Home | History | Annotate | Download | only in Mips
      1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "MipsSEISelDAGToDAG.h"
     15 #include "MCTargetDesc/MipsBaseInfo.h"
     16 #include "Mips.h"
     17 #include "MipsAnalyzeImmediate.h"
     18 #include "MipsMachineFunction.h"
     19 #include "MipsRegisterInfo.h"
     20 #include "llvm/CodeGen/MachineConstantPool.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/SelectionDAGNodes.h"
     26 #include "llvm/IR/CFG.h"
     27 #include "llvm/IR/Dominators.h"
     28 #include "llvm/IR/GlobalValue.h"
     29 #include "llvm/IR/Instructions.h"
     30 #include "llvm/IR/Intrinsics.h"
     31 #include "llvm/IR/Type.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "mips-isel"
     39 
     40 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
     41   Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
     42   if (Subtarget->inMips16Mode())
     43     return false;
     44   return MipsDAGToDAGISel::runOnMachineFunction(MF);
     45 }
     46 
     47 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
     48   AU.addRequired<DominatorTreeWrapperPass>();
     49   SelectionDAGISel::getAnalysisUsage(AU);
     50 }
     51 
     52 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
     53                                                MachineFunction &MF) {
     54   MachineInstrBuilder MIB(MF, &MI);
     55   unsigned Mask = MI.getOperand(1).getImm();
     56   unsigned Flag =
     57       IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
     58 
     59   if (Mask & 1)
     60     MIB.addReg(Mips::DSPPos, Flag);
     61 
     62   if (Mask & 2)
     63     MIB.addReg(Mips::DSPSCount, Flag);
     64 
     65   if (Mask & 4)
     66     MIB.addReg(Mips::DSPCarry, Flag);
     67 
     68   if (Mask & 8)
     69     MIB.addReg(Mips::DSPOutFlag, Flag);
     70 
     71   if (Mask & 16)
     72     MIB.addReg(Mips::DSPCCond, Flag);
     73 
     74   if (Mask & 32)
     75     MIB.addReg(Mips::DSPEFI, Flag);
     76 }
     77 
     78 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
     79   switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
     80   default:
     81     llvm_unreachable("Could not map int to register");
     82   case 0: return Mips::MSAIR;
     83   case 1: return Mips::MSACSR;
     84   case 2: return Mips::MSAAccess;
     85   case 3: return Mips::MSASave;
     86   case 4: return Mips::MSAModify;
     87   case 5: return Mips::MSARequest;
     88   case 6: return Mips::MSAMap;
     89   case 7: return Mips::MSAUnmap;
     90   }
     91 }
     92 
     93 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
     94                                                 const MachineInstr& MI) {
     95   unsigned DstReg = 0, ZeroReg = 0;
     96 
     97   // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
     98   if ((MI.getOpcode() == Mips::ADDiu) &&
     99       (MI.getOperand(1).getReg() == Mips::ZERO) &&
    100       (MI.getOperand(2).isImm()) &&
    101       (MI.getOperand(2).getImm() == 0)) {
    102     DstReg = MI.getOperand(0).getReg();
    103     ZeroReg = Mips::ZERO;
    104   } else if ((MI.getOpcode() == Mips::DADDiu) &&
    105              (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
    106              (MI.getOperand(2).isImm()) &&
    107              (MI.getOperand(2).getImm() == 0)) {
    108     DstReg = MI.getOperand(0).getReg();
    109     ZeroReg = Mips::ZERO_64;
    110   }
    111 
    112   if (!DstReg)
    113     return false;
    114 
    115   // Replace uses with ZeroReg.
    116   for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
    117        E = MRI->use_end(); U != E;) {
    118     MachineOperand &MO = *U;
    119     unsigned OpNo = U.getOperandNo();
    120     MachineInstr *MI = MO.getParent();
    121     ++U;
    122 
    123     // Do not replace if it is a phi's operand or is tied to def operand.
    124     if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
    125       continue;
    126 
    127     // Also, we have to check that the register class of the operand
    128     // contains the zero register.
    129     if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
    130       continue;
    131 
    132     MO.setReg(ZeroReg);
    133   }
    134 
    135   return true;
    136 }
    137 
    138 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
    139   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
    140 
    141   if (!MipsFI->globalBaseRegSet())
    142     return;
    143 
    144   MachineBasicBlock &MBB = MF.front();
    145   MachineBasicBlock::iterator I = MBB.begin();
    146   MachineRegisterInfo &RegInfo = MF.getRegInfo();
    147   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
    148   DebugLoc DL;
    149   unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
    150   const TargetRegisterClass *RC;
    151   const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
    152   RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
    153 
    154   V0 = RegInfo.createVirtualRegister(RC);
    155   V1 = RegInfo.createVirtualRegister(RC);
    156 
    157   if (ABI.IsN64()) {
    158     MF.getRegInfo().addLiveIn(Mips::T9_64);
    159     MBB.addLiveIn(Mips::T9_64);
    160 
    161     // lui $v0, %hi(%neg(%gp_rel(fname)))
    162     // daddu $v1, $v0, $t9
    163     // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
    164     const GlobalValue *FName = &MF.getFunction();
    165     BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
    166       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
    167     BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
    168       .addReg(Mips::T9_64);
    169     BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
    170       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
    171     return;
    172   }
    173 
    174   if (!MF.getTarget().isPositionIndependent()) {
    175     // Set global register to __gnu_local_gp.
