1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com) 2 * All rights reserved. 3 * 4 * This package is an SSL implementation written 5 * by Eric Young (eay (at) cryptsoft.com). 6 * The implementation was written so as to conform with Netscapes SSL. 7 * 8 * This library is free for commercial and non-commercial use as long as 9 * the following conditions are aheared to. The following conditions 10 * apply to all code found in this distribution, be it the RC4, RSA, 11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 12 * included with this distribution is covered by the same copyright terms 13 * except that the holder is Tim Hudson (tjh (at) cryptsoft.com). 14 * 15 * Copyright remains Eric Young's, and as such any Copyright notices in 16 * the code are not to be removed. 17 * If this package is used in a product, Eric Young should be given attribution 18 * as the author of the parts of the library used. 19 * This can be in the form of a textual message at program startup or 20 * in documentation (online or textual) provided with the package. 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 1. Redistributions of source code must retain the copyright 26 * notice, this list of conditions and the following disclaimer. 27 * 2. Redistributions in binary form must reproduce the above copyright 28 * notice, this list of conditions and the following disclaimer in the 29 * documentation and/or other materials provided with the distribution. 30 * 3. All advertising materials mentioning features or use of this software 31 * must display the following acknowledgement: 32 * "This product includes cryptographic software written by 33 * Eric Young (eay (at) cryptsoft.com)" 34 * The word 'cryptographic' can be left out if the rouines from the library 35 * being used are not cryptographic related :-). 36 * 4. If you include any Windows specific code (or a derivative thereof) from 37 * the apps directory (application code) you must include an acknowledgement: 38 * "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)" 39 * 40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 50 * SUCH DAMAGE. 51 * 52 * The licence and distribution terms for any publically available version or 53 * derivative of this code cannot be changed. i.e. this code cannot simply be 54 * copied and put under another distribution licence 55 * [including the GNU Public Licence.] 56 */ 57 /* ==================================================================== 58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. 59 * 60 * Redistribution and use in source and binary forms, with or without 61 * modification, are permitted provided that the following conditions 62 * are met: 63 * 64 * 1. Redistributions of source code must retain the above copyright 65 * notice, this list of conditions and the following disclaimer. 66 * 67 * 2. Redistributions in binary form must reproduce the above copyright 68 * notice, this list of conditions and the following disclaimer in 69 * the documentation and/or other materials provided with the 70 * distribution. 71 * 72 * 3. All advertising materials mentioning features or use of this 73 * software must display the following acknowledgment: 74 * "This product includes software developed by the OpenSSL Project 75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 76 * 77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 78 * endorse or promote products derived from this software without 79 * prior written permission. For written permission, please contact 80 * openssl-core (at) openssl.org. 81 * 82 * 5. Products derived from this software may not be called "OpenSSL" 83 * nor may "OpenSSL" appear in their names without prior written 84 * permission of the OpenSSL Project. 85 * 86 * 6. Redistributions of any form whatsoever must retain the following 87 * acknowledgment: 88 * "This product includes software developed by the OpenSSL Project 89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 102 * OF THE POSSIBILITY OF SUCH DAMAGE. 103 * ==================================================================== 104 * 105 * This product includes cryptographic software written by Eric Young 106 * (eay (at) cryptsoft.com). This product includes software written by Tim 107 * Hudson (tjh (at) cryptsoft.com). 108 * 109 */ 110 /* ==================================================================== 111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 112 * ECC cipher suite support in OpenSSL originally developed by 113 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. 114 */ 115 /* ==================================================================== 116 * Copyright 2005 Nokia. All rights reserved. 117 * 118 * The portions of the attached software ("Contribution") is developed by 119 * Nokia Corporation and is licensed pursuant to the OpenSSL open source 120 * license. 121 * 122 * The Contribution, originally written by Mika Kousa and Pasi Eronen of 123 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites 124 * support (see RFC 4279) to OpenSSL. 125 * 126 * No patent licenses or other rights except those expressly stated in 127 * the OpenSSL open source license shall be deemed granted or received 128 * expressly, by implication, estoppel, or otherwise. 129 * 130 * No assurances are provided by Nokia that the Contribution does not 131 * infringe the patent or other intellectual property rights of any third 132 * party or that the license provides you with all the necessary rights 133 * to make use of the Contribution. 134 * 135 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN 136 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA 137 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY 138 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR 139 * OTHERWISE. 140 */ 141 142 #ifndef OPENSSL_HEADER_SSL_INTERNAL_H 143 #define OPENSSL_HEADER_SSL_INTERNAL_H 144 145 #include <openssl/base.h> 146 147 #include <stdlib.h> 148 149 #include <limits> 150 #include <new> 151 #include <type_traits> 152 #include <utility> 153 154 #include <openssl/aead.h> 155 #include <openssl/err.h> 156 #include <openssl/lhash.h> 157 #include <openssl/mem.h> 158 #include <openssl/span.h> 159 #include <openssl/ssl.h> 160 #include <openssl/stack.h> 161 162 #include "../crypto/err/internal.h" 163 #include "../crypto/internal.h" 164 165 166 #if defined(OPENSSL_WINDOWS) 167 // Windows defines struct timeval in winsock2.h. 168 OPENSSL_MSVC_PRAGMA(warning(push, 3)) 169 #include <winsock2.h> 170 OPENSSL_MSVC_PRAGMA(warning(pop)) 171 #else 172 #include <sys/time.h> 173 #endif 174 175 176 BSSL_NAMESPACE_BEGIN 177 178 struct SSL_CONFIG; 179 struct SSL_HANDSHAKE; 180 struct SSL_PROTOCOL_METHOD; 181 struct SSL_X509_METHOD; 182 183 // C++ utilities. 184 185 // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It 186 // returns nullptr on allocation error. It only implements single-object 187 // allocation and not new T[n]. 188 // 189 // Note: unlike |new|, this does not support non-public constructors. 190 template <typename T, typename... Args> 191 T *New(Args &&... args) { 192 void *t = OPENSSL_malloc(sizeof(T)); 193 if (t == nullptr) { 194 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 195 return nullptr; 196 } 197 return new (t) T(std::forward<Args>(args)...); 198 } 199 200 // Delete behaves like |delete| but uses |OPENSSL_free| to release memory. 201 // 202 // Note: unlike |delete| this does not support non-public destructors. 203 template <typename T> 204 void Delete(T *t) { 205 if (t != nullptr) { 206 t->~T(); 207 OPENSSL_free(t); 208 } 209 } 210 211 // All types with kAllowUniquePtr set may be used with UniquePtr. Other types 212 // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration. 213 namespace internal { 214 template <typename T> 215 struct DeleterImpl<T, typename std::enable_if<T::kAllowUniquePtr>::type> { 216 static void Free(T *t) { Delete(t); } 217 }; 218 } // namespace internal 219 220 // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation 221 // error. 222 template <typename T, typename... Args> 223 UniquePtr<T> MakeUnique(Args &&... args) { 224 return UniquePtr<T>(New<T>(std::forward<Args>(args)...)); 225 } 226 227 #if defined(BORINGSSL_ALLOW_CXX_RUNTIME) 228 #define HAS_VIRTUAL_DESTRUCTOR 229 #define PURE_VIRTUAL = 0 230 #else 231 // HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a 232 // virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the 233 // class from being used with |delete|. 234 #define HAS_VIRTUAL_DESTRUCTOR \ 235 void operator delete(void *) { abort(); } 236 237 // PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual 238 // functions. This avoids a dependency on |__cxa_pure_virtual| but loses 239 // compile-time checking. 240 #define PURE_VIRTUAL \ 241 { abort(); } 242 #endif 243 244 // CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work 245 // on constexpr arrays. 246 #if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910 247 #define CONSTEXPR_ARRAY const 248 #else 249 #define CONSTEXPR_ARRAY constexpr 250 #endif 251 252 // Array<T> is an owning array of elements of |T|. 253 template <typename T> 254 class Array { 255 public: 256 // Array's default constructor creates an empty array. 257 Array() {} 258 Array(const Array &) = delete; 259 Array(Array &&other) { *this = std::move(other); } 260 261 ~Array() { Reset(); } 262 263 Array &operator=(const Array &) = delete; 264 Array &operator=(Array &&other) { 265 Reset(); 266 other.Release(&data_, &size_); 267 return *this; 268 } 269 270 const T *data() const { return data_; } 271 T *data() { return data_; } 272 size_t size() const { return size_; } 273 bool empty() const { return size_ == 0; } 274 275 const T &operator[](size_t i) const { return data_[i]; } 276 T &operator[](size_t i) { return data_[i]; } 277 278 T *begin() { return data_; } 279 const T *cbegin() const { return data_; } 280 T *end() { return data_ + size_; } 281 const T *cend() const { return data_ + size_; } 282 283 void Reset() { Reset(nullptr, 0); } 284 285 // Reset releases the current contents of the array and takes ownership of the 286 // raw pointer supplied by the caller. 287 void Reset(T *new_data, size_t new_size) { 288 for (size_t i = 0; i < size_; i++) { 289 data_[i].~T(); 290 } 291 OPENSSL_free(data_); 292 data_ = new_data; 293 size_ = new_size; 294 } 295 296 // Release releases ownership of the array to a raw pointer supplied by the 297 // caller. 298 void Release(T **out, size_t *out_size) { 299 *out = data_; 300 *out_size = size_; 301 data_ = nullptr; 302 size_ = 0; 303 } 304 305 // Init replaces the array with a newly-allocated array of |new_size| 306 // default-constructed copies of |T|. It returns true on success and false on 307 // error. 308 // 309 // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized. 310 bool Init(size_t new_size) { 311 Reset(); 312 if (new_size == 0) { 313 return true; 314 } 315 316 if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) { 317 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); 318 return false; 319 } 320 data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T))); 321 if (data_ == nullptr) { 322 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 323 return false; 324 } 325 size_ = new_size; 326 for (size_t i = 0; i < size_; i++) { 327 new (&data_[i]) T; 328 } 329 return true; 330 } 331 332 // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns 333 // true on success and false on error. 334 bool CopyFrom(Span<const T> in) { 335 if (!Init(in.size())) { 336 return false; 337 } 338 OPENSSL_memcpy(data_, in.data(), sizeof(T) * in.size()); 339 return true; 340 } 341 342 // Shrink shrinks the stored size of the array to |new_size|. It crashes if 343 // the new size is larger. Note this does not shrink the allocation itself. 344 void Shrink(size_t new_size) { 345 if (new_size > size_) { 346 abort(); 347 } 348 size_ = new_size; 349 } 350 351 private: 352 T *data_ = nullptr; 353 size_t size_ = 0; 354 }; 355 356 // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array. 357 OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out); 358 359 360 // Protocol versions. 361 // 362 // Due to DTLS's historical wire version differences, we maintain two notions of 363 // version. 364 // 365 // The "version" or "wire version" is the actual 16-bit value that appears on 366 // the wire. It uniquely identifies a version and is also used at API 367 // boundaries. The set of supported versions differs between TLS and DTLS. Wire 368 // versions are opaque values and may not be compared numerically. 369 // 370 // The "protocol version" identifies the high-level handshake variant being 371 // used. DTLS versions map to the corresponding TLS versions. Protocol versions 372 // are sequential and may be compared numerically. 373 374 // ssl_protocol_version_from_wire sets |*out| to the protocol version 375 // corresponding to wire version |version| and returns true. If |version| is not 376 // a valid TLS or DTLS version, it returns false. 377 // 378 // Note this simultaneously handles both DTLS and TLS. Use one of the 379 // higher-level functions below for most operations. 380 bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version); 381 382 // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the 383 // minimum and maximum enabled protocol versions, respectively. 