo;
    206 
    207 typedef struct {
    208   int enable_order_hint;           // 0 - disable order hint, and related tools
    209   int order_hint_bits_minus_1;     // dist_wtd_comp, ref_frame_mvs,
    210                                    // frame_sign_bias
    211                                    // if 0, enable_dist_wtd_comp and
    212                                    // enable_ref_frame_mvs must be set as 0.
    213   int enable_dist_wtd_comp;        // 0 - disable dist-wtd compound modes
    214                                    // 1 - enable it
    215   int enable_ref_frame_mvs;        // 0 - disable ref frame mvs
    216                                    // 1 - enable it
    217 } OrderHintInfo;
    218 
    219 // Sequence header structure.
    220 // Note: All syntax elements of sequence_header_obu that need to be
    221 // bit-identical across multiple sequence headers must be part of this struct,
    222 // so that consistency is checked by are_seq_headers_consistent() function.
    223 typedef struct SequenceHeader {
    224   int num_bits_width;
    225   int num_bits_height;
    226   int max_frame_width;
    227   int max_frame_height;
    228   uint8_t frame_id_numbers_present_flag;
    229   int frame_id_length;
    230   int delta_frame_id_length;
    231   BLOCK_SIZE sb_size;  // Size of the superblock used for this frame
    232   int mib_size;        // Size of the superblock in units of MI blocks
    233   int mib_size_log2;   // Log 2 of above.
    234 
    235   OrderHintInfo order_hint_info;
    236 
    237   uint8_t force_screen_content_tools;  // 0 - force off
    238                                        // 1 - force on
    239                                        // 2 - adaptive
    240   uint8_t still_picture;               // Video is a single frame still picture
    241   uint8_t reduced_still_picture_hdr;   // Use reduced header for still picture
    242   uint8_t force_integer_mv;            // 0 - Don't force. MV can use subpel
    243                                        // 1 - force to integer
    244                                        // 2 - adaptive
    245   uint8_t enable_filter_intra;         // enables/disables filterintra
    246   uint8_t enable_intra_edge_filter;    // enables/disables edge upsampling
    247   uint8_t enable_interintra_compound;  // enables/disables interintra_compound
    248   uint8_t enable_masked_compound;      // enables/disables masked compound
    249   uint8_t enable_dual_filter;          // 0 - disable dual interpolation filter
    250                                        // 1 - enable vert/horz filter selection
    251   uint8_t enable_warped_motion;        // 0 - disable warp for the sequence
    252                                        // 1 - enable warp for the sequence
    253   uint8_t enable_superres;             // 0 - Disable superres for the sequence
    254                                        //     and no frame level superres flag
    255                                        // 1 - Enable superres for the sequence
    256                                        //     enable per-frame superres flag
    257   uint8_t enable_cdef;                 // To turn on/off CDEF
    258   uint8_t enable_restoration;          // To turn on/off loop restoration
    259   BITSTREAM_PROFILE profile;
    260 
    261   // Operating point info.
    262   int operating_points_cnt_minus_1;
    263   int operating_point_idc[MAX_NUM_OPERATING_POINTS];
    264   uint8_t display_model_info_present_flag;
    265   uint8_t decoder_model_info_present_flag;
    266   AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
    267   uint8_t tier[MAX_NUM_OPERATING_POINTS];  // seq_tier in the spec. One bit: 0
    268                                            // or 1.
    269 
    270   // Color config.
    271   aom_bit_depth_t bit_depth;  // AOM_BITS_8 in profile 0 or 1,
    272                               // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
    273   uint8_t use_highbitdepth;   // If true, we need to use 16bit frame buffers.
    274   uint8_t monochrome;         // Monochorme video
    275   aom_color_primaries_t color_primaries;
    276   aom_transfer_characteristics_t transfer_characteristics;
    277   aom_matrix_coefficients_t matrix_coefficients;
    278   int color_range;
    279   int subsampling_x;          // Chroma subsampling for x
    280   int subsampling_y;          // Chroma subsampling for y
    281   aom_chroma_sample_position_t chroma_sample_position;
    282   uint8_t separate_uv_delta_q;
    283   uint8_t film_grain_params_present;
    284 } SequenceHeader;
    285 
    286 typedef struct {
    287     int skip_mode_allowed;
    288     int skip_mode_flag;
    289     int ref_frame_idx_0;
    290     int ref_frame_idx_1;
    291 } SkipModeInfo;
    292 
    293 typedef struct {
    294   FRAME_TYPE frame_type;
    295   REFERENCE_MODE reference_mode;
    296 
    297   unsigned int order_hint;
    298   unsigned int frame_number;
    299   SkipModeInfo skip_mode_info;
    300   int refresh_frame_flags;  // Which ref frames are overwritten by this frame
    301   int frame_refs_short_signaling;
    302 } CurrentFrame;
    303 
    304 typedef struct AV1Common {
    305   CurrentFrame current_frame;
    306   struct aom_internal_error_info error;
    307   int width;
    308   int height;
    309   int render_width;
    310   int render_height;
    311   int timing_info_present;
    312   aom_timing_info_t timing_info;
    313   int buffer_removal_time_present;
    314   aom_dec_model_info_t buffer_model;
    315   aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
    316   aom_op_timing_info_t op_frame_timing[MAX_NUM_OPERATING_POINTS + 1];
    317   uint32_t frame_presentation_time;
    318 
    319   int context_update_tile_id;
    320 
    321   // Scale of the current frame with respect to itself.
    322   struct scale_factors sf_identity;
    323 
    324   RefCntBuffer *prev_frame;
    325 
    326   // TODO(hkuang): Combine this with cur_buf in macroblockd.