    176     //
    177     // lui   $v0, %hi(__gnu_local_gp)
    178     // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
    179     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
    180       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
    181     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
    182       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
    183     return;
    184   }
    185 
    186   MF.getRegInfo().addLiveIn(Mips::T9);
    187   MBB.addLiveIn(Mips::T9);
    188 
    189   if (ABI.IsN32()) {
    190     // lui $v0, %hi(%neg(%gp_rel(fname)))
    191     // addu $v1, $v0, $t9
    192     // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
    193     const GlobalValue *FName = &MF.getFunction();
    194     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
    195       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
    196     BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
    197     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
    198       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
    199     return;
    200   }
    201 
    202   assert(ABI.IsO32());
    203 
    204   // For O32 ABI, the following instruction sequence is emitted to initialize
    205   // the global base register:
    206   //
    207   //  0. lui   $2, %hi(_gp_disp)
    208   //  1. addiu $2, $2, %lo(_gp_disp)
    209   //  2. addu  $globalbasereg, $2, $t9
    210   //
    211   // We emit only the last instruction here.
    212   //
    213   // GNU linker requires that the first two instructions appear at the beginning
    214   // of a function and no instructions be inserted before or between them.
    215   // The two instructions are emitted during lowering to MC layer in order to
    216   // avoid any reordering.
    217   //
    218   // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
    219   // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
    220   // reads it.
    221   MF.getRegInfo().addLiveIn(Mips::V0);
    222   MBB.addLiveIn(Mips::V0);
    223   BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
    224     .addReg(Mips::V0).addReg(Mips::T9);
    225 }
    226 
    227 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
    228   initGlobalBaseReg(MF);
    229 
    230   MachineRegisterInfo *MRI = &MF.getRegInfo();
    231 
    232   for (auto &MBB: MF) {
    233     for (auto &MI: MBB) {
    234       switch (MI.getOpcode()) {
    235       case Mips::RDDSP:
    236         addDSPCtrlRegOperands(false, MI, MF);
    237         break;
    238       case Mips::WRDSP:
    239         addDSPCtrlRegOperands(true, MI, MF);
    240         break;
    241       case Mips::BuildPairF64_64:
    242       case Mips::ExtractElementF64_64:
    243         if (!Subtarget->useOddSPReg()) {
    244           MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
    245           break;
    246         }
    247         LLVM_FALLTHROUGH;
    248       case Mips::BuildPairF64:
    249       case Mips::ExtractElementF64:
    250         if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
    251           MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
    252         break;
    253       default:
    254         replaceUsesWithZeroReg(MRI, MI);
    255       }
    256     }
    257   }
    258 }
    259 
    260 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
    261   SDValue InFlag = Node->getOperand(2);
    262   unsigned Opc = InFlag.getOpcode();
    263   SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
    264   EVT VT = LHS.getValueType();
    265 
    266   // In the base case, we can rely on the carry bit from the addsc
    267   // instruction.
    268   if (Opc == ISD::ADDC) {
    269     SDValue Ops[3] = {LHS, RHS, InFlag};
    270     CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
    271     return;
    272   }
    273 
    274   assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
    275 
    276   // The more complex case is when there is a chain of ISD::ADDE nodes like:
    277   // (adde (adde (adde (addc a b) c) d) e).
    278   //
    279   // The addwc instruction does not write to the carry bit, instead it writes
    280   // to bit 20 of the dsp control register. To match this series of nodes, each
    281   // intermediate adde node must be expanded to write the carry bit before the
    282   // addition.
    283 
    284   // Start by reading the overflow field for addsc and moving the value to the
    285   // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
    286   // corresponds to reading/writing the entire control register to/from a GPR.
    287 
    288   SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
    289 
    290   SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
    291 
    292   SDNode *DSPCtrlField =
    293       CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag);
    294 
    295   SDNode *Carry = CurDAG->getMachineNode(
    296       Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
    297 
    298   SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
    299                     CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
    300                     SDValue(Carry, 0)};
    301   SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
    302 
    303   // My reading of the MIPS DSP 3.01 specification isn't as clear as I
    304   // would like about whether bit 20 always gets overwritten by addwc.
    305   // Hence take an extremely conservative view and presume it's sticky. We
    306   // therefore need to clear it.
    307 
    308   SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
    309 
    310   SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
    311   SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
    312 
    313   SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
    314                                          SDValue(DSPCtrlFinal, 0), CstOne);
    315 
    316   SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
    317   CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
    318 }
    319 
    320 /// Match frameindex
    321 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
    322                                               SDValue &Offset) const {
    323   if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
    324     EVT ValTy = Addr.getValueType();
    325 
    326     Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
    327     Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
    328     return true;
    329   }
    330   return false;
    331 }
    332 
    333 /// Match frameindex+offset and frameindex|offset
    334 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
    335     SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
    336     unsigned ShiftAmount = 0) const {
    337   if (CurDAG->isBaseWithConstantOffset(Addr)) {
    338     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
    339     if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
    340       EVT ValTy = Addr.getValueType();
    341 
    342       // If the first operand is a FI, get the TargetFI Node
    343       if (FrameIndexSDNode *FIN =
    344               dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
    345         Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
    346       else {
    347         Base = Addr.getOperand(0);
    348         // If base is a FI, additional offset calculation is done in
    349         // eliminateFrameIndex, otherwise we need to check the alignment
    350         if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0)
    351           return false;
    352       }
    353 
    354       Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
    355                                          ValTy);
    356       return true;
    357     }
    358   }
    359   return false;
    360 }
    361 
    362 /// ComplexPattern used on MipsInstrInfo
    363 /// Used on Mips Load/Store instructions
    364 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
    365                                           SDValue &Offset) const {
    366   // if Address is FI, get the TargetFrameIndex.