384 bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version, 385 uint16_t *out_max_version); 386 387 // ssl_supports_version returns whether |hs| supports |version|. 388 bool ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version); 389 390 // ssl_method_supports_version returns whether |method| supports |version|. 391 bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method, 392 uint16_t version); 393 394 // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in 395 // decreasing preference order. 396 bool ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb); 397 398 // ssl_negotiate_version negotiates a common version based on |hs|'s preferences 399 // and the peer preference list in |peer_versions|. On success, it returns true 400 // and sets |*out_version| to the selected version. Otherwise, it returns false 401 // and sets |*out_alert| to an alert to send. 402 bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, 403 uint16_t *out_version, const CBS *peer_versions); 404 405 // ssl_protocol_version returns |ssl|'s protocol version. It is an error to 406 // call this function before the version is determined. 407 uint16_t ssl_protocol_version(const SSL *ssl); 408 409 // Cipher suites. 410 411 BSSL_NAMESPACE_END 412 413 struct ssl_cipher_st { 414 // name is the OpenSSL name for the cipher. 415 const char *name; 416 // standard_name is the IETF name for the cipher. 417 const char *standard_name; 418 // id is the cipher suite value bitwise OR-d with 0x03000000. 419 uint32_t id; 420 421 // algorithm_* determine the cipher suite. See constants below for the values. 422 uint32_t algorithm_mkey; 423 uint32_t algorithm_auth; 424 uint32_t algorithm_enc; 425 uint32_t algorithm_mac; 426 uint32_t algorithm_prf; 427 }; 428 429 BSSL_NAMESPACE_BEGIN 430 431 // Bits for |algorithm_mkey| (key exchange algorithm). 432 #define SSL_kRSA 0x00000001u 433 #define SSL_kECDHE 0x00000002u 434 // SSL_kPSK is only set for plain PSK, not ECDHE_PSK. 435 #define SSL_kPSK 0x00000004u 436 #define SSL_kGENERIC 0x00000008u 437 438 // Bits for |algorithm_auth| (server authentication). 439 #define SSL_aRSA 0x00000001u 440 #define SSL_aECDSA 0x00000002u 441 // SSL_aPSK is set for both PSK and ECDHE_PSK. 442 #define SSL_aPSK 0x00000004u 443 #define SSL_aGENERIC 0x00000008u 444 445 #define SSL_aCERT (SSL_aRSA | SSL_aECDSA) 446 447 // Bits for |algorithm_enc| (symmetric encryption). 448 #define SSL_3DES 0x00000001u 449 #define SSL_AES128 0x00000002u 450 #define SSL_AES256 0x00000004u 451 #define SSL_AES128GCM 0x00000008u 452 #define SSL_AES256GCM 0x00000010u 453 #define SSL_eNULL 0x00000020u 454 #define SSL_CHACHA20POLY1305 0x00000040u 455 456 #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM) 457 458 // Bits for |algorithm_mac| (symmetric authentication). 459 #define SSL_SHA1 0x00000001u 460 // SSL_AEAD is set for all AEADs. 461 #define SSL_AEAD 0x00000002u 462 463 // Bits for |algorithm_prf| (handshake digest). 464 #define SSL_HANDSHAKE_MAC_DEFAULT 0x1 465 #define SSL_HANDSHAKE_MAC_SHA256 0x2 466 #define SSL_HANDSHAKE_MAC_SHA384 0x4 467 468 // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal- 469 // preference groups. For TLS clients, the groups are moot because the server 470 // picks the cipher and groups cannot be expressed on the wire. However, for 471 // servers, the equal-preference groups allow the client's preferences to be 472 // partially respected. (This only has an effect with 473 // SSL_OP_CIPHER_SERVER_PREFERENCE). 474 // 475 // The equal-preference groups are expressed by grouping SSL_CIPHERs together. 476 // All elements of a group have the same priority: no ordering is expressed 477 // within a group. 478 // 479 // The values in |ciphers| are in one-to-one correspondence with 480 // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of 481 // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to 482 // indicate that the corresponding SSL_CIPHER is not the last element of a 483 // group, or 0 to indicate that it is. 484 // 485 // For example, if |in_group_flags| contains all zeros then that indicates a 486 // traditional, fully-ordered preference. Every SSL_CIPHER is the last element 487 // of the group (i.e. they are all in a one-element group). 488 // 489 // For a more complex example, consider: 490 // ciphers: A B C D E F 491 // in_group_flags: 1 1 0 0 1 0 492 // 493 // That would express the following, order: 494 // 495 // A E 496 // B -> D -> F 497 // C 498 struct SSLCipherPreferenceList { 499 static constexpr bool kAllowUniquePtr = true; 500 501 SSLCipherPreferenceList() = default; 502 ~SSLCipherPreferenceList(); 503 504 bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers, 505 Span<const bool> in_group_flags); 506 bool Init(const SSLCipherPreferenceList &); 507 508 void Remove(const SSL_CIPHER *cipher); 509 510 UniquePtr<STACK_OF(SSL_CIPHER)> ciphers; 511 bool *in_group_flags = nullptr; 512 }; 513 514 // AllCiphers returns an array of all supported ciphers, sorted by id. 515 Span<const SSL_CIPHER> AllCiphers(); 516 517 // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD 518 // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len| 519 // and |*out_fixed_iv_len| to the MAC key length and fixed IV length, 520 // respectively. The MAC key length is zero except for legacy block and stream 521 // ciphers. It returns true on success and false on error. 522 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, 523 size_t *out_mac_secret_len, 524 size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, 525 uint16_t version, bool is_dtls); 526 527 // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and 528 // |cipher|. 529 const EVP_MD *ssl_get_handshake_digest(uint16_t version, 530 const SSL_CIPHER *cipher); 531 532 // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a 533 // newly-allocated |SSLCipherPreferenceList| containing the result. It returns 534 // true on success and false on failure. If |strict| is true, nonsense will be 535 // rejected. If false, nonsense will be silently ignored. An empty result is 536 // considered an error regardless of |strict|. 537 bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list, 538 const char *rule_str, bool strict); 539 540 // ssl_cipher_get_value returns the cipher suite id of |cipher|. 541 uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher); 542 543 // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth| 544 // values suitable for use with |key| in TLS 1.2 and below. 545 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key); 546 547 // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the 548 // server and, optionally, the client with a certificate. 549 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher); 550 551 // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a 552 // ServerKeyExchange message. 553 // 554 // This function may return false while still allowing |cipher| an optional 555 // ServerKeyExchange. This is the case for plain PSK ciphers. 556 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher); 557 558 // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the 559 // length of an encrypted 1-byte record, for use in record-splitting. Otherwise 560 // it returns zero. 561 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher); 562 563 564 // Transcript layer. 565 566 // SSLTranscript maintains the handshake transcript as a combination of a 567 // buffer and running hash. 568 class SSLTranscript { 569 public: 570 SSLTranscript(); 571 ~SSLTranscript(); 572 573 // Init initializes the handshake transcript. If called on an existing 574 // transcript, it resets the transcript and hash. It returns true on success 575 // and false on failure. 576 bool Init(); 577 578 // InitHash initializes the handshake hash based on the PRF and contents of 579 // the handshake transcript. Subsequent calls to |Update| will update the 580 // rolling hash. It returns one on success and zero on failure. It is an error 581 // to call this function after the handshake buffer is released. 582 bool InitHash(uint16_t version, const SSL_CIPHER *cipher); 583 584 // UpdateForHelloRetryRequest resets the rolling hash with the 585 // HelloRetryRequest construction. It returns true on success and false on 586 // failure. It is an error to call this function before the handshake buffer 587 // is released. 588 bool UpdateForHelloRetryRequest(); 589 590 // CopyHashContext copies the hash context into |ctx| and returns true on 591 // success. 592 bool CopyHashContext(EVP_MD_CTX *ctx); 593 594 Span<const uint8_t> buffer() { 595 return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data), 596 buffer_->length); 597 } 598 599 // FreeBuffer releases the handshake buffer. Subsequent calls to 600 // |Update| will not update the handshake buffer. 601 void FreeBuffer(); 602 603 // DigestLen returns the length of the PRF hash. 604 size_t DigestLen() const; 605 606 // Digest returns the PRF hash. For TLS 1.1 and below, this is 607 // |EVP_md5_sha1|. 608 const EVP_MD *Digest() const; 609 610 // Update adds |in| to the handshake buffer and handshake hash, whichever is 611 // enabled. It returns true on success and false on failure. 612 bool Update(Span<const uint8_t> in); 613 614 // GetHash writes the handshake hash to |out| which must have room for at 615 // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to 616 // the number of bytes written. Otherwise, it returns false. 617 bool GetHash(uint8_t *out, size_t *out_len); 618 619 // GetFinishedMAC computes the MAC for the Finished message into the bytes 620 // pointed by |out| and writes the number of bytes to |*out_len|. |out| must 621 // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false 622 // on failure. 623 bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session, 624 bool from_server); 625 626 private: 627 // buffer_, if non-null, contains the handshake transcript. 628 UniquePtr<BUF_MEM> buffer_; 629 // hash, if initialized with an |EVP_MD|, maintains the handshake hash. 630 ScopedEVP_MD_CTX hash_; 631 }; 632 633 // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret| 634 // as the secret and |label| as the label. |seed1| and |seed2| are concatenated 635 // to form the seed parameter. It returns true on success and false on failure. 636 bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out, 637 Span<const uint8_t> secret, Span<const char> label, 638 Span<const uint8_t> seed1, Span<const uint8_t> seed2); 639 640 641 // Encryption layer. 642 643 // SSLAEADContext contains information about an AEAD that is being used to 644 // encrypt an SSL connection. 645 class SSLAEADContext { 646 public: 647 SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher); 648 ~SSLAEADContext(); 649 static constexpr bool kAllowUniquePtr = true; 650 651 SSLAEADContext(const SSLAEADContext &&) = delete; 652 SSLAEADContext &operator=(const SSLAEADContext &&) = delete; 653 654 // CreateNullCipher creates an |SSLAEADContext| for the null cipher. 655 static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls); 656 657 // Create creates an |SSLAEADContext| using the supplied key material. It 658 // returns nullptr on error. Only one of |Open| or |Seal| may be used with the 659 // resulting object, depending on |direction|. |version| is the normalized 660 // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef. 661 static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction, 662 uint16_t version, bool is_dtls, 663 const SSL_CIPHER *cipher, 664 Span<const uint8_t> enc_key, 665 Span<const uint8_t> mac_key, 666 Span<const uint8_t> fixed_iv); 667 668 // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the 669 // given cipher and version. The resulting object can be queried for various 670 // properties but cannot encrypt or decrypt data. 671 static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC( 672 uint16_t version, const SSL_CIPHER *cipher); 673 674 // SetVersionIfNullCipher sets the version the SSLAEADContext for the null 675 // cipher, to make version-specific determinations in the record layer prior 676 // to a cipher being selected. 677 void SetVersionIfNullCipher(uint16_t version); 678 679 // ProtocolVersion returns the protocol version associated with this 680 // SSLAEADContext. It can only be called once |version_| has been set to a 681 // valid value. 682 uint16_t ProtocolVersion() const; 683 684 // RecordVersion returns the record version that should be used with this 685 // SSLAEADContext for record construction and crypto. 686 uint16_t RecordVersion() const; 687 688 const SSL_CIPHER *cipher() const { return cipher_; } 689 690 // is_null_cipher returns true if this is the null cipher. 691 bool is_null_cipher() const { return !cipher_; } 692 693 // ExplicitNonceLen returns the length of the explicit nonce. 694 size_t ExplicitNonceLen() const; 695 696 // MaxOverhead returns the maximum overhead of calling |Seal|. 697 size_t MaxOverhead() const; 698 699 // SuffixLen calculates the suffix length written by |SealScatter| and writes 700 // it to |*out_suffix_len|. It returns true on success and false on error. 701 // |in_len| and |extra_in_len| should equal the argument of the same names 702 // passed to |SealScatter|. 703 bool SuffixLen(size_t *out_suffix_len, size_t in_len, 704 size_t extra_in_len) const; 705 706 // CiphertextLen calculates the total ciphertext length written by 707 // |SealScatter| and writes it to |*out_len|. It returns true on success and 708 // false on error. |in_len| and |extra_in_len| should equal the argument of 709 // the same names passed to |SealScatter|. 