    327   RefCntBuffer *cur_frame;
    328 
    329   // For encoder, we have a two-level mapping from reference frame type to the
    330   // corresponding buffer in the buffer pool:
    331   // * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
    332   // EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
    333   // * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
    334   // the reference counted buffer structure RefCntBuffer, taken from the buffer
    335   // pool cm->buffer_pool->frame_bufs.
    336   //
    337   // LAST_FRAME,                        ...,      EXTREF_FRAME
    338   //      |                                           |
    339   //      v                                           v
    340   // remapped_ref_idx[LAST_FRAME - 1],  ...,  remapped_ref_idx[EXTREF_FRAME - 1]
    341   //      |                                           |
    342   //      v                                           v
    343   // ref_frame_map[],                   ...,     ref_frame_map[]
    344   //
    345   // Note: INTRA_FRAME always refers to the current frame, so there's no need to
    346   // have a remapped index for the same.
    347   int remapped_ref_idx[REF_FRAMES];
    348 
    349   struct scale_factors ref_scale_factors[REF_FRAMES];
    350 
    351   // For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
    352   // the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
    353   // For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
    354   // remapped reference index 'j' (that is, original reference type 'i') to
    355   // a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
    356   RefCntBuffer *ref_frame_map[REF_FRAMES];
    357 
    358   // Prepare ref_frame_map for the next frame.
    359   // Only used in frame parallel decode.
    360   RefCntBuffer *next_ref_frame_map[REF_FRAMES];
    361   FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
    362 
    363   int show_frame;
    364   int showable_frame;  // frame can be used as show existing frame in future
    365   int show_existing_frame;
    366 
    367   uint8_t disable_cdf_update;
    368   int allow_high_precision_mv;
    369   uint8_t cur_frame_force_integer_mv;  // 0 the default in AOM, 1 only integer
    370 
    371   uint8_t allow_screen_content_tools;
    372   int allow_intrabc;
    373   int allow_warped_motion;
    374 
    375   // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
    376   // MB_MODE_INFO (8-pixel) units.
    377   int MBs;
    378   int mb_rows, mi_rows;
    379   int mb_cols, mi_cols;
    380   int mi_stride;
    381 
    382   /* profile settings */
    383   TX_MODE tx_mode;
    384 
    385 #if CONFIG_ENTROPY_STATS
    386   int coef_cdf_category;
    387 #endif
    388 
    389   int base_qindex;
    390   int y_dc_delta_q;
    391   int u_dc_delta_q;
    392   int v_dc_delta_q;
    393   int u_ac_delta_q;
    394   int v_ac_delta_q;
    395 
    396   // The dequantizers below are true dequantizers used only in the
    397   // dequantization process.  They have the same coefficient
    398   // shift/scale as TX.
    399   int16_t y_dequant_QTX[MAX_SEGMENTS][2];
    400   int16_t u_dequant_QTX[MAX_SEGMENTS][2];
    401   int16_t v_dequant_QTX[MAX_SEGMENTS][2];
    402 
    403   // Global quant matrix tables
    404   const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
    405   const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
    406 
    407   // Local quant matrix tables for each frame
    408   const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
    409   const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
    410   const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
    411 
    412   // Encoder
    413   int using_qmatrix;
    414   int qm_y;
    415   int qm_u;
    416   int qm_v;
    417   int min_qmlevel;
    418   int max_qmlevel;
    419   int use_quant_b_adapt;
    420 
    421   /* We allocate a MB_MODE_INFO struct for each macroblock, together with
    422      an extra row on top and column on the left to simplify prediction. */
    423   int mi_alloc_size;
    424   MB_MODE_INFO *mip; /* Base of allocated array */
    425   MB_MODE_INFO *mi;  /* Corresponds to upper left visible macroblock */
    426 
    427   // TODO(agrange): Move prev_mi into encoder structure.
    428   // prev_mip and prev_mi will only be allocated in encoder.
    429   MB_MODE_INFO *prev_mip; /* MB_MODE_INFO array 'mip' from last decoded frame */
    430   MB_MODE_INFO *prev_mi;  /* 'mi' from last frame (points into prev_mip) */
    431 
    432   // Separate mi functions between encoder and decoder.
    433   int (*alloc_mi)(struct AV1Common *cm, int mi_size);
    434   void (*free_mi)(struct AV1Common *cm);
    435   void (*setup_mi)(struct AV1Common *cm);
    436 
    437   // Grid of pointers to 8x8 MB_MODE_INFO structs.  Any 8x8 not in the visible
    438   // area will be NULL.
    439   MB_MODE_INFO **mi_grid_base;
    440   MB_MODE_INFO **mi_grid_visible;
    441   MB_MODE_INFO **prev_mi_grid_base;
    442   MB_MODE_INFO **prev_mi_grid_visible;
    443 
    444   // Whether to use previous frames' motion vectors for prediction.
    445   int allow_ref_frame_mvs;
    446 
    447   uint8_t *last_frame_seg_map;
    448 
    449   InterpFilter interp_filter;
    450 
    451   int switchable_motion_mode;
    452 
    453   loop_filter_info_n lf_info;
    454   // The denominator of the superres scale; the numerator is fixed.
    455   uint8_t superres_scale_denominator;
    456   int superres_upscaled_width;
    457   int superres_upscaled_height;
    458   RestorationInfo rst_info[MAX_MB_PLANE];
    459 
    460   // Pointer to a scratch buffer used by self-guided restoration
    461   int32_t *rst_tmpbuf;
    462   RestorationLineBuffers *rlbs;
    463 
    464   // Output of loop restoration
    465   YV12_BUFFER_CONFIG rst_frame;
    466 
    467   // Flag signaling how frame contexts should be updated at the end of
    468   // a frame decode
    469   REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
    470 
    471   int ref_frame_sign_bias[REF_FRAMES]; /* Two state 0, 1 */
    472 
    473   struct loopfilter lf;
    474   struct segmentation seg;
    475   int coded_lossless;  // frame is fully lossless at the coded resolution.
