Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the SDNode class and derived classes, which are used to
     11 // represent the nodes and operations present in a SelectionDAG.  These nodes
     12 // and operations are machine code level operations, with some similarities to
     13 // the GCC RTL representation.
     14 //
     15 // Clients should include the SelectionDAG.h file instead of this file directly.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
     20 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
     21 
     22 #include "llvm/ADT/APFloat.h"
     23 #include "llvm/ADT/ArrayRef.h"
     24 #include "llvm/ADT/BitVector.h"
     25 #include "llvm/ADT/FoldingSet.h"
     26 #include "llvm/ADT/GraphTraits.h"
     27 #include "llvm/ADT/SmallPtrSet.h"
     28 #include "llvm/ADT/SmallVector.h"
     29 #include "llvm/ADT/ilist_node.h"
     30 #include "llvm/ADT/iterator.h"
     31 #include "llvm/ADT/iterator_range.h"
     32 #include "llvm/CodeGen/ISDOpcodes.h"
     33 #include "llvm/CodeGen/MachineMemOperand.h"
     34 #include "llvm/CodeGen/ValueTypes.h"
     35 #include "llvm/IR/Constants.h"
     36 #include "llvm/IR/DebugLoc.h"
     37 #include "llvm/IR/Instruction.h"
     38 #include "llvm/IR/Instructions.h"
     39 #include "llvm/IR/Metadata.h"
     40 #include "llvm/IR/Operator.h"
     41 #include "llvm/Support/AlignOf.h"
     42 #include "llvm/Support/AtomicOrdering.h"
     43 #include "llvm/Support/Casting.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/MachineValueType.h"
     46 #include <algorithm>
     47 #include <cassert>
     48 #include <climits>
     49 #include <cstddef>
     50 #include <cstdint>
     51 #include <cstring>
     52 #include <iterator>
     53 #include <string>
     54 #include <tuple>
     55 
     56 namespace llvm {
     57 
     58 class APInt;
     59 class Constant;
     60 template <typename T> struct DenseMapInfo;
     61 class GlobalValue;
     62 class MachineBasicBlock;
     63 class MachineConstantPoolValue;
     64 class MCSymbol;
     65 class raw_ostream;
     66 class SDNode;
     67 class SelectionDAG;
     68 class Type;
     69 class Value;
     70 
     71 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
     72                     bool force = false);
     73 
     74 /// This represents a list of ValueType's that has been intern'd by
     75 /// a SelectionDAG.  Instances of this simple value class are returned by
     76 /// SelectionDAG::getVTList(...).
     77 ///
     78 struct SDVTList {
     79   const EVT *VTs;
     80   unsigned int NumVTs;
     81 };
     82 
     83 namespace ISD {
     84 
     85   /// Node predicates
     86 
     87   /// If N is a BUILD_VECTOR node whose elements are all the same constant or
     88   /// undefined, return true and return the constant value in \p SplatValue.
     89   bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
     90 
     91   /// Return true if the specified node is a BUILD_VECTOR where all of the
     92   /// elements are ~0 or undef.
     93   bool isBuildVectorAllOnes(const SDNode *N);
     94 
     95   /// Return true if the specified node is a BUILD_VECTOR where all of the
     96   /// elements are 0 or undef.
     97   bool isBuildVectorAllZeros(const SDNode *N);
     98 
     99   /// Return true if the specified node is a BUILD_VECTOR node of all
    100   /// ConstantSDNode or undef.
    101   bool isBuildVectorOfConstantSDNodes(const SDNode *N);
    102 
    103   /// Return true if the specified node is a BUILD_VECTOR node of all
    104   /// ConstantFPSDNode or undef.
    105   bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
    106 
    107   /// Return true if the node has at least one operand and all operands of the
    108   /// specified node are ISD::UNDEF.
    109   bool allOperandsUndef(const SDNode *N);
    110 
    111 } // end namespace ISD
    112 
    113 //===----------------------------------------------------------------------===//
    114 /// Unlike LLVM values, Selection DAG nodes may return multiple
    115 /// values as the result of a computation.  Many nodes return multiple values,
    116 /// from loads (which define a token and a return value) to ADDC (which returns
    117 /// a result and a carry value), to calls (which may return an arbitrary number
    118 /// of values).
    119 ///
    120 /// As such, each use of a SelectionDAG computation must indicate the node that
    121 /// computes it as well as which return value to use from that node.  This pair
    122 /// of information is represented with the SDValue value type.
    123 ///
    124 class SDValue {
    125   friend struct DenseMapInfo<SDValue>;
    126 
    127   SDNode *Node = nullptr; // The node defining the value we are using.
    128   unsigned ResNo = 0;     // Which return value of the node we are using.
    129 
    130 public:
    131   SDValue() = default;
    132   SDValue(SDNode *node, unsigned resno);
    133 
    134   /// get the index which selects a specific result in the SDNode
    135   unsigned getResNo() const { return ResNo; }
    136 
    137   /// get the SDNode which holds the desired result
    138   SDNode *getNode() const { return Node; }
    139 
    140   /// set the SDNode
    141   void setNode(SDNode *N) { Node = N; }
    142 
    143   inline SDNode *operator->() const { return Node; }
    144 
    145   bool operator==(const SDValue &O) const {
    146     return Node == O.Node && ResNo == O.ResNo;
    147   }
    148   bool operator!=(const SDValue &O) const {
    149     return !operator==(O);
    150   }
    151   bool operator<(const SDValue &O) const {
    152     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
    153   }
    154   explicit operator bool() const {
    155     return Node != nullptr;
    156   }
    157 
    158   SDValue getValue(unsigned R) const {
    159     return SDValue(Node, R);
    160   }
    161 
    162   /// Return true if this node is an operand of N.
    163   bool isOperandOf(const SDNode *N) const;
    164 
    165   /// Return the ValueType of the referenced return value.
    166   inline EVT getValueType() const;
    167 
    168   /// Return the simple ValueType of the referenced return value.
    169   MVT getSimpleValueType() const {
    170     return getValueType().getSimpleVT();
    171   }
    172 
    173   /// Returns the size of the value in bits.
    174   unsigned getValueSizeInBits() const {
    175     return getValueType().getSizeInBits();
    176   }
    177 
    178   unsigned getScalarValueSizeInBits() const {
    179     return getValueType().getScalarType().getSizeInBits();
    180   }
    181 
    182   // Forwarding methods - These forward to the corresponding methods in SDNode.
    183   inline unsigned getOpcode() const;
    184   inline unsigned getNumOperands() const;
    185   inline const SDValue &getOperand(unsigned i) const;
    186   inline uint64_t getConstantOperandVal(unsigned i) const;
    187   inline bool isTargetMemoryOpcode() const;
    188   inline bool isTargetOpcode() const;
    189   inline bool isMachineOpcode() const;
    190   inline bool isUndef() const;
    191   inline unsigned getMachineOpcode() const;
    192   inline const DebugLoc &getDebugLoc() const;
    193   inline void dump() const;
    194   inline void dump(const SelectionDAG *G) const;
    195   inline void dumpr() const;
    196   inline void dumpr(const SelectionDAG *G) const;
    197 
    198   /// Return true if this operand (which must be a chain) reaches the
    199   /// specified operand without crossing any side-effecting instructions.
    200   /// In practice, this looks through token factors and non-volatile loads.
    201   /// In order to remain efficient, this only
    202   /// looks a couple of nodes in, it does not do an exhaustive search.
    203   bool reachesChainWithoutSideEffects(SDValue Dest,
    204                                       unsigned Depth = 2) const;
    205 
    206   /// Return true if there are no nodes using value ResNo of Node.
    207   inline bool use_empty() const;
    208 
    209   /// Return true if there is exactly one node using value ResNo of Node.
    210   inline bool hasOneUse() const;
    211 };
    212 
    213 template<> struct DenseMapInfo<SDValue> {
    214   static inline SDValue getEmptyKey() {
    215     SDValue V;
    216     V.ResNo = -1U;
    217     return V;
    218   }
    219 
    220   static inline SDValue getTombstoneKey() {
    221     SDValue V;
    222     V.ResNo = -2U;
    223     return V;
    224   }
    225 
    226   static unsigned getHashValue(const SDValue &Val) {
    227     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
    228             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
    229   }
    230 
    231   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
    232     return LHS == RHS;
    233   }
    234 };
    235 template <> struct isPodLike<SDValue> { static const bool value = true; };
    236 
    237 /// Allow casting operators to work directly on
    238 /// SDValues as if they were SDNode*'s.
    239 template<> struct simplify_type<SDValue> {
    240   using SimpleType = SDNode *;
    241 
    242   static SimpleType getSimplifiedValue(SDValue &Val) {
    243     return Val.getNode();
    244   }
    245 };
    246 template<> struct simplify_type<const SDValue> {
    247   using SimpleType = /*const*/ SDNode *;
    248 
    249   static SimpleType getSimplifiedValue(const SDValue &Val) {
    250     return Val.getNode();
    251   }
    252 };
    253 
    254 /// Represents a use of a SDNode. This class holds an SDValue,
    255 /// which records the SDNode being used and the result number, a
    256 /// pointer to the SDNode using the value, and Next and Prev pointers,
    257 /// which link together all the uses of an SDNode.
    258 ///
    259 class SDUse {
    260   /// Val - The value being used.
    261   SDValue Val;
    262   /// User - The user of this value.
    263   SDNode *User = nullptr;
    264   /// Prev, Next - Pointers to the uses list of the SDNode referred by
    265   /// this operand.
    266   SDUse **Prev = nullptr;
    267   SDUse *Next = nullptr;
    268 
    269 public:
    270   SDUse() = default;
    271   SDUse(const SDUse &U) = delete;
    272   SDUse &operator=(const SDUse &) = delete;
    273 
    274   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
    275   operator const SDValue&() const { return Val; }
    276 
    277   /// If implicit conversion to SDValue doesn't work, the get() method returns
    278   /// the SDValue.
    279   const SDValue &get() const { return Val; }
    280 
    281   /// This returns the SDNode that contains this Use.
    282   SDNode *getUser() { return User; }
    283 
    284   /// Get the next SDUse in the use list.
    285   SDUse *getNext() const { return Next; }
    286 
    287   /// Convenience function for get().getNode().
    288   SDNode *getNode() const { return Val.getNode(); }
    289   /// Convenience function for get().getResNo().
    290   unsigned getResNo() const { return Val.getResNo(); }
    291   /// Convenience function for get().getValueType().
    292   EVT getValueType() const { return Val.getValueType(); }
    293 
    294   /// Convenience function for get().operator==
    295   bool operator==(const SDValue &V) const {
    296     return Val == V;
    297   }
    298 
    299   /// Convenience function for get().operator!=
    300   bool operator!=(const SDValue &V) const {
    301     return Val != V;
    302   }
    303 
    304   /// Convenience function for get().operator<
    305   bool operator<(const SDValue &V) const {
    306     return Val < V;
    307   }
    308 
    309 private:
    310   friend class SelectionDAG;
    311   friend class SDNode;
    312   // TODO: unfriend HandleSDNode once we fix its operand handling.
