Home | History | Annotate | Download | only in ubifs
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * This file is part of UBIFS.
      4  *
      5  * Copyright (C) 2006-2008 Nokia Corporation
      6  *
      7  * Authors: Adrian Hunter
      8  *          Artem Bityutskiy ( )
      9  */
     10 
     11 /*
     12  * This file implements functions needed to recover from unclean un-mounts.
     13  * When UBIFS is mounted, it checks a flag on the master node to determine if
     14  * an un-mount was completed successfully. If not, the process of mounting
     15  * incorporates additional checking and fixing of on-flash data structures.
     16  * UBIFS always cleans away all remnants of an unclean un-mount, so that
     17  * errors do not accumulate. However UBIFS defers recovery if it is mounted
     18  * read-only, and the flash is not modified in that case.
     19  *
     20  * The general UBIFS approach to the recovery is that it recovers from
     21  * corruptions which could be caused by power cuts, but it refuses to recover
     22  * from corruption caused by other reasons. And UBIFS tries to distinguish
     23  * between these 2 reasons of corruptions and silently recover in the former
     24  * case and loudly complain in the latter case.
     25  *
     26  * UBIFS writes only to erased LEBs, so it writes only to the flash space
     27  * containing only 0xFFs. UBIFS also always writes strictly from the beginning
     28  * of the LEB to the end. And UBIFS assumes that the underlying flash media
     29  * writes in @c->max_write_size bytes at a time.
     30  *
     31  * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
     32  * I/O unit corresponding to offset X to contain corrupted data, all the
     33  * following min. I/O units have to contain empty space (all 0xFFs). If this is
     34  * not true, the corruption cannot be the result of a power cut, and UBIFS
     35  * refuses to mount.
     36  */
     37 
     38 #ifndef __UBOOT__
     39 #include <linux/crc32.h>
     40 #include <linux/slab.h>
     41 #else
     42 #include <linux/err.h>
     43 #endif
     44 #include "ubifs.h"
     45 
     46 /**
     47  * is_empty - determine whether a buffer is empty (contains all 0xff).
     48  * @buf: buffer to clean
     49  * @len: length of buffer
     50  *
     51  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
     52  * %0 is returned.
     53  */
     54 static int is_empty(void *buf, int len)
     55 {
     56 	uint8_t *p = buf;
     57 	int i;
     58 
     59 	for (i = 0; i < len; i++)
     60 		if (*p++ != 0xff)
     61 			return 0;
     62 	return 1;
     63 }
     64 
     65 /**
     66  * first_non_ff - find offset of the first non-0xff byte.
     67  * @buf: buffer to search in
     68  * @len: length of buffer
     69  *
     70  * This function returns offset of the first non-0xff byte in @buf or %-1 if
     71  * the buffer contains only 0xff bytes.
     72  */
     73 static int first_non_ff(void *buf, int len)
     74 {
     75 	uint8_t *p = buf;
     76 	int i;
     77 
     78 	for (i = 0; i < len; i++)
     79 		if (*p++ != 0xff)
     80 			return i;
     81 	return -1;
     82 }
     83 
     84 /**
     85  * get_master_node - get the last valid master node allowing for corruption.
     86  * @c: UBIFS file-system description object
     87  * @lnum: LEB number
     88  * @pbuf: buffer containing the LEB read, is returned here
     89  * @mst: master node, if found, is returned here
     90  * @cor: corruption, if found, is returned here
     91  *
     92  * This function allocates a buffer, reads the LEB into it, and finds and
     93  * returns the last valid master node allowing for one area of corruption.
     94  * The corrupt area, if there is one, must be consistent with the assumption
     95  * that it is the result of an unclean unmount while the master node was being
     96  * written. Under those circumstances, it is valid to use the previously written
     97  * master node.
     98  *
     99  * This function returns %0 on success and a negative error code on failure.
    100  */
    101 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
    102 			   struct ubifs_mst_node **mst, void **cor)
    103 {
    104 	const int sz = c->mst_node_alsz;
    105 	int err, offs, len;
    106 	void *sbuf, *buf;
    107 
    108 	sbuf = vmalloc(c->leb_size);
    109 	if (!sbuf)
    110 		return -ENOMEM;
    111 
    112 	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
    113 	if (err && err != -EBADMSG)
    114 		goto out_free;
    115 
    116 	/* Find the first position that is definitely not a node */
    117 	offs = 0;
    118 	buf = sbuf;
    119 	len = c->leb_size;
    120 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
    121 		struct ubifs_ch *ch = buf;
    122 
    123 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
    124 			break;
    125 		offs += sz;
    126 		buf  += sz;
    127 		len  -= sz;
    128 	}
    129 	/* See if there was a valid master node before that */
    130 	if (offs) {
    131 		int ret;
    132 
    133 		offs -= sz;
    134 		buf  -= sz;
    135 		len  += sz;
    136 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
    137 		if (ret != SCANNED_A_NODE && offs) {
    138 			/* Could have been corruption so check one place back */
    139 			offs -= sz;
    140 			buf  -= sz;
    141 			len  += sz;
    142 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
    143 			if (ret != SCANNED_A_NODE)
    144 				/*
    145 				 * We accept only one area of corruption because
    146 				 * we are assuming that it was caused while
    147 				 * trying to write a master node.
    148 				 */
    149 				goto out_err;
    150 		}
    151 		if (ret == SCANNED_A_NODE) {
    152 			struct ubifs_ch *ch = buf;
    153 
    154 			if (ch->node_type != UBIFS_MST_NODE)
    155 				goto out_err;
    156 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
    157 			*mst = buf;
    158 			offs += sz;
    159 			buf  += sz;
    160 			len  -= sz;
    161 		}
    162 	}
    163 	/* Check for corruption */
    164 	if (offs < c->leb_size) {
    165 		if (!is_empty(buf, min_t(int, len, sz))) {
    166 			*cor = buf;
    167 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
    168 		}
    169 		offs += sz;
    170 		buf  += sz;
    171 		len  -= sz;
    172 	}
    173 	/* Check remaining empty space */
    174 	if (offs < c->leb_size)
    175 		if (!is_empty(buf, len))
    176 			goto out_err;
    177 	*pbuf = sbuf;
    178 	return 0;
    179 
    180 out_err:
    181 	err = -EINVAL;
    182 out_free:
    183 	vfree(sbuf);
    184 	*mst = NULL;
    185 	*cor = NULL;
    186 	return err;
    187 }
    188 
    189 /**
    190  * write_rcvrd_mst_node - write recovered master node.
    191  * @c: UBIFS file-system description object
    192  * @mst: master node
    193  *
    194  * This function returns %0 on success and a negative error code on failure.