    476   int all_lossless;    // frame is fully lossless at the upscaled resolution.
    477 
    478   int reduced_tx_set_used;
    479 
    480   // Context probabilities for reference frame prediction
    481   MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS];
    482   MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS];
    483 
    484   FRAME_CONTEXT *fc;              /* this frame entropy */
    485   FRAME_CONTEXT *default_frame_context;
    486   int primary_ref_frame;
    487 
    488   int error_resilient_mode;
    489 
    490   int tile_cols, tile_rows;
    491 
    492   int max_tile_width_sb;
    493   int min_log2_tile_cols;
    494   int max_log2_tile_cols;
    495   int max_log2_tile_rows;
    496   int min_log2_tile_rows;
    497   int min_log2_tiles;
    498   int max_tile_height_sb;
    499   int uniform_tile_spacing_flag;
    500   int log2_tile_cols;                        // only valid for uniform tiles
    501   int log2_tile_rows;                        // only valid for uniform tiles
    502   int tile_col_start_sb[MAX_TILE_COLS + 1];  // valid for 0 <= i <= tile_cols
    503   int tile_row_start_sb[MAX_TILE_ROWS + 1];  // valid for 0 <= i <= tile_rows
    504   int tile_width, tile_height;               // In MI units
    505   int min_inner_tile_width;                  // min width of non-rightmost tile
    506 
    507   unsigned int large_scale_tile;
    508   unsigned int single_tile_decoding;
    509 
    510   int byte_alignment;
    511   int skip_loop_filter;
    512   int skip_film_grain;
    513 
    514   // External BufferPool passed from outside.
    515   BufferPool *buffer_pool;
    516 
    517   PARTITION_CONTEXT **above_seg_context;
    518   ENTROPY_CONTEXT **above_context[MAX_MB_PLANE];
    519   TXFM_CONTEXT **above_txfm_context;
    520   WarpedMotionParams global_motion[REF_FRAMES];
    521   aom_film_grain_t film_grain_params;
    522 
    523   CdefInfo cdef_info;
    524   DeltaQInfo delta_q_info;  // Delta Q and Delta LF parameters
    525 
    526   int num_tg;
    527   SequenceHeader seq_params;
    528   int current_frame_id;
    529   int ref_frame_id[REF_FRAMES];
    530   int valid_for_referencing[REF_FRAMES];
    531   TPL_MV_REF *tpl_mvs;
    532   int tpl_mvs_mem_size;
    533   // TODO(jingning): This can be combined with sign_bias later.
    534   int8_t ref_frame_side[REF_FRAMES];
    535 
    536   int is_annexb;
    537 
    538   int temporal_layer_id;
    539   int spatial_layer_id;
    540   unsigned int number_temporal_layers;
    541   unsigned int number_spatial_layers;
    542   int num_allocated_above_context_mi_col;
    543   int num_allocated_above_contexts;
    544   int num_allocated_above_context_planes;
    545 
    546 #if TXCOEFF_TIMER
    547   int64_t cum_txcoeff_timer;
    548   int64_t txcoeff_timer;
    549   int txb_count;
    550 #endif
    551 
    552 #if TXCOEFF_COST_TIMER
    553   int64_t cum_txcoeff_cost_timer;
    554   int64_t txcoeff_cost_timer;
    555   int64_t txcoeff_cost_count;
    556 #endif
    557   const cfg_options_t *options;
    558   int is_decoding;
    559 } AV1_COMMON;
    560 
    561 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
    562 // frame reference count.
    563 static void lock_buffer_pool(BufferPool *const pool) {
    564 #if CONFIG_MULTITHREAD
    565   pthread_mutex_lock(&pool->pool_mutex);
    566 #else
    567   (void)pool;
    568 #endif
    569 }
    570 
    571 static void unlock_buffer_pool(BufferPool *const pool) {
    572 #if CONFIG_MULTITHREAD
    573   pthread_mutex_unlock(&pool->pool_mutex);
    574 #else
    575   (void)pool;
    576 #endif
    577 }
    578 
    579 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
    580   if (index < 0 || index >= REF_FRAMES) return NULL;
    581   if (cm->ref_frame_map[index] == NULL) return NULL;
    582   return &cm->ref_frame_map[index]->buf;
    583 }
    584 
    585 static INLINE int get_free_fb(AV1_COMMON *cm) {
    586   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
    587   int i;
    588 
    589   lock_buffer_pool(cm->buffer_pool);
    590   for (i = 0; i < FRAME_BUFFERS; ++i)
    591     if (frame_bufs[i].ref_count == 0) break;
    592 
    593   if (i != FRAME_BUFFERS) {
    594     if (frame_bufs[i].buf.use_external_reference_buffers) {
    595       // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
    596       // external reference buffers. Restore the buffer pointers to point to the
    597       // internally allocated memory.
    598       YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
    599       ybf->y_buffer = ybf->store_buf_adr[0];
    600       ybf->u_buffer = ybf->store_buf_adr[1];
    601       ybf->v_buffer = ybf->store_buf_adr[2];
    602       ybf->use_external_reference_buffers = 0;
    603     }
    604 
    605     frame_bufs[i].ref_count = 1;
    606   } else {
    607     // We should never run out of free buffers. If this assertion fails, there
    608     // is a reference leak.
    609     assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
    610     // Reset i to be INVALID_IDX to indicate no free buffer found.
