1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * Copyright (C) 2006, 2007 University of Szeged, Hungary 7 * 8 * Authors: Artem Bityutskiy ( ) 9 * Adrian Hunter 10 * Zoltan Sogor 11 */ 12 13 /* 14 * This file implements UBIFS I/O subsystem which provides various I/O-related 15 * helper functions (reading/writing/checking/validating nodes) and implements 16 * write-buffering support. Write buffers help to save space which otherwise 17 * would have been wasted for padding to the nearest minimal I/O unit boundary. 18 * Instead, data first goes to the write-buffer and is flushed when the 19 * buffer is full or when it is not used for some time (by timer). This is 20 * similar to the mechanism is used by JFFS2. 21 * 22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum 23 * write size (@c->max_write_size). The latter is the maximum amount of bytes 24 * the underlying flash is able to program at a time, and writing in 25 * @c->max_write_size units should presumably be faster. Obviously, 26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of 27 * @c->max_write_size bytes in size for maximum performance. However, when a 28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size 29 * boundary) which contains data is written, not the whole write-buffer, 30 * because this is more space-efficient. 31 * 32 * This optimization adds few complications to the code. Indeed, on the one 33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which 34 * also means aligning writes at the @c->max_write_size bytes offsets. On the 35 * other hand, we do not want to waste space when synchronizing the write 36 * buffer, so during synchronization we writes in smaller chunks. And this makes 37 * the next write offset to be not aligned to @c->max_write_size bytes. So the 38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned 39 * to @c->max_write_size bytes again. We do this by temporarily shrinking 40 * write-buffer size (@wbuf->size). 41 * 42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 43 * mutexes defined inside these objects. Since sometimes upper-level code 44 * has to lock the write-buffer (e.g. journal space reservation code), many 45 * functions related to write-buffers have "nolock" suffix which means that the 46 * caller has to lock the write-buffer before calling this function. 47 * 48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 49 * aligned, UBIFS starts the next node from the aligned address, and the padded 50 * bytes may contain any rubbish. In other words, UBIFS does not put padding 51 * bytes in those small gaps. Common headers of nodes store real node lengths, 52 * not aligned lengths. Indexing nodes also store real lengths in branches. 53 * 54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 55 * uses padding nodes or padding bytes, if the padding node does not fit. 56 * 57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when 58 * they are read from the flash media. 59 */ 60 61 #ifndef __UBOOT__ 62 #include <linux/crc32.h> 63 #include <linux/slab.h> 64 #else 65 #include <linux/compat.h> 66 #include <linux/err.h> 67 #endif 68 #include "ubifs.h" 69 70 /** 71 * ubifs_ro_mode - switch UBIFS to read read-only mode. 72 * @c: UBIFS file-system description object 73 * @err: error code which is the reason of switching to R/O mode 74 */ 75 void ubifs_ro_mode(struct ubifs_info *c, int err) 76 { 77 if (!c->ro_error) { 78 c->ro_error = 1; 79 c->no_chk_data_crc = 0; 80 c->vfs_sb->s_flags |= MS_RDONLY; 81 ubifs_warn(c, "switched to read-only mode, error %d", err); 82 dump_stack(); 83 } 84 } 85 86 /* 87 * Below are simple wrappers over UBI I/O functions which include some 88 * additional checks and UBIFS debugging stuff. See corresponding UBI function 89 * for more information. 90 */ 91 92 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, 93 int len, int even_ebadmsg) 94 { 95 int err; 96 97 err = ubi_read(c->ubi, lnum, buf, offs, len); 98 /* 99 * In case of %-EBADMSG print the error message only if the 100 * @even_ebadmsg is true. 101 */ 102 if (err && (err != -EBADMSG || even_ebadmsg)) { 103 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", 104 len, lnum, offs, err); 105 dump_stack(); 106 } 107 return err; 108 } 109 110 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, 111 int len) 112 { 113 int err; 114 115 ubifs_assert(!c->ro_media && !c->ro_mount); 116 if (c->ro_error) 117 return -EROFS; 118 if (!dbg_is_tst_rcvry(c)) 119 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 