    195  */
    196 static int write_rcvrd_mst_node(struct ubifs_info *c,
    197 				struct ubifs_mst_node *mst)
    198 {
    199 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
    200 	__le32 save_flags;
    201 
    202 	dbg_rcvry("recovery");
    203 
    204 	save_flags = mst->flags;
    205 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
    206 
    207 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
    208 	err = ubifs_leb_change(c, lnum, mst, sz);
    209 	if (err)
    210 		goto out;
    211 	err = ubifs_leb_change(c, lnum + 1, mst, sz);
    212 	if (err)
    213 		goto out;
    214 out:
    215 	mst->flags = save_flags;
    216 	return err;
    217 }
    218 
    219 /**
    220  * ubifs_recover_master_node - recover the master node.
    221  * @c: UBIFS file-system description object
    222  *
    223  * This function recovers the master node from corruption that may occur due to
    224  * an unclean unmount.
    225  *
    226  * This function returns %0 on success and a negative error code on failure.
    227  */
    228 int ubifs_recover_master_node(struct ubifs_info *c)
    229 {
    230 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
    231 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
    232 	const int sz = c->mst_node_alsz;
    233 	int err, offs1, offs2;
    234 
    235 	dbg_rcvry("recovery");
    236 
    237 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
    238 	if (err)
    239 		goto out_free;
    240 
    241 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
    242 	if (err)
    243 		goto out_free;
    244 
    245 	if (mst1) {
    246 		offs1 = (void *)mst1 - buf1;
    247 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
    248 		    (offs1 == 0 && !cor1)) {
    249 			/*
    250 			 * mst1 was written by recovery at offset 0 with no
    251 			 * corruption.
    252 			 */
    253 			dbg_rcvry("recovery recovery");
    254 			mst = mst1;
    255 		} else if (mst2) {
    256 			offs2 = (void *)mst2 - buf2;
    257 			if (offs1 == offs2) {
    258 				/* Same offset, so must be the same */
    259 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
    260 					   (void *)mst2 + UBIFS_CH_SZ,
    261 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
    262 					goto out_err;
    263 				mst = mst1;
    264 			} else if (offs2 + sz == offs1) {
    265 				/* 1st LEB was written, 2nd was not */
    266 				if (cor1)
    267 					goto out_err;
    268 				mst = mst1;
    269 			} else if (offs1 == 0 &&
    270 				   c->leb_size - offs2 - sz < sz) {
    271 				/* 1st LEB was unmapped and written, 2nd not */
    272 				if (cor1)
    273 					goto out_err;
    274 				mst = mst1;
    275 			} else
    276 				goto out_err;
    277 		} else {
    278 			/*
    279 			 * 2nd LEB was unmapped and about to be written, so
    280 			 * there must be only one master node in the first LEB
    281 			 * and no corruption.
    282 			 */
    283 			if (offs1 != 0 || cor1)
    284 				goto out_err;
    285 			mst = mst1;
    286 		}
    287 	} else {
    288 		if (!mst2)
    289 			goto out_err;
    290 		/*
    291 		 * 1st LEB was unmapped and about to be written, so there must
    292 		 * be no room left in 2nd LEB.
    293 		 */
    294 		offs2 = (void *)mst2 - buf2;
    295 		if (offs2 + sz + sz <= c->leb_size)
    296 			goto out_err;
    297 		mst = mst2;
    298 	}
    299 
    300 	ubifs_msg(c, "recovered master node from LEB %d",
    301 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
    302 
    303 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
    304 
    305 	if (c->ro_mount) {
    306 		/* Read-only mode. Keep a copy for switching to rw mode */
    307 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
    308 		if (!c->rcvrd_mst_node) {
    309 			err = -ENOMEM;
    310 			goto out_free;
    311 		}
    312 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
    313 
    314 		/*
    315 		 * We had to recover the master node, which means there was an
    316 		 * unclean reboot. However, it is possible that the master node
    317 		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
    318 		 * E.g., consider the following chain of events:
    319 		 *
    320 		 * 1. UBIFS was cleanly unmounted, so the master node is clean
    321 		 * 2. UBIFS is being mounted R/W and starts changing the master
    322 		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
    323 		 *    so this LEB ends up with some amount of garbage at the
    324 		 *    end.
    325 		 * 3. UBIFS is being mounted R/O. We reach this place and
    326 		 *    recover the master node from the second LEB
    327 		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
    328 		 *    because we are being mounted R/O. We have to defer the
    329 		 *    operation.
    330 		 * 4. However, this master node (@c->mst_node) is marked as
    331 		 *    clean (since the step 1). And if we just return, the
    332 		 *    mount code will be confused and won't recover the master
    333 		 *    node when it is re-mounter R/W later.
    334 		 *
    335 		 *    Thus, to force the recovery by marking the master node as
    336 		 *    dirty.
    337 		 */
    338 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
    339 #ifndef __UBOOT__
    340 	} else {
    341 		/* Write the recovered master node */
    342 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
    343 		err = write_rcvrd_mst_node(c, c->mst_node);
    344 		if (err)
    345 			goto out_free;
    346 #endif
    347 	}
    348 
    349 	vfree(buf2);
    350 	vfree(buf1);
    351 
    352 	return 0;
    353 
    354 out_err:
    355 	err = -EINVAL;
    356 out_free:
    357 	ubifs_err(c, "failed to recover master node");
    358 	if (mst1) {
    359 		ubifs_err(c, "dumping first master node");
    360 		ubifs_dump_node(c, mst1);
    361 	}
    362 	if (mst2) {
    363 		ubifs_err(c, "dumping second master node");
    364 		ubifs_dump_node(c, mst2);
    365 	}
    366 	vfree(buf2);
    367 	vfree(buf1);
    368 	return err;
    369 }
    370 
    371 /**
    372  * ubifs_write_rcvrd_mst_node - write the recovered master node.
    373  * @c: UBIFS file-system description object
    374  *
    375  * This function writes the master node that was recovered during mounting in
    376  * read-only mode and must now be written because we are remounting rw.
    377  *
    378  * This function returns %0 on success and a negative error code on failure.
    379  */
    380 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
    381 {
    382 	int err;
    383 
    384 	if (!c->rcvrd_mst_node)
    385 		return 0;
    386 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
    387 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
    388 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
    389 	if (err)
    390 		return err;
    391 	kfree(c->rcvrd_mst_node);
    392 	c->rcvrd_mst_node = NULL;
    393 	return 0;
    394 }
    395 
    396 /**
    397  * is_last_write - determine if an offset was in the last write to a LEB.
    398  * @c: UBIFS file-system description object
    399  * @buf: buffer to check
    400  * @offs: offset to check
    401  *
    402  * This function returns %1 if @offs was in the last write to the LEB whose data
    403  * is in @buf, otherwise %0 is returned. The determination is made by checking
    404  * for subsequent empty space starting from the next @c->max_write_size
    405  * boundary.