    611     i = INVALID_IDX;
    612   }
    613 
    614   unlock_buffer_pool(cm->buffer_pool);
    615   return i;
    616 }
    617 
    618 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
    619   // Release the previously-used frame-buffer
    620   if (cm->cur_frame != NULL) {
    621     --cm->cur_frame->ref_count;
    622     cm->cur_frame = NULL;
    623   }
    624 
    625   // Assign a new framebuffer
    626   const int new_fb_idx = get_free_fb(cm);
    627   if (new_fb_idx == INVALID_IDX) return NULL;
    628 
    629   cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
    630   cm->cur_frame->buf.buf_8bit_valid = 0;
    631   av1_zero(cm->cur_frame->interp_filter_selected);
    632   return cm->cur_frame;
    633 }
    634 
    635 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
    636 // counts accordingly.
    637 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
    638                                        RefCntBuffer *rhs_ptr) {
    639   RefCntBuffer *const old_ptr = *lhs_ptr;
    640   if (old_ptr != NULL) {
    641     assert(old_ptr->ref_count > 0);
    642     // One less reference to the buffer at 'old_ptr', so decrease ref count.
    643     --old_ptr->ref_count;
    644   }
    645 
    646   *lhs_ptr = rhs_ptr;
    647   // One more reference to the buffer at 'rhs_ptr', so increase ref count.
    648   ++rhs_ptr->ref_count;
    649 }
    650 
    651 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
    652   return cm->current_frame.frame_type == KEY_FRAME ||
    653       cm->current_frame.frame_type == INTRA_ONLY_FRAME;
    654 }
    655 
    656 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
    657   return cm->current_frame.frame_type == S_FRAME;
    658 }
    659 
    660 // These functions take a reference frame label between LAST_FRAME and
    661 // EXTREF_FRAME inclusive.  Note that this is different to the indexing
    662 // previously used by the frame_refs[] array.
    663 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
    664                                         const MV_REFERENCE_FRAME ref_frame) {
    665   return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
    666              ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
    667              : INVALID_IDX;
    668 }
    669 
    670 static INLINE RefCntBuffer *get_ref_frame_buf(
    671     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
    672   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
    673   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
    674 }
    675 
    676 // Both const and non-const versions of this function are provided so that it
    677 // can be used with a const AV1_COMMON if needed.
    678 static INLINE const struct scale_factors *get_ref_scale_factors_const(
    679     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
    680   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
    681   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
    682 }
    683 
    684 static INLINE struct scale_factors *get_ref_scale_factors(
    685     AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
    686   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
    687   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
    688 }
    689 
    690 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
    691     const AV1_COMMON *const cm) {
    692   if (cm->primary_ref_frame == PRIMARY_REF_NONE) return NULL;
    693   const int map_idx = get_ref_frame_map_idx(cm, cm->primary_ref_frame + 1);
    694   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
    695 }
    696 
    697 // Returns 1 if this frame might allow mvs from some reference frame.
    698 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
    699   return !cm->error_resilient_mode &&
    700     cm->seq_params.order_hint_info.enable_ref_frame_mvs &&
    701     cm->seq_params.order_hint_info.enable_order_hint &&
    702     !frame_is_intra_only(cm);
    703 }
    704 
    705 // Returns 1 if this frame might use warped_motion
    706 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
    707   return !cm->error_resilient_mode && !frame_is_intra_only(cm) &&
    708          cm->seq_params.enable_warped_motion;
    709 }
    710 
    711 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
    712   const int buf_rows = buf->mi_rows;
    713   const int buf_cols = buf->mi_cols;
    714 
    715   if (buf->mvs == NULL || buf_rows != cm->mi_rows || buf_cols != cm->mi_cols) {
    716     aom_free(buf->mvs);
    717     buf->mi_rows = cm->mi_rows;
    718     buf->mi_cols = cm->mi_cols;
    719     CHECK_MEM_ERROR(cm, buf->mvs,
    720                     (MV_REF *)aom_calloc(
    721                         ((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1),
    722                         sizeof(*buf->mvs)));
    723     aom_free(buf->seg_map);
    724     CHECK_MEM_ERROR(cm, buf->seg_map,
    725                     (uint8_t *)aom_calloc(cm->mi_rows * cm->mi_cols,
    726                                           sizeof(*buf->seg_map)));
    727   }
    728 
    729   const int mem_size =
    730       ((cm->mi_rows + MAX_MIB_SIZE) >> 1) * (cm->mi_stride >> 1);
    731   int realloc = cm->tpl_mvs == NULL;
    732   if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
    733 
    734   if (realloc) {
    735     aom_free(cm->tpl_mvs);
    736     CHECK_MEM_ERROR(cm, cm->tpl_mvs,
    737                     (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
    738     cm->tpl_mvs_mem_size = mem_size;
    739   }
    740 }
    741 
    742 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
    743 
    744 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
    745   return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE;
    746 }
    747 
    748 static INLINE void av1_init_above_context(AV1_COMMON *cm, MACROBLOCKD *xd,
    749                                           const int tile_row) {
    750   const int num_planes = av1_num_planes(cm);
    751   for (int i = 0; i < num_planes; ++i) {
    752     xd->above_context[i] = cm->above_context[i][tile_row];
    753   }
    754   xd->above_seg_context = cm->above_seg_context[tile_row];
    755   xd->above_txfm_context = cm->above_txfm_context[tile_row];
    756 }
    757 
    758 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
    759                                         tran_low_t *dqcoeff) {
    760   const int num_planes = av1_num_planes(cm);
    761   for (int i = 0; i < num_planes; ++i) {
    762     xd->plane[i].dqcoeff = dqcoeff;
    763 
    764     if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
    765       memcpy(xd->plane[i].seg_dequant_QTX, cm->y_dequant_QTX,
    766              sizeof(cm->y_dequant_QTX));
    767       memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix));
    768 
    769     } else {
    770       if (i == AOM_PLANE_U) {
    771         memcpy(xd->plane[i].seg_dequant_QTX, cm->u_dequant_QTX,
    772                sizeof(cm->u_dequant_QTX));
    773         memcpy(xd->plane[i].seg_iqmatrix, cm->u_iqmatrix,
    774                sizeof(cm->u_iqmatrix));
    775       } else {
    776         memcpy(xd->plane[i].seg_dequant_QTX, cm->v_dequant_QTX,
    777                sizeof(cm->v_dequant_QTX));
    778         memcpy(xd->plane[i].seg_iqmatrix, cm->v_iqmatrix,
    779                sizeof(cm->v_iqmatrix));
    780       }
    781     }
    782   }
    783   xd->mi_stride = cm->mi_stride;
    784   xd->error_info = &cm->error;
    785   cfl_init(&xd->cfl, &cm->seq_params);
    786 }
    787 
    788 static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col,
    789                                     const int num_planes) {
    790   int i;
    791   int row_offset = mi_row;
    792   int col_offset = mi_col;
    793   for (i = 0; i < num_planes; ++i) {
    794     struct macroblockd_plane *const pd = &xd->plane[i];
    795     // Offset the buffer pointer
    796     const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
    797     if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
    798       row_offset = mi_row - 1;
    799     if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
    800       col_offset = mi_col - 1;
    801     int above_idx = col_offset;
    802     int left_idx = row_offset & MAX_MIB_MASK;
    803     pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
    804     pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
    805   }
    806 }
    807 
    808 static INLINE int calc_mi_size(int len) {
    809   // len is in mi units. Align to a multiple of SBs.