710 bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const; 711 712 // Open authenticates and decrypts |in| in-place. On success, it sets |*out| 713 // to the plaintext in |in| and returns true. Otherwise, it returns 714 // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|. 715 bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version, 716 const uint8_t seqnum[8], Span<const uint8_t> header, 717 Span<uint8_t> in); 718 719 // Seal encrypts and authenticates |in_len| bytes from |in| and writes the 720 // result to |out|. It returns true on success and false on error. 721 // 722 // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|. 723 bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, 724 uint16_t record_version, const uint8_t seqnum[8], 725 Span<const uint8_t> header, const uint8_t *in, size_t in_len); 726 727 // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits 728 // the result between |out_prefix|, |out| and |out_suffix|. It returns one on 729 // success and zero on error. 730 // 731 // On successful return, exactly |ExplicitNonceLen| bytes are written to 732 // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to 733 // |out_suffix|. 734 // 735 // |extra_in| may point to an additional plaintext buffer. If present, 736 // |extra_in_len| additional bytes are encrypted and authenticated, and the 737 // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should 738 // be used to size |out_suffix| accordingly. 739 // 740 // If |in| and |out| alias then |out| must be == |in|. Other arguments may not 741 // alias anything. 742 bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix, 743 uint8_t type, uint16_t record_version, 744 const uint8_t seqnum[8], Span<const uint8_t> header, 745 const uint8_t *in, size_t in_len, const uint8_t *extra_in, 746 size_t extra_in_len); 747 748 bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const; 749 750 private: 751 // GetAdditionalData returns the additional data, writing into |storage| if 752 // necessary. 753 Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type, 754 uint16_t record_version, 755 const uint8_t seqnum[8], 756 size_t plaintext_len, 757 Span<const uint8_t> header); 758 759 const SSL_CIPHER *cipher_; 760 ScopedEVP_AEAD_CTX ctx_; 761 // fixed_nonce_ contains any bytes of the nonce that are fixed for all 762 // records. 763 uint8_t fixed_nonce_[12]; 764 uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0; 765 // version_ is the wire version that should be used with this AEAD. 766 uint16_t version_; 767 // is_dtls_ is whether DTLS is being used with this AEAD. 768 bool is_dtls_; 769 // variable_nonce_included_in_record_ is true if the variable nonce 770 // for a record is included as a prefix before the ciphertext. 771 bool variable_nonce_included_in_record_ : 1; 772 // random_variable_nonce_ is true if the variable nonce is 773 // randomly generated, rather than derived from the sequence 774 // number. 775 bool random_variable_nonce_ : 1; 776 // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the 777 // variable nonce rather than prepended. 778 bool xor_fixed_nonce_ : 1; 779 // omit_length_in_ad_ is true if the length should be omitted in the 780 // AEAD's ad parameter. 781 bool omit_length_in_ad_ : 1; 782 // ad_is_header_ is true if the AEAD's ad parameter is the record header. 783 bool ad_is_header_ : 1; 784 }; 785 786 787 // DTLS replay bitmap. 788 789 // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect 790 // replayed packets. It should be initialized by zeroing every field. 791 struct DTLS1_BITMAP { 792 // map is a bit mask of the last 64 sequence numbers. Bit 793 // |1<<i| corresponds to |max_seq_num - i|. 794 uint64_t map = 0; 795 // max_seq_num is the largest sequence number seen so far as a 64-bit 796 // integer. 797 uint64_t max_seq_num = 0; 798 }; 799 800 801 // Record layer. 802 803 // ssl_record_sequence_update increments the sequence number in |seq|. It 804 // returns true on success and false on wraparound. 805 bool ssl_record_sequence_update(uint8_t *seq, size_t seq_len); 806 807 // ssl_record_prefix_len returns the length of the prefix before the ciphertext 808 // of a record for |ssl|. 809 // 810 // TODO(davidben): Expose this as part of public API once the high-level 811 // buffer-free APIs are available. 812 size_t ssl_record_prefix_len(const SSL *ssl); 813 814 enum ssl_open_record_t { 815 ssl_open_record_success, 816 ssl_open_record_discard, 817 ssl_open_record_partial, 818 ssl_open_record_close_notify, 819 ssl_open_record_error, 820 }; 821 822 // tls_open_record decrypts a record from |in| in-place. 823 // 824 // If the input did not contain a complete record, it returns 825 // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of 826 // bytes necessary. It is guaranteed that a successful call to |tls_open_record| 827 // will consume at least that many bytes. 828 // 829 // Otherwise, it sets |*out_consumed| to the number of bytes of input 830 // consumed. Note that input may be consumed on all return codes if a record was 831 // decrypted. 832 // 833 // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the 834 // record type and |*out| to the record body in |in|. Note that |*out| may be 835 // empty. 836 // 837 // If a record was successfully processed but should be discarded, it returns 838 // |ssl_open_record_discard|. 839 // 840 // If a record was successfully processed but is a close_notify, it returns 841 // |ssl_open_record_close_notify|. 842 // 843 // On failure or fatal alert, it returns |ssl_open_record_error| and sets 844 // |*out_alert| to an alert to emit, or zero if no alert should be emitted. 845 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, 846 Span<uint8_t> *out, size_t *out_consumed, 847 uint8_t *out_alert, Span<uint8_t> in); 848 849 // dtls_open_record implements |tls_open_record| for DTLS. It only returns 850 // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to 851 // zero. The caller should read one packet and try again. 852 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, 853 Span<uint8_t> *out, 854 size_t *out_consumed, 855 uint8_t *out_alert, Span<uint8_t> in); 856 857 // ssl_seal_align_prefix_len returns the length of the prefix before the start 858 // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may 859 // use this to align buffers. 860 // 861 // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte 862 // record and is the offset into second record's ciphertext. Thus sealing a 863 // small record may result in a smaller output than this value. 864 // 865 // TODO(davidben): Is this alignment valuable? Record-splitting makes this a 866 // mess. 867 size_t ssl_seal_align_prefix_len(const SSL *ssl); 868 869 // tls_seal_record seals a new record of type |type| and body |in| and writes it 870 // to |out|. At most |max_out| bytes will be written. It returns true on success 871 // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC 872 // 1/n-1 record splitting and may write two records concatenated. 873 // 874 // For a large record, the bulk of the ciphertext will begin 875 // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may 876 // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead| 877 // bytes to |out|. 878 // 879 // |in| and |out| may not alias. 880 bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, 881 uint8_t type, const uint8_t *in, size_t in_len); 882 883 enum dtls1_use_epoch_t { 884 dtls1_use_previous_epoch, 885 dtls1_use_current_epoch, 886 }; 887 888 // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a 889 // record. 890 size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch); 891 892 // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in 893 // front of the plaintext when sealing a record in-place. 894 size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch); 895 896 // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects 897 // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out| 898 // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes 899 // ahead of |out|. 900 bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, 901 uint8_t type, const uint8_t *in, size_t in_len, 902 enum dtls1_use_epoch_t use_epoch); 903 904 // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown 905 // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|, 906 // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as 907 // appropriate. 908 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert, 909 Span<const uint8_t> in); 910 911 912 // Private key operations. 913 914 // ssl_has_private_key returns whether |hs| has a private key configured. 915 bool ssl_has_private_key(const SSL_HANDSHAKE *hs); 916 917 // ssl_private_key_* perform the corresponding operation on 918 // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they 919 // call the corresponding function or |complete| depending on whether there is a 920 // pending operation. Otherwise, they implement the operation with 921 // |EVP_PKEY|. 922 923 enum ssl_private_key_result_t ssl_private_key_sign( 924 SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, 925 uint16_t sigalg, Span<const uint8_t> in); 926 927 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, 928 uint8_t *out, 929 size_t *out_len, 930 size_t max_out, 931 Span<const uint8_t> in); 932 933 // ssl_private_key_supports_signature_algorithm returns whether |hs|'s private 934 // key supports |sigalg|. 935 bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs, 936 uint16_t sigalg); 937 938 // ssl_public_key_verify verifies that the |signature| is valid for the public 939 // key |pkey| and input |in|, using the signature algorithm |sigalg|. 940 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature, 941 uint16_t sigalg, EVP_PKEY *pkey, 942 Span<const uint8_t> in); 943 944 945 // Key shares. 946 947 // SSLKeyShare abstracts over Diffie-Hellman-like key exchanges. 948 class SSLKeyShare { 949 public: 950 virtual ~SSLKeyShare() {} 951 static constexpr bool kAllowUniquePtr = true; 952 HAS_VIRTUAL_DESTRUCTOR 953 954 // Create returns a SSLKeyShare instance for use with group |group_id| or 955 // nullptr on error. 956 static UniquePtr<SSLKeyShare> Create(uint16_t group_id); 957 958 // Create deserializes an SSLKeyShare instance previously serialized by 959 // |Serialize|. 960 static UniquePtr<SSLKeyShare> Create(CBS *in); 961 962 // GroupID returns the group ID. 963 virtual uint16_t GroupID() const PURE_VIRTUAL; 964 965 // Offer generates a keypair and writes the public value to 966 // |out_public_key|. It returns true on success and false on error. 967 virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL; 968 969 // Accept performs a key exchange against the |peer_key| generated by |Offer|. 970 // On success, it returns true, writes the public value to |out_public_key|, 971 // and sets |*out_secret| to the shared secret. On failure, it returns false 972 // and sets |*out_alert| to an alert to send to the peer. 973 // 974 // The default implementation calls |Offer| and then |Finish|, assuming a key 975 // exchange protocol where the peers are symmetric. 976 virtual bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret, 977 uint8_t *out_alert, Span<const uint8_t> peer_key); 978 979 // Finish performs a key exchange against the |peer_key| generated by 980 // |Accept|. On success, it returns true and sets |*out_secret| to the shared 981 // secret. On failure, it returns false and sets |*out_alert| to an alert to 982 // send to the peer. 983 virtual bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert, 984 Span<const uint8_t> peer_key) PURE_VIRTUAL; 985 986 // Serialize writes the state of the key exchange to |out|, returning true if 987 // successful and false otherwise. 988 virtual bool Serialize(CBB *out) { return false; } 989 990 // Deserialize initializes the state of the key exchange from |in|, returning 991 // true if successful and false otherwise. It is called by |Create|. 992 virtual bool Deserialize(CBS *in) { return false; } 993 }; 994 995 struct NamedGroup { 996 int nid; 997 uint16_t group_id; 998 const char name[8], alias[11]; 999 }; 1000 1001 // NamedGroups returns all supported groups. 1002 Span<const NamedGroup> NamedGroups(); 1003 1004 // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it 1005 // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns 1006 // false. 1007 bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid); 1008 1009 // ssl_name_to_group_id looks up the group corresponding to the |name| string of 1010 // length |len|. On success, it sets |*out_group_id| to the group ID and returns 1011 // true. Otherwise, it returns false. 1012 bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len); 1013 1014 1015 // Handshake messages. 1016 1017 struct SSLMessage { 1018 bool is_v2_hello; 1019 uint8_t type; 1020 CBS body; 1021 // raw is the entire serialized handshake message, including the TLS or DTLS 1022 // message header. 1023 CBS raw; 1024 }; 1025 1026 // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including 1027 // ChangeCipherSpec, in the longest handshake flight. Currently this is the 1028 // client's second leg in a full handshake when client certificates, NPN, and 1029 // Channel ID, are all enabled. 