    313   friend class HandleSDNode;
    314 
    315   void setUser(SDNode *p) { User = p; }
    316 
    317   /// Remove this use from its existing use list, assign it the
    318   /// given value, and add it to the new value's node's use list.
    319   inline void set(const SDValue &V);
    320   /// Like set, but only supports initializing a newly-allocated
    321   /// SDUse with a non-null value.
    322   inline void setInitial(const SDValue &V);
    323   /// Like set, but only sets the Node portion of the value,
    324   /// leaving the ResNo portion unmodified.
    325   inline void setNode(SDNode *N);
    326 
    327   void addToList(SDUse **List) {
    328     Next = *List;
    329     if (Next) Next->Prev = &Next;
    330     Prev = List;
    331     *List = this;
    332   }
    333 
    334   void removeFromList() {
    335     *Prev = Next;
    336     if (Next) Next->Prev = Prev;
    337   }
    338 };
    339 
    340 /// simplify_type specializations - Allow casting operators to work directly on
    341 /// SDValues as if they were SDNode*'s.
    342 template<> struct simplify_type<SDUse> {
    343   using SimpleType = SDNode *;
    344 
    345   static SimpleType getSimplifiedValue(SDUse &Val) {
    346     return Val.getNode();
    347   }
    348 };
    349 
    350 /// These are IR-level optimization flags that may be propagated to SDNodes.
    351 /// TODO: This data structure should be shared by the IR optimizer and the
    352 /// the backend.
    353 struct SDNodeFlags {
    354 private:
    355   // This bit is used to determine if the flags are in a defined state.
    356   // Flag bits can only be masked out during intersection if the masking flags
    357   // are defined.
    358   bool AnyDefined : 1;
    359 
    360   bool NoUnsignedWrap : 1;
    361   bool NoSignedWrap : 1;
    362   bool Exact : 1;
    363   bool NoNaNs : 1;
    364   bool NoInfs : 1;
    365   bool NoSignedZeros : 1;
    366   bool AllowReciprocal : 1;
    367   bool VectorReduction : 1;
    368   bool AllowContract : 1;
    369   bool ApproximateFuncs : 1;
    370   bool AllowReassociation : 1;
    371 
    372 public:
    373   /// Default constructor turns off all optimization flags.
    374   SDNodeFlags()
    375       : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
    376         Exact(false), NoNaNs(false), NoInfs(false),
    377         NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
    378         AllowContract(false), ApproximateFuncs(false),
    379         AllowReassociation(false) {}
    380 
    381   /// Propagate the fast-math-flags from an IR FPMathOperator.
    382   void copyFMF(const FPMathOperator &FPMO) {
    383     setNoNaNs(FPMO.hasNoNaNs());
    384     setNoInfs(FPMO.hasNoInfs());
    385     setNoSignedZeros(FPMO.hasNoSignedZeros());
    386     setAllowReciprocal(FPMO.hasAllowReciprocal());
    387     setAllowContract(FPMO.hasAllowContract());
    388     setApproximateFuncs(FPMO.hasApproxFunc());
    389     setAllowReassociation(FPMO.hasAllowReassoc());
    390   }
    391 
    392   /// Sets the state of the flags to the defined state.
    393   void setDefined() { AnyDefined = true; }
    394   /// Returns true if the flags are in a defined state.
    395   bool isDefined() const { return AnyDefined; }
    396 
    397   // These are mutators for each flag.
    398   void setNoUnsignedWrap(bool b) {
    399     setDefined();
    400     NoUnsignedWrap = b;
    401   }
    402   void setNoSignedWrap(bool b) {
    403     setDefined();
    404     NoSignedWrap = b;
    405   }
    406   void setExact(bool b) {
    407     setDefined();
    408     Exact = b;
    409   }
    410   void setNoNaNs(bool b) {
    411     setDefined();
    412     NoNaNs = b;
    413   }
    414   void setNoInfs(bool b) {
    415     setDefined();
    416     NoInfs = b;
    417   }
    418   void setNoSignedZeros(bool b) {
    419     setDefined();
    420     NoSignedZeros = b;
    421   }
    422   void setAllowReciprocal(bool b) {
    423     setDefined();
    424     AllowReciprocal = b;
    425   }
    426   void setVectorReduction(bool b) {
    427     setDefined();
    428     VectorReduction = b;
    429   }
    430   void setAllowContract(bool b) {
    431     setDefined();
    432     AllowContract = b;
    433   }
    434   void setApproximateFuncs(bool b) {
    435     setDefined();
    436     ApproximateFuncs = b;
    437   }
    438   void setAllowReassociation(bool b) {
    439     setDefined();
    440     AllowReassociation = b;
    441   }
    442 
    443   // These are accessors for each flag.
    444   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
    445   bool hasNoSignedWrap() const { return NoSignedWrap; }
    446   bool hasExact() const { return Exact; }
    447   bool hasNoNaNs() const { return NoNaNs; }
    448   bool hasNoInfs() const { return NoInfs; }
    449   bool hasNoSignedZeros() const { return NoSignedZeros; }
    450   bool hasAllowReciprocal() const { return AllowReciprocal; }
    451   bool hasVectorReduction() const { return VectorReduction; }
    452   bool hasAllowContract() const { return AllowContract; }
    453   bool hasApproximateFuncs() const { return ApproximateFuncs; }
    454   bool hasAllowReassociation() const { return AllowReassociation; }
    455 
    456   bool isFast() const {
    457     return NoSignedZeros && AllowReciprocal && NoNaNs && NoInfs &&
    458            AllowContract && ApproximateFuncs && AllowReassociation;
    459   }
    460 
    461   /// Clear any flags in this flag set that aren't also set in Flags.
    462   /// If the given Flags are undefined then don't do anything.
    463   void intersectWith(const SDNodeFlags Flags) {
    464     if (!Flags.isDefined())
    465       return;
    466     NoUnsignedWrap &= Flags.NoUnsignedWrap;
    467     NoSignedWrap &= Flags.NoSignedWrap;
    468     Exact &= Flags.Exact;
    469     NoNaNs &= Flags.NoNaNs;
    470     NoInfs &= Flags.NoInfs;
    471     NoSignedZeros &= Flags.NoSignedZeros;
    472     AllowReciprocal &= Flags.AllowReciprocal;
    473     VectorReduction &= Flags.VectorReduction;
    474     AllowContract &= Flags.AllowContract;
    475     ApproximateFuncs &= Flags.ApproximateFuncs;
    476     AllowReassociation &= Flags.AllowReassociation;
    477   }
    478 };
    479 
    480 /// Represents one node in the SelectionDAG.
    481 ///
    482 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
    483 private:
    484   /// The operation that this node performs.
    485   int16_t NodeType;
    486 
    487 protected:
    488   // We define a set of mini-helper classes to help us interpret the bits in our
    489   // SubclassData.  These are designed to fit within a uint16_t so they pack
    490   // with NodeType.
    491 
    492   class SDNodeBitfields {
    493     friend class SDNode;
    494     friend class MemIntrinsicSDNode;
    495     friend class MemSDNode;
    496     friend class SelectionDAG;
    497 
    498     uint16_t HasDebugValue : 1;
    499     uint16_t IsMemIntrinsic : 1;
    500     uint16_t IsDivergent : 1;
    501   };
    502   enum { NumSDNodeBits = 3 };
    503 
    504   class ConstantSDNodeBitfields {
    505     friend class ConstantSDNode;
    506 
    507     uint16_t : NumSDNodeBits;
    508 
    509     uint16_t IsOpaque : 1;
    510   };
    511 
    512   class MemSDNodeBitfields {
    513     friend class MemSDNode;
    514     friend class MemIntrinsicSDNode;
    515     friend class AtomicSDNode;
    516 
    517     uint16_t : NumSDNodeBits;
    518 
    519     uint16_t IsVolatile : 1;
    520     uint16_t IsNonTemporal : 1;
    521     uint16_t IsDereferenceable : 1;
    522     uint16_t IsInvariant : 1;
    523   };
    524   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
    525 
    526   class LSBaseSDNodeBitfields {
    527     friend class LSBaseSDNode;
    528 
    529     uint16_t : NumMemSDNodeBits;
    530 
    531     uint16_t AddressingMode : 3; // enum ISD::MemIndexedMode
    532   };
    533   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
    534 
    535   class LoadSDNodeBitfields {
    536     friend class LoadSDNode;
    537     friend class MaskedLoadSDNode;
    538 
    539     uint16_t : NumLSBaseSDNodeBits;
    540 
    541     uint16_t ExtTy : 2; // enum ISD::LoadExtType
    542     uint16_t IsExpanding : 1;
    543   };
    544 
    545   class StoreSDNodeBitfields {
    546     friend class StoreSDNode;
    547     friend class MaskedStoreSDNode;
    548 
    549     uint16_t : NumLSBaseSDNodeBits;
    550 
    551     uint16_t IsTruncating : 1;
    552     uint16_t IsCompressing : 1;
    553   };
    554 
    555   union {
    556     char RawSDNodeBits[sizeof(uint16_t)];
    557     SDNodeBitfields SDNodeBits;
    558     ConstantSDNodeBitfields ConstantSDNodeBits;
    559     MemSDNodeBitfields MemSDNodeBits;
    560     LSBaseSDNodeBitfields LSBaseSDNodeBits;
    561     LoadSDNodeBitfields LoadSDNodeBits;
    562     StoreSDNodeBitfields StoreSDNodeBits;
    563   };
    564 
    565   // RawSDNodeBits must cover the entirety of the union.  This means that all of
    566   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
    567   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
    568   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
    569   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
    570   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
    571   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
    572   static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
    573   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
    574 
    575 private:
    576   friend class SelectionDAG;
    577   // TODO: unfriend HandleSDNode once we fix its operand handling.
    578   friend class HandleSDNode;
    579 
    580   /// Unique id per SDNode in the DAG.
    581   int NodeId = -1;
    582 
    583   /// The values that are used by this operation.
    584   SDUse *OperandList = nullptr;
    585 
    586   /// The types of the values this node defines.  SDNode's may
    587   /// define multiple values simultaneously.
    588   const EVT *ValueList;
    589 
    590   /// List of uses for this SDNode.
    591   SDUse *UseList = nullptr;
    592 
    593   /// The number of entries in the Operand/Value list.
    594   unsigned short NumOperands = 0;
    595   unsigned short NumValues;
    596 
    597   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
    598   // original LLVM instructions.
    599   // This is used for turning off scheduling, because we'll forgo
    600   // the normal scheduling algorithms and output the instructions according to
    601   // this ordering.
    602   unsigned IROrder;
    603 
    604   /// Source line information.