    367   if (selectAddrFrameIndex(Addr, Base, Offset))
    368     return true;
    369 
    370   // on PIC code Load GA
    371   if (Addr.getOpcode() == MipsISD::Wrapper) {
    372     Base   = Addr.getOperand(0);
    373     Offset = Addr.getOperand(1);
    374     return true;
    375   }
    376 
    377   if (!TM.isPositionIndependent()) {
    378     if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
    379         Addr.getOpcode() == ISD::TargetGlobalAddress))
    380       return false;
    381   }
    382 
    383   // Addresses of the form FI+const or FI|const
    384   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
    385     return true;
    386 
    387   // Operand is a result from an ADD.
    388   if (Addr.getOpcode() == ISD::ADD) {
    389     // When loading from constant pools, load the lower address part in
    390     // the instruction itself. Example, instead of:
    391     //  lui $2, %hi($CPI1_0)
    392     //  addiu $2, $2, %lo($CPI1_0)
    393     //  lwc1 $f0, 0($2)
    394     // Generate:
    395     //  lui $2, %hi($CPI1_0)
    396     //  lwc1 $f0, %lo($CPI1_0)($2)
    397     if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
    398         Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
    399       SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
    400       if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
    401           isa<JumpTableSDNode>(Opnd0)) {
    402         Base = Addr.getOperand(0);
    403         Offset = Opnd0;
    404         return true;
    405       }
    406     }
    407   }
    408 
    409   return false;
    410 }
    411 
    412 /// ComplexPattern used on MipsInstrInfo
    413 /// Used on Mips Load/Store instructions
    414 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
    415                                            SDValue &Offset) const {
    416   Base = Addr;
    417   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
    418   return true;
    419 }
    420 
    421 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
    422                                        SDValue &Offset) const {
    423   return selectAddrRegImm(Addr, Base, Offset) ||
    424     selectAddrDefault(Addr, Base, Offset);
    425 }
    426 
    427 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
    428                                            SDValue &Offset) const {
    429   if (selectAddrFrameIndex(Addr, Base, Offset))
    430     return true;
    431 
    432   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
    433     return true;
    434 
    435   return false;
    436 }
    437 
    438 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
    439 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
    440                                             SDValue &Offset) const {
    441   if (selectAddrFrameIndex(Addr, Base, Offset))
    442     return true;
    443 
    444   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
    445     return true;
    446 
    447   return false;
    448 }
    449 
    450 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
    451 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
    452                                             SDValue &Offset) const {
    453   if (selectAddrFrameIndex(Addr, Base, Offset))
    454     return true;
    455 
    456   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
    457     return true;
    458 
    459   return false;
    460 }
    461 
    462 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
    463                                             SDValue &Offset) const {
    464   if (selectAddrFrameIndex(Addr, Base, Offset))
    465     return true;
    466 
    467   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
    468     return true;
    469 
    470   return false;
    471 }
    472 
    473 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
    474                                          SDValue &Offset) const {
    475   return selectAddrRegImm11(Addr, Base, Offset) ||
    476     selectAddrDefault(Addr, Base, Offset);
    477 }
    478 
    479 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
    480                                          SDValue &Offset) const {
    481   return selectAddrRegImm12(Addr, Base, Offset) ||
    482     selectAddrDefault(Addr, Base, Offset);
    483 }
    484 
    485 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
    486                                          SDValue &Offset) const {
    487   return selectAddrRegImm16(Addr, Base, Offset) ||
    488     selectAddrDefault(Addr, Base, Offset);
    489 }
    490 
    491 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
    492                                              SDValue &Offset) const {
    493   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
    494     if (isa<FrameIndexSDNode>(Base))
    495       return false;
    496 
    497     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
    498       unsigned CnstOff = CN->getZExtValue();
    499       return (CnstOff == (CnstOff & 0x3c));
    500     }
    501 
    502     return false;
    503   }
    504 
    505   // For all other cases where "lw" would be selected, don't select "lw16"
    506   // because it would result in additional instructions to prepare operands.
    507   if (selectAddrRegImm(Addr, Base, Offset))
    508     return false;
    509 
    510   return selectAddrDefault(Addr, Base, Offset);
    511 }
    512 
    513 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
    514                                              SDValue &Offset) const {
    515 
    516   if (selectAddrFrameIndex(Addr, Base, Offset))
    517     return true;
    518 
    519   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
    520     return true;
    521 
    522   return selectAddrDefault(Addr, Base, Offset);
    523 }
    524 
    525 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
    526                                                  SDValue &Offset) const {
    527   if (selectAddrFrameIndex(Addr, Base, Offset))
    528     return true;
    529 
    530   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
    531     return true;
    532 
    533   return selectAddrDefault(Addr, Base, Offset);
    534 }
    535 
    536 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
    537                                                  SDValue &Offset) const {
    538   if (selectAddrFrameIndex(Addr, Base, Offset))
    539     return true;
    540 
    541   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
    542     return true;
    543 
    544   return selectAddrDefault(Addr, Base, Offset);
    545 }
    546 
    547 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
    548                                                  SDValue &Offset) const {
    549   if (selectAddrFrameIndex(Addr, Base, Offset))
    550     return true;
    551 
    552   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
    553     return true;
    554 
    555   return selectAddrDefault(Addr, Base, Offset);
    556 }
    557 
    558 // Select constant vector splats.