120 #ifndef __UBOOT__ 121 else 122 err = dbg_leb_write(c, lnum, buf, offs, len); 123 #endif 124 if (err) { 125 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", 126 len, lnum, offs, err); 127 ubifs_ro_mode(c, err); 128 dump_stack(); 129 } 130 return err; 131 } 132 133 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) 134 { 135 int err; 136 137 ubifs_assert(!c->ro_media && !c->ro_mount); 138 if (c->ro_error) 139 return -EROFS; 140 if (!dbg_is_tst_rcvry(c)) 141 err = ubi_leb_change(c->ubi, lnum, buf, len); 142 #ifndef __UBOOT__ 143 else 144 err = dbg_leb_change(c, lnum, buf, len); 145 #endif 146 if (err) { 147 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", 148 len, lnum, err); 149 ubifs_ro_mode(c, err); 150 dump_stack(); 151 } 152 return err; 153 } 154 155 int ubifs_leb_unmap(struct ubifs_info *c, int lnum) 156 { 157 int err; 158 159 ubifs_assert(!c->ro_media && !c->ro_mount); 160 if (c->ro_error) 161 return -EROFS; 162 if (!dbg_is_tst_rcvry(c)) 163 err = ubi_leb_unmap(c->ubi, lnum); 164 #ifndef __UBOOT__ 165 else 166 err = dbg_leb_unmap(c, lnum); 167 #endif 168 if (err) { 169 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); 170 ubifs_ro_mode(c, err); 171 dump_stack(); 172 } 173 return err; 174 } 175 176 int ubifs_leb_map(struct ubifs_info *c, int lnum) 177 { 178 int err; 179 180 ubifs_assert(!c->ro_media && !c->ro_mount); 181 if (c->ro_error) 182 return -EROFS; 183 if (!dbg_is_tst_rcvry(c)) 184 err = ubi_leb_map(c->ubi, lnum); 185 #ifndef __UBOOT__ 186 else 187 err = dbg_leb_map(c, lnum); 188 #endif 189 if (err) { 190 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); 191 ubifs_ro_mode(c, err); 192 dump_stack(); 193 } 194 return err; 195 } 196 197 int ubifs_is_mapped(const struct ubifs_info *c, int lnum) 198 { 199 int err; 200 201 err = ubi_is_mapped(c->ubi, lnum); 202 if (err < 0) { 203 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", 204 lnum, err); 205 dump_stack(); 206 } 207 return err; 208 } 209 210 /** 211 * ubifs_check_node - check node. 212 * @c: UBIFS file-system description object 213 * @buf: node to check 214 * @lnum: logical eraseblock number 215 * @offs: offset within the logical eraseblock 216 * @quiet: print no messages 217 * @must_chk_crc: indicates whether to always check the CRC 218 * 219 * This function checks node magic number and CRC checksum. This function also 220 * validates node length to prevent UBIFS from becoming crazy when an attacker 221 * feeds it a file-system image with incorrect nodes. For example, too large 222 * node length in the common header could cause UBIFS to read memory outside of 223 * allocated buffer when checking the CRC checksum. 224 * 225 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 226 * true, which is controlled by corresponding UBIFS mount option. However, if 227 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 228 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are 229 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC 230 * is checked. This is because during mounting or re-mounting from R/O mode to 231 * R/W mode we may read journal nodes (when replying the journal or doing the 232 * recovery) and the journal nodes may potentially be corrupted, so checking is 233 * required. 234 * 235 * This function returns zero in case of success and %-EUCLEAN in case of bad 236 * CRC or magic. 237 */ 238 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 239 int offs, int quiet, int must_chk_crc) 240 { 241 int err = -EINVAL, type, node_len; 242 uint32_t crc, node_crc, magic; 243 const struct ubifs_ch *ch = buf; 244 245 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 246 ubifs_assert(!(offs & 7) && offs < c->leb_size); 247 248 magic = le32_to_cpu(ch->magic); 249 if (magic != UBIFS_NODE_MAGIC) { 250 if (!quiet) 251 ubifs_err(c, "bad magic %#08x, expected %#08x", 252 magic, UBIFS_NODE_MAGIC); 253 err = -EUCLEAN; 254 goto out; 255 } 256 257 type = ch->node_type; 258 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 259 if (!quiet) 260 ubifs_err(c, "bad node type %d", type); 261 goto out; 262 } 263 264 node_len = le32_to_cpu(ch->len); 265 if (node_len + offs > c->leb_size) 266 goto out_len; 267 268 if (c->ranges[type].max_len == 0) { 269 if (node_len != c->ranges[type].len) 270 goto out_len; 271 } else if (node_len < c->ranges[type].min_len || 272 node_len > c->ranges[type].max_len) 273 goto out_len; 274 275 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && 276 !c->remounting_rw && c->no_chk_data_crc) 277 return 0; 278 279 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 280 node_crc = le32_to_cpu(ch->crc); 281 if (crc != node_crc) { 282 if (!quiet) 283 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", 284 crc, node_crc); 285 err = -EUCLEAN; 286 goto out; 287 } 288 289 return 0; 290 291 out_len: 292 if (!quiet) 293 ubifs_err(c, "bad node length %d", node_len); 294 out: 295 if (!quiet) { 296 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 297 ubifs_dump_node(c, buf); 298 dump_stack(); 299 } 300 return err; 301 } 302 303 /** 304 * ubifs_pad - pad flash space. 