    605   DebugLoc debugLoc;
    606 
    607   /// Return a pointer to the specified value type.
    608   static const EVT *getValueTypeList(EVT VT);
    609 
    610   SDNodeFlags Flags;
    611 
    612 public:
    613   /// Unique and persistent id per SDNode in the DAG.
    614   /// Used for debug printing.
    615   uint16_t PersistentId;
    616 
    617   //===--------------------------------------------------------------------===//
    618   //  Accessors
    619   //
    620 
    621   /// Return the SelectionDAG opcode value for this node. For
    622   /// pre-isel nodes (those for which isMachineOpcode returns false), these
    623   /// are the opcode values in the ISD and <target>ISD namespaces. For
    624   /// post-isel opcodes, see getMachineOpcode.
    625   unsigned getOpcode()  const { return (unsigned short)NodeType; }
    626 
    627   /// Test if this node has a target-specific opcode (in the
    628   /// \<target\>ISD namespace).
    629   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
    630 
    631   /// Test if this node has a target-specific
    632   /// memory-referencing opcode (in the \<target\>ISD namespace and
    633   /// greater than FIRST_TARGET_MEMORY_OPCODE).
    634   bool isTargetMemoryOpcode() const {
    635     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
    636   }
    637 
    638   /// Return true if the type of the node type undefined.
    639   bool isUndef() const { return NodeType == ISD::UNDEF; }
    640 
    641   /// Test if this node is a memory intrinsic (with valid pointer information).
    642   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
    643   /// non-memory intrinsics (with chains) that are not really instances of
    644   /// MemSDNode. For such nodes, we need some extra state to determine the
    645   /// proper classof relationship.
    646   bool isMemIntrinsic() const {
    647     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
    648             NodeType == ISD::INTRINSIC_VOID) &&
    649            SDNodeBits.IsMemIntrinsic;
    650   }
    651 
    652   /// Test if this node is a strict floating point pseudo-op.
    653   bool isStrictFPOpcode() {
    654     switch (NodeType) {
    655       default:
    656         return false;
    657       case ISD::STRICT_FADD:
    658       case ISD::STRICT_FSUB:
    659       case ISD::STRICT_FMUL:
    660       case ISD::STRICT_FDIV:
    661       case ISD::STRICT_FREM:
    662       case ISD::STRICT_FMA:
    663       case ISD::STRICT_FSQRT:
    664       case ISD::STRICT_FPOW:
    665       case ISD::STRICT_FPOWI:
    666       case ISD::STRICT_FSIN:
    667       case ISD::STRICT_FCOS:
    668       case ISD::STRICT_FEXP:
    669       case ISD::STRICT_FEXP2:
    670       case ISD::STRICT_FLOG:
    671       case ISD::STRICT_FLOG10:
    672       case ISD::STRICT_FLOG2:
    673       case ISD::STRICT_FRINT:
    674       case ISD::STRICT_FNEARBYINT:
    675         return true;
    676     }
    677   }
    678 
    679   /// Test if this node has a post-isel opcode, directly
    680   /// corresponding to a MachineInstr opcode.
    681   bool isMachineOpcode() const { return NodeType < 0; }
    682 
    683   /// This may only be called if isMachineOpcode returns
    684   /// true. It returns the MachineInstr opcode value that the node's opcode
    685   /// corresponds to.
    686   unsigned getMachineOpcode() const {
    687     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
    688     return ~NodeType;
    689   }
    690 
    691   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
    692   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
    693 
    694   bool isDivergent() const { return SDNodeBits.IsDivergent; }
    695 
    696   /// Return true if there are no uses of this node.
    697   bool use_empty() const { return UseList == nullptr; }
    698 
    699   /// Return true if there is exactly one use of this node.
    700   bool hasOneUse() const {
    701     return !use_empty() && std::next(use_begin()) == use_end();
    702   }
    703 
    704   /// Return the number of uses of this node. This method takes
    705   /// time proportional to the number of uses.
    706   size_t use_size() const { return std::distance(use_begin(), use_end()); }
    707 
    708   /// Return the unique node id.
    709   int getNodeId() const { return NodeId; }
    710 
    711   /// Set unique node id.
    712   void setNodeId(int Id) { NodeId = Id; }
    713 
    714   /// Return the node ordering.
    715   unsigned getIROrder() const { return IROrder; }
    716 
    717   /// Set the node ordering.
    718   void setIROrder(unsigned Order) { IROrder = Order; }
    719 
    720   /// Return the source location info.
    721   const DebugLoc &getDebugLoc() const { return debugLoc; }
    722 
    723   /// Set source location info.  Try to avoid this, putting
    724   /// it in the constructor is preferable.
    725   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
    726 
    727   /// This class provides iterator support for SDUse
    728   /// operands that use a specific SDNode.
    729   class use_iterator
    730     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
    731     friend class SDNode;
    732 
    733     SDUse *Op = nullptr;
    734 
    735     explicit use_iterator(SDUse *op) : Op(op) {}
    736 
    737   public:
    738     using reference = std::iterator<std::forward_iterator_tag,
    739                                     SDUse, ptrdiff_t>::reference;
    740     using pointer = std::iterator<std::forward_iterator_tag,
    741                                   SDUse, ptrdiff_t>::pointer;
    742 
    743     use_iterator() = default;
    744     use_iterator(const use_iterator &I) : Op(I.Op) {}
    745 
    746     bool operator==(const use_iterator &x) const {
    747       return Op == x.Op;
    748     }
    749     bool operator!=(const use_iterator &x) const {
    750       return !operator==(x);
    751     }
    752 
    753     /// Return true if this iterator is at the end of uses list.
    754     bool atEnd() const { return Op == nullptr; }
    755 
    756     // Iterator traversal: forward iteration only.
    757     use_iterator &operator++() {          // Preincrement
    758       assert(Op && "Cannot increment end iterator!");
    759       Op = Op->getNext();
    760       return *this;
    761     }
    762 
    763     use_iterator operator++(int) {        // Postincrement
    764       use_iterator tmp = *this; ++*this; return tmp;
    765     }
    766 
    767     /// Retrieve a pointer to the current user node.
    768     SDNode *operator*() const {
    769       assert(Op && "Cannot dereference end iterator!");
    770       return Op->getUser();
    771     }
    772 
    773     SDNode *operator->() const { return operator*(); }
    774 
    775     SDUse &getUse() const { return *Op; }
    776 
    777     /// Retrieve the operand # of this use in its user.
    778     unsigned getOperandNo() const {
    779       assert(Op && "Cannot dereference end iterator!");
    780       return (unsigned)(Op - Op->getUser()->OperandList);
    781     }
    782   };
    783 
    784   /// Provide iteration support to walk over all uses of an SDNode.
    785   use_iterator use_begin() const {
    786     return use_iterator(UseList);
    787   }
    788 
    789   static use_iterator use_end() { return use_iterator(nullptr); }
    790 
    791   inline iterator_range<use_iterator> uses() {
    792     return make_range(use_begin(), use_end());
    793   }
    794   inline iterator_range<use_iterator> uses() const {
    795     return make_range(use_begin(), use_end());
    796   }
    797 
    798   /// Return true if there are exactly NUSES uses of the indicated value.
    799   /// This method ignores uses of other values defined by this operation.
    800   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
    801 
    802   /// Return true if there are any use of the indicated value.
    803   /// This method ignores uses of other values defined by this operation.
    804   bool hasAnyUseOfValue(unsigned Value) const;
    805 
    806   /// Return true if this node is the only use of N.
    807   bool isOnlyUserOf(const SDNode *N) const;
    808 
    809   /// Return true if this node is an operand of N.
    810   bool isOperandOf(const SDNode *N) const;
    811 
    812   /// Return true if this node is a predecessor of N.
    813   /// NOTE: Implemented on top of hasPredecessor and every bit as
    814   /// expensive. Use carefully.
    815   bool isPredecessorOf(const SDNode *N) const {
    816     return N->hasPredecessor(this);
    817   }
    818 
    819   /// Return true if N is a predecessor of this node.
    820   /// N is either an operand of this node, or can be reached by recursively
    821   /// traversing up the operands.
    822   /// NOTE: This is an expensive method. Use it carefully.
    823   bool hasPredecessor(const SDNode *N) const;
    824 
    825   /// Returns true if N is a predecessor of any node in Worklist. This
    826   /// helper keeps Visited and Worklist sets externally to allow unions
    827   /// searches to be performed in parallel, caching of results across
    828   /// queries and incremental addition to Worklist. Stops early if N is
    829   /// found but will resume. Remember to clear Visited and Worklists
    830   /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
    831   /// giving up. The TopologicalPrune flag signals that positive NodeIds are
    832   /// topologically ordered (Operands have strictly smaller node id) and search
    833   /// can be pruned leveraging this.
    834   static bool hasPredecessorHelper(const SDNode *N,
    835                                    SmallPtrSetImpl<const SDNode *> &Visited,
    836                                    SmallVectorImpl<const SDNode *> &Worklist,
    837                                    unsigned int MaxSteps = 0,
    838                                    bool TopologicalPrune = false) {
    839     SmallVector<const SDNode *, 8> DeferredNodes;
    840     if (Visited.count(N))
    841       return true;
    842 
    843     // Node Id's are assigned in three places: As a topological
    844     // ordering (> 0), during legalization (results in values set to
    845     // 0), new nodes (set to -1). If N has a topolgical id then we
    846     // know that all nodes with ids smaller than it cannot be
    847     // successors and we need not check them. Filter out all node
    848     // that can't be matches. We add them to the worklist before exit
    849     // in case of multiple calls. Note that during selection the topological id
    850     // may be violated if a node's predecessor is selected before it. We mark
    851     // this at selection negating the id of unselected successors and
    852     // restricting topological pruning to positive ids.
    853 
    854     int NId = N->getNodeId();
    855     // If we Invalidated the Id, reconstruct original NId.
    856     if (NId < -1)
    857       NId = -(NId + 1);
    858 
    859     bool Found = false;
    860     while (!Worklist.empty()) {
    861       const SDNode *M = Worklist.pop_back_val();
    862       int MId = M->getNodeId();
    863       if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
    864           (MId > 0) && (MId < NId)) {
    865         DeferredNodes.push_back(M);
    866         continue;
    867       }
    868       for (const SDValue &OpV : M->op_values()) {
    869         SDNode *Op = OpV.getNode();
    870         if (Visited.insert(Op).second)
    871           Worklist.push_back(Op);
    872         if (Op == N)
    873           Found = true;
    874       }
    875       if (Found)
    876         break;
    877       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
    878         break;
    879     }
    880     // Push deferred nodes back on worklist.
    881     Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
    882     // If we bailed early, conservatively return found.
    883     if (MaxSteps != 0 && Visited.size() >= MaxSteps)
    884       return true;
    885     return Found;
    886   }
    887 
    888   /// Return true if all the users of N are contained in Nodes.
    889   /// NOTE: Requires at least one match, but doesn't require them all.