    406  */
    407 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
    408 {
    409 	int empty_offs, check_len;
    410 	uint8_t *p;
    411 
    412 	/*
    413 	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
    414 	 * the last wbuf written. After that should be empty space.
    415 	 */
    416 	empty_offs = ALIGN(offs + 1, c->max_write_size);
    417 	check_len = c->leb_size - empty_offs;
    418 	p = buf + empty_offs - offs;
    419 	return is_empty(p, check_len);
    420 }
    421 
    422 /**
    423  * clean_buf - clean the data from an LEB sitting in a buffer.
    424  * @c: UBIFS file-system description object
    425  * @buf: buffer to clean
    426  * @lnum: LEB number to clean
    427  * @offs: offset from which to clean
    428  * @len: length of buffer
    429  *
    430  * This function pads up to the next min_io_size boundary (if there is one) and
    431  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
    432  * @c->min_io_size boundary.
    433  */
    434 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
    435 		      int *offs, int *len)
    436 {
    437 	int empty_offs, pad_len;
    438 
    439 	lnum = lnum;
    440 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
    441 
    442 	ubifs_assert(!(*offs & 7));
    443 	empty_offs = ALIGN(*offs, c->min_io_size);
    444 	pad_len = empty_offs - *offs;
    445 	ubifs_pad(c, *buf, pad_len);
    446 	*offs += pad_len;
    447 	*buf += pad_len;
    448 	*len -= pad_len;
    449 	memset(*buf, 0xff, c->leb_size - empty_offs);
    450 }
    451 
    452 /**
    453  * no_more_nodes - determine if there are no more nodes in a buffer.
    454  * @c: UBIFS file-system description object
    455  * @buf: buffer to check
    456  * @len: length of buffer
    457  * @lnum: LEB number of the LEB from which @buf was read
    458  * @offs: offset from which @buf was read
    459  *
    460  * This function ensures that the corrupted node at @offs is the last thing
    461  * written to a LEB. This function returns %1 if more data is not found and
    462  * %0 if more data is found.
    463  */
    464 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
    465 			int lnum, int offs)
    466 {
    467 	struct ubifs_ch *ch = buf;
    468 	int skip, dlen = le32_to_cpu(ch->len);
    469 
    470 	/* Check for empty space after the corrupt node's common header */
    471 	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
    472 	if (is_empty(buf + skip, len - skip))
    473 		return 1;
    474 	/*
    475 	 * The area after the common header size is not empty, so the common
    476 	 * header must be intact. Check it.
    477 	 */
    478 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
    479 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
    480 		return 0;
    481 	}
    482 	/* Now we know the corrupt node's length we can skip over it */
    483 	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
    484 	/* After which there should be empty space */
    485 	if (is_empty(buf + skip, len - skip))
    486 		return 1;
    487 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
    488 	return 0;
    489 }
    490 
    491 /**
    492  * fix_unclean_leb - fix an unclean LEB.
    493  * @c: UBIFS file-system description object
    494  * @sleb: scanned LEB information
    495  * @start: offset where scan started
    496  */
    497 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
    498 			   int start)
    499 {
    500 	int lnum = sleb->lnum, endpt = start;
    501 
    502 	/* Get the end offset of the last node we are keeping */
    503 	if (!list_empty(&sleb->nodes)) {
    504 		struct ubifs_scan_node *snod;
    505 
    506 		snod = list_entry(sleb->nodes.prev,
    507 				  struct ubifs_scan_node, list);
    508 		endpt = snod->offs + snod->len;
    509 	}
    510 
    511 	if (c->ro_mount && !c->remounting_rw) {
    512 		/* Add to recovery list */
    513 		struct ubifs_unclean_leb *ucleb;
    514 
    515 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
    516 			  lnum, start, sleb->endpt);
    517 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
    518 		if (!ucleb)
    519 			return -ENOMEM;
    520 		ucleb->lnum = lnum;
    521 		ucleb->endpt = endpt;
    522 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
    523 #ifndef __UBOOT__
    524 	} else {
    525 		/* Write the fixed LEB back to flash */
    526 		int err;
    527 
    528 		dbg_rcvry("fixing LEB %d start %d endpt %d",
    529 			  lnum, start, sleb->endpt);
    530 		if (endpt == 0) {
    531 			err = ubifs_leb_unmap(c, lnum);
    532 			if (err)
    533 				return err;
    534 		} else {
    535 			int len = ALIGN(endpt, c->min_io_size);
    536 
    537 			if (start) {
    538 				err = ubifs_leb_read(c, lnum, sleb->buf, 0,
    539 						     start, 1);
    540 				if (err)
    541 					return err;
    542 			}
    543 			/* Pad to min_io_size */
    544 			if (len > endpt) {
    545 				int pad_len = len - ALIGN(endpt, 8);
    546 
    547 				if (pad_len > 0) {
    548 					void *buf = sleb->buf + len - pad_len;
    549 
    550 					ubifs_pad(c, buf, pad_len);
    551 				}
    552 			}
    553 			err = ubifs_leb_change(c, lnum, sleb->buf, len);
    554 			if (err)
    555 				return err;
    556 		}
    557 #endif
    558 	}
    559 	return 0;
    560 }
    561 
    562 /**
    563  * drop_last_group - drop the last group of nodes.
    564  * @sleb: scanned LEB information
    565  * @offs: offset of dropped nodes is returned here
    566  *
    567  * This is a helper function for 'ubifs_recover_leb()' which drops the last
    568  * group of nodes of the scanned LEB.
    569  */
    570 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
    571 {
    572 	while (!list_empty(&sleb->nodes)) {
    573 		struct ubifs_scan_node *snod;
    574 		struct ubifs_ch *ch;
    575 
    576 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
    577 				  list);
    578 		ch = snod->node;
    579 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
    580 			break;
    581 
    582 		dbg_rcvry("dropping grouped node at %d:%d",
    583 			  sleb->lnum, snod->offs);
    584 		*offs = snod->offs;
    585 		list_del(&snod->list);
    586 		kfree(snod);
    587 		sleb->nodes_cnt -= 1;
    588 	}
    589 }
    590 
    591 /**
    592  * drop_last_node - drop the last node.
    593  * @sleb: scanned LEB information
    594  * @offs: offset of dropped nodes is returned here
    595  *
    596  * This is a helper function for 'ubifs_recover_leb()' which drops the last
    597  * node of the scanned LEB.