305 * @c: UBIFS file-system description object 306 * @buf: buffer to put padding to 307 * @pad: how many bytes to pad 308 * 309 * The flash media obliges us to write only in chunks of %c->min_io_size and 310 * when we have to write less data we add padding node to the write-buffer and 311 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 312 * media is being scanned. If the amount of wasted space is not enough to fit a 313 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 314 * pattern (%UBIFS_PADDING_BYTE). 315 * 316 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 317 * used. 318 */ 319 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 320 { 321 uint32_t crc; 322 323 ubifs_assert(pad >= 0 && !(pad & 7)); 324 325 if (pad >= UBIFS_PAD_NODE_SZ) { 326 struct ubifs_ch *ch = buf; 327 struct ubifs_pad_node *pad_node = buf; 328 329 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 330 ch->node_type = UBIFS_PAD_NODE; 331 ch->group_type = UBIFS_NO_NODE_GROUP; 332 ch->padding[0] = ch->padding[1] = 0; 333 ch->sqnum = 0; 334 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 335 pad -= UBIFS_PAD_NODE_SZ; 336 pad_node->pad_len = cpu_to_le32(pad); 337 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 338 ch->crc = cpu_to_le32(crc); 339 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 340 } else if (pad > 0) 341 /* Too little space, padding node won't fit */ 342 memset(buf, UBIFS_PADDING_BYTE, pad); 343 } 344 345 /** 346 * next_sqnum - get next sequence number. 347 * @c: UBIFS file-system description object 348 */ 349 static unsigned long long next_sqnum(struct ubifs_info *c) 350 { 351 unsigned long long sqnum; 352 353 spin_lock(&c->cnt_lock); 354 sqnum = ++c->max_sqnum; 355 spin_unlock(&c->cnt_lock); 356 357 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 358 if (sqnum >= SQNUM_WATERMARK) { 359 ubifs_err(c, "sequence number overflow %llu, end of life", 360 sqnum); 361 ubifs_ro_mode(c, -EINVAL); 362 } 363 ubifs_warn(c, "running out of sequence numbers, end of life soon"); 364 } 365 366 return sqnum; 367 } 368 369 /** 370 * ubifs_prepare_node - prepare node to be written to flash. 371 * @c: UBIFS file-system description object 372 * @node: the node to pad 373 * @len: node length 374 * @pad: if the buffer has to be padded 375 * 376 * This function prepares node at @node to be written to the media - it 377 * calculates node CRC, fills the common header, and adds proper padding up to 378 * the next minimum I/O unit if @pad is not zero. 379 */ 380 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 381 { 382 uint32_t crc; 383 struct ubifs_ch *ch = node; 384 unsigned long long sqnum = next_sqnum(c); 385 386 ubifs_assert(len >= UBIFS_CH_SZ); 387 388 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 389 ch->len = cpu_to_le32(len); 390 ch->group_type = UBIFS_NO_NODE_GROUP; 391 ch->sqnum = cpu_to_le64(sqnum); 392 ch->padding[0] = ch->padding[1] = 0; 393 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 394 ch->crc = cpu_to_le32(crc); 395 396 if (pad) { 397 len = ALIGN(len, 8); 398 pad = ALIGN(len, c->min_io_size) - len; 399 ubifs_pad(c, node + len, pad); 400 } 401 } 402 403 /** 404 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 405 * @c: UBIFS file-system description object 406 * @node: the node to pad 407 * @len: node length 408 * @last: indicates the last node of the group 409 * 410 * This function prepares node at @node to be written to the media - it 411 * calculates node CRC and fills the common header. 412 */ 413 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 414 { 415 uint32_t crc; 416 struct ubifs_ch *ch = node; 417 unsigned long long sqnum = next_sqnum(c); 418 419 ubifs_assert(len >= UBIFS_CH_SZ); 420 421 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 422 ch->len = cpu_to_le32(len); 423 if (last) 424 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 425 else 426 ch->group_type = UBIFS_IN_NODE_GROUP; 427 ch->sqnum = cpu_to_le64(sqnum); 428 ch->padding[0] = ch->padding[1] = 0; 429 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 430 ch->crc = cpu_to_le32(crc); 431 } 432 433 #ifndef __UBOOT__ 434 /** 435 * wbuf_timer_callback - write-buffer timer callback function. 