    890   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
    891 
    892   /// Return the number of values used by this operation.
    893   unsigned getNumOperands() const { return NumOperands; }
    894 
    895   /// Helper method returns the integer value of a ConstantSDNode operand.
    896   inline uint64_t getConstantOperandVal(unsigned Num) const;
    897 
    898   const SDValue &getOperand(unsigned Num) const {
    899     assert(Num < NumOperands && "Invalid child # of SDNode!");
    900     return OperandList[Num];
    901   }
    902 
    903   using op_iterator = SDUse *;
    904 
    905   op_iterator op_begin() const { return OperandList; }
    906   op_iterator op_end() const { return OperandList+NumOperands; }
    907   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
    908 
    909   /// Iterator for directly iterating over the operand SDValue's.
    910   struct value_op_iterator
    911       : iterator_adaptor_base<value_op_iterator, op_iterator,
    912                               std::random_access_iterator_tag, SDValue,
    913                               ptrdiff_t, value_op_iterator *,
    914                               value_op_iterator *> {
    915     explicit value_op_iterator(SDUse *U = nullptr)
    916       : iterator_adaptor_base(U) {}
    917 
    918     const SDValue &operator*() const { return I->get(); }
    919   };
    920 
    921   iterator_range<value_op_iterator> op_values() const {
    922     return make_range(value_op_iterator(op_begin()),
    923                       value_op_iterator(op_end()));
    924   }
    925 
    926   SDVTList getVTList() const {
    927     SDVTList X = { ValueList, NumValues };
    928     return X;
    929   }
    930 
    931   /// If this node has a glue operand, return the node
    932   /// to which the glue operand points. Otherwise return NULL.
    933   SDNode *getGluedNode() const {
    934     if (getNumOperands() != 0 &&
    935         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
    936       return getOperand(getNumOperands()-1).getNode();
    937     return nullptr;
    938   }
    939 
    940   /// If this node has a glue value with a user, return
    941   /// the user (there is at most one). Otherwise return NULL.
    942   SDNode *getGluedUser() const {
    943     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
    944       if (UI.getUse().get().getValueType() == MVT::Glue)
    945         return *UI;
    946     return nullptr;
    947   }
    948 
    949   const SDNodeFlags getFlags() const { return Flags; }
    950   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
    951   bool isFast() { return Flags.isFast(); }
    952 
    953   /// Clear any flags in this node that aren't also set in Flags.
    954   /// If Flags is not in a defined state then this has no effect.
    955   void intersectFlagsWith(const SDNodeFlags Flags);
    956 
    957   /// Return the number of values defined/returned by this operator.
    958   unsigned getNumValues() const { return NumValues; }
    959 
    960   /// Return the type of a specified result.
    961   EVT getValueType(unsigned ResNo) const {
    962     assert(ResNo < NumValues && "Illegal result number!");
    963     return ValueList[ResNo];
    964   }
    965 
    966   /// Return the type of a specified result as a simple type.
    967   MVT getSimpleValueType(unsigned ResNo) const {
    968     return getValueType(ResNo).getSimpleVT();
    969   }
    970 
    971   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
    972   unsigned getValueSizeInBits(unsigned ResNo) const {
    973     return getValueType(ResNo).getSizeInBits();
    974   }
    975 
    976   using value_iterator = const EVT *;
    977 
    978   value_iterator value_begin() const { return ValueList; }
    979   value_iterator value_end() const { return ValueList+NumValues; }
    980 
    981   /// Return the opcode of this operation for printing.
    982   std::string getOperationName(const SelectionDAG *G = nullptr) const;
    983   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
    984   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
    985   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
    986   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
    987   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
    988 
    989   /// Print a SelectionDAG node and all children down to
    990   /// the leaves.  The given SelectionDAG allows target-specific nodes
    991   /// to be printed in human-readable form.  Unlike printr, this will
    992   /// print the whole DAG, including children that appear multiple
    993   /// times.
    994   ///
    995   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
    996 
    997   /// Print a SelectionDAG node and children up to
    998   /// depth "depth."  The given SelectionDAG allows target-specific
    999   /// nodes to be printed in human-readable form.  Unlike printr, this
   1000   /// will print children that appear multiple times wherever they are
   1001   /// used.
   1002   ///
   1003   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
   1004                        unsigned depth = 100) const;
   1005 
   1006   /// Dump this node, for debugging.
   1007   void dump() const;
   1008 
   1009   /// Dump (recursively) this node and its use-def subgraph.
   1010   void dumpr() const;
   1011 
   1012   /// Dump this node, for debugging.
   1013   /// The given SelectionDAG allows target-specific nodes to be printed
   1014   /// in human-readable form.
   1015   void dump(const SelectionDAG *G) const;
   1016 
   1017   /// Dump (recursively) this node and its use-def subgraph.
   1018   /// The given SelectionDAG allows target-specific nodes to be printed
   1019   /// in human-readable form.
   1020   void dumpr(const SelectionDAG *G) const;
   1021 
   1022   /// printrFull to dbgs().  The given SelectionDAG allows
   1023   /// target-specific nodes to be printed in human-readable form.
   1024   /// Unlike dumpr, this will print the whole DAG, including children
   1025   /// that appear multiple times.
   1026   void dumprFull(const SelectionDAG *G = nullptr) const;
   1027 
   1028   /// printrWithDepth to dbgs().  The given
   1029   /// SelectionDAG allows target-specific nodes to be printed in
   1030   /// human-readable form.  Unlike dumpr, this will print children
   1031   /// that appear multiple times wherever they are used.
   1032   ///
   1033   void dumprWithDepth(const SelectionDAG *G = nullptr,
   1034                       unsigned depth = 100) const;
   1035 
   1036   /// Gather unique data for the node.
   1037   void Profile(FoldingSetNodeID &ID) const;
   1038 
   1039   /// This method should only be used by the SDUse class.
   1040   void addUse(SDUse &U) { U.addToList(&UseList); }
   1041 
   1042 protected:
   1043   static SDVTList getSDVTList(EVT VT) {
   1044     SDVTList Ret = { getValueTypeList(VT), 1 };
   1045     return Ret;
   1046   }
   1047 
   1048   /// Create an SDNode.
   1049   ///
   1050   /// SDNodes are created without any operands, and never own the operand
   1051   /// storage. To add operands, see SelectionDAG::createOperands.
   1052   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
   1053       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
   1054         IROrder(Order), debugLoc(std::move(dl)) {
   1055     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
   1056     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
   1057     assert(NumValues == VTs.NumVTs &&
   1058            "NumValues wasn't wide enough for its operands!");
   1059   }
   1060 
   1061   /// Release the operands and set this node to have zero operands.
   1062   void DropOperands();
   1063 };
   1064 
   1065 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
   1066 /// into SDNode creation functions.
   1067 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
   1068 /// from the original Instruction, and IROrder is the ordinal position of
   1069 /// the instruction.
   1070 /// When an SDNode is created after the DAG is being built, both DebugLoc and
   1071 /// the IROrder are propagated from the original SDNode.
   1072 /// So SDLoc class provides two constructors besides the default one, one to
   1073 /// be used by the DAGBuilder, the other to be used by others.
   1074 class SDLoc {
   1075 private:
   1076   DebugLoc DL;
   1077   int IROrder = 0;
   1078 
   1079 public:
   1080   SDLoc() = default;
   1081   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
   1082   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
   1083   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
   1084     assert(Order >= 0 && "bad IROrder");
   1085     if (I)
   1086       DL = I->getDebugLoc();
   1087   }
   1088 
   1089   unsigned getIROrder() const { return IROrder; }
   1090   const DebugLoc &getDebugLoc() const { return DL; }
   1091 };
   1092 
   1093 // Define inline functions from the SDValue class.
   1094 
   1095 inline SDValue::SDValue(SDNode *node, unsigned resno)
   1096     : Node(node), ResNo(resno) {
   1097   // Explicitly check for !ResNo to avoid use-after-free, because there are
   1098   // callers that use SDValue(N, 0) with a deleted N to indicate successful
   1099   // combines.
   1100   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
   1101          "Invalid result number for the given node!");
   1102   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
   1103 }
   1104 
   1105 inline unsigned SDValue::getOpcode() const {
   1106   return Node->getOpcode();
   1107 }
   1108 
   1109 inline EVT SDValue::getValueType() const {
   1110   return Node->getValueType(ResNo);
   1111 }
   1112 
   1113 inline unsigned SDValue::getNumOperands() const {
   1114   return Node->getNumOperands();
   1115 }
   1116 
   1117 inline const SDValue &SDValue::getOperand(unsigned i) const {
   1118   return Node->getOperand(i);
   1119 }
   1120 
   1121 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
   1122   return Node->getConstantOperandVal(i);
   1123 }
   1124 
   1125 inline bool SDValue::isTargetOpcode() const {
   1126   return Node->isTargetOpcode();
   1127 }
   1128 
   1129 inline bool SDValue::isTargetMemoryOpcode() const {
   1130   return Node->isTargetMemoryOpcode();
   1131 }
   1132 
   1133 inline bool SDValue::isMachineOpcode() const {
   1134   return Node->isMachineOpcode();
   1135 }
   1136 
   1137 inline unsigned SDValue::getMachineOpcode() const {
   1138   return Node->getMachineOpcode();
   1139 }
   1140 
   1141 inline bool SDValue::isUndef() const {
   1142   return Node->isUndef();
   1143 }
   1144 
   1145 inline bool SDValue::use_empty() const {
   1146   return !Node->hasAnyUseOfValue(ResNo);
   1147 }
   1148 
   1149 inline bool SDValue::hasOneUse() const {
   1150   return Node->hasNUsesOfValue(1, ResNo);
   1151 }
   1152 
   1153 inline const DebugLoc &SDValue::getDebugLoc() const {
   1154   return Node->getDebugLoc();
   1155 }
   1156 
   1157 inline void SDValue::dump() const {
   1158   return Node->dump();
   1159 }
   1160 
   1161 inline void SDValue::dump(const SelectionDAG *G) const {
   1162   return Node->dump(G);
   1163 }
   1164 
   1165 inline void SDValue::dumpr() const {
   1166   return Node->dumpr();
   1167 }
   1168 
   1169 inline void SDValue::dumpr(const SelectionDAG *G) const {
   1170   return Node->dumpr(G);
   1171 }
   1172 
   1173 // Define inline functions from the SDUse class.
   1174 
   1175 inline void SDUse::set(const SDValue &V) {
   1176   if (Val.getNode()) removeFromList();
   1177   Val = V;
   1178   if (V.getNode()) V.getNode()->addUse(*this);
   1179 }
   1180 
   1181 inline void SDUse::setInitial(const SDValue &V) {
   1182   Val = V;
   1183   V.getNode()->addUse(*this);
   1184 }
   1185 
   1186 inline void SDUse::setNode(SDNode *N) {
   1187   if (Val.getNode()) removeFromList();
   1188   Val.setNode(N);
   1189   if (N) N->addUse(*this);
   1190 }
   1191 
   1192 /// This class is used to form a handle around another node that
   1193 /// is persistent and is updated across invocations of replaceAllUsesWith on its
   1194 /// operand.  This node should be directly created by end-users and not added to
   1195 /// the AllNodes list.