    598  */
    599 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
    600 {
    601 	struct ubifs_scan_node *snod;
    602 
    603 	if (!list_empty(&sleb->nodes)) {
    604 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
    605 				  list);
    606 
    607 		dbg_rcvry("dropping last node at %d:%d",
    608 			  sleb->lnum, snod->offs);
    609 		*offs = snod->offs;
    610 		list_del(&snod->list);
    611 		kfree(snod);
    612 		sleb->nodes_cnt -= 1;
    613 	}
    614 }
    615 
    616 /**
    617  * ubifs_recover_leb - scan and recover a LEB.
    618  * @c: UBIFS file-system description object
    619  * @lnum: LEB number
    620  * @offs: offset
    621  * @sbuf: LEB-sized buffer to use
    622  * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
    623  *         belong to any journal head)
    624  *
    625  * This function does a scan of a LEB, but caters for errors that might have
    626  * been caused by the unclean unmount from which we are attempting to recover.
    627  * Returns the scanned information on success and a negative error code on
    628  * failure.
    629  */
    630 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
    631 					 int offs, void *sbuf, int jhead)
    632 {
    633 	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
    634 	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
    635 	struct ubifs_scan_leb *sleb;
    636 	void *buf = sbuf + offs;
    637 
    638 	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
    639 
    640 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
    641 	if (IS_ERR(sleb))
    642 		return sleb;
    643 
    644 	ubifs_assert(len >= 8);
    645 	while (len >= 8) {
    646 		dbg_scan("look at LEB %d:%d (%d bytes left)",
    647 			 lnum, offs, len);
    648 
    649 		cond_resched();
    650 
    651 		/*
    652 		 * Scan quietly until there is an error from which we cannot
    653 		 * recover
    654 		 */
    655 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
    656 		if (ret == SCANNED_A_NODE) {
    657 			/* A valid node, and not a padding node */
    658 			struct ubifs_ch *ch = buf;
    659 			int node_len;
    660 
    661 			err = ubifs_add_snod(c, sleb, buf, offs);
    662 			if (err)
    663 				goto error;
    664 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
    665 			offs += node_len;
    666 			buf += node_len;
    667 			len -= node_len;
    668 		} else if (ret > 0) {
    669 			/* Padding bytes or a valid padding node */
    670 			offs += ret;
    671 			buf += ret;
    672 			len -= ret;
    673 		} else if (ret == SCANNED_EMPTY_SPACE ||
    674 			   ret == SCANNED_GARBAGE     ||
    675 			   ret == SCANNED_A_BAD_PAD_NODE ||
    676 			   ret == SCANNED_A_CORRUPT_NODE) {
    677 			dbg_rcvry("found corruption (%d) at %d:%d",
    678 				  ret, lnum, offs);
    679 			break;
    680 		} else {
    681 			ubifs_err(c, "unexpected return value %d", ret);
    682 			err = -EINVAL;
    683 			goto error;
    684 		}
    685 	}
    686 
    687 	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
    688 		if (!is_last_write(c, buf, offs))
    689 			goto corrupted_rescan;
    690 	} else if (ret == SCANNED_A_CORRUPT_NODE) {
    691 		if (!no_more_nodes(c, buf, len, lnum, offs))
    692 			goto corrupted_rescan;
    693 	} else if (!is_empty(buf, len)) {
    694 		if (!is_last_write(c, buf, offs)) {
    695 			int corruption = first_non_ff(buf, len);
    696 
    697 			/*
    698 			 * See header comment for this file for more
    699 			 * explanations about the reasons we have this check.
    700 			 */
    701 			ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
    702 				  lnum, offs, corruption);
    703 			/* Make sure we dump interesting non-0xFF data */
    704 			offs += corruption;
    705 			buf += corruption;
    706 			goto corrupted;
    707 		}
    708 	}
    709 
    710 	min_io_unit = round_down(offs, c->min_io_size);
    711 	if (grouped)
    712 		/*
    713 		 * If nodes are grouped, always drop the incomplete group at
    714 		 * the end.
    715 		 */
    716 		drop_last_group(sleb, &offs);
    717 
    718 	if (jhead == GCHD) {
    719 		/*
    720 		 * If this LEB belongs to the GC head then while we are in the
    721 		 * middle of the same min. I/O unit keep dropping nodes. So
    722 		 * basically, what we want is to make sure that the last min.
    723 		 * I/O unit where we saw the corruption is dropped completely
    724 		 * with all the uncorrupted nodes which may possibly sit there.
    725 		 *
    726 		 * In other words, let's name the min. I/O unit where the
    727 		 * corruption starts B, and the previous min. I/O unit A. The
    728 		 * below code tries to deal with a situation when half of B
    729 		 * contains valid nodes or the end of a valid node, and the
    730 		 * second half of B contains corrupted data or garbage. This
    731 		 * means that UBIFS had been writing to B just before the power
    732 		 * cut happened. I do not know how realistic is this scenario
    733 		 * that half of the min. I/O unit had been written successfully
    734 		 * and the other half not, but this is possible in our 'failure
    735 		 * mode emulation' infrastructure at least.
    736 		 *
    737 		 * So what is the problem, why we need to drop those nodes? Why
    738 		 * can't we just clean-up the second half of B by putting a
    739 		 * padding node there? We can, and this works fine with one
    740 		 * exception which was reproduced with power cut emulation
    741 		 * testing and happens extremely rarely.
    742 		 *
    743 		 * Imagine the file-system is full, we run GC which starts
    744 		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
    745 		 * the current GC head LEB). The @c->gc_lnum is -1, which means
    746 		 * that GC will retain LEB X and will try to continue. Imagine
    747 		 * that LEB X is currently the dirtiest LEB, and the amount of
    748 		 * used space in LEB Y is exactly the same as amount of free
    749 		 * space in LEB X.
    750 		 *
    751 		 * And a power cut happens when nodes are moved from LEB X to
    752 		 * LEB Y. We are here trying to recover LEB Y which is the GC
    753 		 * head LEB. We find the min. I/O unit B as described above.
    754 		 * Then we clean-up LEB Y by padding min. I/O unit. And later
    755 		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
    756 		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
    757 		 * does not match because the amount of valid nodes there does
    758 		 * not fit the free space in LEB Y any more! And this is
    759 		 * because of the padding node which we added to LEB Y. The
    760 		 * user-visible effect of this which I once observed and
    761 		 * analysed is that we cannot mount the file-system with
    762 		 * -ENOSPC error.
    763 		 *
    764 		 * So obviously, to make sure that situation does not happen we
    765 		 * should free min. I/O unit B in LEB Y completely and the last
    766 		 * used min. I/O unit in LEB Y should be A. This is basically
    767 		 * what the below code tries to do.