436 * @timer: timer data (write-buffer descriptor) 437 * 438 * This function is called when the write-buffer timer expires. 439 */ 440 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) 441 { 442 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); 443 444 dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); 445 wbuf->need_sync = 1; 446 wbuf->c->need_wbuf_sync = 1; 447 ubifs_wake_up_bgt(wbuf->c); 448 return HRTIMER_NORESTART; 449 } 450 451 /** 452 * new_wbuf_timer - start new write-buffer timer. 453 * @wbuf: write-buffer descriptor 454 */ 455 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 456 { 457 ubifs_assert(!hrtimer_active(&wbuf->timer)); 458 459 if (wbuf->no_timer) 460 return; 461 dbg_io("set timer for jhead %s, %llu-%llu millisecs", 462 dbg_jhead(wbuf->jhead), 463 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), 464 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, 465 USEC_PER_SEC)); 466 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, 467 HRTIMER_MODE_REL); 468 } 469 #endif 470 471 /** 472 * cancel_wbuf_timer - cancel write-buffer timer. 473 * @wbuf: write-buffer descriptor 474 */ 475 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 476 { 477 if (wbuf->no_timer) 478 return; 479 wbuf->need_sync = 0; 480 #ifndef __UBOOT__ 481 hrtimer_cancel(&wbuf->timer); 482 #endif 483 } 484 485 /** 486 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 487 * @wbuf: write-buffer to synchronize 488 * 489 * This function synchronizes write-buffer @buf and returns zero in case of 490 * success or a negative error code in case of failure. 491 * 492 * Note, although write-buffers are of @c->max_write_size, this function does 493 * not necessarily writes all @c->max_write_size bytes to the flash. Instead, 494 * if the write-buffer is only partially filled with data, only the used part 495 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. 496 * This way we waste less space. 497 */ 498 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 499 { 500 struct ubifs_info *c = wbuf->c; 501 int err, dirt, sync_len; 502 503 cancel_wbuf_timer_nolock(wbuf); 504 if (!wbuf->used || wbuf->lnum == -1) 505 /* Write-buffer is empty or not seeked */ 506 return 0; 507 508 dbg_io("LEB %d:%d, %d bytes, jhead %s", 509 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); 510 ubifs_assert(!(wbuf->avail & 7)); 511 ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); 512 ubifs_assert(wbuf->size >= c->min_io_size); 513 ubifs_assert(wbuf->size <= c->max_write_size); 514 ubifs_assert(wbuf->size % c->min_io_size == 0); 515 ubifs_assert(!c->ro_media && !c->ro_mount); 516 if (c->leb_size - wbuf->offs >= c->max_write_size) 517 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 518 519 if (c->ro_error) 520 return -EROFS; 521 522 /* 523 * Do not write whole write buffer but write only the minimum necessary 524 * amount of min. I/O units. 525 */ 526 sync_len = ALIGN(wbuf->used, c->min_io_size); 527 dirt = sync_len - wbuf->used; 528 if (dirt) 529 ubifs_pad(c, wbuf->buf + wbuf->used, dirt); 530 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); 531 if (err) 532 return err; 533 534 spin_lock(&wbuf->lock); 535 wbuf->offs += sync_len; 536 /* 537 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. 538 * But our goal is to optimize writes and make sure we write in 539 * @c->max_write_size chunks and to @c->max_write_size-aligned offset. 540 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make 541 * sure that @wbuf->offs + @wbuf->size is aligned to 542 * @c->max_write_size. This way we make sure that after next 543 * write-buffer flush we are again at the optimal offset (aligned to 544 * @c->max_write_size). 545 */ 546 if (c->leb_size - wbuf->offs < c->max_write_size) 547 wbuf->size = c->leb_size - wbuf->offs; 548 else if (wbuf->offs & (c->max_write_size - 1)) 549 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 550 else 551 wbuf->size = c->max_write_size; 552 wbuf->avail = wbuf->size; 553 wbuf->used = 0; 554 wbuf->next_ino = 0; 555 spin_unlock(&wbuf->lock); 556 557 if (wbuf->sync_callback) 558 err = wbuf->sync_callback(c, wbuf->lnum, 559 c->leb_size - wbuf->offs, dirt); 560 return err; 561 } 562 563 /** 564 * ubifs_wbuf_seek_nolock - seek write-buffer. 