   1196 class HandleSDNode : public SDNode {
   1197   SDUse Op;
   1198 
   1199 public:
   1200   explicit HandleSDNode(SDValue X)
   1201     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
   1202     // HandleSDNodes are never inserted into the DAG, so they won't be
   1203     // auto-numbered. Use ID 65535 as a sentinel.
   1204     PersistentId = 0xffff;
   1205 
   1206     // Manually set up the operand list. This node type is special in that it's
   1207     // always stack allocated and SelectionDAG does not manage its operands.
   1208     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
   1209     // be so special.
   1210     Op.setUser(this);
   1211     Op.setInitial(X);
   1212     NumOperands = 1;
   1213     OperandList = &Op;
   1214   }
   1215   ~HandleSDNode();
   1216 
   1217   const SDValue &getValue() const { return Op; }
   1218 };
   1219 
   1220 class AddrSpaceCastSDNode : public SDNode {
   1221 private:
   1222   unsigned SrcAddrSpace;
   1223   unsigned DestAddrSpace;
   1224 
   1225 public:
   1226   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
   1227                       unsigned SrcAS, unsigned DestAS);
   1228 
   1229   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
   1230   unsigned getDestAddressSpace() const { return DestAddrSpace; }
   1231 
   1232   static bool classof(const SDNode *N) {
   1233     return N->getOpcode() == ISD::ADDRSPACECAST;
   1234   }
   1235 };
   1236 
   1237 /// This is an abstract virtual class for memory operations.
   1238 class MemSDNode : public SDNode {
   1239 private:
   1240   // VT of in-memory value.
   1241   EVT MemoryVT;
   1242 
   1243 protected:
   1244   /// Memory reference information.
   1245   MachineMemOperand *MMO;
   1246 
   1247 public:
   1248   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
   1249             EVT memvt, MachineMemOperand *MMO);
   1250 
   1251   bool readMem() const { return MMO->isLoad(); }
   1252   bool writeMem() const { return MMO->isStore(); }
   1253 
   1254   /// Returns alignment and volatility of the memory access
   1255   unsigned getOriginalAlignment() const {
   1256     return MMO->getBaseAlignment();
   1257   }
   1258   unsigned getAlignment() const {
   1259     return MMO->getAlignment();
   1260   }
   1261 
   1262   /// Return the SubclassData value, without HasDebugValue. This contains an
   1263   /// encoding of the volatile flag, as well as bits used by subclasses. This
   1264   /// function should only be used to compute a FoldingSetNodeID value.
   1265   /// The HasDebugValue bit is masked out because CSE map needs to match
   1266   /// nodes with debug info with nodes without debug info. Same is about
   1267   /// isDivergent bit.
   1268   unsigned getRawSubclassData() const {
   1269     uint16_t Data;
   1270     union {
   1271       char RawSDNodeBits[sizeof(uint16_t)];
   1272       SDNodeBitfields SDNodeBits;
   1273     };
   1274     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
   1275     SDNodeBits.HasDebugValue = 0;
   1276     SDNodeBits.IsDivergent = false;
   1277     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
   1278     return Data;
   1279   }
   1280 
   1281   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
   1282   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
   1283   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
   1284   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
   1285 
   1286   // Returns the offset from the location of the access.
   1287   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
   1288 
   1289   /// Returns the AA info that describes the dereference.
   1290   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
   1291 
   1292   /// Returns the Ranges that describes the dereference.
   1293   const MDNode *getRanges() const { return MMO->getRanges(); }
   1294 
   1295   /// Returns the synchronization scope ID for this memory operation.
   1296   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
   1297 
   1298   /// Return the atomic ordering requirements for this memory operation. For
   1299   /// cmpxchg atomic operations, return the atomic ordering requirements when
   1300   /// store occurs.
   1301   AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
   1302 
   1303   /// Return the type of the in-memory value.
   1304   EVT getMemoryVT() const { return MemoryVT; }
   1305 
   1306   /// Return a MachineMemOperand object describing the memory
   1307   /// reference performed by operation.
   1308   MachineMemOperand *getMemOperand() const { return MMO; }
   1309 
   1310   const MachinePointerInfo &getPointerInfo() const {
   1311     return MMO->getPointerInfo();
   1312   }
   1313 
   1314   /// Return the address space for the associated pointer
   1315   unsigned getAddressSpace() const {
   1316     return getPointerInfo().getAddrSpace();
   1317   }
   1318 
   1319   /// Update this MemSDNode's MachineMemOperand information
   1320   /// to reflect the alignment of NewMMO, if it has a greater alignment.
   1321   /// This must only be used when the new alignment applies to all users of
   1322   /// this MachineMemOperand.
   1323   void refineAlignment(const MachineMemOperand *NewMMO) {
   1324     MMO->refineAlignment(NewMMO);
   1325   }
   1326 
   1327   const SDValue &getChain() const { return getOperand(0); }
   1328   const SDValue &getBasePtr() const {
   1329     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
   1330   }
   1331 
   1332   // Methods to support isa and dyn_cast
   1333   static bool classof(const SDNode *N) {
   1334     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
   1335     // with either an intrinsic or a target opcode.
   1336     return N->getOpcode() == ISD::LOAD                ||
   1337            N->getOpcode() == ISD::STORE               ||
   1338            N->getOpcode() == ISD::PREFETCH            ||
   1339            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
   1340            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
   1341            N->getOpcode() == ISD::ATOMIC_SWAP         ||
   1342            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
   1343            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
   1344            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
   1345            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
   1346            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
   1347            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
   1348            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
   1349            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
   1350            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
   1351            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
   1352            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
   1353            N->getOpcode() == ISD::ATOMIC_LOAD         ||
   1354            N->getOpcode() == ISD::ATOMIC_STORE        ||
   1355            N->getOpcode() == ISD::MLOAD               ||
   1356            N->getOpcode() == ISD::MSTORE              ||
   1357            N->getOpcode() == ISD::MGATHER             ||
   1358            N->getOpcode() == ISD::MSCATTER            ||
   1359            N->isMemIntrinsic()                        ||
   1360            N->isTargetMemoryOpcode();
   1361   }
   1362 };
   1363 
   1364 /// This is an SDNode representing atomic operations.
   1365 class AtomicSDNode : public MemSDNode {
   1366 public:
   1367   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
   1368                EVT MemVT, MachineMemOperand *MMO)
   1369       : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {}
   1370 
   1371   const SDValue &getBasePtr() const { return getOperand(1); }
   1372   const SDValue &getVal() const { return getOperand(2); }
   1373 
   1374   /// Returns true if this SDNode represents cmpxchg atomic operation, false
   1375   /// otherwise.
   1376   bool isCompareAndSwap() const {
   1377     unsigned Op = getOpcode();
   1378     return Op == ISD::ATOMIC_CMP_SWAP ||
   1379            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
   1380   }
   1381 
   1382   /// For cmpxchg atomic operations, return the atomic ordering requirements
   1383   /// when store does not occur.
   1384   AtomicOrdering getFailureOrdering() const {
   1385     assert(isCompareAndSwap() && "Must be cmpxchg operation");
   1386     return MMO->getFailureOrdering();
   1387   }
   1388 
   1389   // Methods to support isa and dyn_cast
   1390   static bool classof(const SDNode *N) {
   1391     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
   1392            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
   1393            N->getOpcode() == ISD::ATOMIC_SWAP         ||
   1394            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
   1395            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
   1396            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
   1397            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
   1398            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
   1399            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
   1400            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
   1401            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
   1402            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
   1403            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
   1404            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
   1405            N->getOpcode() == ISD::ATOMIC_LOAD         ||
   1406            N->getOpcode() == ISD::ATOMIC_STORE;
   1407   }
   1408 };
   1409 
   1410 /// This SDNode is used for target intrinsics that touch
   1411 /// memory and need an associated MachineMemOperand. Its opcode may be
   1412 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
   1413 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
   1414 class MemIntrinsicSDNode : public MemSDNode {
   1415 public:
   1416   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
   1417                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
   1418       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
   1419     SDNodeBits.IsMemIntrinsic = true;
   1420   }
   1421 
   1422   // Methods to support isa and dyn_cast
   1423   static bool classof(const SDNode *N) {
   1424     // We lower some target intrinsics to their target opcode
   1425     // early a node with a target opcode can be of this class
   1426     return N->isMemIntrinsic()             ||
   1427            N->getOpcode() == ISD::PREFETCH ||
   1428            N->isTargetMemoryOpcode();
   1429   }
   1430 };
   1431 
   1432 /// This SDNode is used to implement the code generator
   1433 /// support for the llvm IR shufflevector instruction.  It combines elements
   1434 /// from two input vectors into a new input vector, with the selection and
   1435 /// ordering of elements determined by an array of integers, referred to as
   1436 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
   1437 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
   1438 /// An index of -1 is treated as undef, such that the code generator may put
   1439 /// any value in the corresponding element of the result.
   1440 class ShuffleVectorSDNode : public SDNode {
   1441   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
   1442   // is freed when the SelectionDAG object is destroyed.
   1443   const int *Mask;
   1444 
   1445 protected:
   1446   friend class SelectionDAG;
   1447 
   1448   ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
   1449       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
   1450 
   1451 public:
   1452   ArrayRef<int> getMask() const {
   1453     EVT VT = getValueType(0);
   1454     return makeArrayRef(Mask, VT.getVectorNumElements());
   1455   }
   1456 
   1457   int getMaskElt(unsigned Idx) const {
   1458     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
   1459     return Mask[Idx];
   1460   }
   1461 
   1462   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
   1463 
   1464   int  getSplatIndex() const {
   1465     assert(isSplat() && "Cannot get splat index for non-splat!");
   1466     EVT VT = getValueType(0);
   1467     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   1468       if (Mask[i] >= 0)
   1469         return Mask[i];
   1470     }
   1471     llvm_unreachable("Splat with all undef indices?");
   1472   }
   1473 
   1474   static bool isSplatMask(const int *Mask, EVT VT);
   1475 
   1476   /// Change values in a shuffle permute mask assuming
   1477   /// the two vector operands have swapped position.