    768 		 */
    769 		while (offs > min_io_unit)
    770 			drop_last_node(sleb, &offs);
    771 	}
    772 
    773 	buf = sbuf + offs;
    774 	len = c->leb_size - offs;
    775 
    776 	clean_buf(c, &buf, lnum, &offs, &len);
    777 	ubifs_end_scan(c, sleb, lnum, offs);
    778 
    779 	err = fix_unclean_leb(c, sleb, start);
    780 	if (err)
    781 		goto error;
    782 
    783 	return sleb;
    784 
    785 corrupted_rescan:
    786 	/* Re-scan the corrupted data with verbose messages */
    787 	ubifs_err(c, "corruption %d", ret);
    788 	ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
    789 corrupted:
    790 	ubifs_scanned_corruption(c, lnum, offs, buf);
    791 	err = -EUCLEAN;
    792 error:
    793 	ubifs_err(c, "LEB %d scanning failed", lnum);
    794 	ubifs_scan_destroy(sleb);
    795 	return ERR_PTR(err);
    796 }
    797 
    798 /**
    799  * get_cs_sqnum - get commit start sequence number.
    800  * @c: UBIFS file-system description object
    801  * @lnum: LEB number of commit start node
    802  * @offs: offset of commit start node
    803  * @cs_sqnum: commit start sequence number is returned here
    804  *
    805  * This function returns %0 on success and a negative error code on failure.
    806  */
    807 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
    808 			unsigned long long *cs_sqnum)
    809 {
    810 	struct ubifs_cs_node *cs_node = NULL;
    811 	int err, ret;
    812 
    813 	dbg_rcvry("at %d:%d", lnum, offs);
    814 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
    815 	if (!cs_node)
    816 		return -ENOMEM;
    817 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
    818 		goto out_err;
    819 	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
    820 			     UBIFS_CS_NODE_SZ, 0);
    821 	if (err && err != -EBADMSG)
    822 		goto out_free;
    823 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
    824 	if (ret != SCANNED_A_NODE) {
    825 		ubifs_err(c, "Not a valid node");
    826 		goto out_err;
    827 	}
    828 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
    829 		ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
    830 		goto out_err;
    831 	}
    832 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
    833 		ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
    834 			  (unsigned long long)le64_to_cpu(cs_node->cmt_no),
    835 			  c->cmt_no);
    836 		goto out_err;
    837 	}
    838 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
    839 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
    840 	kfree(cs_node);
    841 	return 0;
    842 
    843 out_err:
    844 	err = -EINVAL;
    845 out_free:
    846 	ubifs_err(c, "failed to get CS sqnum");
    847 	kfree(cs_node);
    848 	return err;
    849 }
    850 
    851 /**
    852  * ubifs_recover_log_leb - scan and recover a log LEB.
    853  * @c: UBIFS file-system description object
    854  * @lnum: LEB number
    855  * @offs: offset
    856  * @sbuf: LEB-sized buffer to use
    857  *
    858  * This function does a scan of a LEB, but caters for errors that might have
    859  * been caused by unclean reboots from which we are attempting to recover
    860  * (assume that only the last log LEB can be corrupted by an unclean reboot).
    861  *
    862  * This function returns %0 on success and a negative error code on failure.
    863  */
    864 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
    865 					     int offs, void *sbuf)
    866 {
    867 	struct ubifs_scan_leb *sleb;
    868 	int next_lnum;
    869 
    870 	dbg_rcvry("LEB %d", lnum);
    871 	next_lnum = lnum + 1;
    872 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
    873 		next_lnum = UBIFS_LOG_LNUM;
    874 	if (next_lnum != c->ltail_lnum) {
    875 		/*
    876 		 * We can only recover at the end of the log, so check that the
    877 		 * next log LEB is empty or out of date.
    878 		 */
    879 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
    880 		if (IS_ERR(sleb))
    881 			return sleb;
    882 		if (sleb->nodes_cnt) {
    883 			struct ubifs_scan_node *snod;
    884 			unsigned long long cs_sqnum = c->cs_sqnum;
    885 
    886 			snod = list_entry(sleb->nodes.next,
    887 					  struct ubifs_scan_node, list);
    888 			if (cs_sqnum == 0) {
    889 				int err;
    890 
    891 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
    892 				if (err) {
    893 					ubifs_scan_destroy(sleb);
    894 					return ERR_PTR(err);
    895 				}
    896 			}
    897 			if (snod->sqnum > cs_sqnum) {
    898 				ubifs_err(c, "unrecoverable log corruption in LEB %d",
    899 					  lnum);
    900 				ubifs_scan_destroy(sleb);
    901 				return ERR_PTR(-EUCLEAN);
    902 			}
    903 		}
    904 		ubifs_scan_destroy(sleb);
    905 	}
    906 	return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
    907 }
    908 
    909 /**
    910  * recover_head - recover a head.
    911  * @c: UBIFS file-system description object
    912  * @lnum: LEB number of head to recover
    913  * @offs: offset of head to recover
    914  * @sbuf: LEB-sized buffer to use
    915  *
    916  * This function ensures that there is no data on the flash at a head location.
    917  *
    918  * This function returns %0 on success and a negative error code on failure.
    919  */
    920 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
    921 {
    922 	int len = c->max_write_size, err;
    923 
    924 	if (offs + len > c->leb_size)
    925 		len = c->leb_size - offs;
    926 
    927 	if (!len)
    928 		return 0;
    929 
    930 	/* Read at the head location and check it is empty flash */
    931 	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
    932 	if (err || !is_empty(sbuf, len)) {
    933 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
    934 		if (offs == 0)
    935 			return ubifs_leb_unmap(c, lnum);
    936 		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
    937 		if (err)
    938 			return err;
    939 		return ubifs_leb_change(c, lnum, sbuf, offs);
    940 	}
    941 
    942 	return 0;
    943 }
    944 
    945 /**
    946  * ubifs_recover_inl_heads - recover index and LPT heads.
    947  * @c: UBIFS file-system description object
    948  * @sbuf: LEB-sized buffer to use
    949  *
    950  * This function ensures that there is no data on the flash at the index and
    951  * LPT head locations.
    952  *
    953  * This deals with the recovery of a half-completed journal commit. UBIFS is
    954  * careful never to overwrite the last version of the index or the LPT. Because
    955  * the index and LPT are wandering trees, data from a half-completed commit will
    956  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
    957  * assumed to be empty and will be unmapped anyway before use, or in the index
    958  * and LPT heads.
    959  *
    960  * This function returns %0 on success and a negative error code on failure.
    961  */
    962 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
    963 {
    964 	int err;
    965 
    966 	ubifs_assert(!c->ro_mount || c->remounting_rw);
    967 
    968 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
    969 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
    970 	if (err)
    971 		return err;
    972 
    973 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
    974 
    975 	return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
    976 }
    977 
    978 /**
    979  * clean_an_unclean_leb - read and write a LEB to remove corruption.