    559 //
    560 // Returns true and sets Imm if:
    561 // * MSA is enabled
    562 // * N is a ISD::BUILD_VECTOR representing a constant splat
    563 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
    564                                       unsigned MinSizeInBits) const {
    565   if (!Subtarget->hasMSA())
    566     return false;
    567 
    568   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
    569 
    570   if (!Node)
    571     return false;
    572 
    573   APInt SplatValue, SplatUndef;
    574   unsigned SplatBitSize;
    575   bool HasAnyUndefs;
    576 
    577   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
    578                              MinSizeInBits, !Subtarget->isLittle()))
    579     return false;
    580 
    581   Imm = SplatValue;
    582 
    583   return true;
    584 }
    585 
    586 // Select constant vector splats.
    587 //
    588 // In addition to the requirements of selectVSplat(), this function returns
    589 // true and sets Imm if:
    590 // * The splat value is the same width as the elements of the vector
    591 // * The splat value fits in an integer with the specified signed-ness and
    592 //   width.
    593 //
    594 // This function looks through ISD::BITCAST nodes.
    595 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
    596 //       sometimes a shuffle in big-endian mode.
    597 //
    598 // It's worth noting that this function is not used as part of the selection
    599 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
    600 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
    601 // MipsSEDAGToDAGISel::selectNode.
    602 bool MipsSEDAGToDAGISel::
    603 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
    604                    unsigned ImmBitSize) const {
    605   APInt ImmValue;
    606   EVT EltTy = N->getValueType(0).getVectorElementType();
    607 
    608   if (N->getOpcode() == ISD::BITCAST)
    609     N = N->getOperand(0);
    610 
    611   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
    612       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    613 
    614     if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
    615         (!Signed && ImmValue.isIntN(ImmBitSize))) {
    616       Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
    617       return true;
    618     }
    619   }
    620 
    621   return false;
    622 }
    623 
    624 // Select constant vector splats.
    625 bool MipsSEDAGToDAGISel::
    626 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
    627   return selectVSplatCommon(N, Imm, false, 1);
    628 }
    629 
    630 bool MipsSEDAGToDAGISel::
    631 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
    632   return selectVSplatCommon(N, Imm, false, 2);
    633 }
    634 
    635 bool MipsSEDAGToDAGISel::
    636 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
    637   return selectVSplatCommon(N, Imm, false, 3);
    638 }
    639 
    640 // Select constant vector splats.
    641 bool MipsSEDAGToDAGISel::
    642 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
    643   return selectVSplatCommon(N, Imm, false, 4);
    644 }
    645 
    646 // Select constant vector splats.
    647 bool MipsSEDAGToDAGISel::
    648 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
    649   return selectVSplatCommon(N, Imm, false, 5);
    650 }
    651 
    652 // Select constant vector splats.
    653 bool MipsSEDAGToDAGISel::
    654 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
    655   return selectVSplatCommon(N, Imm, false, 6);
    656 }
    657 
    658 // Select constant vector splats.
    659 bool MipsSEDAGToDAGISel::
    660 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
    661   return selectVSplatCommon(N, Imm, false, 8);
    662 }
    663 
    664 // Select constant vector splats.
    665 bool MipsSEDAGToDAGISel::
    666 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
    667   return selectVSplatCommon(N, Imm, true, 5);
    668 }
    669 
    670 // Select constant vector splats whose value is a power of 2.
    671 //
    672 // In addition to the requirements of selectVSplat(), this function returns
    673 // true and sets Imm if:
    674 // * The splat value is the same width as the elements of the vector
    675 // * The splat value is a power of two.
    676 //
    677 // This function looks through ISD::BITCAST nodes.
    678 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
    679 //       sometimes a shuffle in big-endian mode.
    680 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
    681   APInt ImmValue;
    682   EVT EltTy = N->getValueType(0).getVectorElementType();
    683 
    684   if (N->getOpcode() == ISD::BITCAST)
    685     N = N->getOperand(0);
    686 
    687   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
    688       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    689     int32_t Log2 = ImmValue.exactLogBase2();
    690 
    691     if (Log2 != -1) {
    692       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
    693       return true;
    694     }
    695   }
    696 
    697   return false;
    698 }
    699 
    700 // Select constant vector splats whose value only has a consecutive sequence
    701 // of left-most bits set (e.g. 0b11...1100...00).
    702 //
    703 // In addition to the requirements of selectVSplat(), this function returns
    704 // true and sets Imm if:
    705 // * The splat value is the same width as the elements of the vector
    706 // * The splat value is a consecutive sequence of left-most bits.
    707 //
    708 // This function looks through ISD::BITCAST nodes.
    709 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
    710 //       sometimes a shuffle in big-endian mode.
    711 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
    712   APInt ImmValue;
    713   EVT EltTy = N->getValueType(0).getVectorElementType();
    714 
    715   if (N->getOpcode() == ISD::BITCAST)
    716     N = N->getOperand(0);
    717 
    718   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
    719       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    720     // Extract the run of set bits starting with bit zero from the bitwise
    721     // inverse of ImmValue, and test that the inverse of this is the same
    722     // as the original value.