1030 #define SSL_MAX_HANDSHAKE_FLIGHT 7 1031 1032 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE]; 1033 extern const uint8_t kTLS12DowngradeRandom[8]; 1034 extern const uint8_t kTLS13DowngradeRandom[8]; 1035 extern const uint8_t kJDK11DowngradeRandom[8]; 1036 1037 // ssl_max_handshake_message_len returns the maximum number of bytes permitted 1038 // in a handshake message for |ssl|. 1039 size_t ssl_max_handshake_message_len(const SSL *ssl); 1040 1041 // tls_can_accept_handshake_data returns whether |ssl| is able to accept more 1042 // data into handshake buffer. 1043 bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert); 1044 1045 // tls_has_unprocessed_handshake_data returns whether there is buffered 1046 // handshake data that has not been consumed by |get_message|. 1047 bool tls_has_unprocessed_handshake_data(const SSL *ssl); 1048 1049 // tls_append_handshake_data appends |data| to the handshake buffer. It returns 1050 // true on success and false on allocation failure. 1051 bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data); 1052 1053 // dtls_has_unprocessed_handshake_data behaves like 1054 // |tls_has_unprocessed_handshake_data| for DTLS. 1055 bool dtls_has_unprocessed_handshake_data(const SSL *ssl); 1056 1057 // tls_flush_pending_hs_data flushes any handshake plaintext data. 1058 bool tls_flush_pending_hs_data(SSL *ssl); 1059 1060 struct DTLS_OUTGOING_MESSAGE { 1061 DTLS_OUTGOING_MESSAGE() {} 1062 DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete; 1063 DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete; 1064 ~DTLS_OUTGOING_MESSAGE() { Clear(); } 1065 1066 void Clear(); 1067 1068 uint8_t *data = nullptr; 1069 uint32_t len = 0; 1070 uint16_t epoch = 0; 1071 bool is_ccs = false; 1072 }; 1073 1074 // dtls_clear_outgoing_messages releases all buffered outgoing messages. 1075 void dtls_clear_outgoing_messages(SSL *ssl); 1076 1077 1078 // Callbacks. 1079 1080 // ssl_do_info_callback calls |ssl|'s info callback, if set. 1081 void ssl_do_info_callback(const SSL *ssl, int type, int value); 1082 1083 // ssl_do_msg_callback calls |ssl|'s message callback, if set. 1084 void ssl_do_msg_callback(SSL *ssl, int is_write, int content_type, 1085 Span<const uint8_t> in); 1086 1087 1088 // Transport buffers. 1089 1090 class SSLBuffer { 1091 public: 1092 SSLBuffer() {} 1093 ~SSLBuffer() { Clear(); } 1094 1095 SSLBuffer(const SSLBuffer &) = delete; 1096 SSLBuffer &operator=(const SSLBuffer &) = delete; 1097 1098 uint8_t *data() { return buf_ + offset_; } 1099 size_t size() const { return size_; } 1100 bool empty() const { return size_ == 0; } 1101 size_t cap() const { return cap_; } 1102 1103 Span<uint8_t> span() { return MakeSpan(data(), size()); } 1104 1105 Span<uint8_t> remaining() { 1106 return MakeSpan(data() + size(), cap() - size()); 1107 } 1108 1109 // Clear releases the buffer. 1110 void Clear(); 1111 1112 // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such 1113 // that data written after |header_len| is aligned to a 1114 // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false 1115 // on error. 1116 bool EnsureCap(size_t header_len, size_t new_cap); 1117 1118 // DidWrite extends the buffer by |len|. The caller must have filled in to 1119 // this point. 1120 void DidWrite(size_t len); 1121 1122 // Consume consumes |len| bytes from the front of the buffer. The memory 1123 // consumed will remain valid until the next call to |DiscardConsumed| or 1124 // |Clear|. 1125 void Consume(size_t len); 1126 1127 // DiscardConsumed discards the consumed bytes from the buffer. If the buffer 1128 // is now empty, it releases memory used by it. 1129 void DiscardConsumed(); 1130 1131 private: 1132 // buf_ is the memory allocated for this buffer. 1133 uint8_t *buf_ = nullptr; 1134 // offset_ is the offset into |buf_| which the buffer contents start at. 1135 uint16_t offset_ = 0; 1136 // size_ is the size of the buffer contents from |buf_| + |offset_|. 1137 uint16_t size_ = 0; 1138 // cap_ is how much memory beyond |buf_| + |offset_| is available. 1139 uint16_t cap_ = 0; 1140 }; 1141 1142 // ssl_read_buffer_extend_to extends the read buffer to the desired length. For 1143 // TLS, it reads to the end of the buffer until the buffer is |len| bytes 1144 // long. For DTLS, it reads a new packet and ignores |len|. It returns one on 1145 // success, zero on EOF, and a negative number on error. 1146 // 1147 // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is 1148 // non-empty. 1149 int ssl_read_buffer_extend_to(SSL *ssl, size_t len); 1150 1151 // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer| 1152 // to a record-processing function. If |ret| is a success or if the caller 1153 // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <= 1154 // 0. 1155 int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret, 1156 size_t consumed, uint8_t alert); 1157 1158 // ssl_write_buffer_flush flushes the write buffer to the transport. It returns 1159 // one on success and <= 0 on error. For DTLS, whether or not the write 1160 // succeeds, the write buffer will be cleared. 1161 int ssl_write_buffer_flush(SSL *ssl); 1162 1163 1164 // Certificate functions. 1165 1166 // ssl_has_certificate returns whether a certificate and private key are 1167 // configured. 1168 bool ssl_has_certificate(const SSL_HANDSHAKE *hs); 1169 1170 // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used 1171 // by a TLS Certificate message. On success, it advances |cbs| and returns 1172 // true. Otherwise, it returns false and sets |*out_alert| to an alert to send 1173 // to the peer. 1174 // 1175 // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to 1176 // the certificate chain and the leaf certificate's public key 1177 // respectively. Otherwise, both will be set to nullptr. 1178 // 1179 // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the 1180 // SHA-256 hash of the leaf to |out_leaf_sha256|. 1181 bool ssl_parse_cert_chain(uint8_t *out_alert, 1182 UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain, 1183 UniquePtr<EVP_PKEY> *out_pubkey, 1184 uint8_t *out_leaf_sha256, CBS *cbs, 1185 CRYPTO_BUFFER_POOL *pool); 1186 1187 // ssl_add_cert_chain adds |hs->ssl|'s certificate chain to |cbb| in the format 1188 // used by a TLS Certificate message. If there is no certificate chain, it emits 1189 // an empty certificate list. It returns true on success and false on error. 1190 bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb); 1191 1192 enum ssl_key_usage_t { 1193 key_usage_digital_signature = 0, 1194 key_usage_encipherment = 2, 1195 }; 1196 1197 // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in| 1198 // and returns true if doesn't specify a key usage or, if it does, if it 1199 // includes |bit|. Otherwise it pushes to the error queue and returns false. 1200 bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit); 1201 1202 // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509 1203 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns 1204 // nullptr and pushes to the error queue. 1205 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in); 1206 1207 // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a 1208 // TLS CertificateRequest message. On success, it returns a newly-allocated 1209 // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and 1210 // sets |*out_alert| to an alert to send to the peer. 1211 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl, 1212 uint8_t *out_alert, 1213 CBS *cbs); 1214 1215 // ssl_has_client_CAs returns there are configured CAs. 1216 bool ssl_has_client_CAs(const SSL_CONFIG *cfg); 1217 1218 // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format 1219 // used by a TLS CertificateRequest message. It returns true on success and 1220 // false on error. 1221 bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb); 1222 1223 // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as 1224 // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes 1225 // an error on the error queue. 1226 bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey, 1227 const CRYPTO_BUFFER *leaf); 1228 1229 // ssl_on_certificate_selected is called once the certificate has been selected. 1230 // It finalizes the certificate and initializes |hs->local_pubkey|. It returns 1231 // true on success and false on error. 1232 bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs); 1233 1234 1235 // TLS 1.3 key derivation. 1236 1237 // tls13_init_key_schedule initializes the handshake hash and key derivation 1238 // state, and incorporates the PSK. The cipher suite and PRF hash must have been 1239 // selected at this point. It returns true on success and false on error. 1240 bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk, 1241 size_t psk_len); 1242 1243 // tls13_init_early_key_schedule initializes the handshake hash and key 1244 // derivation state from the resumption secret and incorporates the PSK to 1245 // derive the early secrets. It returns one on success and zero on error. 1246 bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk, 1247 size_t psk_len); 1248 1249 // tls13_advance_key_schedule incorporates |in| into the key schedule with 1250 // HKDF-Extract. It returns true on success and false on error. 1251 bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in, 1252 size_t len); 1253 1254 // tls13_set_traffic_key sets the read or write traffic keys to 1255 // |traffic_secret|. It returns true on success and false on error. 1256 bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level, 1257 enum evp_aead_direction_t direction, 1258 const uint8_t *traffic_secret, 1259 size_t traffic_secret_len); 1260 1261 // tls13_derive_early_secrets derives the early traffic secret. It returns true 1262 // on success and false on error. 1263 bool tls13_derive_early_secrets(SSL_HANDSHAKE *hs); 1264 1265 // tls13_derive_handshake_secrets derives the handshake traffic secret. It 1266 // returns true on success and false on error. 1267 bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs); 1268 1269 // tls13_rotate_traffic_key derives the next read or write traffic secret. It 1270 // returns true on success and false on error. 1271 bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction); 1272 1273 // tls13_derive_application_secrets derives the initial application data traffic 1274 // and exporter secrets based on the handshake transcripts and |master_secret|. 1275 // It returns true on success and false on error. 1276 bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs); 1277 1278 // tls13_derive_resumption_secret derives the |resumption_secret|. 1279 bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs); 1280 1281 // tls13_export_keying_material provides an exporter interface to use the 1282 // |exporter_secret|. 1283 bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out, 1284 Span<const uint8_t> secret, 1285 Span<const char> label, 1286 Span<const uint8_t> context); 1287 1288 // tls13_finished_mac calculates the MAC of the handshake transcript to verify 1289 // the integrity of the Finished message, and stores the result in |out| and 1290 // length in |out_len|. |is_server| is true if this is for the Server Finished 1291 // and false for the Client Finished. 1292 bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, 1293 bool is_server); 1294 1295 // tls13_derive_session_psk calculates the PSK for this session based on the 1296 // resumption master secret and |nonce|. It returns true on success, and false 1297 // on failure. 1298 bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce); 1299 1300 // tls13_write_psk_binder calculates the PSK binder value and replaces the last 1301 // bytes of |msg| with the resulting value. It returns true on success, and 1302 // false on failure. 1303 bool tls13_write_psk_binder(SSL_HANDSHAKE *hs, uint8_t *msg, size_t len); 1304 1305 // tls13_verify_psk_binder verifies that the handshake transcript, truncated up 1306 // to the binders has a valid signature using the value of |session|'s 1307 // resumption secret. It returns true on success, and false on failure. 1308 bool tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session, 1309 const SSLMessage &msg, CBS *binders); 1310 1311 1312 // Handshake functions. 1313 1314 enum ssl_hs_wait_t { 1315 ssl_hs_error, 1316 ssl_hs_ok, 1317 ssl_hs_read_server_hello, 1318 ssl_hs_read_message, 1319 ssl_hs_flush, 1320 ssl_hs_certificate_selection_pending, 1321 ssl_hs_handoff, 1322 ssl_hs_handback, 1323 ssl_hs_x509_lookup, 1324 ssl_hs_channel_id_lookup, 1325 ssl_hs_private_key_operation, 1326 ssl_hs_pending_session, 1327 ssl_hs_pending_ticket, 1328 ssl_hs_early_return, 1329 ssl_hs_early_data_rejected, 1330 ssl_hs_read_end_of_early_data, 1331 ssl_hs_read_change_cipher_spec, 1332 ssl_hs_certificate_verify, 1333 }; 1334 1335 enum ssl_grease_index_t { 1336 ssl_grease_cipher = 0, 1337 ssl_grease_group, 1338 ssl_grease_extension1, 1339 ssl_grease_extension2, 1340 ssl_grease_version, 1341 ssl_grease_ticket_extension, 1342 ssl_grease_last_index = ssl_grease_ticket_extension, 1343 }; 1344 1345 enum tls12_server_hs_state_t { 1346 state12_start_accept = 0, 1347 state12_read_client_hello, 1348 state12_select_certificate, 1349 state12_tls13, 1350 state12_select_parameters, 1351 state12_send_server_hello, 1352 state12_send_server_certificate, 1353 state12_send_server_key_exchange, 1354 state12_send_server_hello_done, 1355 state12_read_client_certificate, 1356 state12_verify_client_certificate, 1357 state12_read_client_key_exchange, 1358 state12_read_client_certificate_verify, 1359 state12_read_change_cipher_spec, 1360 state12_process_change_cipher_spec, 1361 state12_read_next_proto, 1362 state12_read_channel_id, 1363 state12_read_client_finished, 1364 state12_send_server_finished, 1365 state12_finish_server_handshake, 1366 state12_done, 1367 }; 1368 1369 // handback_t lists the points in the state machine where a handback can occur. 