    980  * @c: UBIFS file-system description object
    981  * @ucleb: unclean LEB information
    982  * @sbuf: LEB-sized buffer to use
    983  *
    984  * This function reads a LEB up to a point pre-determined by the mount recovery,
    985  * checks the nodes, and writes the result back to the flash, thereby cleaning
    986  * off any following corruption, or non-fatal ECC errors.
    987  *
    988  * This function returns %0 on success and a negative error code on failure.
    989  */
    990 static int clean_an_unclean_leb(struct ubifs_info *c,
    991 				struct ubifs_unclean_leb *ucleb, void *sbuf)
    992 {
    993 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
    994 	void *buf = sbuf;
    995 
    996 	dbg_rcvry("LEB %d len %d", lnum, len);
    997 
    998 	if (len == 0) {
    999 		/* Nothing to read, just unmap it */
   1000 		return ubifs_leb_unmap(c, lnum);
   1001 	}
   1002 
   1003 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
   1004 	if (err && err != -EBADMSG)
   1005 		return err;
   1006 
   1007 	while (len >= 8) {
   1008 		int ret;
   1009 
   1010 		cond_resched();
   1011 
   1012 		/* Scan quietly until there is an error */
   1013 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
   1014 
   1015 		if (ret == SCANNED_A_NODE) {
   1016 			/* A valid node, and not a padding node */
   1017 			struct ubifs_ch *ch = buf;
   1018 			int node_len;
   1019 
   1020 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
   1021 			offs += node_len;
   1022 			buf += node_len;
   1023 			len -= node_len;
   1024 			continue;
   1025 		}
   1026 
   1027 		if (ret > 0) {
   1028 			/* Padding bytes or a valid padding node */
   1029 			offs += ret;
   1030 			buf += ret;
   1031 			len -= ret;
   1032 			continue;
   1033 		}
   1034 
   1035 		if (ret == SCANNED_EMPTY_SPACE) {
   1036 			ubifs_err(c, "unexpected empty space at %d:%d",
   1037 				  lnum, offs);
   1038 			return -EUCLEAN;
   1039 		}
   1040 
   1041 		if (quiet) {
   1042 			/* Redo the last scan but noisily */
   1043 			quiet = 0;
   1044 			continue;
   1045 		}
   1046 
   1047 		ubifs_scanned_corruption(c, lnum, offs, buf);
   1048 		return -EUCLEAN;
   1049 	}
   1050 
   1051 	/* Pad to min_io_size */
   1052 	len = ALIGN(ucleb->endpt, c->min_io_size);
   1053 	if (len > ucleb->endpt) {
   1054 		int pad_len = len - ALIGN(ucleb->endpt, 8);
   1055 
   1056 		if (pad_len > 0) {
   1057 			buf = c->sbuf + len - pad_len;
   1058 			ubifs_pad(c, buf, pad_len);
   1059 		}
   1060 	}
   1061 
   1062 	/* Write back the LEB atomically */
   1063 	err = ubifs_leb_change(c, lnum, sbuf, len);
   1064 	if (err)
   1065 		return err;
   1066 
   1067 	dbg_rcvry("cleaned LEB %d", lnum);
   1068 
   1069 	return 0;
   1070 }
   1071 
   1072 /**
   1073  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
   1074  * @c: UBIFS file-system description object
   1075  * @sbuf: LEB-sized buffer to use
   1076  *
   1077  * This function cleans a LEB identified during recovery that needs to be
   1078  * written but was not because UBIFS was mounted read-only. This happens when
   1079  * remounting to read-write mode.
   1080  *
   1081  * This function returns %0 on success and a negative error code on failure.
   1082  */
   1083 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
   1084 {
   1085 	dbg_rcvry("recovery");
   1086 	while (!list_empty(&c->unclean_leb_list)) {
   1087 		struct ubifs_unclean_leb *ucleb;
   1088 		int err;
   1089 
   1090 		ucleb = list_entry(c->unclean_leb_list.next,
   1091 				   struct ubifs_unclean_leb, list);
   1092 		err = clean_an_unclean_leb(c, ucleb, sbuf);
   1093 		if (err)
   1094 			return err;
   1095 		list_del(&ucleb->list);
   1096 		kfree(ucleb);
   1097 	}
   1098 	return 0;
   1099 }
   1100 
   1101 #ifndef __UBOOT__
   1102 /**
   1103  * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
   1104  * @c: UBIFS file-system description object
   1105  *
   1106  * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
   1107  * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
   1108  * zero in case of success and a negative error code in case of failure.
   1109  */
   1110 static int grab_empty_leb(struct ubifs_info *c)
   1111 {
   1112 	int lnum, err;
   1113 
   1114 	/*
   1115 	 * Note, it is very important to first search for an empty LEB and then
   1116 	 * run the commit, not vice-versa. The reason is that there might be
   1117 	 * only one empty LEB at the moment, the one which has been the
   1118 	 * @c->gc_lnum just before the power cut happened. During the regular
   1119 	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
   1120 	 * one but GC can grab it. But at this moment this single empty LEB is
   1121 	 * not marked as taken, so if we run commit - what happens? Right, the
   1122 	 * commit will grab it and write the index there. Remember that the
   1123 	 * index always expands as long as there is free space, and it only
   1124 	 * starts consolidating when we run out of space.
   1125 	 *
   1126 	 * IOW, if we run commit now, we might not be able to find a free LEB
   1127 	 * after this.
   1128 	 */
   1129 	lnum = ubifs_find_free_leb_for_idx(c);
   1130 	if (lnum < 0) {
   1131 		ubifs_err(c, "could not find an empty LEB");
   1132 		ubifs_dump_lprops(c);
   1133 		ubifs_dump_budg(c, &c->bi);
   1134 		return lnum;
   1135 	}
   1136 
   1137 	/* Reset the index flag */
   1138 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
   1139 				  LPROPS_INDEX, 0);
   1140 	if (err)
   1141 		return err;
   1142 
   1143 	c->gc_lnum = lnum;
   1144 	dbg_rcvry("found empty LEB %d, run commit", lnum);
   1145 
   1146 	return ubifs_run_commit(c);
   1147 }
   1148 
   1149 /**
   1150  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
   1151  * @c: UBIFS file-system description object
   1152  *
   1153  * Out-of-place garbage collection requires always one empty LEB with which to
   1154  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
   1155  * written to the master node on unmounting. In the case of an unclean unmount
   1156  * the value of gc_lnum recorded in the master node is out of date and cannot
   1157  * be used. Instead, recovery must allocate an empty LEB for this purpose.
   1158  * However, there may not be enough empty space, in which case it must be
   1159  * possible to GC the dirtiest LEB into the GC head LEB.
   1160  *
   1161  * This function also runs the commit which causes the TNC updates from
   1162  * size-recovery and orphans to be written to the flash. That is important to
   1163  * ensure correct replay order for subsequent mounts.