    810   return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
    811 }
    812 
    813 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
    814                                 const int num_planes) {
    815   int i;
    816   for (i = 0; i < num_planes; i++) {
    817     xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
    818     xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
    819 
    820     xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
    821     xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
    822   }
    823 }
    824 
    825 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
    826                                   int mi_row, int bh, int mi_col, int bw,
    827                                   int mi_rows, int mi_cols) {
    828   xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
    829   xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
    830   xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
    831   xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
    832 
    833   // Are edges available for intra prediction?
    834   xd->up_available = (mi_row > tile->mi_row_start);
    835 
    836   const int ss_x = xd->plane[1].subsampling_x;
    837   const int ss_y = xd->plane[1].subsampling_y;
    838 
    839   xd->left_available = (mi_col > tile->mi_col_start);
    840   xd->chroma_up_available = xd->up_available;
    841   xd->chroma_left_available = xd->left_available;
    842   if (ss_x && bw < mi_size_wide[BLOCK_8X8])
    843     xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
    844   if (ss_y && bh < mi_size_high[BLOCK_8X8])
    845     xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
    846   if (xd->up_available) {
    847     xd->above_mbmi = xd->mi[-xd->mi_stride];
    848   } else {
    849     xd->above_mbmi = NULL;
    850   }
    851 
    852   if (xd->left_available) {
    853     xd->left_mbmi = xd->mi[-1];
    854   } else {
    855     xd->left_mbmi = NULL;
    856   }
    857 
    858   const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
    859                          ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
    860   if (chroma_ref) {
    861     // To help calculate the "above" and "left" chroma blocks, note that the
    862     // current block may cover multiple luma blocks (eg, if partitioned into
    863     // 4x4 luma blocks).
    864     // First, find the top-left-most luma block covered by this chroma block
    865     MB_MODE_INFO **base_mi =
    866         &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
    867 
    868     // Then, we consider the luma region covered by the left or above 4x4 chroma
    869     // prediction. We want to point to the chroma reference block in that
    870     // region, which is the bottom-right-most mi unit.
    871     // This leads to the following offsets:
    872     MB_MODE_INFO *chroma_above_mi =
    873         xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
    874     xd->chroma_above_mbmi = chroma_above_mi;
    875 
    876     MB_MODE_INFO *chroma_left_mi =
    877         xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
    878     xd->chroma_left_mbmi = chroma_left_mi;
    879   }
    880 
    881   xd->n4_h = bh;
    882   xd->n4_w = bw;
    883   xd->is_sec_rect = 0;
    884   if (xd->n4_w < xd->n4_h) {
    885     // Only mark is_sec_rect as 1 for the last block.
    886     // For PARTITION_VERT_4, it would be (0, 0, 0, 1);
    887     // For other partitions, it would be (0, 1).
