Home | History | Annotate | Download | only in ubifs
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * This file is part of UBIFS.
      4  *
      5  * Copyright (C) 2006-2008 Nokia Corporation.
      6  *
      7  * Authors: Adrian Hunter
      8  *          Artem Bityutskiy ( )
      9  */
     10 
     11 /*
     12  * This file implements the LEB properties tree (LPT) area. The LPT area
     13  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
     14  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
     15  * between the log and the orphan area.
     16  *
     17  * The LPT area is like a miniature self-contained file system. It is required
     18  * that it never runs out of space, is fast to access and update, and scales
     19  * logarithmically. The LEB properties tree is implemented as a wandering tree
     20  * much like the TNC, and the LPT area has its own garbage collection.
     21  *
     22  * The LPT has two slightly different forms called the "small model" and the
     23  * "big model". The small model is used when the entire LEB properties table
     24  * can be written into a single eraseblock. In that case, garbage collection
     25  * consists of just writing the whole table, which therefore makes all other
     26  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
     27  * selected for garbage collection, which consists of marking the clean nodes in
     28  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
     29  * the case of the big model, a table of LEB numbers is saved so that the entire
     30  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
     31  * mounted.
     32  */
     33 
     34 #include "ubifs.h"
     35 #ifndef __UBOOT__
     36 #include <linux/crc16.h>
     37 #include <linux/math64.h>
     38 #include <linux/slab.h>
     39 #else
     40 #include <linux/compat.h>
     41 #include <linux/err.h>
     42 #include <ubi_uboot.h>
     43 #include "crc16.h"
     44 #endif
     45 
     46 /**
     47  * do_calc_lpt_geom - calculate sizes for the LPT area.
     48  * @c: the UBIFS file-system description object
     49  *
     50  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
     51  * properties of the flash and whether LPT is "big" (c->big_lpt).
     52  */
     53 static void do_calc_lpt_geom(struct ubifs_info *c)
     54 {
     55 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
     56 	long long sz, tot_wastage;
     57 
     58 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
     59 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
     60 
     61 	c->lpt_hght = 1;
     62 	n = UBIFS_LPT_FANOUT;
     63 	while (n < max_pnode_cnt) {
     64 		c->lpt_hght += 1;
     65 		n <<= UBIFS_LPT_FANOUT_SHIFT;
     66 	}
     67 
     68 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
     69 
     70 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
     71 	c->nnode_cnt = n;
     72 	for (i = 1; i < c->lpt_hght; i++) {
     73 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
     74 		c->nnode_cnt += n;
     75 	}
     76 
     77 	c->space_bits = fls(c->leb_size) - 3;
     78 	c->lpt_lnum_bits = fls(c->lpt_lebs);
     79 	c->lpt_offs_bits = fls(c->leb_size - 1);
     80 	c->lpt_spc_bits = fls(c->leb_size);
     81 
     82 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
     83 	c->pcnt_bits = fls(n - 1);
     84 
     85 	c->lnum_bits = fls(c->max_leb_cnt - 1);
     86 
     87 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
     88 	       (c->big_lpt ? c->pcnt_bits : 0) +
     89 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
     90 	c->pnode_sz = (bits + 7) / 8;
     91 
     92 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
     93 	       (c->big_lpt ? c->pcnt_bits : 0) +
     94 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
     95 	c->nnode_sz = (bits + 7) / 8;
     96 
     97 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
     98 	       c->lpt_lebs * c->lpt_spc_bits * 2;
     99 	c->ltab_sz = (bits + 7) / 8;
    100 
    101 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
    102 	       c->lnum_bits * c->lsave_cnt;
    103 	c->lsave_sz = (bits + 7) / 8;
    104 
    105 	/* Calculate the minimum LPT size */
    106 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
    107 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
    108 	c->lpt_sz += c->ltab_sz;
    109 	if (c->big_lpt)
    110 		c->lpt_sz += c->lsave_sz;
    111 
    112 	/* Add wastage */
    113 	sz = c->lpt_sz;
    114 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
    115 	sz += per_leb_wastage;
    116 	tot_wastage = per_leb_wastage;
    117 	while (sz > c->leb_size) {
    118 		sz += per_leb_wastage;
    119 		sz -= c->leb_size;
    120 		tot_wastage += per_leb_wastage;
    121 	}
    122 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
    123 	c->lpt_sz += tot_wastage;
    124 }
    125 
    126 /**
    127  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
    128  * @c: the UBIFS file-system description object
    129  *
    130  * This function returns %0 on success and a negative error code on failure.
    131  */
    132 int ubifs_calc_lpt_geom(struct ubifs_info *c)
    133 {
    134 	int lebs_needed;
    135 	long long sz;
    136 
    137 	do_calc_lpt_geom(c);
    138 
    139 	/* Verify that lpt_lebs is big enough */
    140 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
    141 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
    142 	if (lebs_needed > c->lpt_lebs) {
    143 		ubifs_err(c, "too few LPT LEBs");
    144 		return -EINVAL;
    145 	}
    146 
    147 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
    148 	if (c->ltab_sz > c->leb_size) {
    149 		ubifs_err(c, "LPT ltab too big");
    150 		return -EINVAL;
    151 	}
    152 
    153 	c->check_lpt_free = c->big_lpt;
    154 	return 0;
    155 }
    156 
    157 /**
    158  * calc_dflt_lpt_geom - calculate default LPT geometry.
    159  * @c: the UBIFS file-system description object
    160  * @main_lebs: number of main area LEBs is passed and returned here
    161  * @big_lpt: whether the LPT area is "big" is returned here
    162  *
    163  * The size of the LPT area depends on parameters that themselves are dependent
    164  * on the size of the LPT area. This function, successively recalculates the LPT
    165  * area geometry until the parameters and resultant geometry are consistent.
    166  *
    167  * This function returns %0 on success and a negative error code on failure.
    168  */
    169 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
    170 			      int *big_lpt)
    171 {
    172 	int i, lebs_needed;
    173 	long long sz;
    174 
    175 	/* Start by assuming the minimum number of LPT LEBs */
    176 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
    177 	c->main_lebs = *main_lebs - c->lpt_lebs;
    178 	if (c->main_lebs <= 0)
    179 		return -EINVAL;
    180 
    181 	/* And assume we will use the small LPT model */
    182 	c->big_lpt = 0;
    183 
    184 	/*
    185 	 * Calculate the geometry based on assumptions above and then see if it
    186 	 * makes sense
    187 	 */
    188 	do_calc_lpt_geom(c);
    189 
    190 	/* Small LPT model must have lpt_sz < leb_size */
    191 	if (c->lpt_sz > c->leb_size) {
    192 		/* Nope, so try again using big LPT model */
    193 		c->big_lpt = 1;
    194 		do_calc_lpt_geom(c);
    195 	}
    196 
    197 	/* Now check there are enough LPT LEBs */
    198 	for (i = 0; i < 64 ; i++) {
    199 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
    200 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
    201 		if (lebs_needed > c->lpt_lebs) {
    202 			/* Not enough LPT LEBs so try again with more */
    203 			c->lpt_lebs = lebs_needed;
    204 			c->main_lebs = *main_lebs - c->lpt_lebs;
    205 			if (c->main_lebs <= 0)
    206 				return -EINVAL;
    207 			do_calc_lpt_geom(c);
    208 			continue;
    209 		}
    210 		if (c->ltab_sz > c->leb_size) {
    211 			ubifs_err(c, "LPT ltab too big");
    212 			return -EINVAL;
    213 		}
    214 		*main_lebs = c->main_lebs;
    215 		*big_lpt = c->big_lpt;
    216 		return 0;
    217 	}
    218 	return -EINVAL;
    219 }
    220 
    221 /**
    222  * pack_bits - pack bit fields end-to-end.
    223  * @addr: address at which to pack (passed and next address returned)
    224  * @pos: bit position at which to pack (passed and next position returned)
    225  * @val: value to pack
    226  * @nrbits: number of bits of value to pack (1-32)
    227  */
    228 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
    229 {
    230 	uint8_t *p = *addr;
    231 	int b = *pos;
    232 
    233 	ubifs_assert(nrbits > 0);
    234 	ubifs_assert(nrbits <= 32);
    235 	ubifs_assert(*pos >= 0);
    236 	ubifs_assert(*pos < 8);
    237 	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
    238 	if (b) {
    239 		*p |= ((uint8_t)val) << b;
    240 		nrbits += b;
    241 		if (nrbits > 8) {
    242 			*++p = (uint8_t)(val >>= (8 - b));
    243 			if (nrbits > 16) {
    244 				*++p = (uint8_t)(val >>= 8);
    245 				if (nrbits > 24) {
    246 					*++p = (uint8_t)(val >>= 8);
    247 					if (nrbits > 32)
    248 						*++p = (uint8_t)(val >>= 8);
    249 				}
    250 			}
    251 		}
    252 	} else {
    253 		*p = (uint8_t)val;
    254 		if (nrbits > 8) {
    255 			*++p = (uint8_t)(val >>= 8);
    256 			if (nrbits > 16) {
    257 				*++p = (uint8_t)(val >>= 8);
    258 				if (nrbits > 24)
    259 					*++p = (uint8_t)(val >>= 8);
    260 			}
    261 		}
    262 	}
    263 	b = nrbits & 7;
    264 	if (b == 0)
    265 		p++;
    266 	*addr = p;
    267 	*pos = b;
    268 }
    269 
    270 /**
    271  * ubifs_unpack_bits - unpack bit fields.
    272  * @addr: address at which to unpack (passed and next address returned)
    273  * @pos: bit position at which to unpack (passed and next position returned)
    274  * @nrbits: number of bits of value to unpack (1-32)
    275  *
    276  * This functions returns the value unpacked.