   1164  *
   1165  * This function returns %0 on success and a negative error code on failure.
   1166  */
   1167 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
   1168 {
   1169 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
   1170 	struct ubifs_lprops lp;
   1171 	int err;
   1172 
   1173 	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
   1174 
   1175 	c->gc_lnum = -1;
   1176 	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
   1177 		return grab_empty_leb(c);
   1178 
   1179 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
   1180 	if (err) {
   1181 		if (err != -ENOSPC)
   1182 			return err;
   1183 
   1184 		dbg_rcvry("could not find a dirty LEB");
   1185 		return grab_empty_leb(c);
   1186 	}
   1187 
   1188 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
   1189 	ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
   1190 
   1191 	/*
   1192 	 * We run the commit before garbage collection otherwise subsequent
   1193 	 * mounts will see the GC and orphan deletion in a different order.
   1194 	 */
   1195 	dbg_rcvry("committing");
   1196 	err = ubifs_run_commit(c);
   1197 	if (err)
   1198 		return err;
   1199 
   1200 	dbg_rcvry("GC'ing LEB %d", lp.lnum);
   1201 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
   1202 	err = ubifs_garbage_collect_leb(c, &lp);
   1203 	if (err >= 0) {
   1204 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
   1205 
   1206 		if (err2)
   1207 			err = err2;
   1208 	}
   1209 	mutex_unlock(&wbuf->io_mutex);
   1210 	if (err < 0) {
   1211 		ubifs_err(c, "GC failed, error %d", err);
   1212 		if (err == -EAGAIN)
   1213 			err = -EINVAL;
   1214 		return err;
   1215 	}
   1216 
   1217 	ubifs_assert(err == LEB_RETAINED);
   1218 	if (err != LEB_RETAINED)
   1219 		return -EINVAL;
   1220 
   1221 	err = ubifs_leb_unmap(c, c->gc_lnum);
   1222 	if (err)
   1223 		return err;
   1224 
   1225 	dbg_rcvry("allocated LEB %d for GC", lp.lnum);
   1226 	return 0;
   1227 }
   1228 #else
   1229 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
   1230 {
   1231 	return 0;
   1232 }
   1233 #endif
   1234 
   1235 /**
   1236  * struct size_entry - inode size information for recovery.
   1237  * @rb: link in the RB-tree of sizes
   1238  * @inum: inode number
   1239  * @i_size: size on inode
   1240  * @d_size: maximum size based on data nodes
   1241  * @exists: indicates whether the inode exists
   1242  * @inode: inode if pinned in memory awaiting rw mode to fix it
   1243  */
   1244 struct size_entry {
   1245 	struct rb_node rb;
   1246 	ino_t inum;
   1247 	loff_t i_size;
   1248 	loff_t d_size;
   1249 	int exists;
   1250 	struct inode *inode;
   1251 };
   1252 
   1253 /**
   1254  * add_ino - add an entry to the size tree.
   1255  * @c: UBIFS file-system description object
   1256  * @inum: inode number
   1257  * @i_size: size on inode
   1258  * @d_size: maximum size based on data nodes
   1259  * @exists: indicates whether the inode exists
   1260  */
   1261 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
   1262 		   loff_t d_size, int exists)
   1263 {
   1264 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
   1265 	struct size_entry *e;
   1266 
   1267 	while (*p) {
   1268 		parent = *p;
   1269 		e = rb_entry(parent, struct size_entry, rb);
   1270 		if (inum < e->inum)
   1271 			p = &(*p)->rb_left;
   1272 		else
   1273 			p = &(*p)->rb_right;
   1274 	}
   1275 
   1276 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
   1277 	if (!e)
   1278 		return -ENOMEM;
   1279 
   1280 	e->inum = inum;
   1281 	e->i_size = i_size;
   1282 	e->d_size = d_size;
   1283 	e->exists = exists;
   1284 
   1285 	rb_link_node(&e->rb, parent, p);
   1286 	rb_insert_color(&e->rb, &c->size_tree);
   1287 
   1288 	return 0;
   1289 }
   1290 
   1291 /**
   1292  * find_ino - find an entry on the size tree.
   1293  * @c: UBIFS file-system description object
   1294  * @inum: inode number
   1295  */
   1296 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
   1297 {
   1298 	struct rb_node *p = c->size_tree.rb_node;
   1299 	struct size_entry *e;
   1300 
   1301 	while (p) {
   1302 		e = rb_entry(p, struct size_entry, rb);
   1303 		if (inum < e->inum)
   1304 			p = p->rb_left;
   1305 		else if (inum > e->inum)
   1306 			p = p->rb_right;
   1307 		else
   1308 			return e;
   1309 	}
   1310 	return NULL;
   1311 }
   1312 
   1313 /**
   1314  * remove_ino - remove an entry from the size tree.
   1315  * @c: UBIFS file-system description object
   1316  * @inum: inode number
   1317  */
   1318 static void remove_ino(struct ubifs_info *c, ino_t inum)
   1319 {
   1320 	struct size_entry *e = find_ino(c, inum);
   1321 
   1322 	if (!e)
   1323 		return;
   1324 	rb_erase(&e->rb, &c->size_tree);
   1325 	kfree(e);
   1326 }
   1327 
   1328 /**
   1329  * ubifs_destroy_size_tree - free resources related to the size tree.
   1330  * @c: UBIFS file-system description object
   1331  */
   1332 void ubifs_destroy_size_tree(struct ubifs_info *c)
   1333 {
   1334 	struct size_entry *e, *n;
   1335 
   1336 	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
   1337 		if (e->inode)
   1338 			iput(e->inode);
   1339 		kfree(e);
   1340 	}
   1341 
   1342 	c->size_tree = RB_ROOT;
   1343 }
   1344 
   1345 /**
   1346  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
   1347  * @c: UBIFS file-system description object
   1348  * @key: node key
   1349  * @deletion: node is for a deletion
   1350  * @new_size: inode size
   1351  *
   1352  * This function has two purposes:
   1353  *     1) to ensure there are no data nodes that fall outside the inode size
   1354  *     2) to ensure there are no data nodes for inodes that do not exist
   1355  * To accomplish those purposes, a rb-tree is constructed containing an entry
   1356  * for each inode number in the journal that has not been deleted, and recording
   1357  * the size from the inode node, the maximum size of any data node (also altered
   1358  * by truncations) and a flag indicating a inode number for which no inode node
   1359  * was present in the journal.
   1360  *
   1361  * Note that there is still the possibility that there are data nodes that have
   1362  * been committed that are beyond the inode size, however the only way to find
   1363  * them would be to scan the entire index. Alternatively, some provision could
   1364  * be made to record the size of inodes at the start of commit, which would seem
   1365  * very cumbersome for a scenario that is quite unlikely and the only negative
   1366  * consequence of which is wasted space.