    888     if (!((mi_col + xd->n4_w) & (xd->n4_h - 1))) xd->is_sec_rect = 1;
    889   }
    890 
    891   if (xd->n4_w > xd->n4_h)
    892     if (mi_row & (xd->n4_w - 1)) xd->is_sec_rect = 1;
    893 }
    894 
    895 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
    896                                            const MB_MODE_INFO *above_mi,
    897                                            const MB_MODE_INFO *left_mi) {
    898   const PREDICTION_MODE above = av1_above_block_mode(above_mi);
    899   const PREDICTION_MODE left = av1_left_block_mode(left_mi);
    900   const int above_ctx = intra_mode_context[above];
    901   const int left_ctx = intra_mode_context[left];
    902   return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
    903 }
    904 
    905 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
    906                                             int mi_col, BLOCK_SIZE subsize,
    907                                             BLOCK_SIZE bsize) {
    908   PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
    909   PARTITION_CONTEXT *const left_ctx =
    910       xd->left_seg_context + (mi_row & MAX_MIB_MASK);
    911 
    912   const int bw = mi_size_wide[bsize];
    913   const int bh = mi_size_high[bsize];
    914   memset(above_ctx, partition_context_lookup[subsize].above, bw);
    915   memset(left_ctx, partition_context_lookup[subsize].left, bh);
    916 }
    917 
    918 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
    919                                       int subsampling_x, int subsampling_y) {
    920   const int bw = mi_size_wide[bsize];
    921   const int bh = mi_size_high[bsize];
    922   int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
    923                 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
    924   return ref_pos;
    925 }
    926 
    927 static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
    928                                             int subsampling_y) {
    929   BLOCK_SIZE bs = bsize;
    930   switch (bsize) {
    931     case BLOCK_4X4:
    932       if (subsampling_x == 1 && subsampling_y == 1)
    933         bs = BLOCK_8X8;
    934       else if (subsampling_x == 1)
    935         bs = BLOCK_8X4;
    936       else if (subsampling_y == 1)
    937         bs = BLOCK_4X8;
    938       break;
    939     case BLOCK_4X8:
    940       if (subsampling_x == 1 && subsampling_y == 1)
    941         bs = BLOCK_8X8;
    942       else if (subsampling_x == 1)
    943         bs = BLOCK_8X8;
    944       else if (subsampling_y == 1)
    945         bs = BLOCK_4X8;
    946       break;
    947     case BLOCK_8X4:
    948       if (subsampling_x == 1 && subsampling_y == 1)
    949         bs = BLOCK_8X8;
    950       else if (subsampling_x == 1)
    951         bs = BLOCK_8X4;
    952       else if (subsampling_y == 1)
    953         bs = BLOCK_8X8;
    954       break;
    955     case BLOCK_4X16:
    956       if (subsampling_x == 1 && subsampling_y == 1)
    957         bs = BLOCK_8X16;
    958       else if (subsampling_x == 1)
    959         bs = BLOCK_8X16;
    960       else if (subsampling_y == 1)
    961         bs = BLOCK_4X16;
    962       break;
    963     case BLOCK_16X4:
    964       if (subsampling_x == 1 && subsampling_y == 1)
    965         bs = BLOCK_16X8;
    966       else if (subsampling_x == 1)
    967         bs = BLOCK_16X4;
    968       else if (subsampling_y == 1)
    969         bs = BLOCK_16X8;
    970       break;
    971     default: break;
    972   }
    973   return bs;
    974 }
    975 
    976 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
    977                                             size_t element) {
    978   assert(cdf != NULL);
    979   return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
    980 }
    981 
    982 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
    983                                                const aom_cdf_prob *const in,
    984                                                BLOCK_SIZE bsize) {
    985   (void)bsize;
    986   out[0] = CDF_PROB_TOP;
    987   out[0] -= cdf_element_prob(in, PARTITION_HORZ);
    988   out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
    989   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
    990   out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
    991   out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
    992   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
    993   out[0] = AOM_ICDF(out[0]);
    994   out[1] = AOM_ICDF(CDF_PROB_TOP);
    995 }
    996 
    997 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
    998                                                const aom_cdf_prob *const in,
    999                                                BLOCK_SIZE bsize) {
   1000   (void)bsize;
   1001   out[0] = CDF_PROB_TOP;
   1002   out[0] -= cdf_element_prob(in, PARTITION_VERT);
   1003   out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
   1004   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
   1005   out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
   1006   out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
   1007   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
   1008   out[0] = AOM_ICDF(out[0]);
   1009   out[1] = AOM_ICDF(CDF_PROB_TOP);
   1010 }
   1011 
   1012 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
   1013                                                 int mi_col, BLOCK_SIZE subsize,
   1014                                                 BLOCK_SIZE bsize,
   1015                                                 PARTITION_TYPE partition) {
   1016   if (bsize >= BLOCK_8X8) {
   1017     const int hbs = mi_size_wide[bsize] / 2;
   1018     BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
   1019     switch (partition) {
   1020       case PARTITION_SPLIT:
   1021         if (bsize != BLOCK_8X8) break;
   1022         AOM_FALLTHROUGH_INTENDED;
   1023       case PARTITION_NONE:
   1024       case PARTITION_HORZ:
   1025       case PARTITION_VERT:
   1026       case PARTITION_HORZ_4:
   1027       case PARTITION_VERT_4:
   1028         update_partition_context(xd, mi_row, mi_col, subsize, bsize);
   1029         break;
   1030       case PARTITION_HORZ_A:
   1031         update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
   1032         update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
   1033         break;
   1034       case PARTITION_HORZ_B:
   1035         update_partition_context(xd, mi_row, mi_col, subsize, subsize);
   1036         update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
   1037         break;
   1038       case PARTITION_VERT_A:
   1039         update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
   1040         update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
   1041         break;
   1042       case PARTITION_VERT_B:
   1043         update_partition_context(xd, mi_row, mi_col, subsize, subsize);
   1044         update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
   1045         break;
   1046       default: assert(0 && "Invalid partition type");
   1047     }
   1048   }
   1049 }
   1050 
   1051 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
   1052                                           int mi_col, BLOCK_SIZE bsize) {
   1053   const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
   1054   const PARTITION_CONTEXT *left_ctx =
   1055       xd->left_seg_context + (mi_row & MAX_MIB_MASK);
   1056   // Minimum partition point is 8x8. Offset the bsl accordingly.
   1057   const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
   1058   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
   1059 
   1060   assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
   1061   assert(bsl >= 0);
   1062 
   1063   return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
   1064 }
   1065 
   1066 // Return the number of elements in the partition CDF when
   1067 // partitioning the (square) block with luma block size of bsize.
   1068 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
   1069   if (bsize <= BLOCK_8X8)
   1070     return PARTITION_TYPES;
   1071   else if (bsize == BLOCK_128X128)
   1072     return EXT_PARTITION_TYPES - 2;
   1073   else
   1074     return EXT_PARTITION_TYPES;
   1075 }
   1076 
   1077 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
   1078                                  int plane) {
   1079   int max_blocks_wide = block_size_wide[bsize];
   1080   const struct macroblockd_plane *const pd = &xd->plane[plane];
   1081 
   1082   if (xd->mb_to_right_edge < 0)
   1083     max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
   1084 
   1085   // Scale the width in the transform block unit.