   1478   static void commuteMask(MutableArrayRef<int> Mask) {
   1479     unsigned NumElems = Mask.size();
   1480     for (unsigned i = 0; i != NumElems; ++i) {
   1481       int idx = Mask[i];
   1482       if (idx < 0)
   1483         continue;
   1484       else if (idx < (int)NumElems)
   1485         Mask[i] = idx + NumElems;
   1486       else
   1487         Mask[i] = idx - NumElems;
   1488     }
   1489   }
   1490 
   1491   static bool classof(const SDNode *N) {
   1492     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
   1493   }
   1494 };
   1495 
   1496 class ConstantSDNode : public SDNode {
   1497   friend class SelectionDAG;
   1498 
   1499   const ConstantInt *Value;
   1500 
   1501   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
   1502       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
   1503                getSDVTList(VT)),
   1504         Value(val) {
   1505     ConstantSDNodeBits.IsOpaque = isOpaque;
   1506   }
   1507 
   1508 public:
   1509   const ConstantInt *getConstantIntValue() const { return Value; }
   1510   const APInt &getAPIntValue() const { return Value->getValue(); }
   1511   uint64_t getZExtValue() const { return Value->getZExtValue(); }
   1512   int64_t getSExtValue() const { return Value->getSExtValue(); }
   1513   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
   1514     return Value->getLimitedValue(Limit);
   1515   }
   1516 
   1517   bool isOne() const { return Value->isOne(); }
   1518   bool isNullValue() const { return Value->isZero(); }
   1519   bool isAllOnesValue() const { return Value->isMinusOne(); }
   1520 
   1521   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
   1522 
   1523   static bool classof(const SDNode *N) {
   1524     return N->getOpcode() == ISD::Constant ||
   1525            N->getOpcode() == ISD::TargetConstant;
   1526   }
   1527 };
   1528 
   1529 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
   1530   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
   1531 }
   1532 
   1533 class ConstantFPSDNode : public SDNode {
   1534   friend class SelectionDAG;
   1535 
   1536   const ConstantFP *Value;
   1537 
   1538   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
   1539       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
   1540                DebugLoc(), getSDVTList(VT)),
   1541         Value(val) {}
   1542 
   1543 public:
   1544   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
   1545   const ConstantFP *getConstantFPValue() const { return Value; }
   1546 
   1547   /// Return true if the value is positive or negative zero.
   1548   bool isZero() const { return Value->isZero(); }
   1549 
   1550   /// Return true if the value is a NaN.
   1551   bool isNaN() const { return Value->isNaN(); }
   1552 
   1553   /// Return true if the value is an infinity
   1554   bool isInfinity() const { return Value->isInfinity(); }
   1555 
   1556   /// Return true if the value is negative.
   1557   bool isNegative() const { return Value->isNegative(); }
   1558 
   1559   /// We don't rely on operator== working on double values, as
   1560   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
   1561   /// As such, this method can be used to do an exact bit-for-bit comparison of
   1562   /// two floating point values.
   1563 
   1564   /// We leave the version with the double argument here because it's just so
   1565   /// convenient to write "2.0" and the like.  Without this function we'd
   1566   /// have to duplicate its logic everywhere it's called.
   1567   bool isExactlyValue(double V) const {
   1568     return Value->getValueAPF().isExactlyValue(V);
   1569   }
   1570   bool isExactlyValue(const APFloat& V) const;
   1571 
   1572   static bool isValueValidForType(EVT VT, const APFloat& Val);
   1573 
   1574   static bool classof(const SDNode *N) {
   1575     return N->getOpcode() == ISD::ConstantFP ||
   1576            N->getOpcode() == ISD::TargetConstantFP;
   1577   }
   1578 };
   1579 
   1580 /// Returns true if \p V is a constant integer zero.
   1581 bool isNullConstant(SDValue V);
   1582 
   1583 /// Returns true if \p V is an FP constant with a value of positive zero.
   1584 bool isNullFPConstant(SDValue V);
   1585 
   1586 /// Returns true if \p V is an integer constant with all bits set.
   1587 bool isAllOnesConstant(SDValue V);
   1588 
   1589 /// Returns true if \p V is a constant integer one.
   1590 bool isOneConstant(SDValue V);
   1591 
   1592 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
   1593 /// constant is canonicalized to be operand 1.
   1594 bool isBitwiseNot(SDValue V);
   1595 
   1596 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
   1597 ConstantSDNode *isConstOrConstSplat(SDValue N);
   1598 
   1599 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
   1600 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N);
   1601 
   1602 class GlobalAddressSDNode : public SDNode {
   1603   friend class SelectionDAG;
   1604 
   1605   const GlobalValue *TheGlobal;
   1606   int64_t Offset;
   1607   unsigned char TargetFlags;
   1608 
   1609   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
   1610                       const GlobalValue *GA, EVT VT, int64_t o,
   1611                       unsigned char TF);
   1612 
   1613 public:
   1614   const GlobalValue *getGlobal() const { return TheGlobal; }
   1615   int64_t getOffset() const { return Offset; }
   1616   unsigned char getTargetFlags() const { return TargetFlags; }
   1617   // Return the address space this GlobalAddress belongs to.
   1618   unsigned getAddressSpace() const;
   1619 
   1620   static bool classof(const SDNode *N) {
   1621     return N->getOpcode() == ISD::GlobalAddress ||
   1622            N->getOpcode() == ISD::TargetGlobalAddress ||
   1623            N->getOpcode() == ISD::GlobalTLSAddress ||
   1624            N->getOpcode() == ISD::TargetGlobalTLSAddress;
   1625   }
   1626 };
   1627 
   1628 class FrameIndexSDNode : public SDNode {
   1629   friend class SelectionDAG;
   1630 
   1631   int FI;
   1632 
   1633   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
   1634     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
   1635       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
   1636   }
   1637 
   1638 public:
   1639   int getIndex() const { return FI; }
   1640 
   1641   static bool classof(const SDNode *N) {
   1642     return N->getOpcode() == ISD::FrameIndex ||
   1643            N->getOpcode() == ISD::TargetFrameIndex;
   1644   }
   1645 };
   1646 
   1647 class JumpTableSDNode : public SDNode {
   1648   friend class SelectionDAG;
   1649 
   1650   int JTI;
   1651   unsigned char TargetFlags;
   1652 
   1653   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
   1654     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
   1655       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
   1656   }
   1657 
   1658 public:
   1659   int getIndex() const { return JTI; }
   1660   unsigned char getTargetFlags() const { return TargetFlags; }
   1661 
   1662   static bool classof(const SDNode *N) {
   1663     return N->getOpcode() == ISD::JumpTable ||
   1664            N->getOpcode() == ISD::TargetJumpTable;
   1665   }
   1666 };
   1667 
   1668 class ConstantPoolSDNode : public SDNode {
   1669   friend class SelectionDAG;
   1670 
   1671   union {
   1672     const Constant *ConstVal;
   1673     MachineConstantPoolValue *MachineCPVal;
   1674   } Val;
   1675   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
   1676   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
   1677   unsigned char TargetFlags;
   1678 
   1679   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
   1680                      unsigned Align, unsigned char TF)
   1681     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
   1682              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
   1683              TargetFlags(TF) {
   1684     assert(Offset >= 0 && "Offset is too large");
   1685     Val.ConstVal = c;
   1686   }
   1687 
   1688   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
   1689                      EVT VT, int o, unsigned Align, unsigned char TF)
   1690     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
   1691              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
   1692              TargetFlags(TF) {
   1693     assert(Offset >= 0 && "Offset is too large");
   1694     Val.MachineCPVal = v;
   1695     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
   1696   }
   1697 
   1698 public:
   1699   bool isMachineConstantPoolEntry() const {
   1700     return Offset < 0;
   1701   }
   1702 
   1703   const Constant *getConstVal() const {
   1704     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
   1705     return Val.ConstVal;
   1706   }
   1707 
   1708   MachineConstantPoolValue *getMachineCPVal() const {
   1709     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
   1710     return Val.MachineCPVal;
   1711   }
   1712 
   1713   int getOffset() const {
   1714     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
   1715   }
   1716 
   1717   // Return the alignment of this constant pool object, which is either 0 (for
   1718   // default alignment) or the desired value.
   1719   unsigned getAlignment() const { return Alignment; }
   1720   unsigned char getTargetFlags() const { return TargetFlags; }
   1721 
   1722   Type *getType() const;
   1723 
   1724   static bool classof(const SDNode *N) {
   1725     return N->getOpcode() == ISD::ConstantPool ||
   1726            N->getOpcode() == ISD::TargetConstantPool;
   1727   }
   1728 };
   1729 
   1730 /// Completely target-dependent object reference.
   1731 class TargetIndexSDNode : public SDNode {
   1732   friend class SelectionDAG;
   1733 
   1734   unsigned char TargetFlags;
   1735   int Index;
   1736   int64_t Offset;
   1737 
   1738 public:
   1739   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
   1740     : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
   1741       TargetFlags(TF), Index(Idx), Offset(Ofs) {}
   1742 
   1743   unsigned char getTargetFlags() const { return TargetFlags; }
   1744   int getIndex() const { return Index; }
   1745   int64_t getOffset() const { return Offset; }
   1746 
   1747   static bool classof(const SDNode *N) {
   1748     return N->getOpcode() == ISD::TargetIndex;
   1749   }
   1750 };
   1751 
   1752 class BasicBlockSDNode : public SDNode {
   1753   friend class SelectionDAG;
   1754 
   1755   MachineBasicBlock *MBB;
   1756 
   1757   /// Debug info is meaningful and potentially useful here, but we create
   1758   /// blocks out of order when they're jumped to, which makes it a bit
   1759   /// harder.  Let's see if we need it first.
   1760   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
   1761     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
   1762   {}
   1763 
   1764 public:
   1765   MachineBasicBlock *getBasicBlock() const { return MBB; }
   1766 
   1767   static bool classof(const SDNode *N) {
   1768     return N->getOpcode() == ISD::BasicBlock;
   1769   }
   1770 };
   1771 
   1772 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
   1773 class BuildVectorSDNode : public SDNode {
   1774 public:
   1775   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
   1776   explicit BuildVectorSDNode() = delete;
   1777 
   1778   /// Check if this is a constant splat, and if so, find the
   1779   /// smallest element size that splats the vector.  If MinSplatBits is
   1780   /// nonzero, the element size must be at least that large.  Note that the
   1781   /// splat element may be the entire vector (i.e., a one element vector).
   1782   /// Returns the splat element value in SplatValue.  Any undefined bits in
   1783   /// that value are zero, and the corresponding bits in the SplatUndef mask
   1784   /// are set.  The SplatBitSize value is set to the splat element size in
   1785   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
   1786   /// undefined.  isBigEndian describes the endianness of the target.
   1787   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
   1788                        unsigned &SplatBitSize, bool &HasAnyUndefs,
   1789                        unsigned MinSplatBits = 0,
   1790                        bool isBigEndian = false) const;
   1791 
   1792   /// Returns the splatted value or a null value if this is not a splat.
   1793   ///
   1794   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1795   /// the vector width and set the bits where elements are undef.
   1796   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
   1797 
   1798   /// Returns the splatted constant or null if this is not a constant
   1799   /// splat.
   1800   ///
   1801   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1802   /// the vector width and set the bits where elements are undef.