565 * @wbuf: write-buffer 566 * @lnum: logical eraseblock number to seek to 567 * @offs: logical eraseblock offset to seek to 568 * 569 * This function targets the write-buffer to logical eraseblock @lnum:@offs. 570 * The write-buffer has to be empty. Returns zero in case of success and a 571 * negative error code in case of failure. 572 */ 573 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) 574 { 575 const struct ubifs_info *c = wbuf->c; 576 577 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); 578 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); 579 ubifs_assert(offs >= 0 && offs <= c->leb_size); 580 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); 581 ubifs_assert(lnum != wbuf->lnum); 582 ubifs_assert(wbuf->used == 0); 583 584 spin_lock(&wbuf->lock); 585 wbuf->lnum = lnum; 586 wbuf->offs = offs; 587 if (c->leb_size - wbuf->offs < c->max_write_size) 588 wbuf->size = c->leb_size - wbuf->offs; 589 else if (wbuf->offs & (c->max_write_size - 1)) 590 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 591 else 592 wbuf->size = c->max_write_size; 593 wbuf->avail = wbuf->size; 594 wbuf->used = 0; 595 spin_unlock(&wbuf->lock); 596 597 return 0; 598 } 599 600 #ifndef __UBOOT__ 601 /** 602 * ubifs_bg_wbufs_sync - synchronize write-buffers. 603 * @c: UBIFS file-system description object 604 * 605 * This function is called by background thread to synchronize write-buffers. 606 * Returns zero in case of success and a negative error code in case of 607 * failure. 608 */ 609 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 610 { 611 int err, i; 612 613 ubifs_assert(!c->ro_media && !c->ro_mount); 614 if (!c->need_wbuf_sync) 615 return 0; 616 c->need_wbuf_sync = 0; 617 618 if (c->ro_error) { 619 err = -EROFS; 620 goto out_timers; 621 } 622 623 dbg_io("synchronize"); 624 for (i = 0; i < c->jhead_cnt; i++) { 625 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 626 627 cond_resched(); 628 629 /* 630 * If the mutex is locked then wbuf is being changed, so 631 * synchronization is not necessary. 632 */ 633 if (mutex_is_locked(&wbuf->io_mutex)) 634 continue; 635 636 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 637 if (!wbuf->need_sync) { 638 mutex_unlock(&wbuf->io_mutex); 639 continue; 640 } 641 642 err = ubifs_wbuf_sync_nolock(wbuf); 643 mutex_unlock(&wbuf->io_mutex); 644 if (err) { 645 ubifs_err(c, "cannot sync write-buffer, error %d", err); 646 ubifs_ro_mode(c, err); 647 goto out_timers; 648 } 649 } 650 651 return 0; 652 653 out_timers: 654 /* Cancel all timers to prevent repeated errors */ 655 for (i = 0; i < c->jhead_cnt; i++) { 656 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 657 658 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 659 cancel_wbuf_timer_nolock(wbuf); 660 mutex_unlock(&wbuf->io_mutex); 661 } 662 return err; 663 } 664 665 /** 666 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 667 * @wbuf: write-buffer 668 * @buf: node to write 669 * @len: node length 670 * 671 * This function writes data to flash via write-buffer @wbuf. This means that 672 * the last piece of the node won't reach the flash media immediately if it 673 * does not take whole max. write unit (@c->max_write_size). Instead, the node 674 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or 675 * because more data are appended to the write-buffer). 676 * 677 * This function returns zero in case of success and a negative error code in 678 * case of failure. If the node cannot be written because there is no more 679 * space in this logical eraseblock, %-ENOSPC is returned. 680 */ 681 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 682 { 683 struct ubifs_info *c = wbuf->c; 684 int err, written, n, aligned_len = ALIGN(len, 8); 685 686 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, 687 dbg_ntype(((struct ubifs_ch *)buf)->node_type), 688 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); 689 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 690 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 691 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 692 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); 693 ubifs_assert(wbuf->size >= c->min_io_size); 694 ubifs_assert(wbuf->size <= c->max_write_size); 695 ubifs_assert(wbuf->size % c->min_io_size == 0); 696 ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); 697 ubifs_assert(!c->ro_media && !c->ro_mount); 698 ubifs_assert(!c->space_fixup); 699 if (c->leb_size - wbuf->offs >= c->max_write_size) 700 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 701 702 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 703 err = -ENOSPC; 704 goto out; 705 } 706 707 cancel_wbuf_timer_nolock(wbuf); 708 709 if (c->ro_error) 710 return -EROFS; 711 712 if (aligned_len <= wbuf->avail) { 713 /* 714 * The node is not very large and fits entirely within 715 * write-buffer. 