   1367  *
   1368  * This functions returns %0 on success and a negative error code on failure.
   1369  */
   1370 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
   1371 			     int deletion, loff_t new_size)
   1372 {
   1373 	ino_t inum = key_inum(c, key);
   1374 	struct size_entry *e;
   1375 	int err;
   1376 
   1377 	switch (key_type(c, key)) {
   1378 	case UBIFS_INO_KEY:
   1379 		if (deletion)
   1380 			remove_ino(c, inum);
   1381 		else {
   1382 			e = find_ino(c, inum);
   1383 			if (e) {
   1384 				e->i_size = new_size;
   1385 				e->exists = 1;
   1386 			} else {
   1387 				err = add_ino(c, inum, new_size, 0, 1);
   1388 				if (err)
   1389 					return err;
   1390 			}
   1391 		}
   1392 		break;
   1393 	case UBIFS_DATA_KEY:
   1394 		e = find_ino(c, inum);
   1395 		if (e) {
   1396 			if (new_size > e->d_size)
   1397 				e->d_size = new_size;
   1398 		} else {
   1399 			err = add_ino(c, inum, 0, new_size, 0);
   1400 			if (err)
   1401 				return err;
   1402 		}
   1403 		break;
   1404 	case UBIFS_TRUN_KEY:
   1405 		e = find_ino(c, inum);
   1406 		if (e)
   1407 			e->d_size = new_size;
   1408 		break;
   1409 	}
   1410 	return 0;
   1411 }
   1412 
   1413 #ifndef __UBOOT__
   1414 /**
   1415  * fix_size_in_place - fix inode size in place on flash.
   1416  * @c: UBIFS file-system description object
   1417  * @e: inode size information for recovery
   1418  */
   1419 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
   1420 {
   1421 	struct ubifs_ino_node *ino = c->sbuf;
   1422 	unsigned char *p;
   1423 	union ubifs_key key;
   1424 	int err, lnum, offs, len;
   1425 	loff_t i_size;
   1426 	uint32_t crc;
   1427 
   1428 	/* Locate the inode node LEB number and offset */
   1429 	ino_key_init(c, &key, e->inum);
   1430 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
   1431 	if (err)
   1432 		goto out;
   1433 	/*
   1434 	 * If the size recorded on the inode node is greater than the size that
   1435 	 * was calculated from nodes in the journal then don't change the inode.
   1436 	 */
   1437 	i_size = le64_to_cpu(ino->size);
   1438 	if (i_size >= e->d_size)
   1439 		return 0;
   1440 	/* Read the LEB */
   1441 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
   1442 	if (err)
   1443 		goto out;
   1444 	/* Change the size field and recalculate the CRC */
   1445 	ino = c->sbuf + offs;
   1446 	ino->size = cpu_to_le64(e->d_size);
   1447 	len = le32_to_cpu(ino->ch.len);
   1448 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
   1449 	ino->ch.crc = cpu_to_le32(crc);
   1450 	/* Work out where data in the LEB ends and free space begins */
   1451 	p = c->sbuf;
   1452 	len = c->leb_size - 1;
   1453 	while (p[len] == 0xff)
   1454 		len -= 1;
   1455 	len = ALIGN(len + 1, c->min_io_size);
   1456 	/* Atomically write the fixed LEB back again */
   1457 	err = ubifs_leb_change(c, lnum, c->sbuf, len);
   1458 	if (err)
   1459 		goto out;
   1460 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
   1461 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
   1462 	return 0;
   1463 
   1464 out:
   1465 	ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
   1466 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
   1467 	return err;
   1468 }
   1469 #endif
   1470 
   1471 /**
   1472  * ubifs_recover_size - recover inode size.
   1473  * @c: UBIFS file-system description object
   1474  *
   1475  * This function attempts to fix inode size discrepancies identified by the
   1476  * 'ubifs_recover_size_accum()' function.
   1477  *
   1478  * This functions returns %0 on success and a negative error code on failure.
   1479  */
   1480 int ubifs_recover_size(struct ubifs_info *c)
   1481 {
   1482 	struct rb_node *this = rb_first(&c->size_tree);
   1483 
   1484 	while (this) {
   1485 		struct size_entry *e;
   1486 		int err;
   1487 
   1488 		e = rb_entry(this, struct size_entry, rb);
   1489 		if (!e->exists) {
   1490 			union ubifs_key key;
   1491 
   1492 			ino_key_init(c, &key, e->inum);
   1493 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
   1494 			if (err && err != -ENOENT)
   1495 				return err;
   1496 			if (err == -ENOENT) {
   1497 				/* Remove data nodes that have no inode */
   1498 				dbg_rcvry("removing ino %lu",
   1499 					  (unsigned long)e->inum);
   1500 				err = ubifs_tnc_remove_ino(c, e->inum);
   1501 				if (err)
   1502 					return err;
   1503 			} else {
   1504 				struct ubifs_ino_node *ino = c->sbuf;
   1505 
   1506 				e->exists = 1;
   1507 				e->i_size = le64_to_cpu(ino->size);
   1508 			}
   1509 		}
   1510 
   1511 		if (e->exists && e->i_size < e->d_size) {
   1512 			if (c->ro_mount) {
   1513 				/* Fix the inode size and pin it in memory */
   1514 				struct inode *inode;
   1515 				struct ubifs_inode *ui;
   1516 
   1517 				ubifs_assert(!e->inode);
   1518 
   1519 				inode = ubifs_iget(c->vfs_sb, e->inum);
   1520 				if (IS_ERR(inode))
   1521 					return PTR_ERR(inode);
   1522 
   1523 				ui = ubifs_inode(inode);
   1524 				if (inode->i_size < e->d_size) {
   1525 					dbg_rcvry("ino %lu size %lld -> %lld",
   1526 						  (unsigned long)e->inum,
   1527 						  inode->i_size, e->d_size);
   1528 					inode->i_size = e->d_size;
   1529 					ui->ui_size = e->d_size;
   1530 					ui->synced_i_size = e->d_size;
   1531 					e->inode = inode;
   1532 					this = rb_next(this);
   1533 					continue;
   1534 				}
   1535 				iput(inode);
   1536 #ifndef __UBOOT__
   1537 			} else {
   1538 				/* Fix the size in place */
   1539 				err = fix_size_in_place(c, e);
   1540 				if (err)
   1541 					return err;
   1542 				if (e->inode)
   1543 					iput(e->inode);
   1544 #endif
   1545 			}
   1546 		}
   1547 
   1548 		this = rb_next(this);
   1549 		rb_erase(&e->rb, &c->size_tree);
   1550 		kfree(e);
   1551 	}
   1552 
   1553 	return 0;
   1554 }
   1555