    277  */
    278 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
    279 {
    280 	const int k = 32 - nrbits;
    281 	uint8_t *p = *addr;
    282 	int b = *pos;
    283 	uint32_t uninitialized_var(val);
    284 	const int bytes = (nrbits + b + 7) >> 3;
    285 
    286 	ubifs_assert(nrbits > 0);
    287 	ubifs_assert(nrbits <= 32);
    288 	ubifs_assert(*pos >= 0);
    289 	ubifs_assert(*pos < 8);
    290 	if (b) {
    291 		switch (bytes) {
    292 		case 2:
    293 			val = p[1];
    294 			break;
    295 		case 3:
    296 			val = p[1] | ((uint32_t)p[2] << 8);
    297 			break;
    298 		case 4:
    299 			val = p[1] | ((uint32_t)p[2] << 8) |
    300 				     ((uint32_t)p[3] << 16);
    301 			break;
    302 		case 5:
    303 			val = p[1] | ((uint32_t)p[2] << 8) |
    304 				     ((uint32_t)p[3] << 16) |
    305 				     ((uint32_t)p[4] << 24);
    306 		}
    307 		val <<= (8 - b);
    308 		val |= *p >> b;
    309 		nrbits += b;
    310 	} else {
    311 		switch (bytes) {
    312 		case 1:
    313 			val = p[0];
    314 			break;
    315 		case 2:
    316 			val = p[0] | ((uint32_t)p[1] << 8);
    317 			break;
    318 		case 3:
    319 			val = p[0] | ((uint32_t)p[1] << 8) |
    320 				     ((uint32_t)p[2] << 16);
    321 			break;
    322 		case 4:
    323 			val = p[0] | ((uint32_t)p[1] << 8) |
    324 				     ((uint32_t)p[2] << 16) |
    325 				     ((uint32_t)p[3] << 24);
    326 			break;
    327 		}
    328 	}
    329 	val <<= k;
    330 	val >>= k;
    331 	b = nrbits & 7;
    332 	p += nrbits >> 3;
    333 	*addr = p;
    334 	*pos = b;
    335 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
    336 	return val;
    337 }
    338 
    339 /**
    340  * ubifs_pack_pnode - pack all the bit fields of a pnode.
    341  * @c: UBIFS file-system description object
    342  * @buf: buffer into which to pack
    343  * @pnode: pnode to pack
    344  */
    345 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
    346 		      struct ubifs_pnode *pnode)
    347 {
    348 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    349 	int i, pos = 0;
    350 	uint16_t crc;
    351 
    352 	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
    353 	if (c->big_lpt)
    354 		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
    355 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    356 		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
    357 			  c->space_bits);
    358 		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
    359 			  c->space_bits);
    360 		if (pnode->lprops[i].flags & LPROPS_INDEX)
    361 			pack_bits(&addr, &pos, 1, 1);
    362 		else
    363 			pack_bits(&addr, &pos, 0, 1);
    364 	}
    365 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    366 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
    367 	addr = buf;
    368 	pos = 0;
    369 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
    370 }
    371 
    372 /**
    373  * ubifs_pack_nnode - pack all the bit fields of a nnode.
    374  * @c: UBIFS file-system description object
    375  * @buf: buffer into which to pack
    376  * @nnode: nnode to pack
    377  */
    378 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
    379 		      struct ubifs_nnode *nnode)
    380 {
    381 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    382 	int i, pos = 0;
    383 	uint16_t crc;
    384 
    385 	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
    386 	if (c->big_lpt)
    387 		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
    388 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    389 		int lnum = nnode->nbranch[i].lnum;
    390 
    391 		if (lnum == 0)
    392 			lnum = c->lpt_last + 1;
    393 		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
    394 		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
    395 			  c->lpt_offs_bits);
    396 	}
    397 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    398 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
    399 	addr = buf;
    400 	pos = 0;
    401 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
    402 }
    403 
    404 /**
    405  * ubifs_pack_ltab - pack the LPT's own lprops table.
    406  * @c: UBIFS file-system description object
    407  * @buf: buffer into which to pack
    408  * @ltab: LPT's own lprops table to pack
    409  */
    410 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
    411 		     struct ubifs_lpt_lprops *ltab)
    412 {
    413 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    414 	int i, pos = 0;
    415 	uint16_t crc;
    416 
    417 	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
    418 	for (i = 0; i < c->lpt_lebs; i++) {
    419 		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
    420 		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
    421 	}
    422 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    423 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
    424 	addr = buf;
    425 	pos = 0;
    426 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
    427 }
    428 
    429 /**
    430  * ubifs_pack_lsave - pack the LPT's save table.
    431  * @c: UBIFS file-system description object
    432  * @buf: buffer into which to pack
    433  * @lsave: LPT's save table to pack
    434  */
    435 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
    436 {
    437 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    438 	int i, pos = 0;
    439 	uint16_t crc;
    440 
    441 	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
    442 	for (i = 0; i < c->lsave_cnt; i++)
    443 		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
    444 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    445 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
    446 	addr = buf;
    447 	pos = 0;
    448 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
    449 }
    450 
    451 /**
    452  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
    453  * @c: UBIFS file-system description object
    454  * @lnum: LEB number to which to add dirty space
    455  * @dirty: amount of dirty space to add
    456  */
    457 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
    458 {
    459 	if (!dirty || !lnum)
    460 		return;
    461 	dbg_lp("LEB %d add %d to %d",
    462 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
    463 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
    464 	c->ltab[lnum - c->lpt_first].dirty += dirty;
    465 }
    466 
    467 /**
    468  * set_ltab - set LPT LEB properties.
    469  * @c: UBIFS file-system description object
    470  * @lnum: LEB number
    471  * @free: amount of free space
    472  * @dirty: amount of dirty space
    473  */
    474 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
    475 {
    476 	dbg_lp("LEB %d free %d dirty %d to %d %d",
    477 	       lnum, c->ltab[lnum - c->lpt_first].free,
    478 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
    479 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
    480 	c->ltab[lnum - c->lpt_first].free = free;
    481 	c->ltab[lnum - c->lpt_first].dirty = dirty;
    482 }
    483 
    484 /**
    485  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
    486  * @c: UBIFS file-system description object
    487  * @nnode: nnode for which to add dirt
    488  */
    489 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
    490 {
    491 	struct ubifs_nnode *np = nnode->parent;
    492 
    493 	if (np)
    494 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
    495 				   c->nnode_sz);
    496 	else {
    497 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
    498 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
    499 			c->lpt_drty_flgs |= LTAB_DIRTY;
    500 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
    501 		}
    502 	}
    503 }
    504 
    505 /**
    506  * add_pnode_dirt - add dirty space to LPT LEB properties.
    507  * @c: UBIFS file-system description object
    508  * @pnode: pnode for which to add dirt
    509  */
    510 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
    511 {
    512 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
    513 			   c->pnode_sz);
    514 }
    515 
    516 /**
    517  * calc_nnode_num - calculate nnode number.
    518  * @row: the row in the tree (root is zero)
    519  * @col: the column in the row (leftmost is zero)
    520  *
    521  * The nnode number is a number that uniquely identifies a nnode and can be used
    522  * easily to traverse the tree from the root to that nnode.
    523  *
    524  * This function calculates and returns the nnode number for the nnode at @row
    525  * and @col.
    526  */
    527 static int calc_nnode_num(int row, int col)
    528 {
    529 	int num, bits;
    530 
    531 	num = 1;
    532 	while (row--) {
    533 		bits = (col & (UBIFS_LPT_FANOUT - 1));
    534 		col >>= UBIFS_LPT_FANOUT_SHIFT;
    535 		num <<= UBIFS_LPT_FANOUT_SHIFT;
    536 		num |= bits;
    537 	}
    538 	return num;
    539 }
    540 
    541 /**
    542  * calc_nnode_num_from_parent - calculate nnode number.
    543  * @c: UBIFS file-system description object
    544  * @parent: parent nnode
    545  * @iip: index in parent
    546  *
    547  * The nnode number is a number that uniquely identifies a nnode and can be used
    548  * easily to traverse the tree from the root to that nnode.
    549  *
    550  * This function calculates and returns the nnode number based on the parent's
    551  * nnode number and the index in parent.
    552  */
    553 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
    554 				      struct ubifs_nnode *parent, int iip)
    555 {
    556 	int num, shft;
    557 
    558 	if (!parent)
    559 		return 1;
    560 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
    561 	num = parent->num ^ (1 << shft);
    562 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
    563 	return num;
    564 }
    565 
    566 /**
    567  * calc_pnode_num_from_parent - calculate pnode number.
    568  * @c: UBIFS file-system description object
    569  * @parent: parent nnode
    570  * @iip: index in parent
    571  *
    572  * The pnode number is a number that uniquely identifies a pnode and can be used
    573  * easily to traverse the tree from the root to that pnode.
    574  *
    575  * This function calculates and returns the pnode number based on the parent's
    576  * nnode number and the index in parent.
    577  */
    578 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
    579 				      struct ubifs_nnode *parent, int iip)
    580 {
    581 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
    582 
    583 	for (i = 0; i < n; i++) {
    584 		num <<= UBIFS_LPT_FANOUT_SHIFT;
    585 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
    586 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
    587 	}
    588 	num <<= UBIFS_LPT_FANOUT_SHIFT;
    589 	num |= iip;
    590 	return num;
    591 }
    592 
    593 /**
    594  * ubifs_create_dflt_lpt - create default LPT.
    595  * @c: UBIFS file-system description object
    596  * @main_lebs: number of main area LEBs is passed and returned here
    597  * @lpt_first: LEB number of first LPT LEB
    598  * @lpt_lebs: number of LEBs for LPT is passed and returned here
    599  * @big_lpt: use big LPT model is passed and returned here
    600  *
    601  * This function returns %0 on success and a negative error code on failure.