1370 // These are the different points at which key material is no longer needed. 1371 enum handback_t { 1372 handback_after_session_resumption, 1373 handback_after_ecdhe, 1374 handback_after_handshake, 1375 }; 1376 1377 1378 // Delegated credentials. 1379 1380 // This structure stores a delegated credential (DC) as defined by 1381 // draft-ietf-tls-subcerts-03. 1382 struct DC { 1383 static constexpr bool kAllowUniquePtr = true; 1384 ~DC(); 1385 1386 // Dup returns a copy of this DC and takes references to |raw| and |pkey|. 1387 UniquePtr<DC> Dup(); 1388 1389 // Parse parses the delegated credential stored in |in|. If successful it 1390 // returns the parsed structure, otherwise it returns |nullptr| and sets 1391 // |*out_alert|. 1392 static UniquePtr<DC> Parse(CRYPTO_BUFFER *in, uint8_t *out_alert); 1393 1394 // raw is the delegated credential encoded as specified in draft-ietf-tls- 1395 // subcerts-02. 1396 UniquePtr<CRYPTO_BUFFER> raw; 1397 1398 // expected_cert_verify_algorithm is the signature scheme of the DC public 1399 // key. 1400 uint16_t expected_cert_verify_algorithm = 0; 1401 1402 // pkey is the public key parsed from |public_key|. 1403 UniquePtr<EVP_PKEY> pkey; 1404 1405 private: 1406 friend DC* New<DC>(); 1407 DC(); 1408 }; 1409 1410 // ssl_signing_with_dc returns true if the peer has indicated support for 1411 // delegated credentials and this host has sent a delegated credential in 1412 // response. If this is true then we've committed to using the DC in the 1413 // handshake. 1414 bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs); 1415 1416 1417 struct SSL_HANDSHAKE { 1418 explicit SSL_HANDSHAKE(SSL *ssl); 1419 ~SSL_HANDSHAKE(); 1420 static constexpr bool kAllowUniquePtr = true; 1421 1422 // ssl is a non-owning pointer to the parent |SSL| object. 1423 SSL *ssl; 1424 1425 // config is a non-owning pointer to the handshake configuration. 1426 SSL_CONFIG *config; 1427 1428 // wait contains the operation the handshake is currently blocking on or 1429 // |ssl_hs_ok| if none. 1430 enum ssl_hs_wait_t wait = ssl_hs_ok; 1431 1432 // state is the internal state for the TLS 1.2 and below handshake. Its 1433 // values depend on |do_handshake| but the starting state is always zero. 1434 int state = 0; 1435 1436 // tls13_state is the internal state for the TLS 1.3 handshake. Its values 1437 // depend on |do_handshake| but the starting state is always zero. 1438 int tls13_state = 0; 1439 1440 // min_version is the minimum accepted protocol version, taking account both 1441 // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs. 1442 uint16_t min_version = 0; 1443 1444 // max_version is the maximum accepted protocol version, taking account both 1445 // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs. 1446 uint16_t max_version = 0; 1447 1448 size_t hash_len = 0; 1449 uint8_t secret[EVP_MAX_MD_SIZE] = {0}; 1450 uint8_t early_traffic_secret[EVP_MAX_MD_SIZE] = {0}; 1451 uint8_t client_handshake_secret[EVP_MAX_MD_SIZE] = {0}; 1452 uint8_t server_handshake_secret[EVP_MAX_MD_SIZE] = {0}; 1453 uint8_t client_traffic_secret_0[EVP_MAX_MD_SIZE] = {0}; 1454 uint8_t server_traffic_secret_0[EVP_MAX_MD_SIZE] = {0}; 1455 uint8_t expected_client_finished[EVP_MAX_MD_SIZE] = {0}; 1456 1457 union { 1458 // sent is a bitset where the bits correspond to elements of kExtensions 1459 // in t1_lib.c. Each bit is set if that extension was sent in a 1460 // ClientHello. It's not used by servers. 1461 uint32_t sent = 0; 1462 // received is a bitset, like |sent|, but is used by servers to record 1463 // which extensions were received from a client. 1464 uint32_t received; 1465 } extensions; 1466 1467 // retry_group is the group ID selected by the server in HelloRetryRequest in 1468 // TLS 1.3. 1469 uint16_t retry_group = 0; 1470 1471 // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on. 1472 UniquePtr<ERR_SAVE_STATE> error; 1473 1474 // key_shares are the current key exchange instances. The second is only used 1475 // as a client if we believe that we should offer two key shares in a 1476 // ClientHello. 1477 UniquePtr<SSLKeyShare> key_shares[2]; 1478 1479 // transcript is the current handshake transcript. 1480 SSLTranscript transcript; 1481 1482 // cookie is the value of the cookie received from the server, if any. 1483 Array<uint8_t> cookie; 1484 1485 // key_share_bytes is the value of the previously sent KeyShare extension by 1486 // the client in TLS 1.3. 1487 Array<uint8_t> key_share_bytes; 1488 1489 // ecdh_public_key, for servers, is the key share to be sent to the client in 1490 // TLS 1.3. 1491 Array<uint8_t> ecdh_public_key; 1492 1493 // peer_sigalgs are the signature algorithms that the peer supports. These are 1494 // taken from the contents of the signature algorithms extension for a server 1495 // or from the CertificateRequest for a client. 1496 Array<uint16_t> peer_sigalgs; 1497 1498 // peer_supported_group_list contains the supported group IDs advertised by 1499 // the peer. This is only set on the server's end. The server does not 1500 // advertise this extension to the client. 1501 Array<uint16_t> peer_supported_group_list; 1502 1503 // peer_key is the peer's ECDH key for a TLS 1.2 client. 1504 Array<uint8_t> peer_key; 1505 1506 // negotiated_token_binding_version is used by a server to store the 1507 // on-the-wire encoding of the Token Binding protocol version to advertise in 1508 // the ServerHello/EncryptedExtensions if the Token Binding extension is to be 1509 // sent. 1510 uint16_t negotiated_token_binding_version; 1511 1512 // cert_compression_alg_id, for a server, contains the negotiated certificate 1513 // compression algorithm for this client. It is only valid if 1514 // |cert_compression_negotiated| is true. 1515 uint16_t cert_compression_alg_id; 1516 1517 // server_params, in a TLS 1.2 server, stores the ServerKeyExchange 1518 // parameters. It has client and server randoms prepended for signing 1519 // convenience. 1520 Array<uint8_t> server_params; 1521 1522 // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the 1523 // server when using a TLS 1.2 PSK key exchange. 1524 UniquePtr<char> peer_psk_identity_hint; 1525 1526 // ca_names, on the client, contains the list of CAs received in a 1527 // CertificateRequest message. 1528 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names; 1529 1530 // cached_x509_ca_names contains a cache of parsed versions of the elements of 1531 // |ca_names|. This pointer is left non-owning so only 1532 // |ssl_crypto_x509_method| needs to link against crypto/x509. 1533 STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr; 1534 1535 // certificate_types, on the client, contains the set of certificate types 1536 // received in a CertificateRequest message. 1537 Array<uint8_t> certificate_types; 1538 1539 // local_pubkey is the public key we are authenticating as. 1540 UniquePtr<EVP_PKEY> local_pubkey; 1541 1542 // peer_pubkey is the public key parsed from the peer's leaf certificate. 1543 UniquePtr<EVP_PKEY> peer_pubkey; 1544 1545 // new_session is the new mutable session being established by the current 1546 // handshake. It should not be cached. 1547 UniquePtr<SSL_SESSION> new_session; 1548 1549 // early_session is the session corresponding to the current 0-RTT state on 1550 // the client if |in_early_data| is true. 1551 UniquePtr<SSL_SESSION> early_session; 1552 1553 // new_cipher is the cipher being negotiated in this handshake. 1554 const SSL_CIPHER *new_cipher = nullptr; 1555 1556 // key_block is the record-layer key block for TLS 1.2 and earlier. 1557 Array<uint8_t> key_block; 1558 1559 // scts_requested is true if the SCT extension is in the ClientHello. 1560 bool scts_requested : 1; 1561 1562 // needs_psk_binder is true if the ClientHello has a placeholder PSK binder to 1563 // be filled in. 1564 bool needs_psk_binder : 1; 1565 1566 bool received_hello_retry_request : 1; 1567 bool sent_hello_retry_request : 1; 1568 1569 // handshake_finalized is true once the handshake has completed, at which 1570 // point accessors should use the established state. 1571 bool handshake_finalized : 1; 1572 1573 // accept_psk_mode stores whether the client's PSK mode is compatible with our 1574 // preferences. 1575 bool accept_psk_mode : 1; 1576 1577 // cert_request is true if a client certificate was requested. 1578 bool cert_request : 1; 1579 1580 // certificate_status_expected is true if OCSP stapling was negotiated and the 1581 // server is expected to send a CertificateStatus message. (This is used on 1582 // both the client and server sides.) 1583 bool certificate_status_expected : 1; 1584 1585 // ocsp_stapling_requested is true if a client requested OCSP stapling. 1586 bool ocsp_stapling_requested : 1; 1587 1588 // delegated_credential_requested is true if the peer indicated support for 1589 // the delegated credential extension. 1590 bool delegated_credential_requested : 1; 1591 1592 // should_ack_sni is used by a server and indicates that the SNI extension 1593 // should be echoed in the ServerHello. 1594 bool should_ack_sni : 1; 1595 1596 // in_false_start is true if there is a pending client handshake in False 1597 // Start. The client may write data at this point. 1598 bool in_false_start : 1; 1599 1600 // in_early_data is true if there is a pending handshake that has progressed 1601 // enough to send and receive early data. 1602 bool in_early_data : 1; 1603 1604 // early_data_offered is true if the client sent the early_data extension. 1605 bool early_data_offered : 1; 1606 1607 // can_early_read is true if application data may be read at this point in the 1608 // handshake. 1609 bool can_early_read : 1; 1610 1611 // can_early_write is true if application data may be written at this point in 1612 // the handshake. 1613 bool can_early_write : 1; 1614 1615 // next_proto_neg_seen is one of NPN was negotiated. 1616 bool next_proto_neg_seen : 1; 1617 1618 // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent 1619 // or received. 1620 bool ticket_expected : 1; 1621 1622 // extended_master_secret is true if the extended master secret extension is 1623 // negotiated in this handshake. 1624 bool extended_master_secret : 1; 1625 1626 // pending_private_key_op is true if there is a pending private key operation 1627 // in progress. 1628 bool pending_private_key_op : 1; 1629 1630 // grease_seeded is true if |grease_seed| has been initialized. 1631 bool grease_seeded : 1; 1632 1633 // handback indicates that a server should pause the handshake after 1634 // finishing operations that require private key material, in such a way that 1635 // |SSL_get_error| returns |SSL_HANDBACK|. It is set by |SSL_apply_handoff|. 1636 bool handback : 1; 1637 1638 // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid. 1639 bool cert_compression_negotiated : 1; 1640 1641 // apply_jdk11_workaround is true if the peer is probably a JDK 11 client 1642 // which implemented TLS 1.3 incorrectly. 1643 bool apply_jdk11_workaround : 1; 1644 1645 // client_version is the value sent or received in the ClientHello version. 1646 uint16_t client_version = 0; 1647 1648 // early_data_read is the amount of early data that has been read by the 1649 // record layer. 1650 uint16_t early_data_read = 0; 1651 1652 // early_data_written is the amount of early data that has been written by the 1653 // record layer. 1654 uint16_t early_data_written = 0; 1655 1656 // session_id is the session ID in the ClientHello. 1657 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0}; 1658 uint8_t session_id_len = 0; 1659 1660 // grease_seed is the entropy for GREASE values. It is valid if 1661 // |grease_seeded| is true. 1662 uint8_t grease_seed[ssl_grease_last_index + 1] = {0}; 1663 }; 1664 1665 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl); 1666 1667 // ssl_check_message_type checks if |msg| has type |type|. If so it returns 1668 // one. Otherwise, it sends an alert and returns zero. 1669 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type); 1670 1671 // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0 1672 // on error. It sets |out_early_return| to one if we've completed the handshake 1673 // early. 1674 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return); 1675 1676 // The following are implementations of |do_handshake| for the client and 1677 // server. 1678 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs); 1679 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs); 1680 enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs); 1681 enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs); 1682 1683 // The following functions return human-readable representations of the TLS 1684 // handshake states for debugging. 