716 */ 717 memcpy(wbuf->buf + wbuf->used, buf, len); 718 719 if (aligned_len == wbuf->avail) { 720 dbg_io("flush jhead %s wbuf to LEB %d:%d", 721 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 722 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, 723 wbuf->offs, wbuf->size); 724 if (err) 725 goto out; 726 727 spin_lock(&wbuf->lock); 728 wbuf->offs += wbuf->size; 729 if (c->leb_size - wbuf->offs >= c->max_write_size) 730 wbuf->size = c->max_write_size; 731 else 732 wbuf->size = c->leb_size - wbuf->offs; 733 wbuf->avail = wbuf->size; 734 wbuf->used = 0; 735 wbuf->next_ino = 0; 736 spin_unlock(&wbuf->lock); 737 } else { 738 spin_lock(&wbuf->lock); 739 wbuf->avail -= aligned_len; 740 wbuf->used += aligned_len; 741 spin_unlock(&wbuf->lock); 742 } 743 744 goto exit; 745 } 746 747 written = 0; 748 749 if (wbuf->used) { 750 /* 751 * The node is large enough and does not fit entirely within 752 * current available space. We have to fill and flush 753 * write-buffer and switch to the next max. write unit. 754 */ 755 dbg_io("flush jhead %s wbuf to LEB %d:%d", 756 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 757 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 758 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, 759 wbuf->size); 760 if (err) 761 goto out; 762 763 wbuf->offs += wbuf->size; 764 len -= wbuf->avail; 765 aligned_len -= wbuf->avail; 766 written += wbuf->avail; 767 } else if (wbuf->offs & (c->max_write_size - 1)) { 768 /* 769 * The write-buffer offset is not aligned to 770 * @c->max_write_size and @wbuf->size is less than 771 * @c->max_write_size. Write @wbuf->size bytes to make sure the 772 * following writes are done in optimal @c->max_write_size 773 * chunks. 774 */ 775 dbg_io("write %d bytes to LEB %d:%d", 776 wbuf->size, wbuf->lnum, wbuf->offs); 777 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, 778 wbuf->size); 779 if (err) 780 goto out; 781 782 wbuf->offs += wbuf->size; 783 len -= wbuf->size; 784 aligned_len -= wbuf->size; 785 written += wbuf->size; 786 } 787 788 /* 789 * The remaining data may take more whole max. write units, so write the 790 * remains multiple to max. write unit size directly to the flash media. 791 * We align node length to 8-byte boundary because we anyway flash wbuf 792 * if the remaining space is less than 8 bytes. 793 */ 794 n = aligned_len >> c->max_write_shift; 795 if (n) { 796 n <<= c->max_write_shift; 797 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, 798 wbuf->offs); 799 err = ubifs_leb_write(c, wbuf->lnum, buf + written, 800 wbuf->offs, n); 801 if (err) 802 goto out; 803 wbuf->offs += n; 804 aligned_len -= n; 805 len -= n; 806 written += n; 807 } 808 809 spin_lock(&wbuf->lock); 810 if (aligned_len) 811 /* 812 * And now we have what's left and what does not take whole 813 * max. write unit, so write it to the write-buffer and we are 814 * done. 815 */ 816 memcpy(wbuf->buf, buf + written, len); 817 818 if (c->leb_size - wbuf->offs >= c->max_write_size) 819 wbuf->size = c->max_write_size; 820 else 821 wbuf->size = c->leb_size - wbuf->offs; 822 wbuf->avail = wbuf->size - aligned_len; 823 wbuf->used = aligned_len; 824 wbuf->next_ino = 0; 825 spin_unlock(&wbuf->lock); 826 827 exit: 828 if (wbuf->sync_callback) { 829 int free = c->leb_size - wbuf->offs - wbuf->used; 830 831 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 832 if (err) 833 goto out; 834 } 835 836 if (wbuf->used) 837 new_wbuf_timer_nolock(wbuf); 838 839 return 0; 840 841 out: 842 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", 843 len, wbuf->lnum, wbuf->offs, err); 844 ubifs_dump_node(c, buf); 845 dump_stack(); 846 ubifs_dump_leb(c, wbuf->lnum); 847 return err; 848 } 849 850 /** 851 * ubifs_write_node - write node to the media. 852 * @c: UBIFS file-system description object 853 * @buf: the node to write 854 * @len: node length 855 * @lnum: logical eraseblock number 856 * @offs: offset within the logical eraseblock 857 * 858 * This function automatically fills node magic number, assigns sequence 859 * number, and calculates node CRC checksum. The length of the @buf buffer has 860 * to be aligned to the minimal I/O unit size. This function automatically 861 * appends padding node and padding bytes if needed. Returns zero in case of 862 * success and a negative error code in case of failure. 