    602  */
    603 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
    604 			  int *lpt_lebs, int *big_lpt)
    605 {
    606 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
    607 	int blnum, boffs, bsz, bcnt;
    608 	struct ubifs_pnode *pnode = NULL;
    609 	struct ubifs_nnode *nnode = NULL;
    610 	void *buf = NULL, *p;
    611 	struct ubifs_lpt_lprops *ltab = NULL;
    612 	int *lsave = NULL;
    613 
    614 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
    615 	if (err)
    616 		return err;
    617 	*lpt_lebs = c->lpt_lebs;
    618 
    619 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
    620 	c->lpt_first = lpt_first;
    621 	/* Needed by 'set_ltab()' */
    622 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
    623 	/* Needed by 'ubifs_pack_lsave()' */
    624 	c->main_first = c->leb_cnt - *main_lebs;
    625 
    626 	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
    627 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
    628 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
    629 	buf = vmalloc(c->leb_size);
    630 	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
    631 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
    632 		err = -ENOMEM;
    633 		goto out;
    634 	}
    635 
    636 	ubifs_assert(!c->ltab);
    637 	c->ltab = ltab; /* Needed by set_ltab */
    638 
    639 	/* Initialize LPT's own lprops */
    640 	for (i = 0; i < c->lpt_lebs; i++) {
    641 		ltab[i].free = c->leb_size;
    642 		ltab[i].dirty = 0;
    643 		ltab[i].tgc = 0;
    644 		ltab[i].cmt = 0;
    645 	}
    646 
    647 	lnum = lpt_first;
    648 	p = buf;
    649 	/* Number of leaf nodes (pnodes) */
    650 	cnt = c->pnode_cnt;
    651 
    652 	/*
    653 	 * The first pnode contains the LEB properties for the LEBs that contain
    654 	 * the root inode node and the root index node of the index tree.
    655 	 */
    656 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
    657 	iopos = ALIGN(node_sz, c->min_io_size);
    658 	pnode->lprops[0].free = c->leb_size - iopos;
    659 	pnode->lprops[0].dirty = iopos - node_sz;
    660 	pnode->lprops[0].flags = LPROPS_INDEX;
    661 
    662 	node_sz = UBIFS_INO_NODE_SZ;
    663 	iopos = ALIGN(node_sz, c->min_io_size);
    664 	pnode->lprops[1].free = c->leb_size - iopos;
    665 	pnode->lprops[1].dirty = iopos - node_sz;
    666 
    667 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
    668 		pnode->lprops[i].free = c->leb_size;
    669 
    670 	/* Add first pnode */
    671 	ubifs_pack_pnode(c, p, pnode);
    672 	p += c->pnode_sz;
    673 	len = c->pnode_sz;
    674 	pnode->num += 1;
    675 
    676 	/* Reset pnode values for remaining pnodes */
    677 	pnode->lprops[0].free = c->leb_size;
    678 	pnode->lprops[0].dirty = 0;
    679 	pnode->lprops[0].flags = 0;
    680 
    681 	pnode->lprops[1].free = c->leb_size;
    682 	pnode->lprops[1].dirty = 0;
    683 
    684 	/*
    685 	 * To calculate the internal node branches, we keep information about
    686 	 * the level below.
    687 	 */
    688 	blnum = lnum; /* LEB number of level below */
    689 	boffs = 0; /* Offset of level below */
    690 	bcnt = cnt; /* Number of nodes in level below */
    691 	bsz = c->pnode_sz; /* Size of nodes in level below */
    692 
    693 	/* Add all remaining pnodes */
    694 	for (i = 1; i < cnt; i++) {
    695 		if (len + c->pnode_sz > c->leb_size) {
    696 			alen = ALIGN(len, c->min_io_size);
    697 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
    698 			memset(p, 0xff, alen - len);
    699 			err = ubifs_leb_change(c, lnum++, buf, alen);
    700 			if (err)
    701 				goto out;
    702 			p = buf;
    703 			len = 0;
    704 		}
    705 		ubifs_pack_pnode(c, p, pnode);
    706 		p += c->pnode_sz;
    707 		len += c->pnode_sz;
    708 		/*
    709 		 * pnodes are simply numbered left to right starting at zero,
    710 		 * which means the pnode number can be used easily to traverse
    711 		 * down the tree to the corresponding pnode.
    712 		 */
    713 		pnode->num += 1;
    714 	}
    715 
    716 	row = 0;
    717 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
    718 		row += 1;
    719 	/* Add all nnodes, one level at a time */
    720 	while (1) {
    721 		/* Number of internal nodes (nnodes) at next level */
    722 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
    723 		for (i = 0; i < cnt; i++) {
    724 			if (len + c->nnode_sz > c->leb_size) {
    725 				alen = ALIGN(len, c->min_io_size);
    726 				set_ltab(c, lnum, c->leb_size - alen,
    727 					    alen - len);
    728 				memset(p, 0xff, alen - len);
    729 				err = ubifs_leb_change(c, lnum++, buf, alen);
    730 				if (err)
    731 					goto out;
    732 				p = buf;
    733 				len = 0;
    734 			}
    735 			/* Only 1 nnode at this level, so it is the root */
    736 			if (cnt == 1) {
    737 				c->lpt_lnum = lnum;
    738 				c->lpt_offs = len;
    739 			}
    740 			/* Set branches to the level below */
    741 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
    742 				if (bcnt) {
    743 					if (boffs + bsz > c->leb_size) {
    744 						blnum += 1;
    745 						boffs = 0;
    746 					}
    747 					nnode->nbranch[j].lnum = blnum;
    748 					nnode->nbranch[j].offs = boffs;
    749 					boffs += bsz;
    750 					bcnt--;
    751 				} else {
    752 					nnode->nbranch[j].lnum = 0;
    753 					nnode->nbranch[j].offs = 0;
    754 				}
    755 			}
    756 			nnode->num = calc_nnode_num(row, i);
    757 			ubifs_pack_nnode(c, p, nnode);
    758 			p += c->nnode_sz;
    759 			len += c->nnode_sz;
    760 		}
    761 		/* Only 1 nnode at this level, so it is the root */
    762 		if (cnt == 1)
    763 			break;
    764 		/* Update the information about the level below */
    765 		bcnt = cnt;
    766 		bsz = c->nnode_sz;
    767 		row -= 1;
    768 	}
    769 
    770 	if (*big_lpt) {
    771 		/* Need to add LPT's save table */
    772 		if (len + c->lsave_sz > c->leb_size) {
    773 			alen = ALIGN(len, c->min_io_size);
    774 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
    775 			memset(p, 0xff, alen - len);
    776 			err = ubifs_leb_change(c, lnum++, buf, alen);
    777 			if (err)
    778 				goto out;
    779 			p = buf;
    780 			len = 0;
    781 		}
    782 
    783 		c->lsave_lnum = lnum;
    784 		c->lsave_offs = len;
    785 
    786 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
    787 			lsave[i] = c->main_first + i;
    788 		for (; i < c->lsave_cnt; i++)
    789 			lsave[i] = c->main_first;
    790 
    791 		ubifs_pack_lsave(c, p, lsave);
    792 		p += c->lsave_sz;
    793 		len += c->lsave_sz;
    794 	}
    795 
    796 	/* Need to add LPT's own LEB properties table */
    797 	if (len + c->ltab_sz > c->leb_size) {
    798 		alen = ALIGN(len, c->min_io_size);
    799 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
    800 		memset(p, 0xff, alen - len);
    801 		err = ubifs_leb_change(c, lnum++, buf, alen);
    802 		if (err)
    803 			goto out;
    804 		p = buf;
    805 		len = 0;
    806 	}
    807 
    808 	c->ltab_lnum = lnum;
    809 	c->ltab_offs = len;
    810 
    811 	/* Update ltab before packing it */
    812 	len += c->ltab_sz;
    813 	alen = ALIGN(len, c->min_io_size);
    814 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
    815 
    816 	ubifs_pack_ltab(c, p, ltab);
    817 	p += c->ltab_sz;
    818 
    819 	/* Write remaining buffer */
    820 	memset(p, 0xff, alen - len);
    821 	err = ubifs_leb_change(c, lnum, buf, alen);
    822 	if (err)
    823 		goto out;
    824 
    825 	c->nhead_lnum = lnum;
    826 	c->nhead_offs = ALIGN(len, c->min_io_size);
    827 
    828 	dbg_lp("space_bits %d", c->space_bits);
    829 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
    830 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
    831 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
    832 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
    833 	dbg_lp("lnum_bits %d", c->lnum_bits);
    834 	dbg_lp("pnode_sz %d", c->pnode_sz);
    835 	dbg_lp("nnode_sz %d", c->nnode_sz);
    836 	dbg_lp("ltab_sz %d", c->ltab_sz);
    837 	dbg_lp("lsave_sz %d", c->lsave_sz);
    838 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
    839 	dbg_lp("lpt_hght %d", c->lpt_hght);
    840 	dbg_lp("big_lpt %d", c->big_lpt);
    841 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
    842 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
    843 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
    844 	if (c->big_lpt)
    845 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
    846 out:
    847 	c->ltab = NULL;
    848 	kfree(lsave);
    849 	vfree(ltab);
    850 	vfree(buf);
    851 	kfree(nnode);
    852 	kfree(pnode);
    853 	return err;
    854 }
    855 
    856 /**
    857  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
    858  * @c: UBIFS file-system description object
    859  * @pnode: pnode
    860  *
    861  * When a pnode is loaded into memory, the LEB properties it contains are added,
    862  * by this function, to the LEB category lists and heaps.