   1086   return max_blocks_wide >> tx_size_wide_log2[0];
   1087 }
   1088 
   1089 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
   1090                                  int plane) {
   1091   int max_blocks_high = block_size_high[bsize];
   1092   const struct macroblockd_plane *const pd = &xd->plane[plane];
   1093 
   1094   if (xd->mb_to_bottom_edge < 0)
   1095     max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
   1096 
   1097   // Scale the height in the transform block unit.
   1098   return max_blocks_high >> tx_size_high_log2[0];
   1099 }
   1100 
   1101 static INLINE int max_intra_block_width(const MACROBLOCKD *xd,
   1102                                         BLOCK_SIZE plane_bsize, int plane,
   1103                                         TX_SIZE tx_size) {
   1104   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane)
   1105                               << tx_size_wide_log2[0];
   1106   return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]);
   1107 }
   1108 
   1109 static INLINE int max_intra_block_height(const MACROBLOCKD *xd,
   1110                                          BLOCK_SIZE plane_bsize, int plane,
   1111                                          TX_SIZE tx_size) {
   1112   const int max_blocks_high = max_block_high(xd, plane_bsize, plane)
   1113                               << tx_size_high_log2[0];
   1114   return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]);
   1115 }
   1116 
   1117 static INLINE void av1_zero_above_context(AV1_COMMON *const cm, const MACROBLOCKD *xd,
   1118   int mi_col_start, int mi_col_end, const int tile_row) {
   1119   const SequenceHeader *const seq_params = &cm->seq_params;
   1120   const int num_planes = av1_num_planes(cm);
   1121   const int width = mi_col_end - mi_col_start;
   1122   const int aligned_width =
   1123     ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
   1124 
   1125   const int offset_y = mi_col_start;
   1126   const int width_y = aligned_width;
   1127   const int offset_uv = offset_y >> seq_params->subsampling_x;
   1128   const int width_uv = width_y >> seq_params->subsampling_x;
   1129 
   1130   av1_zero_array(cm->above_context[0][tile_row] + offset_y, width_y);
   1131   if (num_planes > 1) {
   1132     if (cm->above_context[1][tile_row] && cm->above_context[2][tile_row]) {
   1133       av1_zero_array(cm->above_context[1][tile_row] + offset_uv, width_uv);
   1134       av1_zero_array(cm->above_context[2][tile_row] + offset_uv, width_uv);
   1135     } else {
   1136       aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
   1137                          "Invalid value of planes");
   1138     }
   1139   }
   1140 
   1141   av1_zero_array(cm->above_seg_context[tile_row] + mi_col_start, aligned_width);
   1142 
   1143   memset(cm->above_txfm_context[tile_row] + mi_col_start,
   1144     tx_size_wide[TX_SIZES_LARGEST],
   1145     aligned_width * sizeof(TXFM_CONTEXT));
   1146 }
   1147 
   1148 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
   1149   av1_zero(xd->left_context);
   1150   av1_zero(xd->left_seg_context);
   1151 
   1152   memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
   1153          sizeof(xd->left_txfm_context_buffer));
   1154 }
   1155 
   1156 // Disable array-bounds checks as the TX_SIZE enum contains values larger than
   1157 // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
   1158 // infeasible. The assert is enough for static analysis and this or other tools
   1159 // asan, valgrind would catch oob access at runtime.
   1160 #if defined(__GNUC__) && __GNUC__ >= 4
   1161 #pragma GCC diagnostic ignored "-Warray-bounds"
   1162 #endif
   1163 
   1164 #if defined(__GNUC__) && __GNUC__ >= 4
   1165 #pragma GCC diagnostic warning "-Warray-bounds"
   1166 #endif
   1167 
   1168 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
   1169   int i;
   1170   for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
   1171 }
   1172 
   1173 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
   1174                                  const MACROBLOCKD *xd) {
   1175   uint8_t bw = tx_size_wide[tx_size];
   1176   uint8_t bh = tx_size_high[tx_size];
   1177 
   1178   if (skip) {
   1179     bw = n4_w * MI_SIZE;
   1180     bh = n4_h * MI_SIZE;
   1181   }
   1182 
   1183   set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
   1184   set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
   1185 }
   1186 
   1187 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
   1188                                          TXFM_CONTEXT *left_ctx,
   1189                                          TX_SIZE tx_size, TX_SIZE txb_size) {
   1190   BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
   1191   int bh = mi_size_high[bsize];
   1192   int bw = mi_size_wide[bsize];
   1193   uint8_t txw = tx_size_wide[tx_size];
   1194   uint8_t txh = tx_size_high[tx_size];
   1195   int i;
   1196   for (i = 0; i < bh; ++i) left_ctx[i] = txh;
   1197   for (i = 0; i < bw; ++i) above_ctx[i] = txw;
   1198 }
   1199 
   1200 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
   1201   switch (tx_dim) {
   1202     case 128:
   1203     case 64: return TX_64X64; break;
   1204     case 32: return TX_32X32; break;
   1205     case 16: return TX_16X16; break;
   1206     case 8: return TX_8X8; break;
   1207     default: return TX_4X4;
   1208   }
   1209 }
   1210 
   1211 static INLINE TX_SIZE get_tx_size(int width, int height) {
   1212   if (width == height) {
   1213     return get_sqr_tx_size(width);
   1214   }
   1215   if (width < height) {
   1216     if (width + width == height) {
   1217       switch (width) {
   1218         case 4: return TX_4X8; break;
   1219         case 8: return TX_8X16; break;
   1220         case 16: return TX_16X32; break;
   1221         case 32: return TX_32X64; break;
   1222       }
   1223     } else {
   1224       switch (width) {
   1225         case 4: return TX_4X16; break;
   1226         case 8: return TX_8X32; break;
   1227         case 16: return TX_16X64; break;
   1228       }
   1229     }
   1230   } else {
   1231     if (height + height == width) {
   1232       switch (height) {
   1233         case 4: return TX_8X4; break;
   1234         case 8: return TX_16X8; break;
   1235         case 16: return TX_32X16; break;
   1236         case 32: return TX_64X32; break;
   1237       }
   1238     } else {
   1239       switch (height) {
   1240         case 4: return TX_16X4; break;
   1241         case 8: return TX_32X8; break;
   1242         case 16: return TX_64X16; break;
   1243       }
   1244     }
   1245   }
   1246   assert(0);
   1247   return TX_4X4;
   1248 }
   1249 
   1250 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
   1251                                          const TXFM_CONTEXT *const left_ctx,
   1252                                          BLOCK_SIZE bsize, TX_SIZE tx_size) {
   1253   const uint8_t txw = tx_size_wide[tx_size];
   1254   const uint8_t txh = tx_size_high[tx_size];
   1255   const int above = *above_ctx < txw;
   1256   const int left = *left_ctx < txh;
   1257   int category = TXFM_PARTITION_CONTEXTS;
   1258 
   1259   // dummy return, not used by others.