    723     if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
    724 
    725       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
    726                                       EltTy);
    727       return true;
    728     }
    729   }
    730 
    731   return false;
    732 }
    733 
    734 // Select constant vector splats whose value only has a consecutive sequence
    735 // of right-most bits set (e.g. 0b00...0011...11).
    736 //
    737 // In addition to the requirements of selectVSplat(), this function returns
    738 // true and sets Imm if:
    739 // * The splat value is the same width as the elements of the vector
    740 // * The splat value is a consecutive sequence of right-most bits.
    741 //
    742 // This function looks through ISD::BITCAST nodes.
    743 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
    744 //       sometimes a shuffle in big-endian mode.
    745 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
    746   APInt ImmValue;
    747   EVT EltTy = N->getValueType(0).getVectorElementType();
    748 
    749   if (N->getOpcode() == ISD::BITCAST)
    750     N = N->getOperand(0);
    751 
    752   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
    753       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    754     // Extract the run of set bits starting with bit zero, and test that the
    755     // result is the same as the original value
    756     if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
    757       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
    758                                       EltTy);
    759       return true;
    760     }
    761   }
    762 
    763   return false;
    764 }
    765 
    766 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
    767                                                  SDValue &Imm) const {
    768   APInt ImmValue;
    769   EVT EltTy = N->getValueType(0).getVectorElementType();
    770 
    771   if (N->getOpcode() == ISD::BITCAST)
    772     N = N->getOperand(0);
    773 
    774   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
    775       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    776     int32_t Log2 = (~ImmValue).exactLogBase2();
    777 
    778     if (Log2 != -1) {
    779       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
    780       return true;
    781     }
    782   }
    783 
    784   return false;
    785 }
    786 
    787 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
    788   unsigned Opcode = Node->getOpcode();
    789   SDLoc DL(Node);
    790 
    791   ///
    792   // Instruction Selection not handled by the auto-generated
    793   // tablegen selection should be handled here.
    794   ///
    795   switch(Opcode) {
    796   default: break;
    797 
    798   case ISD::ADDE: {
    799     selectAddE(Node, DL);
    800     return true;
    801   }
    802 
    803   case ISD::ConstantFP: {
    804     ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
    805     if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
    806       if (Subtarget->isGP64bit()) {
    807         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
    808                                               Mips::ZERO_64, MVT::i64);
    809         ReplaceNode(Node,
    810                     CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
    811       } else if (Subtarget->isFP64bit()) {
    812         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
    813                                               Mips::ZERO, MVT::i32);
    814         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
    815                                                  MVT::f64, Zero, Zero));
    816       } else {
    817         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
    818                                               Mips::ZERO, MVT::i32);
    819         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
    820                                                  MVT::f64, Zero, Zero));
    821       }
    822       return true;
    823     }
    824     break;
    825   }
    826 
    827   case ISD::Constant: {
    828     const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
    829     int64_t Imm = CN->getSExtValue();
    830     unsigned Size = CN->getValueSizeInBits(0);
    831 
    832     if (isInt<32>(Imm))
    833       break;
    834 
    835     MipsAnalyzeImmediate AnalyzeImm;
    836 
    837     const MipsAnalyzeImmediate::InstSeq &Seq =
    838       AnalyzeImm.Analyze(Imm, Size, false);
    839 
    840     MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
    841     SDLoc DL(CN);
    842     SDNode *RegOpnd;
    843     SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
    844                                                 DL, MVT::i64);
    845 
    846     // The first instruction can be a LUi which is different from other
    847     // instructions (ADDiu, ORI and SLL) in that it does not have a register
    848     // operand.
    849     if (Inst->Opc == Mips::LUi64)
    850       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
    851     else
    852       RegOpnd =
    853         CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
    854                                CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
    855                                ImmOpnd);
    856 
    857     // The remaining instructions in the sequence are handled here.
    858     for (++Inst; Inst != Seq.end(); ++Inst) {
    859       ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
    860                                           MVT::i64);
    861       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
    862                                        SDValue(RegOpnd, 0), ImmOpnd);
    863     }
    864 
    865     ReplaceNode(Node, RegOpnd);
    866     return true;
    867   }
    868 
    869   case ISD::INTRINSIC_W_CHAIN: {
    870     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
    871     default:
    872       break;
    873 
    874     case Intrinsic::mips_cfcmsa: {
    875       SDValue ChainIn = Node->getOperand(0);
    876       SDValue RegIdx = Node->getOperand(2);
    877       SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
    878                                            getMSACtrlReg(RegIdx), MVT::i32);
    879       ReplaceNode(Node, Reg.getNode());
    880       return true;
    881     }
    882     }
    883     break;
    884   }
    885 
    886   case ISD::INTRINSIC_WO_CHAIN: {
    887     switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
    888     default:
    889       break;
    890 
    891     case Intrinsic::mips_move_v:
    892       // Like an assignment but will always produce a move.v even if
    893       // unnecessary.