    863  */
    864 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
    865 {
    866 	int i;
    867 
    868 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    869 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
    870 		int lnum = pnode->lprops[i].lnum;
    871 
    872 		if (!lnum)
    873 			return;
    874 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
    875 	}
    876 }
    877 
    878 /**
    879  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
    880  * @c: UBIFS file-system description object
    881  * @old_pnode: pnode copied
    882  * @new_pnode: pnode copy
    883  *
    884  * During commit it is sometimes necessary to copy a pnode
    885  * (see dirty_cow_pnode).  When that happens, references in
    886  * category lists and heaps must be replaced.  This function does that.
    887  */
    888 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
    889 			 struct ubifs_pnode *new_pnode)
    890 {
    891 	int i;
    892 
    893 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    894 		if (!new_pnode->lprops[i].lnum)
    895 			return;
    896 		ubifs_replace_cat(c, &old_pnode->lprops[i],
    897 				  &new_pnode->lprops[i]);
    898 	}
    899 }
    900 
    901 /**
    902  * check_lpt_crc - check LPT node crc is correct.
    903  * @c: UBIFS file-system description object
    904  * @buf: buffer containing node
    905  * @len: length of node
    906  *
    907  * This function returns %0 on success and a negative error code on failure.
    908  */
    909 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
    910 {
    911 	int pos = 0;
    912 	uint8_t *addr = buf;
    913 	uint16_t crc, calc_crc;
    914 
    915 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
    916 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    917 			 len - UBIFS_LPT_CRC_BYTES);
    918 	if (crc != calc_crc) {
    919 		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
    920 			  crc, calc_crc);
    921 		dump_stack();
    922 		return -EINVAL;
    923 	}
    924 	return 0;
    925 }
    926 
    927 /**
    928  * check_lpt_type - check LPT node type is correct.
    929  * @c: UBIFS file-system description object
    930  * @addr: address of type bit field is passed and returned updated here
    931  * @pos: position of type bit field is passed and returned updated here
    932  * @type: expected type
    933  *
    934  * This function returns %0 on success and a negative error code on failure.
    935  */
    936 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
    937 			  int *pos, int type)
    938 {
    939 	int node_type;
    940 
    941 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
    942 	if (node_type != type) {
    943 		ubifs_err(c, "invalid type (%d) in LPT node type %d",
    944 			  node_type, type);
    945 		dump_stack();
    946 		return -EINVAL;
    947 	}
    948 	return 0;
    949 }
    950 
    951 /**
    952  * unpack_pnode - unpack a pnode.
    953  * @c: UBIFS file-system description object
    954  * @buf: buffer containing packed pnode to unpack
    955  * @pnode: pnode structure to fill
    956  *
    957  * This function returns %0 on success and a negative error code on failure.
    958  */
    959 static int unpack_pnode(const struct ubifs_info *c, void *buf,
    960 			struct ubifs_pnode *pnode)
    961 {
    962 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    963 	int i, pos = 0, err;
    964 
    965 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
    966 	if (err)
    967 		return err;
    968 	if (c->big_lpt)
    969 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
    970 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    971 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
    972 
    973 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
    974 		lprops->free <<= 3;
    975 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
    976 		lprops->dirty <<= 3;
    977 
    978 		if (ubifs_unpack_bits(&addr, &pos, 1))
    979 			lprops->flags = LPROPS_INDEX;
    980 		else
    981 			lprops->flags = 0;
    982 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
    983 	}
    984 	err = check_lpt_crc(c, buf, c->pnode_sz);
    985 	return err;
    986 }
    987 
    988 /**
    989  * ubifs_unpack_nnode - unpack a nnode.
    990  * @c: UBIFS file-system description object
    991  * @buf: buffer containing packed nnode to unpack
    992  * @nnode: nnode structure to fill
    993  *
    994  * This function returns %0 on success and a negative error code on failure.
    995  */
    996 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
    997 		       struct ubifs_nnode *nnode)
    998 {
    999 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
   1000 	int i, pos = 0, err;
   1001 
   1002 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
   1003 	if (err)
   1004 		return err;
   1005 	if (c->big_lpt)
   1006 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
   1007 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1008 		int lnum;
   1009 
   1010 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
   1011 		       c->lpt_first;
   1012 		if (lnum == c->lpt_last + 1)
   1013 			lnum = 0;
   1014 		nnode->nbranch[i].lnum = lnum;
   1015 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
   1016 						     c->lpt_offs_bits);
   1017 	}
   1018 	err = check_lpt_crc(c, buf, c->nnode_sz);
   1019 	return err;
   1020 }
   1021 
   1022 /**
   1023  * unpack_ltab - unpack the LPT's own lprops table.
   1024  * @c: UBIFS file-system description object
   1025  * @buf: buffer from which to unpack
   1026  *
   1027  * This function returns %0 on success and a negative error code on failure.
   1028  */
   1029 static int unpack_ltab(const struct ubifs_info *c, void *buf)
   1030 {
   1031 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
   1032 	int i, pos = 0, err;
   1033 
   1034 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
   1035 	if (err)
   1036 		return err;
   1037 	for (i = 0; i < c->lpt_lebs; i++) {
   1038 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
   1039 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
   1040 
   1041 		if (free < 0 || free > c->leb_size || dirty < 0 ||
   1042 		    dirty > c->leb_size || free + dirty > c->leb_size)
   1043 			return -EINVAL;
   1044 
   1045 		c->ltab[i].free = free;
   1046 		c->ltab[i].dirty = dirty;
   1047 		c->ltab[i].tgc = 0;
   1048 		c->ltab[i].cmt = 0;
   1049 	}
   1050 	err = check_lpt_crc(c, buf, c->ltab_sz);
   1051 	return err;
   1052 }
   1053 
   1054 #ifndef __UBOOT__
   1055 /**
   1056  * unpack_lsave - unpack the LPT's save table.
   1057  * @c: UBIFS file-system description object
   1058  * @buf: buffer from which to unpack
   1059  *
   1060  * This function returns %0 on success and a negative error code on failure.
   1061  */
   1062 static int unpack_lsave(const struct ubifs_info *c, void *buf)
   1063 {
   1064 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
   1065 	int i, pos = 0, err;
   1066 
   1067 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
   1068 	if (err)
   1069 		return err;
   1070 	for (i = 0; i < c->lsave_cnt; i++) {
   1071 		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
   1072 
   1073 		if (lnum < c->main_first || lnum >= c->leb_cnt)
   1074 			return -EINVAL;
   1075 		c->lsave[i] = lnum;
   1076 	}
   1077 	err = check_lpt_crc(c, buf, c->lsave_sz);
   1078 	return err;
   1079 }
   1080 #endif
   1081 
   1082 /**
   1083  * validate_nnode - validate a nnode.
   1084  * @c: UBIFS file-system description object
   1085  * @nnode: nnode to validate
   1086  * @parent: parent nnode (or NULL for the root nnode)
   1087  * @iip: index in parent
   1088  *
   1089  * This function returns %0 on success and a negative error code on failure.
   1090  */
   1091 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
   1092 			  struct ubifs_nnode *parent, int iip)
   1093 {
   1094 	int i, lvl, max_offs;
   1095 
   1096 	if (c->big_lpt) {
   1097 		int num = calc_nnode_num_from_parent(c, parent, iip);
   1098 
   1099 		if (nnode->num != num)
   1100 			return -EINVAL;
   1101 	}
   1102 	lvl = parent ? parent->level - 1 : c->lpt_hght;
   1103 	if (lvl < 1)
   1104 		return -EINVAL;
   1105 	if (lvl == 1)
   1106 		max_offs = c->leb_size - c->pnode_sz;
   1107 	else
   1108 		max_offs = c->leb_size - c->nnode_sz;
   1109 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1110 		int lnum = nnode->nbranch[i].lnum;
   1111 		int offs = nnode->nbranch[i].offs;
   1112 
   1113 		if (lnum == 0) {
   1114 			if (offs != 0)
   1115 				return -EINVAL;
   1116 			continue;
   1117 		}
   1118 		if (lnum < c->lpt_first || lnum > c->lpt_last)
   1119 			return -EINVAL;
   1120 		if (offs < 0 || offs > max_offs)
   1121 			return -EINVAL;
   1122 	}
   1123 	return 0;
   1124 }
   1125 
   1126 /**
   1127  * validate_pnode - validate a pnode.
   1128  * @c: UBIFS file-system description object
   1129  * @pnode: pnode to validate
   1130  * @parent: parent nnode
   1131  * @iip: index in parent
   1132  *
   1133  * This function returns %0 on success and a negative error code on failure.
   1134  */
   1135 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
   1136 			  struct ubifs_nnode *parent, int iip)
   1137 {
   1138 	int i;
   1139 
   1140 	if (c->big_lpt) {
   1141 		int num = calc_pnode_num_from_parent(c, parent, iip);
   1142 
   1143 		if (pnode->num != num)
   1144 			return -EINVAL;
   1145 	}
   1146 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1147 		int free = pnode->lprops[i].free;
   1148 		int dirty = pnode->lprops[i].dirty;
   1149 
   1150 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
   1151 		    (free & 7))
   1152 			return -EINVAL;
   1153 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
   1154 			return -EINVAL;
   1155 		if (dirty + free > c->leb_size)
   1156 			return -EINVAL;
   1157 	}
   1158 	return 0;
   1159 }
   1160 
   1161 /**
   1162  * set_pnode_lnum - set LEB numbers on a pnode.
   1163  * @c: UBIFS file-system description object
   1164  * @pnode: pnode to update
   1165  *
   1166  * This function calculates the LEB numbers for the LEB properties it contains
   1167  * based on the pnode number.