863 */ 864 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 865 int offs) 866 { 867 int err, buf_len = ALIGN(len, c->min_io_size); 868 869 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 870 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 871 buf_len); 872 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 873 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); 874 ubifs_assert(!c->ro_media && !c->ro_mount); 875 ubifs_assert(!c->space_fixup); 876 877 if (c->ro_error) 878 return -EROFS; 879 880 ubifs_prepare_node(c, buf, len, 1); 881 err = ubifs_leb_write(c, lnum, buf, offs, buf_len); 882 if (err) 883 ubifs_dump_node(c, buf); 884 885 return err; 886 } 887 #endif 888 889 /** 890 * ubifs_read_node_wbuf - read node from the media or write-buffer. 891 * @wbuf: wbuf to check for un-written data 892 * @buf: buffer to read to 893 * @type: node type 894 * @len: node length 895 * @lnum: logical eraseblock number 896 * @offs: offset within the logical eraseblock 897 * 898 * This function reads a node of known type and length, checks it and stores 899 * in @buf. If the node partially or fully sits in the write-buffer, this 900 * function takes data from the buffer, otherwise it reads the flash media. 901 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 902 * error code in case of failure. 903 */ 904 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 905 int lnum, int offs) 906 { 907 const struct ubifs_info *c = wbuf->c; 908 int err, rlen, overlap; 909 struct ubifs_ch *ch = buf; 910 911 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, 912 dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); 913 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 914 ubifs_assert(!(offs & 7) && offs < c->leb_size); 915 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 916 917 spin_lock(&wbuf->lock); 918 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 919 if (!overlap) { 920 /* We may safely unlock the write-buffer and read the data */ 921 spin_unlock(&wbuf->lock); 922 return ubifs_read_node(c, buf, type, len, lnum, offs); 923 } 924 925 /* Don't read under wbuf */ 926 rlen = wbuf->offs - offs; 927 if (rlen < 0) 928 rlen = 0; 929 930 /* Copy the rest from the write-buffer */ 931 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 932 spin_unlock(&wbuf->lock); 933 934 if (rlen > 0) { 935 /* Read everything that goes before write-buffer */ 936 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 937 if (err && err != -EBADMSG) 938 return err; 939 } 940 941 if (type != ch->node_type) { 942 ubifs_err(c, "bad node type (%d but expected %d)", 943 ch->node_type, type); 944 goto out; 945 } 946 947 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 948 if (err) { 949 ubifs_err(c, "expected node type %d", type); 950 return err; 951 } 952 953 rlen = le32_to_cpu(ch->len); 954 if (rlen != len) { 955 ubifs_err(c, "bad node length %d, expected %d", rlen, len); 956 goto out; 957 } 958 959 return 0; 960 961 out: 962 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 963 ubifs_dump_node(c, buf); 964 dump_stack(); 965 return -EINVAL; 966 } 967 968 /** 969 * ubifs_read_node - read node. 970 * @c: UBIFS file-system description object 971 * @buf: buffer to read to 972 * @type: node type 973 * @len: node length (not aligned) 974 * @lnum: logical eraseblock number 975 * @offs: offset within the logical eraseblock 976 * 977 * This function reads a node of known type and and length, checks it and 978 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 979 * and a negative error code in case of failure. 980 */ 981 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 982 int lnum, int offs) 983 { 984 int err, l; 985 struct ubifs_ch *ch = buf; 986 987 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 988 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 989 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 990 ubifs_assert(!