    894       ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
    895                                                Node->getValueType(0),
    896                                                Node->getOperand(1)));
    897       return true;
    898     }
    899     break;
    900   }
    901 
    902   case ISD::INTRINSIC_VOID: {
    903     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
    904     default:
    905       break;
    906 
    907     case Intrinsic::mips_ctcmsa: {
    908       SDValue ChainIn = Node->getOperand(0);
    909       SDValue RegIdx  = Node->getOperand(2);
    910       SDValue Value   = Node->getOperand(3);
    911       SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
    912                                               getMSACtrlReg(RegIdx), Value);
    913       ReplaceNode(Node, ChainOut.getNode());
    914       return true;
    915     }
    916     }
    917     break;
    918   }
    919 
    920   // Manually match MipsISD::Ins nodes to get the correct instruction. It has
    921   // to be done in this fashion so that we respect the differences between
    922   // dins and dinsm, as the difference is that the size operand has the range
    923   // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
    924   // means SelectionDAGISel would have to test all the operands at once to
    925   // match the instruction.
    926   case MipsISD::Ins: {
    927 
    928     // Sanity checking for the node operands.
    929     if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
    930       return false;
    931 
    932     if (Node->getNumOperands() != 4)
    933       return false;
    934 
    935     if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
    936         Node->getOperand(2)->getOpcode() != ISD::Constant)
    937       return false;
    938 
    939     MVT ResTy = Node->getSimpleValueType(0);
    940     uint64_t Pos = Node->getConstantOperandVal(1);
    941     uint64_t Size = Node->getConstantOperandVal(2);
    942 
    943     // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
    944     if (!Size)
    945       return false;
    946 
    947     if (Pos + Size > 64)
    948       return false;
    949 
    950     if (ResTy != MVT::i32 && ResTy != MVT::i64)
    951       return false;
    952 
    953     unsigned Opcode = 0;
    954     if (ResTy == MVT::i32) {
    955       if (Pos + Size <= 32)
    956         Opcode = Mips::INS;
    957     } else {
    958       if (Pos + Size <= 32)
    959         Opcode = Mips::DINS;
    960       else if (Pos < 32 && 1 < Size)
    961         Opcode = Mips::DINSM;
    962       else
    963         Opcode = Mips::DINSU;
    964     }
    965 
    966     if (Opcode) {
    967       SDValue Ops[4] = {
    968           Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
    969           CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
    970 
    971       ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
    972       return true;
    973     }
    974 
    975     return false;
    976   }
    977 
    978   case MipsISD::ThreadPointer: {
    979     EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
    980     unsigned RdhwrOpc, DestReg;
    981 
    982     if (PtrVT == MVT::i32) {
    983       RdhwrOpc = Mips::RDHWR;
    984       DestReg = Mips::V1;
    985     } else {
    986       RdhwrOpc = Mips::RDHWR64;
    987       DestReg = Mips::V1_64;
    988     }
    989 
    990     SDNode *Rdhwr =
    991         CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0),
    992                                CurDAG->getRegister(Mips::HWR29, MVT::i32),
    993                                CurDAG->getTargetConstant(0, DL, MVT::i32));
    994     SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
    995                                          SDValue(Rdhwr, 0));
    996     SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
    997     ReplaceNode(Node, ResNode.getNode());
    998     return true;
    999   }
   1000 
   1001   case ISD::BUILD_VECTOR: {
   1002     // Select appropriate ldi.[bhwd] instructions for constant splats of
   1003     // 128-bit when MSA is enabled. Fixup any register class mismatches that
   1004     // occur as a result.
   1005     //
   1006     // This allows the compiler to use a wider range of immediates than would
   1007     // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
   1008     // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
   1009     // 0x01010101 } without using a constant pool. This would be sub-optimal
   1010     // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
   1011     // same set/ of registers. Similarly, ldi.h isn't capable of producing {
   1012     // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
   1013 
   1014     const MipsABIInfo &ABI =
   1015         static_cast<const MipsTargetMachine &>(TM).getABI();
   1016 
   1017     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
   1018     APInt SplatValue, SplatUndef;
   1019     unsigned SplatBitSize;
   1020     bool HasAnyUndefs;
   1021     unsigned LdiOp;
   1022     EVT ResVecTy = BVN->getValueType(0);
   1023     EVT ViaVecTy;
   1024 
   1025     if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
   1026       return false;
   1027 
   1028     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
   1029                               HasAnyUndefs, 8,
   1030                               !Subtarget->isLittle()))
   1031       return false;
   1032 
   1033     switch (SplatBitSize) {
   1034     default:
   1035       return false;
   1036     case 8:
   1037       LdiOp = Mips::LDI_B;
   1038       ViaVecTy = MVT::v16i8;
   1039       break;
   1040     case 16:
   1041       LdiOp = Mips::LDI_H;
   1042       ViaVecTy = MVT::v8i16;
   1043       break;
   1044     case 32:
   1045       LdiOp = Mips::LDI_W;
   1046       ViaVecTy = MVT::v4i32;
   1047       break;
   1048     case 64:
   1049       LdiOp = Mips::LDI_D;
   1050       ViaVecTy = MVT::v2i64;
   1051       break;
   1052     }
   1053 
   1054     SDNode *Res;
   1055 
   1056     // If we have a signed 10 bit integer, we can splat it directly.
   1057     //
   1058     // If we have something bigger we can synthesize the value into a GPR and
   1059     // splat from there.
   1060     if (SplatValue.isSignedIntN(10)) {
   1061       SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
   1062                                               ViaVecTy.getVectorElementType());
   1063 
   1064       Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
   1065     } else if (SplatValue.isSignedIntN(16) &&
   1066                ((ABI.IsO32() && SplatBitSize < 64) ||
   1067                 (ABI.IsN32() || ABI.IsN64()))) {
   1068       // Only handle signed 16 bit values when the element size is GPR width.