   1168  */
   1169 static void set_pnode_lnum(const struct ubifs_info *c,
   1170 			   struct ubifs_pnode *pnode)
   1171 {
   1172 	int i, lnum;
   1173 
   1174 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
   1175 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1176 		if (lnum >= c->leb_cnt)
   1177 			return;
   1178 		pnode->lprops[i].lnum = lnum++;
   1179 	}
   1180 }
   1181 
   1182 /**
   1183  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
   1184  * @c: UBIFS file-system description object
   1185  * @parent: parent nnode (or NULL for the root)
   1186  * @iip: index in parent
   1187  *
   1188  * This function returns %0 on success and a negative error code on failure.
   1189  */
   1190 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
   1191 {
   1192 	struct ubifs_nbranch *branch = NULL;
   1193 	struct ubifs_nnode *nnode = NULL;
   1194 	void *buf = c->lpt_nod_buf;
   1195 	int err, lnum, offs;
   1196 
   1197 	if (parent) {
   1198 		branch = &parent->nbranch[iip];
   1199 		lnum = branch->lnum;
   1200 		offs = branch->offs;
   1201 	} else {
   1202 		lnum = c->lpt_lnum;
   1203 		offs = c->lpt_offs;
   1204 	}
   1205 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
   1206 	if (!nnode) {
   1207 		err = -ENOMEM;
   1208 		goto out;
   1209 	}
   1210 	if (lnum == 0) {
   1211 		/*
   1212 		 * This nnode was not written which just means that the LEB
   1213 		 * properties in the subtree below it describe empty LEBs. We
   1214 		 * make the nnode as though we had read it, which in fact means
   1215 		 * doing almost nothing.
   1216 		 */
   1217 		if (c->big_lpt)
   1218 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
   1219 	} else {
   1220 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
   1221 		if (err)
   1222 			goto out;
   1223 		err = ubifs_unpack_nnode(c, buf, nnode);
   1224 		if (err)
   1225 			goto out;
   1226 	}
   1227 	err = validate_nnode(c, nnode, parent, iip);
   1228 	if (err)
   1229 		goto out;
   1230 	if (!c->big_lpt)
   1231 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
   1232 	if (parent) {
   1233 		branch->nnode = nnode;
   1234 		nnode->level = parent->level - 1;
   1235 	} else {
   1236 		c->nroot = nnode;
   1237 		nnode->level = c->lpt_hght;
   1238 	}
   1239 	nnode->parent = parent;
   1240 	nnode->iip = iip;
   1241 	return 0;
   1242 
   1243 out:
   1244 	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
   1245 	dump_stack();
   1246 	kfree(nnode);
   1247 	return err;
   1248 }
   1249 
   1250 /**
   1251  * read_pnode - read a pnode from flash and link it to the tree in memory.
   1252  * @c: UBIFS file-system description object
   1253  * @parent: parent nnode
   1254  * @iip: index in parent
   1255  *
   1256  * This function returns %0 on success and a negative error code on failure.
   1257  */
   1258 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
   1259 {
   1260 	struct ubifs_nbranch *branch;
   1261 	struct ubifs_pnode *pnode = NULL;
   1262 	void *buf = c->lpt_nod_buf;
   1263 	int err, lnum, offs;
   1264 
   1265 	branch = &parent->nbranch[iip];
   1266 	lnum = branch->lnum;
   1267 	offs = branch->offs;
   1268 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
   1269 	if (!pnode)
   1270 		return -ENOMEM;
   1271 
   1272 	if (lnum == 0) {
   1273 		/*
   1274 		 * This pnode was not written which just means that the LEB
   1275 		 * properties in it describe empty LEBs. We make the pnode as
   1276 		 * though we had read it.
   1277 		 */
   1278 		int i;
   1279 
   1280 		if (c->big_lpt)
   1281 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
   1282 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1283 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
   1284 
   1285 			lprops->free = c->leb_size;
   1286 			lprops->flags = ubifs_categorize_lprops(c, lprops);
   1287 		}
   1288 	} else {
   1289 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
   1290 		if (err)
   1291 			goto out;
   1292 		err = unpack_pnode(c, buf, pnode);
   1293 		if (err)
   1294 			goto out;
   1295 	}
   1296 	err = validate_pnode(c, pnode, parent, iip);
   1297 	if (err)
   1298 		goto out;
   1299 	if (!c->big_lpt)
   1300 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
   1301 	branch->pnode = pnode;
   1302 	pnode->parent = parent;
   1303 	pnode->iip = iip;
   1304 	set_pnode_lnum(c, pnode);
   1305 	c->pnodes_have += 1;
   1306 	return 0;
   1307 
   1308 out:
   1309 	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
   1310 	ubifs_dump_pnode(c, pnode, parent, iip);
   1311 	dump_stack();
   1312 	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
   1313 	kfree(pnode);
   1314 	return err;
   1315 }
   1316 
   1317 /**
   1318  * read_ltab - read LPT's own lprops table.
   1319  * @c: UBIFS file-system description object
   1320  *
   1321  * This function returns %0 on success and a negative error code on failure.
   1322  */
   1323 static int read_ltab(struct ubifs_info *c)
   1324 {
   1325 	int err;
   1326 	void *buf;
   1327 
   1328 	buf = vmalloc(c->ltab_sz);
   1329 	if (!buf)
   1330 		return -ENOMEM;
   1331 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
   1332 	if (err)
   1333 		goto out;
   1334 	err = unpack_ltab(c, buf);
   1335 out:
   1336 	vfree(buf);
   1337 	return err;
   1338 }
   1339 
   1340 #ifndef __UBOOT__
   1341 /**
   1342  * read_lsave - read LPT's save table.
   1343  * @c: UBIFS file-system description object
   1344  *
   1345  * This function returns %0 on success and a negative error code on failure.
   1346  */
   1347 static int read_lsave(struct ubifs_info *c)
   1348 {
   1349 	int err, i;
   1350 	void *buf;
   1351 
   1352 	buf = vmalloc(c->lsave_sz);
   1353 	if (!buf)
   1354 		return -ENOMEM;
   1355 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
   1356 			     c->lsave_sz, 1);
   1357 	if (err)
   1358 		goto out;
   1359 	err = unpack_lsave(c, buf);
   1360 	if (err)
   1361 		goto out;
   1362 	for (i = 0; i < c->lsave_cnt; i++) {
   1363 		int lnum = c->lsave[i];
   1364 		struct ubifs_lprops *lprops;
   1365 
   1366 		/*
   1367 		 * Due to automatic resizing, the values in the lsave table
   1368 		 * could be beyond the volume size - just ignore them.
   1369 		 */
   1370 		if (lnum >= c->leb_cnt)
   1371 			continue;
   1372 		lprops = ubifs_lpt_lookup(c, lnum);
   1373 		if (IS_ERR(lprops)) {
   1374 			err = PTR_ERR(lprops);
   1375 			goto out;
   1376 		}
   1377 	}
   1378 out:
   1379 	vfree(buf);
   1380 	return err;
   1381 }
   1382 #endif
   1383 
   1384 /**
   1385  * ubifs_get_nnode - get a nnode.
   1386  * @c: UBIFS file-system description object
   1387  * @parent: parent nnode (or NULL for the root)
   1388  * @iip: index in parent
   1389  *
   1390  * This function returns a pointer to the nnode on success or a negative error
   1391  * code on failure.
   1392  */
   1393 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
   1394 				    struct ubifs_nnode *parent, int iip)
   1395 {
   1396 	struct ubifs_nbranch *branch;
   1397 	struct ubifs_nnode *nnode;
   1398 	int err;
   1399 
   1400 	branch = &parent->nbranch[iip];
   1401 	nnode = branch->nnode;
   1402 	if (nnode)
   1403 		return nnode;
   1404 	err = ubifs_read_nnode(c, parent, iip);
   1405 	if (err)
   1406 		return ERR_PTR(err);
   1407 	return branch->nnode;
   1408 }
   1409 
   1410 /**
   1411  * ubifs_get_pnode - get a pnode.
   1412  * @c: UBIFS file-system description object
   1413  * @parent: parent nnode
   1414  * @iip: index in parent
   1415  *
   1416  * This function returns a pointer to the pnode on success or a negative error
   1417  * code on failure.
   1418  */
   1419 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
   1420 				    struct ubifs_nnode *parent, int iip)
   1421 {
   1422 	struct ubifs_nbranch *branch;
   1423 	struct ubifs_pnode *pnode;
   1424 	int err;
   1425 
   1426 	branch = &parent->nbranch[iip];
   1427 	pnode = branch->pnode;
   1428 	if (pnode)
   1429 		return pnode;
   1430 	err = read_pnode(c, parent, iip);
   1431 	if (err)
   1432 		return ERR_PTR(err);
   1433 	update_cats(c, branch->pnode);
   1434 	return branch->pnode;
   1435 }
   1436 
   1437 /**
   1438  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
   1439  * @c: UBIFS file-system description object
   1440  * @lnum: LEB number to lookup
   1441  *
   1442  * This function returns a pointer to the LEB properties on success or a
   1443  * negative error code on failure.
   1444  */
   1445 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
   1446 {
   1447 	int err, i, h, iip, shft;
   1448 	struct ubifs_nnode *nnode;
   1449 	struct ubifs_pnode *pnode;
   1450 
   1451 	if (!c->nroot) {
   1452 		err = ubifs_read_nnode(c, NULL, 0);
   1453 		if (err)
   1454 			return ERR_PTR(err);
   1455 	}
   1456 	nnode = c->nroot;
   1457 	i = lnum - c->main_first;
   1458 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
   1459 	for (h = 1; h < c->lpt_hght; h++) {
   1460 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1461 		shft -= UBIFS_LPT_FANOUT_SHIFT;
   1462 		nnode = ubifs_get_nnode(c, nnode, iip);
   1463 		if (IS_ERR(nnode))
   1464 			return ERR_CAST(nnode);
   1465 	}
   1466 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1467 	pnode = ubifs_get_pnode(c, nnode, iip);
   1468 	if (IS_ERR(pnode))
   1469 		return ERR_CAST(pnode);
   1470 	iip = (i & (UBIFS_LPT_FANOUT - 1));
   1471 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
   1472 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
   1473 	       pnode->lprops[iip].flags);
   1474 	return &pnode->lprops[iip];
   1475 }
   1476 
   1477 /**
   1478  * dirty_cow_nnode - ensure a nnode is not being committed.