(offs & 7) && offs < c->leb_size); 991 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 992 993 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 994 if (err && err != -EBADMSG) 995 return err; 996 997 if (type != ch->node_type) { 998 ubifs_errc(c, "bad node type (%d but expected %d)", 999 ch->node_type, type); 1000 goto out; 1001 } 1002 1003 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 1004 if (err) { 1005 ubifs_errc(c, "expected node type %d", type); 1006 return err; 1007 } 1008 1009 l = le32_to_cpu(ch->len); 1010 if (l != len) { 1011 ubifs_errc(c, "bad node length %d, expected %d", l, len); 1012 goto out; 1013 } 1014 1015 return 0; 1016 1017 out: 1018 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, 1019 offs, ubi_is_mapped(c->ubi, lnum)); 1020 if (!c->probing) { 1021 ubifs_dump_node(c, buf); 1022 dump_stack(); 1023 } 1024 return -EINVAL; 1025 } 1026 1027 /** 1028 * ubifs_wbuf_init - initialize write-buffer. 1029 * @c: UBIFS file-system description object 1030 * @wbuf: write-buffer to initialize 1031 * 1032 * This function initializes write-buffer. Returns zero in case of success 1033 * %-ENOMEM in case of failure. 1034 */ 1035 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 1036 { 1037 size_t size; 1038 1039 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); 1040 if (!wbuf->buf) 1041 return -ENOMEM; 1042 1043 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 1044 wbuf->inodes = kmalloc(size, GFP_KERNEL); 1045 if (!wbuf->inodes) { 1046 kfree(wbuf->buf); 1047 wbuf->buf = NULL; 1048 return -ENOMEM; 1049 } 1050 1051 wbuf->used = 0; 1052 wbuf->lnum = wbuf->offs = -1; 1053 /* 1054 * If the LEB starts at the max. write size aligned address, then 1055 * write-buffer size has to be set to @c->max_write_size. Otherwise, 1056 * set it to something smaller so that it ends at the closest max. 1057 * write size boundary. 1058 */ 1059 size = c->max_write_size - (c->leb_start % c->max_write_size); 1060 wbuf->avail = wbuf->size = size; 1061 wbuf->sync_callback = NULL; 1062 mutex_init(&wbuf->io_mutex); 1063 spin_lock_init(&wbuf->lock); 1064 wbuf->c = c; 1065 wbuf->next_ino = 0; 1066 1067 #ifndef __UBOOT__ 1068 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1069 wbuf->timer.function = wbuf_timer_callback_nolock; 1070 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); 1071 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; 1072 wbuf->delta *= 1000000000ULL; 1073 ubifs_assert(wbuf->delta <= ULONG_MAX); 1074 #endif 1075 return 0; 1076 } 1077 1078 /** 1079 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 1080 * @wbuf: the write-buffer where to add 1081 * @inum: the inode number 1082 * 1083 * This function adds an inode number to the inode array of the write-buffer. 1084 */ 1085 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 1086 { 1087 if (!wbuf->buf) 1088 /* NOR flash or something similar */ 1089 return; 1090 1091 spin_lock(&wbuf->lock); 1092 if (wbuf->used) 1093 wbuf->inodes[wbuf->next_ino++] = inum; 1094 spin_unlock(&wbuf->lock); 1095 } 1096 1097 /** 1098 * wbuf_has_ino - returns if the wbuf contains data from the inode. 1099 * @wbuf: the write-buffer 1100 * @inum: the inode number 1101 * 1102 * This function returns with %1 if the write-buffer contains some data from the 1103 * given inode otherwise it returns with %0. 1104 */ 1105 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 1106 { 1107 int i, ret = 0; 1108 1109 spin_lock(&wbuf->lock); 1110 for (i = 0; i < wbuf->next_ino; i++) 1111 if (inum == wbuf->inodes[i]) { 1112 ret = 1; 1113 break; 1114 } 1115 spin_unlock(&wbuf->lock); 1116 1117 return ret; 1118 } 1119 1120 /** 1121 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 1122 * @c: UBIFS file-system description object 1123 * @inode: inode to synchronize 1124 * 1125 * This function synchronizes write-buffers which contain nodes belonging to 1126 * @inode. Returns zero in case of success and a negative error code in case of 1127 * failure. 1128 */ 1129 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 1130 { 1131 int i, err = 0; 1132 1133 for (i = 0; i < c->jhead_cnt; i++) { 1134 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 1135 1136 if (i == GCHD) 1137 /* 1138 * GC head is special, do not look at it. Even if the 1139 * head contains something related to this inode, it is 1140 * a _copy_ of corresponding on-flash node which sits 1141 * somewhere else. 1142 */ 1143 continue; 1144 1145 if (!wbuf_has_ino(wbuf, inode->i_ino)) 1146 continue; 1147 1148 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1149 if (wbuf_has_ino(wbuf, inode->i_ino)) 1150 err = ubifs_wbuf_sync_nolock(wbuf); 1151 mutex_unlock(&wbuf->io_mutex); 1152 1153 if (err) { 1154 ubifs_ro_mode(c, err); 1155 return err; 1156 } 1157 } 1158 return 0; 1159 } 1160