   1069       // MIPS64 can handle all the cases but MIPS32 would need to handle
   1070       // negative cases specifically here. Instead, handle those cases as
   1071       // 64bit values.
   1072 
   1073       bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
   1074       const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
   1075       const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
   1076       SDValue ZeroVal = CurDAG->getRegister(
   1077           Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
   1078 
   1079       const unsigned FILLOp =
   1080           SplatBitSize == 16
   1081               ? Mips::FILL_H
   1082               : (SplatBitSize == 32 ? Mips::FILL_W
   1083                                     : (SplatBitSize == 64 ? Mips::FILL_D : 0));
   1084 
   1085       assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
   1086       assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
   1087              "Attempting to use fill.d on MIPS32!");
   1088 
   1089       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
   1090       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
   1091 
   1092       Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
   1093       Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
   1094 
   1095     } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
   1096       // Only handle the cases where the splat size agrees with the size
   1097       // of the SplatValue here.
   1098       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
   1099       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
   1100       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
   1101 
   1102       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
   1103       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
   1104 
   1105       if (Hi)
   1106         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
   1107 
   1108       if (Lo)
   1109         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
   1110                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
   1111 
   1112       assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
   1113       Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
   1114 
   1115     } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
   1116                (ABI.IsN32() || ABI.IsN64())) {
   1117       // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
   1118       // integers due to having 64bit registers. lui will cause the necessary
   1119       // zero/sign extension.
   1120       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
   1121       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
   1122       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
   1123 
   1124       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
   1125       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
   1126 
   1127       if (Hi)
   1128         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
   1129 
   1130       if (Lo)
   1131         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
   1132                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
   1133 
   1134       Res = CurDAG->getMachineNode(
   1135               Mips::SUBREG_TO_REG, DL, MVT::i64,
   1136               CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
   1137               SDValue(Res, 0),
   1138               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
   1139 
   1140       Res =
   1141           CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
   1142 
   1143     } else if (SplatValue.isSignedIntN(64)) {
   1144       // If we have a 64 bit Splat value, we perform a similar sequence to the
   1145       // above:
   1146       //
   1147       // MIPS32:                            MIPS64:
   1148       //   lui $res, %highest(val)            lui $res, %highest(val)
   1149       //   ori $res, $res, %higher(val)       ori $res, $res, %higher(val)
   1150       //   lui $res2, %hi(val)                lui $res2, %hi(val)
   1151       //   ori $res2, %res2, %lo(val)         ori $res2, %res2, %lo(val)
   1152       //   $res3 = fill $res2                 dinsu $res, $res2, 0, 32
   1153       //   $res4 = insert.w $res3[1], $res    fill.d $res
   1154       //   splat.d $res4, 0
   1155       //
   1156       // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
   1157       // having to materialize the value by shifts and ors.
   1158       //
   1159       // FIXME: Implement the preferred sequence for MIPS64R6:
   1160       //
   1161       // MIPS64R6:
   1162       //   ori $res, $zero, %lo(val)
   1163       //   daui $res, $res, %hi(val)
   1164       //   dahi $res, $res, %higher(val)
   1165       //   dati $res, $res, %highest(cal)
   1166       //   fill.d $res
   1167       //
   1168 
   1169       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
   1170       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
   1171       const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
   1172       const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
   1173 
   1174       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
   1175       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
   1176       SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
   1177       SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
   1178       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
   1179 
   1180       // Independent of whether we're targeting MIPS64 or not, the basic
   1181       // operations are the same. Also, directly use the $zero register if
   1182       // the 16 bit chunk is zero.
   1183       //
   1184       // For optimization purposes we always synthesize the splat value as
   1185       // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
   1186       // just before combining the values with dinsu to produce an i64. This
   1187       // enables SelectionDAG to aggressively share components of splat values
   1188       // where possible.
   1189       //
   1190       // FIXME: This is the general constant synthesis problem. This code
   1191       //        should be factored out into a class shared between all the
   1192       //        classes that need it. Specifically, for a splat size of 64
   1193       //        bits that's a negative number we can do better than LUi/ORi
   1194       //        for the upper 32bits.
   1195 
   1196       if (Hi)
   1197         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
   1198 
   1199       if (Lo)
   1200         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
   1201                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
   1202 
   1203       SDNode *HiRes;
   1204       if (Highest)
   1205         HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
   1206 
   1207       if (Higher)
   1208         HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
   1209                                        Highest ? SDValue(HiRes, 0) : ZeroVal,
   1210                                        HigherVal);
   1211 
   1212 
   1213       if (ABI.IsO32()) {
   1214         Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
   1215                                      (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
   1216 
   1217         Res = CurDAG->getMachineNode(
   1218             Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
   1219             (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
   1220             CurDAG->getTargetConstant(1, DL, MVT::i32));
   1221 
   1222         const TargetLowering *TLI = getTargetLowering();
   1223         const TargetRegisterClass *RC =
   1224             TLI->getRegClassFor(ViaVecTy.getSimpleVT());
   1225 
   1226         Res = CurDAG->getMachineNode(
   1227             Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
   1228             CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
   1229 
   1230         Res = CurDAG->getMachineNode(
   1231             Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
   1232             CurDAG->getTargetConstant(0, DL, MVT::i32));
   1233       } else if (ABI.IsN64() || ABI.IsN32()) {
   1234 
   1235         SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
   1236         const bool HiResNonZero = Highest || Higher;
   1237         const bool ResNonZero = Hi || Lo;
   1238 
   1239         if (HiResNonZero)
   1240           HiRes = CurDAG->getMachineNode(
   1241               Mips::SUBREG_TO_REG, DL, MVT::i64,
   1242               CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
   1243               SDValue(HiRes, 0),
   1244               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
   1245 
   1246         if (ResNonZero)
   1247           Res = CurDAG->getMachineNode(
   1248               Mips::SUBREG_TO_REG, DL, MVT::i64,
   1249               CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
   1250               SDValue(Res, 0),
   1251               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
   1252 
   1253         // We have 3 cases:
   1254         //   The HiRes is nonzero but Res is $zero  => dsll32 HiRes, 0
   1255         //   The Res is nonzero but HiRes is $zero  => dinsu Res, $zero, 32, 32
   1256         //   Both are non zero                      => dinsu Res, HiRes, 32, 32
   1257         //
   1258         // The obvious "missing" case is when both are zero, but that case is
   1259         // handled by the ldi case.