   1479  * @c: UBIFS file-system description object
   1480  * @nnode: nnode to check
   1481  *
   1482  * Returns dirtied nnode on success or negative error code on failure.
   1483  */
   1484 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
   1485 					   struct ubifs_nnode *nnode)
   1486 {
   1487 	struct ubifs_nnode *n;
   1488 	int i;
   1489 
   1490 	if (!test_bit(COW_CNODE, &nnode->flags)) {
   1491 		/* nnode is not being committed */
   1492 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
   1493 			c->dirty_nn_cnt += 1;
   1494 			ubifs_add_nnode_dirt(c, nnode);
   1495 		}
   1496 		return nnode;
   1497 	}
   1498 
   1499 	/* nnode is being committed, so copy it */
   1500 	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
   1501 	if (unlikely(!n))
   1502 		return ERR_PTR(-ENOMEM);
   1503 
   1504 	memcpy(n, nnode, sizeof(struct ubifs_nnode));
   1505 	n->cnext = NULL;
   1506 	__set_bit(DIRTY_CNODE, &n->flags);
   1507 	__clear_bit(COW_CNODE, &n->flags);
   1508 
   1509 	/* The children now have new parent */
   1510 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1511 		struct ubifs_nbranch *branch = &n->nbranch[i];
   1512 
   1513 		if (branch->cnode)
   1514 			branch->cnode->parent = n;
   1515 	}
   1516 
   1517 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
   1518 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
   1519 
   1520 	c->dirty_nn_cnt += 1;
   1521 	ubifs_add_nnode_dirt(c, nnode);
   1522 	if (nnode->parent)
   1523 		nnode->parent->nbranch[n->iip].nnode = n;
   1524 	else
   1525 		c->nroot = n;
   1526 	return n;
   1527 }
   1528 
   1529 /**
   1530  * dirty_cow_pnode - ensure a pnode is not being committed.
   1531  * @c: UBIFS file-system description object
   1532  * @pnode: pnode to check
   1533  *
   1534  * Returns dirtied pnode on success or negative error code on failure.
   1535  */
   1536 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
   1537 					   struct ubifs_pnode *pnode)
   1538 {
   1539 	struct ubifs_pnode *p;
   1540 
   1541 	if (!test_bit(COW_CNODE, &pnode->flags)) {
   1542 		/* pnode is not being committed */
   1543 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
   1544 			c->dirty_pn_cnt += 1;
   1545 			add_pnode_dirt(c, pnode);
   1546 		}
   1547 		return pnode;
   1548 	}
   1549 
   1550 	/* pnode is being committed, so copy it */
   1551 	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
   1552 	if (unlikely(!p))
   1553 		return ERR_PTR(-ENOMEM);
   1554 
   1555 	memcpy(p, pnode, sizeof(struct ubifs_pnode));
   1556 	p->cnext = NULL;
   1557 	__set_bit(DIRTY_CNODE, &p->flags);
   1558 	__clear_bit(COW_CNODE, &p->flags);
   1559 	replace_cats(c, pnode, p);
   1560 
   1561 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
   1562 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
   1563 
   1564 	c->dirty_pn_cnt += 1;
   1565 	add_pnode_dirt(c, pnode);
   1566 	pnode->parent->nbranch[p->iip].pnode = p;
   1567 	return p;
   1568 }
   1569 
   1570 /**
   1571  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
   1572  * @c: UBIFS file-system description object
   1573  * @lnum: LEB number to lookup
   1574  *
   1575  * This function returns a pointer to the LEB properties on success or a
   1576  * negative error code on failure.
   1577  */
   1578 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
   1579 {
   1580 	int err, i, h, iip, shft;
   1581 	struct ubifs_nnode *nnode;
   1582 	struct ubifs_pnode *pnode;
   1583 
   1584 	if (!c->nroot) {
   1585 		err = ubifs_read_nnode(c, NULL, 0);
   1586 		if (err)
   1587 			return ERR_PTR(err);
   1588 	}
   1589 	nnode = c->nroot;
   1590 	nnode = dirty_cow_nnode(c, nnode);
   1591 	if (IS_ERR(nnode))
   1592 		return ERR_CAST(nnode);
   1593 	i = lnum - c->main_first;
   1594 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
   1595 	for (h = 1; h < c->lpt_hght; h++) {
   1596 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1597 		shft -= UBIFS_LPT_FANOUT_SHIFT;
   1598 		nnode = ubifs_get_nnode(c, nnode, iip);
   1599 		if (IS_ERR(nnode))
   1600 			return ERR_CAST(nnode);
   1601 		nnode = dirty_cow_nnode(c, nnode);
   1602 		if (IS_ERR(nnode))
   1603 			return ERR_CAST(nnode);
   1604 	}
   1605 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1606 	pnode = ubifs_get_pnode(c, nnode, iip);
   1607 	if (IS_ERR(pnode))
   1608 		return ERR_CAST(pnode);
   1609 	pnode = dirty_cow_pnode(c, pnode);
   1610 	if (IS_ERR(pnode))
   1611 		return ERR_CAST(pnode);
   1612 	iip = (i & (UBIFS_LPT_FANOUT - 1));
   1613 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
   1614 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
   1615 	       pnode->lprops[iip].flags);
   1616 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
   1617 	return &pnode->lprops[iip];
   1618 }
   1619 
   1620 /**
   1621  * lpt_init_rd - initialize the LPT for reading.
   1622  * @c: UBIFS file-system description object
   1623  *
   1624  * This function returns %0 on success and a negative error code on failure.
   1625  */
   1626 static int lpt_init_rd(struct ubifs_info *c)
   1627 {
   1628 	int err, i;
   1629 
   1630 	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
   1631 	if (!c->ltab)
   1632 		return -ENOMEM;
   1633 
   1634 	i = max_t(int, c->nnode_sz, c->pnode_sz);
   1635 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
   1636 	if (!c->lpt_nod_buf)
   1637 		return -ENOMEM;
   1638 
   1639 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
   1640 		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
   1641 					     GFP_KERNEL);
   1642 		if (!c->lpt_heap[i].arr)
   1643 			return -ENOMEM;
   1644 		c->lpt_heap[i].cnt = 0;
   1645 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
   1646 	}
   1647 
   1648 	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
   1649 	if (!c->dirty_idx.arr)
   1650 		return -ENOMEM;
   1651 	c->dirty_idx.cnt = 0;
   1652 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
   1653 
   1654 	err = read_ltab(c);
   1655 	if (err)
   1656 		return err;
   1657 
   1658 	dbg_lp("space_bits %d", c->space_bits);
   1659 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
   1660 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
   1661 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
   1662 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
   1663 	dbg_lp("lnum_bits %d", c->lnum_bits);
   1664 	dbg_lp("pnode_sz %d", c->pnode_sz);
   1665 	dbg_lp("nnode_sz %d", c->nnode_sz);
   1666 	dbg_lp("ltab_sz %d", c->ltab_sz);
   1667 	dbg_lp("lsave_sz %d", c->lsave_sz);
   1668 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
   1669 	dbg_lp("lpt_hght %d", c->lpt_hght);
   1670 	dbg_lp("big_lpt %d", c->big_lpt);
   1671 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
   1672 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
   1673 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
   1674 	if (c->big_lpt)
   1675 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
   1676 
   1677 	return 0;
   1678 }
   1679 
   1680 #ifndef __UBOOT__
   1681 /**
   1682  * lpt_init_wr - initialize the LPT for writing.
   1683  * @c: UBIFS file-system description object
   1684  *
   1685  * 'lpt_init_rd()' must have been called already.
   1686  *
   1687  * This function returns %0 on success and a negative error code on failure.
   1688  */
   1689 static int lpt_init_wr(struct ubifs_info *c)
   1690 {
   1691 	int err, i;
   1692 
   1693 	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
   1694 	if (!c->ltab_cmt)
   1695 		return -ENOMEM;
   1696 
   1697 	c->lpt_buf = vmalloc(c->leb_size);
   1698 	if (!c->lpt_buf)
   1699 		return -ENOMEM;
   1700 
   1701 	if (c->big_lpt) {
   1702 		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
   1703 		if (!c->lsave)
   1704 			return -ENOMEM;
   1705 		err = read_lsave(c);
   1706 		if (err)
   1707 			return err;
   1708 	}
   1709 
   1710 	for (i = 0; i < c->lpt_lebs; i++)
   1711 		if (c->ltab[i].free == c->leb_size) {
   1712 			err = ubifs_leb_unmap(c, i + c->lpt_first);
   1713 			if (err)
   1714 				return err;
   1715 		}
   1716 
   1717 	return 0;
   1718 }
   1719 #endif
   1720 
   1721 /**
   1722  * ubifs_lpt_init - initialize the LPT.
   1723  * @c: UBIFS file-system description object
   1724  * @rd: whether to initialize lpt for reading
   1725  * @wr: whether to initialize lpt for writing
   1726  *
   1727  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
   1728  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
   1729  * true.
   1730  *
   1731  * This function returns %0 on success and a negative error code on failure.