1685 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs); 1686 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs); 1687 const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs); 1688 const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs); 1689 1690 // tls13_add_key_update queues a KeyUpdate message on |ssl|. The 1691 // |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or 1692 // |SSL_KEY_UPDATE_NOT_REQUESTED|. 1693 bool tls13_add_key_update(SSL *ssl, int update_requested); 1694 1695 // tls13_post_handshake processes a post-handshake message. It returns true on 1696 // success and false on failure. 1697 bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg); 1698 1699 bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg, 1700 bool allow_anonymous); 1701 bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg); 1702 1703 // tls13_process_finished processes |msg| as a Finished message from the 1704 // peer. If |use_saved_value| is true, the verify_data is compared against 1705 // |hs->expected_client_finished| rather than computed fresh. 1706 bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg, 1707 bool use_saved_value); 1708 1709 bool tls13_add_certificate(SSL_HANDSHAKE *hs); 1710 1711 // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the 1712 // handshake. If it returns |ssl_private_key_retry|, it should be called again 1713 // to retry when the signing operation is completed. 1714 enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs); 1715 1716 bool tls13_add_finished(SSL_HANDSHAKE *hs); 1717 bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg); 1718 1719 bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, 1720 Array<uint8_t> *out_secret, 1721 uint8_t *out_alert, CBS *contents); 1722 bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found, 1723 Array<uint8_t> *out_secret, 1724 uint8_t *out_alert, CBS *contents); 1725 bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); 1726 1727 bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs, 1728 uint8_t *out_alert, 1729 CBS *contents); 1730 bool ssl_ext_pre_shared_key_parse_clienthello( 1731 SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders, 1732 uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, CBS *contents); 1733 bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); 1734 1735 // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and 1736 // returns whether it's valid. 1737 bool ssl_is_sct_list_valid(const CBS *contents); 1738 1739 bool ssl_write_client_hello(SSL_HANDSHAKE *hs); 1740 1741 enum ssl_cert_verify_context_t { 1742 ssl_cert_verify_server, 1743 ssl_cert_verify_client, 1744 ssl_cert_verify_channel_id, 1745 }; 1746 1747 // tls13_get_cert_verify_signature_input generates the message to be signed for 1748 // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the 1749 // type of signature. It sets |*out| to a newly allocated buffer containing the 1750 // result. This function returns true on success and false on failure. 1751 bool tls13_get_cert_verify_signature_input( 1752 SSL_HANDSHAKE *hs, Array<uint8_t> *out, 1753 enum ssl_cert_verify_context_t cert_verify_context); 1754 1755 // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server 1756 // selection for |hs->ssl|'s client preferences. 1757 bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs, 1758 Span<const uint8_t> protocol); 1759 1760 // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns 1761 // true on successful negotiation or if nothing was negotiated. It returns false 1762 // and sets |*out_alert| to an alert on error. 1763 bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert, 1764 const SSL_CLIENT_HELLO *client_hello); 1765 1766 struct SSL_EXTENSION_TYPE { 1767 uint16_t type; 1768 bool *out_present; 1769 CBS *out_data; 1770 }; 1771 1772 // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances 1773 // it. It writes the parsed extensions to pointers denoted by |ext_types|. On 1774 // success, it fills in the |out_present| and |out_data| fields and returns one. 1775 // Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown 1776 // extensions are rejected unless |ignore_unknown| is 1. 1777 int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert, 1778 const SSL_EXTENSION_TYPE *ext_types, 1779 size_t num_ext_types, int ignore_unknown); 1780 1781 // ssl_verify_peer_cert verifies the peer certificate for |hs|. 1782 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs); 1783 // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a 1784 // session. 1785 enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs); 1786 1787 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs); 1788 bool ssl_send_finished(SSL_HANDSHAKE *hs); 1789 bool ssl_output_cert_chain(SSL_HANDSHAKE *hs); 1790 1791 // SSLKEYLOGFILE functions. 1792 1793 // ssl_log_secret logs |secret| with label |label|, if logging is enabled for 1794 // |ssl|. It returns one on success and zero on failure. 1795 int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret, 1796 size_t secret_len); 1797 1798 1799 // ClientHello functions. 1800 1801 bool ssl_client_hello_init(SSL *ssl, SSL_CLIENT_HELLO *out, 1802 const SSLMessage &msg); 1803 1804 bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello, 1805 CBS *out, uint16_t extension_type); 1806 1807 bool ssl_client_cipher_list_contains_cipher( 1808 const SSL_CLIENT_HELLO *client_hello, uint16_t id); 1809 1810 1811 // GREASE. 1812 1813 // ssl_get_grease_value returns a GREASE value for |hs|. For a given 1814 // connection, the values for each index will be deterministic. This allows the 1815 // same ClientHello be sent twice for a HelloRetryRequest or the same group be 1816 // advertised in both supported_groups and key_shares. 1817 uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs, enum ssl_grease_index_t index); 1818 1819 1820 // Signature algorithms. 1821 1822 // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature 1823 // algorithms and saves them on |hs|. It returns true on success and false on 1824 // error. 1825 bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs); 1826 1827 // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm 1828 // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on 1829 // success and false if |pkey| may not be used at those versions. 1830 bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey); 1831 1832 // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use 1833 // with |hs|'s private key based on the peer's preferences and the algorithms 1834 // supported. It returns true on success and false on error. 1835 bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out); 1836 1837 // tls1_get_peer_verify_algorithms returns the signature schemes for which the 1838 // peer indicated support. 1839 // 1840 // NOTE: The related function |SSL_get0_peer_verify_algorithms| only has 1841 // well-defined behavior during the callbacks set by |SSL_CTX_set_cert_cb| and 1842 // |SSL_CTX_set_client_cert_cb|, or when the handshake is paused because of 1843 // them. 1844 Span<const uint16_t> tls1_get_peer_verify_algorithms(const SSL_HANDSHAKE *hs); 1845 1846 // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the 1847 // peer signature to |out|. It returns true on success and false on error. If 1848 // |for_certs| is true, the potentially more restrictive list of algorithms for 1849 // certificates is used. Otherwise, the online signature one is used. 1850 bool tls12_add_verify_sigalgs(const SSL *ssl, CBB *out, bool for_certs); 1851 1852 // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer 1853 // signature. It returns true on success and false on error, setting 1854 // |*out_alert| to an alert to send. 1855 bool tls12_check_peer_sigalg(const SSL *ssl, uint8_t *out_alert, 1856 uint16_t sigalg); 1857 1858 // tls12_has_different_verify_sigalgs_for_certs returns whether |ssl| has a 1859 // different, more restrictive, list of signature algorithms acceptable for the 1860 // certificate than the online signature. 1861 bool tls12_has_different_verify_sigalgs_for_certs(const SSL *ssl); 1862 1863 1864 // Underdocumented functions. 1865 // 1866 // Functions below here haven't been touched up and may be underdocumented. 1867 1868 #define TLSEXT_CHANNEL_ID_SIZE 128 1869 1870 // From RFC4492, used in encoding the curve type in ECParameters 1871 #define NAMED_CURVE_TYPE 3 1872 1873 struct CERT { 1874 static constexpr bool kAllowUniquePtr = true; 1875 1876 explicit CERT(const SSL_X509_METHOD *x509_method); 1877 ~CERT(); 1878 1879 UniquePtr<EVP_PKEY> privatekey; 1880 1881 // chain contains the certificate chain, with the leaf at the beginning. The 1882 // first element of |chain| may be NULL to indicate that the leaf certificate 1883 // has not yet been set. 1884 // If |chain| != NULL -> len(chain) >= 1 1885 // If |chain[0]| == NULL -> len(chain) >= 2. 1886 // |chain[1..]| != NULL 1887 UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain; 1888 1889 // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as 1890 // a cache in order to implement get0 functions that return a non-owning 1891 // pointer to the certificate chain. 1892 STACK_OF(X509) *x509_chain = nullptr; 1893 1894 // x509_leaf may contain a parsed copy of the first element of |chain|. This 1895 // is only used as a cache in order to implement get0 functions that return 1896 // a non-owning pointer to the certificate chain. 1897 X509 *x509_leaf = nullptr; 1898 1899 // x509_stash contains the last |X509| object append to the chain. This is a 1900 // workaround for some third-party code that continue to use an |X509| object 1901 // even after passing ownership with an add0 function. 1902 X509 *x509_stash = nullptr; 1903 1904 // key_method, if non-NULL, is a set of callbacks to call for private key 1905 // operations. 1906 const SSL_PRIVATE_KEY_METHOD *key_method = nullptr; 1907 1908 // x509_method contains pointers to functions that might deal with |X509| 1909 // compatibility, or might be a no-op, depending on the application. 1910 const SSL_X509_METHOD *x509_method = nullptr; 1911 1912 // sigalgs, if non-empty, is the set of signature algorithms supported by 1913 // |privatekey| in decreasing order of preference. 1914 Array<uint16_t> sigalgs; 1915 1916 // Certificate setup callback: if set is called whenever a 1917 // certificate may be required (client or server). the callback 1918 // can then examine any appropriate parameters and setup any 1919 // certificates required. This allows advanced applications 1920 // to select certificates on the fly: for example based on 1921 // supported signature algorithms or curves. 1922 int (*cert_cb)(SSL *ssl, void *arg) = nullptr; 1923 void *cert_cb_arg = nullptr; 1924 1925 // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX 1926 // store is used instead. 1927 X509_STORE *verify_store = nullptr; 1928 1929 // Signed certificate timestamp list to be sent to the client, if requested 1930 UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list; 1931 1932 // OCSP response to be sent to the client, if requested. 1933 UniquePtr<CRYPTO_BUFFER> ocsp_response; 1934 1935 // sid_ctx partitions the session space within a shared session cache or 1936 // ticket key. Only sessions with a matching value will be accepted. 1937 uint8_t sid_ctx_length = 0; 1938 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0}; 1939 1940 // Delegated credentials. 1941 1942 // dc is the delegated credential to send to the peer (if requested). 1943 UniquePtr<DC> dc = nullptr; 1944 1945 // dc_privatekey is used instead of |privatekey| or |key_method| to 1946 // authenticate the host if a delegated credential is used in the handshake. 1947 UniquePtr<EVP_PKEY> dc_privatekey = nullptr; 1948 1949 // dc_key_method, if not NULL, is used instead of |dc_privatekey| to 1950 // authenticate the host. 1951 const SSL_PRIVATE_KEY_METHOD *dc_key_method = nullptr; 1952 }; 1953 1954 // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS. 1955 struct SSL_PROTOCOL_METHOD { 1956 bool is_dtls; 1957 bool (*ssl_new)(SSL *ssl); 1958 void (*ssl_free)(SSL *ssl); 1959 // get_message sets |*out| to the current handshake message and returns true 1960 // if one has been received. It returns false if more input is needed. 1961 bool (*get_message)(SSL *ssl, SSLMessage *out); 1962 // next_message is called to release the current handshake message. 1963 void (*next_message)(SSL *ssl); 1964 // Use the |ssl_open_handshake| wrapper. 1965 ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed, 1966 uint8_t *out_alert, Span<uint8_t> in); 1967 // Use the |ssl_open_change_cipher_spec| wrapper. 1968 ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed, 1969 uint8_t *out_alert, 1970 Span<uint8_t> in); 1971 // Use the |ssl_open_app_data| wrapper. 1972 ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out, 1973 size_t *out_consumed, uint8_t *out_alert, 1974 Span<uint8_t> in); 1975 int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf, 1976 int len); 1977 int (*dispatch_alert)(SSL *ssl); 1978 // init_message begins a new handshake message of type |type|. |cbb| is the 1979 // root CBB to be passed into |finish_message|. |*body| is set to a child CBB 1980 // the caller should write to. It returns true on success and false on error. 1981 bool (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); 1982 // finish_message finishes a handshake message. It sets |*out_msg| to the 1983 // serialized message. It returns true on success and false on error. 