   1260   if (tx_size <= TX_4X4) return 0;
   1261 
   1262   TX_SIZE max_tx_size =
   1263       get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
   1264 
   1265   if (max_tx_size >= TX_8X8) {
   1266     category =
   1267         (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
   1268         (TX_SIZES - 1 - max_tx_size) * 2;
   1269   }
   1270   assert(category != TXFM_PARTITION_CONTEXTS);
   1271   return category * 3 + above + left;
   1272 }
   1273 
   1274 // Compute the next partition in the direction of the sb_type stored in the mi
   1275 // array, starting with bsize.
   1276 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
   1277                                            int mi_row, int mi_col,
   1278                                            BLOCK_SIZE bsize) {
   1279   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID;
   1280 
   1281   const int offset = mi_row * cm->mi_stride + mi_col;
   1282   MB_MODE_INFO **mi = cm->mi_grid_visible + offset;
   1283   const BLOCK_SIZE subsize = mi[0]->sb_type;
   1284 
   1285   if (subsize == bsize) return PARTITION_NONE;
   1286 
   1287   const int bhigh = mi_size_high[bsize];
   1288   const int bwide = mi_size_wide[bsize];
   1289   const int sshigh = mi_size_high[subsize];
   1290   const int sswide = mi_size_wide[subsize];
   1291 
   1292   if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows &&
   1293       mi_col + bhigh / 2 < cm->mi_cols) {
   1294     // In this case, the block might be using an extended partition
   1295     // type.
   1296     const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
   1297     const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * cm->mi_stride];
   1298 
   1299     if (sswide == bwide) {
   1300       // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
   1301       // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
   1302       // half was split.
   1303       if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
   1304       assert(sshigh * 2 == bhigh);
   1305 
   1306       if (mbmi_below->sb_type == subsize)
   1307         return PARTITION_HORZ;
   1308       else
   1309         return PARTITION_HORZ_B;
   1310     } else if (sshigh == bhigh) {
   1311       // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
   1312       // PARTITION_VERT_B. To distinguish the latter two, check if the right
   1313       // half was split.
   1314       if (sswide * 4 == bwide) return PARTITION_VERT_4;
   1315       assert(sswide * 2 == bhigh);
   1316 
   1317       if (mbmi_right->sb_type == subsize)
   1318         return PARTITION_VERT;
   1319       else
   1320         return PARTITION_VERT_B;
   1321     } else {
   1322       // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
   1323       // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
   1324       // dimensions, we immediately know this is a split (which will recurse to
   1325       // get to subsize). Otherwise look down and to the right. With
   1326       // PARTITION_VERT_A, the right block will have height bhigh; with
   1327       // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
   1328       // it's PARTITION_SPLIT.
   1329       if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
   1330 
   1331       if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A;
   1332       if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A;
   1333 
   1334       return PARTITION_SPLIT;
   1335     }
   1336   }
   1337   const int vert_split = sswide < bwide;
   1338   const int horz_split = sshigh < bhigh;
   1339   const int split_idx = (vert_split << 1) | horz_split;
   1340   assert(split_idx != 0);
   1341 
   1342   static const PARTITION_TYPE base_partitions[4] = {
   1343     PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
   1344   };
   1345 
   1346   return base_partitions[split_idx];
   1347 }
   1348 
   1349 static INLINE void set_sb_size(SequenceHeader *const seq_params,
   1350                                BLOCK_SIZE sb_size) {
   1351   seq_params->sb_size = sb_size;
   1352   seq_params->mib_size = mi_size_wide[seq_params->sb_size];
   1353   seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
   1354 }
   1355 
   1356 // Returns true if the frame is fully lossless at the coded resolution.
   1357 // Note: If super-resolution is used, such a frame will still NOT be lossless at
   1358 // the upscaled resolution.
   1359 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
   1360                                     const MACROBLOCKD *xd) {
   1361   int coded_lossless = 1;
   1362   if (cm->seg.enabled) {
   1363     for (int i = 0; i < MAX_SEGMENTS; ++i) {
   1364       if (!xd->lossless[i]) {
   1365         coded_lossless = 0;
   1366         break;
   1367       }
   1368     }
   1369   } else {
   1370     coded_lossless = xd->lossless[0];
   1371   }
   1372   return coded_lossless;
   1373 }
   1374 
   1375 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
   1376   return seq_level_idx < SEQ_LEVELS || seq_level_idx == SEQ_LEVEL_MAX;
   1377 }
   1378 
   1379 #ifdef __cplusplus
   1380 }  // extern "C"
   1381 #endif
   1382 
   1383 #endif  // AOM_AV1_COMMON_ONYXC_INT_H_
   1384