   1732  */
   1733 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
   1734 {
   1735 	int err;
   1736 
   1737 	if (rd) {
   1738 		err = lpt_init_rd(c);
   1739 		if (err)
   1740 			goto out_err;
   1741 	}
   1742 
   1743 #ifndef __UBOOT__
   1744 	if (wr) {
   1745 		err = lpt_init_wr(c);
   1746 		if (err)
   1747 			goto out_err;
   1748 	}
   1749 #endif
   1750 
   1751 	return 0;
   1752 
   1753 out_err:
   1754 #ifndef __UBOOT__
   1755 	if (wr)
   1756 		ubifs_lpt_free(c, 1);
   1757 #endif
   1758 	if (rd)
   1759 		ubifs_lpt_free(c, 0);
   1760 	return err;
   1761 }
   1762 
   1763 /**
   1764  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
   1765  * @nnode: where to keep a nnode
   1766  * @pnode: where to keep a pnode
   1767  * @cnode: where to keep a cnode
   1768  * @in_tree: is the node in the tree in memory
   1769  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
   1770  * the tree
   1771  * @ptr.pnode: ditto for pnode
   1772  * @ptr.cnode: ditto for cnode
   1773  */
   1774 struct lpt_scan_node {
   1775 	union {
   1776 		struct ubifs_nnode nnode;
   1777 		struct ubifs_pnode pnode;
   1778 		struct ubifs_cnode cnode;
   1779 	};
   1780 	int in_tree;
   1781 	union {
   1782 		struct ubifs_nnode *nnode;
   1783 		struct ubifs_pnode *pnode;
   1784 		struct ubifs_cnode *cnode;
   1785 	} ptr;
   1786 };
   1787 
   1788 /**
   1789  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
   1790  * @c: the UBIFS file-system description object
   1791  * @path: where to put the nnode
   1792  * @parent: parent of the nnode
   1793  * @iip: index in parent of the nnode
   1794  *
   1795  * This function returns a pointer to the nnode on success or a negative error
   1796  * code on failure.
   1797  */
   1798 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
   1799 					  struct lpt_scan_node *path,
   1800 					  struct ubifs_nnode *parent, int iip)
   1801 {
   1802 	struct ubifs_nbranch *branch;
   1803 	struct ubifs_nnode *nnode;
   1804 	void *buf = c->lpt_nod_buf;
   1805 	int err;
   1806 
   1807 	branch = &parent->nbranch[iip];
   1808 	nnode = branch->nnode;
   1809 	if (nnode) {
   1810 		path->in_tree = 1;
   1811 		path->ptr.nnode = nnode;
   1812 		return nnode;
   1813 	}
   1814 	nnode = &path->nnode;
   1815 	path->in_tree = 0;
   1816 	path->ptr.nnode = nnode;
   1817 	memset(nnode, 0, sizeof(struct ubifs_nnode));
   1818 	if (branch->lnum == 0) {
   1819 		/*
   1820 		 * This nnode was not written which just means that the LEB
   1821 		 * properties in the subtree below it describe empty LEBs. We
   1822 		 * make the nnode as though we had read it, which in fact means
   1823 		 * doing almost nothing.
   1824 		 */
   1825 		if (c->big_lpt)
   1826 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
   1827 	} else {
   1828 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
   1829 				     c->nnode_sz, 1);
   1830 		if (err)
   1831 			return ERR_PTR(err);
   1832 		err = ubifs_unpack_nnode(c, buf, nnode);
   1833 		if (err)
   1834 			return ERR_PTR(err);
   1835 	}
   1836 	err = validate_nnode(c, nnode, parent, iip);
   1837 	if (err)
   1838 		return ERR_PTR(err);
   1839 	if (!c->big_lpt)
   1840 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
   1841 	nnode->level = parent->level - 1;
   1842 	nnode->parent = parent;
   1843 	nnode->iip = iip;
   1844 	return nnode;
   1845 }
   1846 
   1847 /**
   1848  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
   1849  * @c: the UBIFS file-system description object
   1850  * @path: where to put the pnode
   1851  * @parent: parent of the pnode
   1852  * @iip: index in parent of the pnode
   1853  *
   1854  * This function returns a pointer to the pnode on success or a negative error
   1855  * code on failure.
   1856  */
   1857 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
   1858 					  struct lpt_scan_node *path,
   1859 					  struct ubifs_nnode *parent, int iip)
   1860 {
   1861 	struct ubifs_nbranch *branch;
   1862 	struct ubifs_pnode *pnode;
   1863 	void *buf = c->lpt_nod_buf;
   1864 	int err;
   1865 
   1866 	branch = &parent->nbranch[iip];
   1867 	pnode = branch->pnode;
   1868 	if (pnode) {
   1869 		path->in_tree = 1;
   1870 		path->ptr.pnode = pnode;
   1871 		return pnode;
   1872 	}
   1873 	pnode = &path->pnode;
   1874 	path->in_tree = 0;
   1875 	path->ptr.pnode = pnode;
   1876 	memset(pnode, 0, sizeof(struct ubifs_pnode));
   1877 	if (branch->lnum == 0) {
   1878 		/*
   1879 		 * This pnode was not written which just means that the LEB
   1880 		 * properties in it describe empty LEBs. We make the pnode as
   1881 		 * though we had read it.
   1882 		 */
   1883 		int i;
   1884 
   1885 		if (c->big_lpt)
   1886 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
   1887 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1888 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
   1889 
   1890 			lprops->free = c->leb_size;
   1891 			lprops->flags = ubifs_categorize_lprops(c, lprops);
   1892 		}
   1893 	} else {
   1894 		ubifs_assert(branch->lnum >= c->lpt_first &&
   1895 			     branch->lnum <= c->lpt_last);
   1896 		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
   1897 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
   1898 				     c->pnode_sz, 1);
   1899 		if (err)
   1900 			return ERR_PTR(err);
   1901 		err = unpack_pnode(c, buf, pnode);
   1902 		if (err)
   1903 			return ERR_PTR(err);
   1904 	}
   1905 	err = validate_pnode(c, pnode, parent, iip);
   1906 	if (err)
   1907 		return ERR_PTR(err);
   1908 	if (!c->big_lpt)
   1909 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
   1910 	pnode->parent = parent;
   1911 	pnode->iip = iip;
   1912 	set_pnode_lnum(c, pnode);
   1913 	return pnode;
   1914 }
   1915 
   1916 /**
   1917  * ubifs_lpt_scan_nolock - scan the LPT.
   1918  * @c: the UBIFS file-system description object
   1919  * @start_lnum: LEB number from which to start scanning
   1920  * @end_lnum: LEB number at which to stop scanning
   1921  * @scan_cb: callback function called for each lprops
   1922  * @data: data to be passed to the callback function
   1923  *
   1924  * This function returns %0 on success and a negative error code on failure.
   1925  */
   1926 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
   1927 			  ubifs_lpt_scan_callback scan_cb, void *data)
   1928 {
   1929 	int err = 0, i, h, iip, shft;
   1930 	struct ubifs_nnode *nnode;
   1931 	struct ubifs_pnode *pnode;
   1932 	struct lpt_scan_node *path;
   1933 
   1934 	if (start_lnum == -1) {
   1935 		start_lnum = end_lnum + 1;
   1936 		if (start_lnum >= c->leb_cnt)
   1937 			start_lnum = c->main_first;
   1938 	}
   1939 
   1940 	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
   1941 	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
   1942 
   1943 	if (!c->nroot) {
   1944 		err = ubifs_read_nnode(c, NULL, 0);
   1945 		if (err)
   1946 			return err;
   1947 	}
   1948 
   1949 	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
   1950 		       GFP_NOFS);
   1951 	if (!path)
   1952 		return -ENOMEM;
   1953 
   1954 	path[0].ptr.nnode = c->nroot;
   1955 	path[0].in_tree = 1;
   1956 again:
   1957 	/* Descend to the pnode containing start_lnum */
   1958 	nnode = c->nroot;
   1959 	i = start_lnum - c->main_first;
   1960 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
   1961 	for (h = 1; h < c->lpt_hght; h++) {
   1962 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1963 		shft -= UBIFS_LPT_FANOUT_SHIFT;
   1964 		nnode = scan_get_nnode(c, path + h, nnode, iip);
   1965 		if (IS_ERR(nnode)) {
   1966 			err = PTR_ERR(nnode);
   1967 			goto out;
   1968 		}
   1969 	}
   1970 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1971 	pnode = scan_get_pnode(c, path + h, nnode, iip);
   1972 	if (IS_ERR(pnode)) {
   1973 		err = PTR_ERR(pnode);
   1974 		goto out;
   1975 	}
   1976 	iip = (i & (UBIFS_LPT_FANOUT - 1));
   1977 
   1978 	/* Loop for each lprops */
   1979 	while (1) {
   1980 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
   1981 		int ret, lnum = lprops->lnum;
   1982 
   1983 		ret = scan_cb(c, lprops, path[h].in_tree, data);
   1984 		if (ret < 0) {
   1985 			err = ret;
   1986 			goto out;
   1987 		}
   1988 		if (ret & LPT_SCAN_ADD) {
   1989 			/* Add all the nodes in path to the tree in memory */
   1990 			for (h = 1; h < c->lpt_hght; h++) {
   1991 				const size_t sz = sizeof(struct ubifs_nnode);
   1992 				struct ubifs_nnode *parent;
   1993 
   1994 				if (path[h].in_tree)
   1995 					continue;
   1996 				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
   1997 				if (!nnode) {
   1998 					err = -ENOMEM;
   1999 					goto out;
   2000 				}
   2001 				parent = nnode->parent;
   2002 				parent->nbranch[nnode->iip].nnode = nnode;
   2003 				path[h].ptr.nnode = nnode;
   2004 				path[h].in_tree = 1;
   2005 				path[h + 1].cnode.parent = nnode;
   2006 			}
   2007 			if (path[h].in_tree)
   2008 				ubifs_ensure_cat(c, lprops);
   2009 			else {
   2010 				const size_t sz = sizeof(struct ubifs_pnode);
   2011 				struct ubifs_nnode *parent;
   2012 
   2013 				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
   2014 				if (!pnode) {
   2015 					err = -ENOMEM;
   2016 					goto out;
   2017 				}
   2018 				parent = pnode->parent;
   2019 				parent->nbranch[pnode->iip].pnode = pnode;
   2020 				path[h].ptr.pnode = pnode;
   2021 				path[h].in_tree = 1;
   2022 				update_cats(c, pnode);
   2023 				c->pnodes_have += 1;
   2024 			}
   2025 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
   2026 						  c->nroot, 0, 0);
   2027 			if (err)
   2028 				goto out;
   2029 			err = dbg_check_cats(c);
   2030 			if (err)
   2031 				goto out;
   2032 		}
   2033 		if (ret & LPT_SCAN_STOP) {
   2034 			err = 0;
   2035 			break;
   2036 		}
   2037 		/* Get the next lprops */
   2038 		if (lnum == end_lnum) {
   2039 			/*
   2040 			 * We got to the end without finding what we were
   2041 			 * looking for
   2042 			 */
   2043 			err = -ENOSPC;
   2044 			goto out;
   2045 		}
   2046 		if (lnum + 1 >= c->leb_cnt) {
   2047 			/* Wrap-around to the beginning */
   2048 			start_lnum = c->main_first;
   2049 			goto again;
   2050 		}
   2051 		if (iip + 1 < UBIFS_LPT_FANOUT) {
   2052 			/* Next lprops is in the same pnode */
   2053 			iip += 1;
   2054 			continue;
   2055 		}
   2056 		/* We need to get the next pnode. Go up until we can go right */
   2057 		iip = pnode->iip;
   2058 		while (1) {
   2059 			h -= 1;
   2060 			ubifs_assert(h >= 0);
   2061 			nnode = path[h].ptr.nnode;
   2062 			if (iip + 1 < UBIFS_LPT_FANOUT)
   2063 				break;
   2064 			iip = nnode->iip;
   2065 		}
   2066 		/* Go right */
   2067 		iip += 1;
   2068 		/* Descend to the pnode */
   2069 		h += 1;
   2070 		for (; h < c->lpt_hght; h++) {
   2071 			nnode = scan_get_nnode(c, path + h, nnode, iip);
   2072 			if (IS_ERR(nnode)) {
   2073 				err = PTR_ERR(nnode);
   2074 				goto out;
   2075 			}
   2076 			iip = 0;
   2077 		}
   2078 		pnode = scan_get_pnode(c, path + h, nnode, iip);
   2079 		if (IS_ERR(pnode)) {
   2080 			err = PTR_ERR(pnode);
   2081 			goto out;
   2082 		}
   2083 		iip = 0;
   2084 	}
   2085 out:
   2086 	kfree(path);
   2087 	return err;
   2088 }
   2089 
   2090 /**
   2091  * dbg_chk_pnode - check a pnode.