1984 bool (*finish_message)(SSL *ssl, CBB *cbb, bssl::Array<uint8_t> *out_msg); 1985 // add_message adds a handshake message to the pending flight. It returns 1986 // true on success and false on error. 1987 bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg); 1988 // add_change_cipher_spec adds a ChangeCipherSpec record to the pending 1989 // flight. It returns true on success and false on error. 1990 bool (*add_change_cipher_spec)(SSL *ssl); 1991 // flush_flight flushes the pending flight to the transport. It returns one on 1992 // success and <= 0 on error. 1993 int (*flush_flight)(SSL *ssl); 1994 // on_handshake_complete is called when the handshake is complete. 1995 void (*on_handshake_complete)(SSL *ssl); 1996 // set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It returns 1997 // true on success and false if changing the read state is forbidden at this 1998 // point. 1999 bool (*set_read_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx); 2000 // set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It returns 2001 // true on success and false if changing the write state is forbidden at this 2002 // point. 2003 bool (*set_write_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx); 2004 }; 2005 2006 // The following wrappers call |open_*| but handle |read_shutdown| correctly. 2007 2008 // ssl_open_handshake processes a record from |in| for reading a handshake 2009 // message. 2010 ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed, 2011 uint8_t *out_alert, Span<uint8_t> in); 2012 2013 // ssl_open_change_cipher_spec processes a record from |in| for reading a 2014 // ChangeCipherSpec. 2015 ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, 2016 uint8_t *out_alert, 2017 Span<uint8_t> in); 2018 2019 // ssl_open_app_data processes a record from |in| for reading application data. 2020 // On success, it returns |ssl_open_record_success| and sets |*out| to the 2021 // input. If it encounters a post-handshake message, it returns 2022 // |ssl_open_record_discard|. The caller should then retry, after processing any 2023 // messages received with |get_message|. 2024 ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out, 2025 size_t *out_consumed, uint8_t *out_alert, 2026 Span<uint8_t> in); 2027 2028 struct SSL_X509_METHOD { 2029 // check_client_CA_list returns one if |names| is a good list of X.509 2030 // distinguished names and zero otherwise. This is used to ensure that we can 2031 // reject unparsable values at handshake time when using crypto/x509. 2032 int (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names); 2033 2034 // cert_clear frees and NULLs all X509 certificate-related state. 2035 void (*cert_clear)(CERT *cert); 2036 // cert_free frees all X509-related state. 2037 void (*cert_free)(CERT *cert); 2038 // cert_flush_cached_chain drops any cached |X509|-based certificate chain 2039 // from |cert|. 2040 // cert_dup duplicates any needed fields from |cert| to |new_cert|. 2041 void (*cert_dup)(CERT *new_cert, const CERT *cert); 2042 void (*cert_flush_cached_chain)(CERT *cert); 2043 // cert_flush_cached_chain drops any cached |X509|-based leaf certificate 2044 // from |cert|. 2045 void (*cert_flush_cached_leaf)(CERT *cert); 2046 2047 // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain| 2048 // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns 2049 // one on success or zero on error. 2050 int (*session_cache_objects)(SSL_SESSION *session); 2051 // session_dup duplicates any needed fields from |session| to |new_session|. 2052 // It returns one on success or zero on error. 2053 int (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session); 2054 // session_clear frees any X509-related state from |session|. 2055 void (*session_clear)(SSL_SESSION *session); 2056 // session_verify_cert_chain verifies the certificate chain in |session|, 2057 // sets |session->verify_result| and returns one on success or zero on 2058 // error. 2059 int (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl, 2060 uint8_t *out_alert); 2061 2062 // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|. 2063 void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs); 2064 // ssl_new does any neccessary initialisation of |hs|. It returns one on 2065 // success or zero on error. 2066 int (*ssl_new)(SSL_HANDSHAKE *hs); 2067 // ssl_free frees anything created by |ssl_new|. 2068 void (*ssl_config_free)(SSL_CONFIG *cfg); 2069 // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|. 2070 void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg); 2071 // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if 2072 // necessary. On success, it updates |ssl|'s certificate configuration as 2073 // needed and returns one. Otherwise, it returns zero. 2074 int (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs); 2075 // ssl_ctx_new does any neccessary initialisation of |ctx|. It returns one on 2076 // success or zero on error. 2077 int (*ssl_ctx_new)(SSL_CTX *ctx); 2078 // ssl_ctx_free frees anything created by |ssl_ctx_new|. 2079 void (*ssl_ctx_free)(SSL_CTX *ctx); 2080 // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|. 2081 void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl); 2082 }; 2083 2084 // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using 2085 // crypto/x509. 2086 extern const SSL_X509_METHOD ssl_crypto_x509_method; 2087 2088 // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid 2089 // crypto/x509. 2090 extern const SSL_X509_METHOD ssl_noop_x509_method; 2091 2092 struct TicketKey { 2093 static constexpr bool kAllowUniquePtr = true; 2094 2095 uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0}; 2096 uint8_t hmac_key[16] = {0}; 2097 uint8_t aes_key[16] = {0}; 2098 // next_rotation_tv_sec is the time (in seconds from the epoch) when the 2099 // current key should be superseded by a new key, or the time when a previous 2100 // key should be dropped. If zero, then the key should not be automatically 2101 // rotated. 2102 uint64_t next_rotation_tv_sec = 0; 2103 }; 2104 2105 struct CertCompressionAlg { 2106 static constexpr bool kAllowUniquePtr = true; 2107 2108 ssl_cert_compression_func_t compress = nullptr; 2109 ssl_cert_decompression_func_t decompress = nullptr; 2110 uint16_t alg_id = 0; 2111 }; 2112 2113 BSSL_NAMESPACE_END 2114 2115 DEFINE_LHASH_OF(SSL_SESSION) 2116 2117 DEFINE_NAMED_STACK_OF(CertCompressionAlg, bssl::CertCompressionAlg) 2118 2119 BSSL_NAMESPACE_BEGIN 2120 2121 // An ssl_shutdown_t describes the shutdown state of one end of the connection, 2122 // whether it is alive or has been shutdown via close_notify or fatal alert. 2123 enum ssl_shutdown_t { 2124 ssl_shutdown_none = 0, 2125 ssl_shutdown_close_notify = 1, 2126 ssl_shutdown_error = 2, 2127 }; 2128 2129 struct SSL3_STATE { 2130 static constexpr bool kAllowUniquePtr = true; 2131 2132 SSL3_STATE(); 2133 ~SSL3_STATE(); 2134 2135 uint8_t read_sequence[8] = {0}; 2136 uint8_t write_sequence[8] = {0}; 2137 2138 uint8_t server_random[SSL3_RANDOM_SIZE] = {0}; 2139 uint8_t client_random[SSL3_RANDOM_SIZE] = {0}; 2140 2141 // read_buffer holds data from the transport to be processed. 2142 SSLBuffer read_buffer; 2143 // write_buffer holds data to be written to the transport. 2144 SSLBuffer write_buffer; 2145 2146 // pending_app_data is the unconsumed application data. It points into 2147 // |read_buffer|. 2148 Span<uint8_t> pending_app_data; 2149 2150 // partial write - check the numbers match 2151 unsigned int wnum = 0; // number of bytes sent so far 2152 int wpend_tot = 0; // number bytes written 2153 int wpend_type = 0; 2154 int wpend_ret = 0; // number of bytes submitted 2155 const uint8_t *wpend_buf = nullptr; 2156 2157 // read_shutdown is the shutdown state for the read half of the connection. 2158 enum ssl_shutdown_t read_shutdown = ssl_shutdown_none; 2159 2160 // write_shutdown is the shutdown state for the write half of the connection. 2161 enum ssl_shutdown_t write_shutdown = ssl_shutdown_none; 2162 2163 // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for 2164 // the receive half of the connection. 2165 UniquePtr<ERR_SAVE_STATE> read_error; 2166 2167 int alert_dispatch = 0; 2168 2169 int total_renegotiations = 0; 2170 2171 // This holds a variable that indicates what we were doing when a 0 or -1 is 2172 // returned. This is needed for non-blocking IO so we know what request 2173 // needs re-doing when in SSL_accept or SSL_connect 2174 int rwstate = SSL_NOTHING; 2175 2176 enum ssl_encryption_level_t read_level = ssl_encryption_initial; 2177 enum ssl_encryption_level_t write_level = ssl_encryption_initial; 2178 2179 // early_data_skipped is the amount of early data that has been skipped by the 2180 // record layer. 2181 uint16_t early_data_skipped = 0; 2182 2183 // empty_record_count is the number of consecutive empty records received. 2184 uint8_t empty_record_count = 0; 2185 2186 // warning_alert_count is the number of consecutive warning alerts 2187 // received. 2188 uint8_t warning_alert_count = 0; 2189 2190 // key_update_count is the number of consecutive KeyUpdates received. 2191 uint8_t key_update_count = 0; 2192 2193 // The negotiated Token Binding key parameter. Only valid if 2194 // |token_binding_negotiated| is set. 2195 uint8_t negotiated_token_binding_param = 0; 2196 2197 // skip_early_data instructs the record layer to skip unexpected early data 2198 // messages when 0RTT is rejected. 2199 bool skip_early_data : 1; 2200 2201 // have_version is true if the connection's final version is known. Otherwise 2202 // the version has not been negotiated yet. 2203 bool have_version : 1; 2204 2205 // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled 2206 // and future messages should use the record layer. 2207 bool v2_hello_done : 1; 2208 2209 // is_v2_hello is true if the current handshake message was derived from a 2210 // V2ClientHello rather than received from the peer directly. 2211 bool is_v2_hello : 1; 2212 2213 // has_message is true if the current handshake message has been returned 2214 // at least once by |get_message| and false otherwise. 2215 bool has_message : 1; 2216 2217 // initial_handshake_complete is true if the initial handshake has 2218 // completed. 2219 bool initial_handshake_complete : 1; 2220 2221 // session_reused indicates whether a session was resumed. 2222 bool session_reused : 1; 2223 2224 bool send_connection_binding : 1; 2225 2226 // In a client, this means that the server supported Channel ID and that a 2227 // Channel ID was sent. In a server it means that we echoed support for 2228 // Channel IDs and that |channel_id| will be valid after the handshake. 2229 bool channel_id_valid : 1; 2230 2231 // key_update_pending is true if we have a KeyUpdate acknowledgment 2232 // outstanding. 2233 bool key_update_pending : 1; 2234 2235 // wpend_pending is true if we have a pending write outstanding. 2236 bool wpend_pending : 1; 2237 2238 // early_data_accepted is true if early data was accepted by the server. 2239 bool early_data_accepted : 1; 2240 2241 // tls13_downgrade is whether the TLS 1.3 anti-downgrade logic fired. 2242 bool tls13_downgrade : 1; 2243 2244 // token_binding_negotiated is set if Token Binding was negotiated. 2245 bool token_binding_negotiated : 1; 2246 2247 // hs_buf is the buffer of handshake data to process. 2248 UniquePtr<BUF_MEM> hs_buf; 2249 2250 // pending_hs_data contains the pending handshake data that has not yet 2251 // been encrypted to |pending_flight|. This allows packing the handshake into 2252 // fewer records. 2253 UniquePtr<BUF_MEM> pending_hs_data; 2254 2255 // pending_flight is the pending outgoing flight. This is used to flush each 2256 // handshake flight in a single write. |write_buffer| must be written out 2257 // before this data. 2258 UniquePtr<BUF_MEM> pending_flight; 2259 2260 // pending_flight_offset is the number of bytes of |pending_flight| which have 2261 // been successfully written. 2262 uint32_t pending_flight_offset = 0; 2263 2264 // ticket_age_skew is the difference, in seconds, between the client-sent 2265 // ticket age and the server-computed value in TLS 1.3 server connections 2266 // which resumed a session. 2267 int32_t ticket_age_skew = 0; 2268 2269 // aead_read_ctx is the current read cipher state. 2270 UniquePtr<SSLAEADContext> aead_read_ctx; 2271 2272 // aead_write_ctx is the current write cipher state. 2273 UniquePtr<SSLAEADContext> aead_write_ctx; 2274 2275 // hs is the handshake state for the current handshake or NULL if there isn't 2276 // one. 2277 UniquePtr<SSL_HANDSHAKE> hs; 2278 2279 uint8_t write_traffic_secret[EVP_MAX_MD_SIZE] = {0}; 2280 uint8_t read_traffic_secret[EVP_MAX_MD_SIZE] = {0}; 2281 uint8_t exporter_secret[EVP_MAX_MD_SIZE] = {0}; 2282 uint8_t early_exporter_secret[EVP_MAX_MD_SIZE] = {0}; 2283 uint8_t write_traffic_secret_len = 0; 2284 uint8_t read_traffic_secret_len = 0; 2285 uint8_t exporter_secret_len = 0; 2286 uint8_t early_exporter_secret_len = 0; 2287 2288 // Connection binding to prevent renegotiation attacks 2289 uint8_t previous_client_finished[12] = {0}; 2290 uint8_t previous_client_finished_len = 0; 2291 uint8_t previous_server_finished_len = 0; 2292 uint8_t previous_server_finished[12] = {0}; 2293 2294 uint8_t send_alert[2] = {0}; 2295 2296 // established_session is the session established by the connection. This 2297 // session is only filled upon the completion of the handshake and is 2298 // immutable. 