   1803   ConstantSDNode *
   1804   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
   1805 
   1806   /// Returns the splatted constant FP or null if this is not a constant
   1807   /// FP splat.
   1808   ///
   1809   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1810   /// the vector width and set the bits where elements are undef.
   1811   ConstantFPSDNode *
   1812   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
   1813 
   1814   /// If this is a constant FP splat and the splatted constant FP is an
   1815   /// exact power or 2, return the log base 2 integer value.  Otherwise,
   1816   /// return -1.
   1817   ///
   1818   /// The BitWidth specifies the necessary bit precision.
   1819   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
   1820                                           uint32_t BitWidth) const;
   1821 
   1822   bool isConstant() const;
   1823 
   1824   static bool classof(const SDNode *N) {
   1825     return N->getOpcode() == ISD::BUILD_VECTOR;
   1826   }
   1827 };
   1828 
   1829 /// An SDNode that holds an arbitrary LLVM IR Value. This is
   1830 /// used when the SelectionDAG needs to make a simple reference to something
   1831 /// in the LLVM IR representation.
   1832 ///
   1833 class SrcValueSDNode : public SDNode {
   1834   friend class SelectionDAG;
   1835 
   1836   const Value *V;
   1837 
   1838   /// Create a SrcValue for a general value.
   1839   explicit SrcValueSDNode(const Value *v)
   1840     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
   1841 
   1842 public:
   1843   /// Return the contained Value.
   1844   const Value *getValue() const { return V; }
   1845 
   1846   static bool classof(const SDNode *N) {
   1847     return N->getOpcode() == ISD::SRCVALUE;
   1848   }
   1849 };
   1850 
   1851 class MDNodeSDNode : public SDNode {
   1852   friend class SelectionDAG;
   1853 
   1854   const MDNode *MD;
   1855 
   1856   explicit MDNodeSDNode(const MDNode *md)
   1857   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
   1858   {}
   1859 
   1860 public:
   1861   const MDNode *getMD() const { return MD; }
   1862 
   1863   static bool classof(const SDNode *N) {
   1864     return N->getOpcode() == ISD::MDNODE_SDNODE;
   1865   }
   1866 };
   1867 
   1868 class RegisterSDNode : public SDNode {
   1869   friend class SelectionDAG;
   1870 
   1871   unsigned Reg;
   1872 
   1873   RegisterSDNode(unsigned reg, EVT VT)
   1874     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
   1875 
   1876 public:
   1877   unsigned getReg() const { return Reg; }
   1878 
   1879   static bool classof(const SDNode *N) {
   1880     return N->getOpcode() == ISD::Register;
   1881   }
   1882 };
   1883 
   1884 class RegisterMaskSDNode : public SDNode {
   1885   friend class SelectionDAG;
   1886 
   1887   // The memory for RegMask is not owned by the node.
   1888   const uint32_t *RegMask;
   1889 
   1890   RegisterMaskSDNode(const uint32_t *mask)
   1891     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
   1892       RegMask(mask) {}
   1893 
   1894 public:
   1895   const uint32_t *getRegMask() const { return RegMask; }
   1896 
   1897   static bool classof(const SDNode *N) {
   1898     return N->getOpcode() == ISD::RegisterMask;
   1899   }
   1900 };
   1901 
   1902 class BlockAddressSDNode : public SDNode {
   1903   friend class SelectionDAG;
   1904 
   1905   const BlockAddress *BA;
   1906   int64_t Offset;
   1907   unsigned char TargetFlags;
   1908 
   1909   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
   1910                      int64_t o, unsigned char Flags)
   1911     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
   1912              BA(ba), Offset(o), TargetFlags(Flags) {}
   1913 
   1914 public:
   1915   const BlockAddress *getBlockAddress() const { return BA; }
   1916   int64_t getOffset() const { return Offset; }
   1917   unsigned char getTargetFlags() const { return TargetFlags; }
   1918 
   1919   static bool classof(const SDNode *N) {
   1920     return N->getOpcode() == ISD::BlockAddress ||
   1921            N->getOpcode() == ISD::TargetBlockAddress;
   1922   }
   1923 };
   1924 
   1925 class LabelSDNode : public SDNode {
   1926   friend class SelectionDAG;
   1927 
   1928   MCSymbol *Label;
   1929 
   1930   LabelSDNode(unsigned Order, const DebugLoc &dl, MCSymbol *L)
   1931       : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {}
   1932 
   1933 public:
   1934   MCSymbol *getLabel() const { return Label; }
   1935 
   1936   static bool classof(const SDNode *N) {
   1937     return N->getOpcode() == ISD::EH_LABEL ||
   1938            N->getOpcode() == ISD::ANNOTATION_LABEL;
   1939   }
   1940 };
   1941 
   1942 class ExternalSymbolSDNode : public SDNode {
   1943   friend class SelectionDAG;
   1944 
   1945   const char *Symbol;
   1946   unsigned char TargetFlags;
   1947 
   1948   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
   1949     : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
   1950              0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {}
   1951 
   1952 public:
   1953   const char *getSymbol() const { return Symbol; }
   1954   unsigned char getTargetFlags() const { return TargetFlags; }
   1955 
   1956   static bool classof(const SDNode *N) {
   1957     return N->getOpcode() == ISD::ExternalSymbol ||
   1958            N->getOpcode() == ISD::TargetExternalSymbol;
   1959   }
   1960 };
   1961 
   1962 class MCSymbolSDNode : public SDNode {
   1963   friend class SelectionDAG;
   1964 
   1965   MCSymbol *Symbol;
   1966 
   1967   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
   1968       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
   1969 
   1970 public:
   1971   MCSymbol *getMCSymbol() const { return Symbol; }
   1972 
   1973   static bool classof(const SDNode *N) {
   1974     return N->getOpcode() == ISD::MCSymbol;
   1975   }
   1976 };
   1977 
   1978 class CondCodeSDNode : public SDNode {
   1979   friend class SelectionDAG;
   1980 
   1981   ISD::CondCode Condition;
   1982 
   1983   explicit CondCodeSDNode(ISD::CondCode Cond)
   1984     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
   1985       Condition(Cond) {}
   1986 
   1987 public:
   1988   ISD::CondCode get() const { return Condition; }
   1989 
   1990   static bool classof(const SDNode *N) {
   1991     return N->getOpcode() == ISD::CONDCODE;
   1992   }
   1993 };
   1994 
   1995 /// This class is used to represent EVT's, which are used
   1996 /// to parameterize some operations.
   1997 class VTSDNode : public SDNode {
   1998   friend class SelectionDAG;
   1999 
   2000   EVT ValueType;
   2001 
   2002   explicit VTSDNode(EVT VT)
   2003     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
   2004       ValueType(VT) {}
   2005 
   2006 public:
   2007   EVT getVT() const { return ValueType; }
   2008 
   2009   static bool classof(const SDNode *N) {
   2010     return N->getOpcode() == ISD::VALUETYPE;
   2011   }
   2012 };
   2013 
   2014 /// Base class for LoadSDNode and StoreSDNode
   2015 class LSBaseSDNode : public MemSDNode {
   2016 public:
   2017   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
   2018                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
   2019                MachineMemOperand *MMO)
   2020       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
   2021     LSBaseSDNodeBits.AddressingMode = AM;
   2022     assert(getAddressingMode() == AM && "Value truncated");
   2023   }
   2024 
   2025   const SDValue &getOffset() const {
   2026     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
   2027   }
   2028 
   2029   /// Return the addressing mode for this load or store:
   2030   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
   2031   ISD::MemIndexedMode getAddressingMode() const {
   2032     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
   2033   }
   2034 
   2035   /// Return true if this is a pre/post inc/dec load/store.
   2036   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
   2037 
   2038   /// Return true if this is NOT a pre/post inc/dec load/store.
   2039   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
   2040 
   2041   static bool classof(const SDNode *N) {
   2042     return N->getOpcode() == ISD::LOAD ||
   2043            N->getOpcode() == ISD::STORE;
   2044   }
   2045 };
   2046 
   2047 /// This class is used to represent ISD::LOAD nodes.
   2048 class LoadSDNode : public LSBaseSDNode {
   2049   friend class SelectionDAG;
   2050 
   2051   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2052              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
   2053              MachineMemOperand *MMO)
   2054       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
   2055     LoadSDNodeBits.ExtTy = ETy;
   2056     assert(readMem() && "Load MachineMemOperand is not a load!");
   2057     assert(!writeMem() && "Load MachineMemOperand is a store!");
   2058   }
   2059 
   2060 public:
   2061   /// Return whether this is a plain node,
   2062   /// or one of the varieties of value-extending loads.
   2063   ISD::LoadExtType getExtensionType() const {
   2064     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
   2065   }
   2066 
   2067   const SDValue &getBasePtr() const { return getOperand(1); }
   2068   const SDValue &getOffset() const { return getOperand(2); }
   2069 
   2070   static bool classof(const SDNode *N) {
   2071     return N->getOpcode() == ISD::LOAD;
   2072   }
   2073 };
   2074 
   2075 /// This class is used to represent ISD::STORE nodes.
   2076 class StoreSDNode : public LSBaseSDNode {
   2077   friend class SelectionDAG;
   2078 
   2079   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2080               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
   2081               MachineMemOperand *MMO)
   2082       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
   2083     StoreSDNodeBits.IsTruncating = isTrunc;
   2084     assert(!readMem() && "Store MachineMemOperand is a load!");
   2085     assert(writeMem() && "Store MachineMemOperand is not a store!");
   2086   }
   2087 
   2088 public:
   2089   /// Return true if the op does a truncation before store.
   2090   /// For integers this is the same as doing a TRUNCATE and storing the result.
   2091   /// For floats, it is the same as doing an FP_ROUND and storing the result.