   2092  * @c: the UBIFS file-system description object
   2093  * @pnode: pnode to check
   2094  * @col: pnode column
   2095  *
   2096  * This function returns %0 on success and a negative error code on failure.
   2097  */
   2098 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
   2099 			 int col)
   2100 {
   2101 	int i;
   2102 
   2103 	if (pnode->num != col) {
   2104 		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
   2105 			  pnode->num, col, pnode->parent->num, pnode->iip);
   2106 		return -EINVAL;
   2107 	}
   2108 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   2109 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
   2110 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
   2111 			   c->main_first;
   2112 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
   2113 		struct ubifs_lpt_heap *heap;
   2114 		struct list_head *list = NULL;
   2115 
   2116 		if (lnum >= c->leb_cnt)
   2117 			continue;
   2118 		if (lprops->lnum != lnum) {
   2119 			ubifs_err(c, "bad LEB number %d expected %d",
   2120 				  lprops->lnum, lnum);
   2121 			return -EINVAL;
   2122 		}
   2123 		if (lprops->flags & LPROPS_TAKEN) {
   2124 			if (cat != LPROPS_UNCAT) {
   2125 				ubifs_err(c, "LEB %d taken but not uncat %d",
   2126 					  lprops->lnum, cat);
   2127 				return -EINVAL;
   2128 			}
   2129 			continue;
   2130 		}
   2131 		if (lprops->flags & LPROPS_INDEX) {
   2132 			switch (cat) {
   2133 			case LPROPS_UNCAT:
   2134 			case LPROPS_DIRTY_IDX:
   2135 			case LPROPS_FRDI_IDX:
   2136 				break;
   2137 			default:
   2138 				ubifs_err(c, "LEB %d index but cat %d",
   2139 					  lprops->lnum, cat);
   2140 				return -EINVAL;
   2141 			}
   2142 		} else {
   2143 			switch (cat) {
   2144 			case LPROPS_UNCAT:
   2145 			case LPROPS_DIRTY:
   2146 			case LPROPS_FREE:
   2147 			case LPROPS_EMPTY:
   2148 			case LPROPS_FREEABLE:
   2149 				break;
   2150 			default:
   2151 				ubifs_err(c, "LEB %d not index but cat %d",
   2152 					  lprops->lnum, cat);
   2153 				return -EINVAL;
   2154 			}
   2155 		}
   2156 		switch (cat) {
   2157 		case LPROPS_UNCAT:
   2158 			list = &c->uncat_list;
   2159 			break;
   2160 		case LPROPS_EMPTY:
   2161 			list = &c->empty_list;
   2162 			break;
   2163 		case LPROPS_FREEABLE:
   2164 			list = &c->freeable_list;
   2165 			break;
   2166 		case LPROPS_FRDI_IDX:
   2167 			list = &c->frdi_idx_list;
   2168 			break;
   2169 		}
   2170 		found = 0;
   2171 		switch (cat) {
   2172 		case LPROPS_DIRTY:
   2173 		case LPROPS_DIRTY_IDX:
   2174 		case LPROPS_FREE:
   2175 			heap = &c->lpt_heap[cat - 1];
   2176 			if (lprops->hpos < heap->cnt &&
   2177 			    heap->arr[lprops->hpos] == lprops)
   2178 				found = 1;
   2179 			break;
   2180 		case LPROPS_UNCAT:
   2181 		case LPROPS_EMPTY:
   2182 		case LPROPS_FREEABLE:
   2183 		case LPROPS_FRDI_IDX:
   2184 			list_for_each_entry(lp, list, list)
   2185 				if (lprops == lp) {
   2186 					found = 1;
   2187 					break;
   2188 				}
   2189 			break;
   2190 		}
   2191 		if (!found) {
   2192 			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
   2193 				  lprops->lnum, cat);
   2194 			return -EINVAL;
   2195 		}
   2196 		switch (cat) {
   2197 		case LPROPS_EMPTY:
   2198 			if (lprops->free != c->leb_size) {
   2199 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
   2200 					  lprops->lnum, cat, lprops->free,
   2201 					  lprops->dirty);
   2202 				return -EINVAL;
   2203 			}
   2204 			break;
   2205 		case LPROPS_FREEABLE:
   2206 		case LPROPS_FRDI_IDX:
   2207 			if (lprops->free + lprops->dirty != c->leb_size) {
   2208 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
   2209 					  lprops->lnum, cat, lprops->free,
   2210 					  lprops->dirty);
   2211 				return -EINVAL;
   2212 			}
   2213 			break;
   2214 		}
   2215 	}
   2216 	return 0;
   2217 }
   2218 
   2219 /**
   2220  * dbg_check_lpt_nodes - check nnodes and pnodes.
   2221  * @c: the UBIFS file-system description object
   2222  * @cnode: next cnode (nnode or pnode) to check
   2223  * @row: row of cnode (root is zero)
   2224  * @col: column of cnode (leftmost is zero)
   2225  *
   2226  * This function returns %0 on success and a negative error code on failure.
   2227  */
   2228 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
   2229 			int row, int col)
   2230 {
   2231 	struct ubifs_nnode *nnode, *nn;
   2232 	struct ubifs_cnode *cn;
   2233 	int num, iip = 0, err;
   2234 
   2235 	if (!dbg_is_chk_lprops(c))
   2236 		return 0;
   2237 
   2238 	while (cnode) {
   2239 		ubifs_assert(row >= 0);
   2240 		nnode = cnode->parent;
   2241 		if (cnode->level) {
   2242 			/* cnode is a nnode */
   2243 			num = calc_nnode_num(row, col);
   2244 			if (cnode->num != num) {
   2245 				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
   2246 					  cnode->num, num,
   2247 					  (nnode ? nnode->num : 0), cnode->iip);
   2248 				return -EINVAL;
   2249 			}
   2250 			nn = (struct ubifs_nnode *)cnode;
   2251 			while (iip < UBIFS_LPT_FANOUT) {
   2252 				cn = nn->nbranch[iip].cnode;
   2253 				if (cn) {
   2254 					/* Go down */
   2255 					row += 1;
   2256 					col <<= UBIFS_LPT_FANOUT_SHIFT;
   2257 					col += iip;
   2258 					iip = 0;
   2259 					cnode = cn;
   2260 					break;
   2261 				}
   2262 				/* Go right */
   2263 				iip += 1;
   2264 			}
   2265 			if (iip < UBIFS_LPT_FANOUT)
   2266 				continue;
   2267 		} else {
   2268 			struct ubifs_pnode *pnode;
   2269 
   2270 			/* cnode is a pnode */
   2271 			pnode = (struct ubifs_pnode *)cnode;
   2272 			err = dbg_chk_pnode(c, pnode, col);
   2273 			if (err)
   2274 				return err;
   2275 		}
   2276 		/* Go up and to the right */
   2277 		row -= 1;
   2278 		col >>= UBIFS_LPT_FANOUT_SHIFT;
   2279 		iip = cnode->iip + 1;
   2280 		cnode = (struct ubifs_cnode *)nnode;
   2281 	}
   2282 	return 0;
   2283 }
   2284