   1260         if (ResNonZero) {
   1261           IntegerType *Int32Ty =
   1262               IntegerType::get(MF->getFunction().getContext(), 32);
   1263           const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
   1264           SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
   1265                             CurDAG->getConstant(*Const32, DL, MVT::i32),
   1266                             CurDAG->getConstant(*Const32, DL, MVT::i32),
   1267                             SDValue(Res, 0)};
   1268 
   1269           Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
   1270         } else if (HiResNonZero) {
   1271           Res = CurDAG->getMachineNode(
   1272               Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
   1273               CurDAG->getTargetConstant(0, DL, MVT::i32));
   1274         } else
   1275           llvm_unreachable(
   1276               "Zero splat value handled by non-zero 64bit splat synthesis!");
   1277 
   1278         Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
   1279       } else
   1280         llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
   1281 
   1282     } else
   1283       return false;
   1284 
   1285     if (ResVecTy != ViaVecTy) {
   1286       // If LdiOp is writing to a different register class to ResVecTy, then
   1287       // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
   1288       // since the source and destination register sets contain the same
   1289       // registers.
   1290       const TargetLowering *TLI = getTargetLowering();
   1291       MVT ResVecTySimple = ResVecTy.getSimpleVT();
   1292       const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
   1293       Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
   1294                                    ResVecTy, SDValue(Res, 0),
   1295                                    CurDAG->getTargetConstant(RC->getID(), DL,
   1296                                                              MVT::i32));
   1297     }
   1298 
   1299     ReplaceNode(Node, Res);
   1300     return true;
   1301   }
   1302 
   1303   }
   1304 
   1305   return false;
   1306 }
   1307 
   1308 bool MipsSEDAGToDAGISel::
   1309 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
   1310                              std::vector<SDValue> &OutOps) {
   1311   SDValue Base, Offset;
   1312 
   1313   switch(ConstraintID) {
   1314   default:
   1315     llvm_unreachable("Unexpected asm memory constraint");
   1316   // All memory constraints can at least accept raw pointers.
   1317   case InlineAsm::Constraint_i:
   1318     OutOps.push_back(Op);
   1319     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
   1320     return false;
   1321   case InlineAsm::Constraint_m:
   1322     if (selectAddrRegImm16(Op, Base, Offset)) {
   1323       OutOps.push_back(Base);
   1324       OutOps.push_back(Offset);
   1325       return false;
   1326     }
   1327     OutOps.push_back(Op);
   1328     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
   1329     return false;
   1330   case InlineAsm::Constraint_R:
   1331     // The 'R' constraint is supposed to be much more complicated than this.
   1332     // However, it's becoming less useful due to architectural changes and
   1333     // ought to be replaced by other constraints such as 'ZC'.
   1334     // For now, support 9-bit signed offsets which is supportable by all
   1335     // subtargets for all instructions.
   1336     if (selectAddrRegImm9(Op, Base, Offset)) {
   1337       OutOps.push_back(Base);
   1338       OutOps.push_back(Offset);
   1339       return false;
   1340     }
   1341     OutOps.push_back(Op);
   1342     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
   1343     return false;
   1344   case InlineAsm::Constraint_ZC:
   1345     // ZC matches whatever the pref, ll, and sc instructions can handle for the
   1346     // given subtarget.
   1347     if (Subtarget->inMicroMipsMode()) {
   1348       // On microMIPS, they can handle 12-bit offsets.
   1349       if (selectAddrRegImm12(Op, Base, Offset)) {
   1350         OutOps.push_back(Base);
   1351         OutOps.push_back(Offset);
   1352         return false;
   1353       }
   1354     } else if (Subtarget->hasMips32r6()) {
   1355       // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
   1356       if (selectAddrRegImm9(Op, Base, Offset)) {
   1357         OutOps.push_back(Base);
   1358         OutOps.push_back(Offset);
   1359         return false;
   1360       }
   1361     } else if (selectAddrRegImm16(Op, Base, Offset)) {
   1362       // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
   1363       OutOps.push_back(Base);
   1364       OutOps.push_back(Offset);
   1365       return false;
   1366     }
   1367     // In all cases, 0-bit offsets are acceptable.
   1368     OutOps.push_back(Op);
   1369     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
   1370     return false;
   1371   }
   1372   return true;
   1373 }
   1374 
   1375 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
   1376                                         CodeGenOpt::Level OptLevel) {
   1377   return new MipsSEDAGToDAGISel(TM, OptLevel);
   1378 }
   1379