   2092   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
   2093   void setTruncatingStore(bool Truncating) {
   2094     StoreSDNodeBits.IsTruncating = Truncating;
   2095   }
   2096 
   2097   const SDValue &getValue() const { return getOperand(1); }
   2098   const SDValue &getBasePtr() const { return getOperand(2); }
   2099   const SDValue &getOffset() const { return getOperand(3); }
   2100 
   2101   static bool classof(const SDNode *N) {
   2102     return N->getOpcode() == ISD::STORE;
   2103   }
   2104 };
   2105 
   2106 /// This base class is used to represent MLOAD and MSTORE nodes
   2107 class MaskedLoadStoreSDNode : public MemSDNode {
   2108 public:
   2109   friend class SelectionDAG;
   2110 
   2111   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
   2112                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
   2113                         MachineMemOperand *MMO)
   2114       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
   2115 
   2116   // In the both nodes address is Op1, mask is Op2:
   2117   // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
   2118   // MaskedStoreSDNode (Chain, ptr, mask, data)
   2119   // Mask is a vector of i1 elements
   2120   const SDValue &getBasePtr() const { return getOperand(1); }
   2121   const SDValue &getMask() const    { return getOperand(2); }
   2122 
   2123   static bool classof(const SDNode *N) {
   2124     return N->getOpcode() == ISD::MLOAD ||
   2125            N->getOpcode() == ISD::MSTORE;
   2126   }
   2127 };
   2128 
   2129 /// This class is used to represent an MLOAD node
   2130 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
   2131 public:
   2132   friend class SelectionDAG;
   2133 
   2134   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2135                    ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT,
   2136                    MachineMemOperand *MMO)
   2137       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) {
   2138     LoadSDNodeBits.ExtTy = ETy;
   2139     LoadSDNodeBits.IsExpanding = IsExpanding;
   2140   }
   2141 
   2142   ISD::LoadExtType getExtensionType() const {
   2143     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
   2144   }
   2145 
   2146   const SDValue &getSrc0() const { return getOperand(3); }
   2147   static bool classof(const SDNode *N) {
   2148     return N->getOpcode() == ISD::MLOAD;
   2149   }
   2150 
   2151   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
   2152 };
   2153 
   2154 /// This class is used to represent an MSTORE node
   2155 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
   2156 public:
   2157   friend class SelectionDAG;
   2158 
   2159   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2160                     bool isTrunc, bool isCompressing, EVT MemVT,
   2161                     MachineMemOperand *MMO)
   2162       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) {
   2163     StoreSDNodeBits.IsTruncating = isTrunc;
   2164     StoreSDNodeBits.IsCompressing = isCompressing;
   2165   }
   2166 
   2167   /// Return true if the op does a truncation before store.
   2168   /// For integers this is the same as doing a TRUNCATE and storing the result.
   2169   /// For floats, it is the same as doing an FP_ROUND and storing the result.
   2170   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
   2171 
   2172   /// Returns true if the op does a compression to the vector before storing.
   2173   /// The node contiguously stores the active elements (integers or floats)
   2174   /// in src (those with their respective bit set in writemask k) to unaligned
   2175   /// memory at base_addr.
   2176   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
   2177 
   2178   const SDValue &getValue() const { return getOperand(3); }
   2179 
   2180   static bool classof(const SDNode *N) {
   2181     return N->getOpcode() == ISD::MSTORE;
   2182   }
   2183 };
   2184 
   2185 /// This is a base class used to represent
   2186 /// MGATHER and MSCATTER nodes
   2187 ///
   2188 class MaskedGatherScatterSDNode : public MemSDNode {
   2189 public:
   2190   friend class SelectionDAG;
   2191 
   2192   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
   2193                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
   2194                             MachineMemOperand *MMO)
   2195       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
   2196 
   2197   // In the both nodes address is Op1, mask is Op2:
   2198   // MaskedGatherSDNode  (Chain, passthru, mask, base, index, scale)
   2199   // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
   2200   // Mask is a vector of i1 elements
   2201   const SDValue &getBasePtr() const { return getOperand(3); }
   2202   const SDValue &getIndex()   const { return getOperand(4); }
   2203   const SDValue &getMask()    const { return getOperand(2); }
   2204   const SDValue &getValue()   const { return getOperand(1); }
   2205   const SDValue &getScale()   const { return getOperand(5); }
   2206 
   2207   static bool classof(const SDNode *N) {
   2208     return N->getOpcode() == ISD::MGATHER ||
   2209            N->getOpcode() == ISD::MSCATTER;
   2210   }
   2211 };
   2212 
   2213 /// This class is used to represent an MGATHER node
   2214 ///
   2215 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
   2216 public:
   2217   friend class SelectionDAG;
   2218 
   2219   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2220                      EVT MemVT, MachineMemOperand *MMO)
   2221       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO) {}
   2222 
   2223   static bool classof(const SDNode *N) {
   2224     return N->getOpcode() == ISD::MGATHER;
   2225   }
   2226 };
   2227 
   2228 /// This class is used to represent an MSCATTER node
   2229 ///
   2230 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
   2231 public:
   2232   friend class SelectionDAG;
   2233 
   2234   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
   2235                       EVT MemVT, MachineMemOperand *MMO)
   2236       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO) {}
   2237 
   2238   static bool classof(const SDNode *N) {
   2239     return N->getOpcode() == ISD::MSCATTER;
   2240   }
   2241 };
   2242 
   2243 /// An SDNode that represents everything that will be needed
   2244 /// to construct a MachineInstr. These nodes are created during the
   2245 /// instruction selection proper phase.
   2246 class MachineSDNode : public SDNode {
   2247 public:
   2248   using mmo_iterator = MachineMemOperand **;
   2249 
   2250 private:
   2251   friend class SelectionDAG;
   2252 
   2253   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
   2254       : SDNode(Opc, Order, DL, VTs) {}
   2255 
   2256   /// Memory reference descriptions for this instruction.
   2257   mmo_iterator MemRefs = nullptr;
   2258   mmo_iterator MemRefsEnd = nullptr;
   2259 
   2260 public:
   2261   mmo_iterator memoperands_begin() const { return MemRefs; }
   2262   mmo_iterator memoperands_end() const { return MemRefsEnd; }
   2263   bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
   2264 
   2265   /// Assign this MachineSDNodes's memory reference descriptor
   2266   /// list. This does not transfer ownership.
   2267   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   2268     for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
   2269       assert(*MMI && "Null mem ref detected!");
   2270     MemRefs = NewMemRefs;
   2271     MemRefsEnd = NewMemRefsEnd;
   2272   }
   2273 
   2274   static bool classof(const SDNode *N) {
   2275     return N->isMachineOpcode();
   2276   }
   2277 };
   2278 
   2279 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
   2280                                             SDNode, ptrdiff_t> {
   2281   const SDNode *Node;
   2282   unsigned Operand;
   2283 
   2284   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
   2285 
   2286 public:
   2287   bool operator==(const SDNodeIterator& x) const {
   2288     return Operand == x.Operand;
   2289   }
   2290   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
   2291 
   2292   pointer operator*() const {
   2293     return Node->getOperand(Operand).getNode();
   2294   }
   2295   pointer operator->() const { return operator*(); }
   2296 
   2297   SDNodeIterator& operator++() {                // Preincrement
   2298     ++Operand;
   2299     return *this;
   2300   }
   2301   SDNodeIterator operator++(int) { // Postincrement
   2302     SDNodeIterator tmp = *this; ++*this; return tmp;
   2303   }
   2304   size_t operator-(SDNodeIterator Other) const {
   2305     assert(Node == Other.Node &&
   2306            "Cannot compare iterators of two different nodes!");
   2307     return Operand - Other.Operand;
   2308   }
   2309 
   2310   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
   2311   static SDNodeIterator end  (const SDNode *N) {
   2312     return SDNodeIterator(N, N->getNumOperands());
   2313   }
   2314 
   2315   unsigned getOperand() const { return Operand; }
   2316   const SDNode *getNode() const { return Node; }
   2317 };
   2318 
   2319 template <> struct GraphTraits<SDNode*> {
   2320   using NodeRef = SDNode *;
   2321   using ChildIteratorType = SDNodeIterator;
   2322 
   2323   static NodeRef getEntryNode(SDNode *N) { return N; }
   2324 
   2325   static ChildIteratorType child_begin(NodeRef N) {
   2326     return SDNodeIterator::begin(N);
   2327   }
   2328 
   2329   static ChildIteratorType child_end(NodeRef N) {
   2330     return SDNodeIterator::end(N);
   2331   }
   2332 };
   2333 
   2334 /// A representation of the largest SDNode, for use in sizeof().
   2335 ///
   2336 /// This needs to be a union because the largest node differs on 32 bit systems
   2337 /// with 4 and 8 byte pointer alignment, respectively.
   2338 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
   2339                                             BlockAddressSDNode,
   2340                                             GlobalAddressSDNode>;
   2341 
   2342 /// The SDNode class with the greatest alignment requirement.
   2343 using MostAlignedSDNode = GlobalAddressSDNode;
   2344 
   2345 namespace ISD {
   2346 
   2347   /// Returns true if the specified node is a non-extending and unindexed load.
   2348   inline bool isNormalLoad(const SDNode *N) {
   2349     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
   2350     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
   2351       Ld->getAddressingMode() == ISD::UNINDEXED;
   2352   }
   2353 
   2354   /// Returns true if the specified node is a non-extending load.
   2355   inline bool isNON_EXTLoad(const SDNode *N) {
   2356     return isa<LoadSDNode>(N) &&
   2357       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
   2358   }
   2359 
   2360   /// Returns true if the specified node is a EXTLOAD.
   2361   inline bool isEXTLoad(const SDNode *N) {
   2362     return isa<LoadSDNode>(N) &&
   2363       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
   2364   }
   2365 
   2366   /// Returns true if the specified node is a SEXTLOAD.
   2367   inline bool isSEXTLoad(const SDNode *N) {
   2368     return isa<LoadSDNode>(N) &&
   2369       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
   2370   }
   2371 
   2372   /// Returns true if the specified node is a ZEXTLOAD.
   2373   inline bool isZEXTLoad(const SDNode *N) {
   2374     return isa<LoadSDNode>(N) &&
   2375       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
   2376   }
   2377 
   2378   /// Returns true if the specified node is an unindexed load.
   2379   inline bool isUNINDEXEDLoad(const SDNode *N) {
   2380     return isa<LoadSDNode>(N) &&
   2381       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
   2382   }
   2383 
   2384   /// Returns true if the specified node is a non-truncating
   2385   /// and unindexed store.
   2386   inline bool isNormalStore(const SDNode *N) {
   2387     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
   2388     return St && !St->isTruncatingStore() &&
   2389       St->getAddressingMode() == ISD::UNINDEXED;
   2390   }
   2391 
   2392   /// Returns true if the specified node is a non-truncating store.
   2393   inline bool isNON_TRUNCStore(const SDNode *N) {
   2394     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
   2395   }
   2396 
   2397   /// Returns true if the specified node is a truncating store.
   2398   inline bool isTRUNCStore(const SDNode *N) {
   2399     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
   2400   }
   2401 
   2402   /// Returns true if the specified node is an unindexed store.
   2403   inline bool isUNINDEXEDStore(const SDNode *N) {
   2404     return isa<StoreSDNode>(N) &&
   2405       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
   2406   }
   2407 
   2408   /// Attempt to match a unary predicate against a scalar/splat constant or
   2409   /// every element of a constant BUILD_VECTOR.
   2410   bool matchUnaryPredicate(SDValue Op,
   2411                            std::function<bool(ConstantSDNode *)> Match);
   2412 
   2413   /// Attempt to match a binary predicate against a pair of scalar/splat
   2414   /// constants or every element of a pair of constant BUILD_VECTORs.
   2415   bool matchBinaryPredicate(
   2416       SDValue LHS, SDValue RHS,
   2417       std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match);
   2418 
   2419 } // end namespace ISD
   2420 
   2421 } // end namespace llvm
   2422 
   2423 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
   2424