2299 UniquePtr<SSL_SESSION> established_session; 2300 2301 // Next protocol negotiation. For the client, this is the protocol that we 2302 // sent in NextProtocol and is set when handling ServerHello extensions. 2303 // 2304 // For a server, this is the client's selected_protocol from NextProtocol and 2305 // is set when handling the NextProtocol message, before the Finished 2306 // message. 2307 Array<uint8_t> next_proto_negotiated; 2308 2309 // ALPN information 2310 // (we are in the process of transitioning from NPN to ALPN.) 2311 2312 // In a server these point to the selected ALPN protocol after the 2313 // ClientHello has been processed. In a client these contain the protocol 2314 // that the server selected once the ServerHello has been processed. 2315 Array<uint8_t> alpn_selected; 2316 2317 // hostname, on the server, is the value of the SNI extension. 2318 UniquePtr<char> hostname; 2319 2320 // For a server: 2321 // If |channel_id_valid| is true, then this contains the 2322 // verified Channel ID from the client: a P256 point, (x,y), where 2323 // each are big-endian values. 2324 uint8_t channel_id[64] = {0}; 2325 2326 // Contains the QUIC transport params received by the peer. 2327 Array<uint8_t> peer_quic_transport_params; 2328 2329 // srtp_profile is the selected SRTP protection profile for 2330 // DTLS-SRTP. 2331 const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr; 2332 }; 2333 2334 // lengths of messages 2335 #define DTLS1_COOKIE_LENGTH 256 2336 2337 #define DTLS1_RT_HEADER_LENGTH 13 2338 2339 #define DTLS1_HM_HEADER_LENGTH 12 2340 2341 #define DTLS1_CCS_HEADER_LENGTH 1 2342 2343 #define DTLS1_AL_HEADER_LENGTH 2 2344 2345 struct hm_header_st { 2346 uint8_t type; 2347 uint32_t msg_len; 2348 uint16_t seq; 2349 uint32_t frag_off; 2350 uint32_t frag_len; 2351 }; 2352 2353 // An hm_fragment is an incoming DTLS message, possibly not yet assembled. 2354 struct hm_fragment { 2355 static constexpr bool kAllowUniquePtr = true; 2356 2357 hm_fragment() {} 2358 hm_fragment(const hm_fragment &) = delete; 2359 hm_fragment &operator=(const hm_fragment &) = delete; 2360 2361 ~hm_fragment(); 2362 2363 // type is the type of the message. 2364 uint8_t type = 0; 2365 // seq is the sequence number of this message. 2366 uint16_t seq = 0; 2367 // msg_len is the length of the message body. 2368 uint32_t msg_len = 0; 2369 // data is a pointer to the message, including message header. It has length 2370 // |DTLS1_HM_HEADER_LENGTH| + |msg_len|. 2371 uint8_t *data = nullptr; 2372 // reassembly is a bitmask of |msg_len| bits corresponding to which parts of 2373 // the message have been received. It is NULL if the message is complete. 2374 uint8_t *reassembly = nullptr; 2375 }; 2376 2377 struct OPENSSL_timeval { 2378 uint64_t tv_sec; 2379 uint32_t tv_usec; 2380 }; 2381 2382 struct DTLS1_STATE { 2383 static constexpr bool kAllowUniquePtr = true; 2384 2385 DTLS1_STATE(); 2386 ~DTLS1_STATE(); 2387 2388 // has_change_cipher_spec is true if we have received a ChangeCipherSpec from 2389 // the peer in this epoch. 2390 bool has_change_cipher_spec : 1; 2391 2392 // outgoing_messages_complete is true if |outgoing_messages| has been 2393 // completed by an attempt to flush it. Future calls to |add_message| and 2394 // |add_change_cipher_spec| will start a new flight. 2395 bool outgoing_messages_complete : 1; 2396 2397 // flight_has_reply is true if the current outgoing flight is complete and has 2398 // processed at least one message. This is used to detect whether we or the 2399 // peer sent the final flight. 2400 bool flight_has_reply : 1; 2401 2402 uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0}; 2403 size_t cookie_len = 0; 2404 2405 // The current data and handshake epoch. This is initially undefined, and 2406 // starts at zero once the initial handshake is completed. 2407 uint16_t r_epoch = 0; 2408 uint16_t w_epoch = 0; 2409 2410 // records being received in the current epoch 2411 DTLS1_BITMAP bitmap; 2412 2413 uint16_t handshake_write_seq = 0; 2414 uint16_t handshake_read_seq = 0; 2415 2416 // save last sequence number for retransmissions 2417 uint8_t last_write_sequence[8] = {0}; 2418 UniquePtr<SSLAEADContext> last_aead_write_ctx; 2419 2420 // incoming_messages is a ring buffer of incoming handshake messages that have 2421 // yet to be processed. The front of the ring buffer is message number 2422 // |handshake_read_seq|, at position |handshake_read_seq| % 2423 // |SSL_MAX_HANDSHAKE_FLIGHT|. 2424 UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT]; 2425 2426 // outgoing_messages is the queue of outgoing messages from the last handshake 2427 // flight. 2428 DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT]; 2429 uint8_t outgoing_messages_len = 0; 2430 2431 // outgoing_written is the number of outgoing messages that have been 2432 // written. 2433 uint8_t outgoing_written = 0; 2434 // outgoing_offset is the number of bytes of the next outgoing message have 2435 // been written. 2436 uint32_t outgoing_offset = 0; 2437 2438 unsigned mtu = 0; // max DTLS packet size 2439 2440 // num_timeouts is the number of times the retransmit timer has fired since 2441 // the last time it was reset. 2442 unsigned num_timeouts = 0; 2443 2444 // Indicates when the last handshake msg or heartbeat sent will 2445 // timeout. 2446 struct OPENSSL_timeval next_timeout = {0, 0}; 2447 2448 // timeout_duration_ms is the timeout duration in milliseconds. 2449 unsigned timeout_duration_ms = 0; 2450 }; 2451 2452 // SSL_CONFIG contains configuration bits that can be shed after the handshake 2453 // completes. Objects of this type are not shared; they are unique to a 2454 // particular |SSL|. 2455 // 2456 // See SSL_shed_handshake_config() for more about the conditions under which 2457 // configuration can be shed. 2458 struct SSL_CONFIG { 2459 static constexpr bool kAllowUniquePtr = true; 2460 2461 explicit SSL_CONFIG(SSL *ssl_arg); 2462 ~SSL_CONFIG(); 2463 2464 // ssl is a non-owning pointer to the parent |SSL| object. 2465 SSL *const ssl = nullptr; 2466 2467 // conf_max_version is the maximum acceptable protocol version configured by 2468 // |SSL_set_max_proto_version|. Note this version is normalized in DTLS and is 2469 // further constrainted by |SSL_OP_NO_*|. 2470 uint16_t conf_max_version = 0; 2471 2472 // conf_min_version is the minimum acceptable protocol version configured by 2473 // |SSL_set_min_proto_version|. Note this version is normalized in DTLS and is 2474 // further constrainted by |SSL_OP_NO_*|. 2475 uint16_t conf_min_version = 0; 2476 2477 X509_VERIFY_PARAM *param = nullptr; 2478 2479 // crypto 2480 UniquePtr<SSLCipherPreferenceList> cipher_list; 2481 2482 // This is used to hold the local certificate used (i.e. the server 2483 // certificate for a server or the client certificate for a client). 2484 UniquePtr<CERT> cert; 2485 2486 int (*verify_callback)(int ok, 2487 X509_STORE_CTX *ctx) = 2488 nullptr; // fail if callback returns 0 2489 2490 enum ssl_verify_result_t (*custom_verify_callback)( 2491 SSL *ssl, uint8_t *out_alert) = nullptr; 2492 // Server-only: psk_identity_hint is the identity hint to send in 2493 // PSK-based key exchanges. 2494 UniquePtr<char> psk_identity_hint; 2495 2496 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, 2497 unsigned max_identity_len, uint8_t *psk, 2498 unsigned max_psk_len) = nullptr; 2499 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, 2500 unsigned max_psk_len) = nullptr; 2501 2502 // for server side, keep the list of CA_dn we can use 2503 UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA; 2504 2505 // cached_x509_client_CA is a cache of parsed versions of the elements of 2506 // |client_CA|. 2507 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; 2508 2509 Array<uint16_t> supported_group_list; // our list 2510 2511 // The client's Channel ID private key. 2512 UniquePtr<EVP_PKEY> channel_id_private; 2513 2514 // For a client, this contains the list of supported protocols in wire 2515 // format. 2516 Array<uint8_t> alpn_client_proto_list; 2517 2518 // Contains a list of supported Token Binding key parameters. 2519 Array<uint8_t> token_binding_params; 2520 2521 // Contains the QUIC transport params that this endpoint will send. 2522 Array<uint8_t> quic_transport_params; 2523 2524 // verify_sigalgs, if not empty, is the set of signature algorithms 2525 // accepted from the peer in decreasing order of preference. 2526 Array<uint16_t> verify_sigalgs; 2527 2528 // srtp_profiles is the list of configured SRTP protection profiles for 2529 // DTLS-SRTP. 2530 UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles; 2531 2532 // verify_mode is a bitmask of |SSL_VERIFY_*| values. 2533 uint8_t verify_mode = SSL_VERIFY_NONE; 2534 2535 // Enable signed certificate time stamps. Currently client only. 2536 bool signed_cert_timestamps_enabled : 1; 2537 2538 // ocsp_stapling_enabled is only used by client connections and indicates 2539 // whether OCSP stapling will be requested. 2540 bool ocsp_stapling_enabled : 1; 2541 2542 // channel_id_enabled is copied from the |SSL_CTX|. For a server, means that 2543 // we'll accept Channel IDs from clients. For a client, means that we'll 2544 // advertise support. 2545 bool channel_id_enabled : 1; 2546 2547 // If enforce_rsa_key_usage is true, the handshake will fail if the 2548 // keyUsage extension is present and incompatible with the TLS usage. 2549 // This field is not read until after certificate verification. 2550 bool enforce_rsa_key_usage : 1; 2551 2552 // retain_only_sha256_of_client_certs is true if we should compute the SHA256 2553 // hash of the peer's certificate and then discard it to save memory and 2554 // session space. Only effective on the server side. 2555 bool retain_only_sha256_of_client_certs : 1; 2556 2557 // handoff indicates that a server should stop after receiving the 2558 // ClientHello and pause the handshake in such a way that |SSL_get_error| 2559 // returns |SSL_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX| 2560 // element of the same name and may be cleared if the handoff is declined. 2561 bool handoff : 1; 2562 2563 // shed_handshake_config indicates that the handshake config (this object!) 2564 // should be freed after the handshake completes. 2565 bool shed_handshake_config : 1; 2566 2567 // ignore_tls13_downgrade is whether the connection should continue when the 2568 // server random signals a downgrade. 2569 bool ignore_tls13_downgrade : 1; 2570 2571 // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a 2572 // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806. 2573 bool jdk11_workaround : 1; 2574 }; 2575 2576 // From RFC 8446, used in determining PSK modes. 2577 #define SSL_PSK_DHE_KE 0x1 2578 2579 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early 2580 // data that will be accepted. This value should be slightly below 2581 // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext. 2582 static const size_t kMaxEarlyDataAccepted = 14336; 2583 2584 UniquePtr<CERT> ssl_cert_dup(CERT *cert); 2585 void ssl_cert_clear_certs(CERT *cert); 2586 bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer); 2587 bool ssl_is_key_type_supported(int key_type); 2588 // ssl_compare_public_and_private_key returns true if |pubkey| is the public 2589 // counterpart to |privkey|. Otherwise it returns false and pushes a helpful 2590 // message on the error queue. 2591 bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey, 2592 const EVP_PKEY *privkey); 2593 bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey); 2594 int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server); 2595 int ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, const SSL_SESSION *session); 2596 int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx); 2597 2598 // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on 2599 // error. 2600 UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method); 2601 2602 // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table 2603 // keyed on session IDs. 2604 uint32_t ssl_hash_session_id(Span<const uint8_t> session_id); 2605 2606 // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over 2607 // the parsed data. 2608 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse( 2609 CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool); 2610 2611 // ssl_session_serialize writes |in| to |cbb| as if it were serialising a 2612 // session for Session-ID resumption. It returns one on success and zero on 2613 // error. 2614 OPENSSL_EXPORT int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb); 2615 2616 // ssl_session_is_context_valid returns one if |session|'s session ID context 2617 // matches the one set on |hs| and zero otherwise. 2618 int ssl_session_is_context_valid(const SSL_HANDSHAKE *hs, 2619 const SSL_SESSION *session); 2620 2621 // ssl_session_is_time_valid returns one if |session| is still valid and zero if 2622 // it has expired. 2623 int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session); 2624 2625 // ssl_session_is_resumable returns one if |session| is resumable for |hs| and 2626 // zero otherwise. 2627 int ssl_session_is_resumable(const SSL_HANDSHAKE *hs, 2628 const SSL_SESSION *session); 2629 2630 // ssl_session_protocol_version returns the protocol version associated with 2631 // |session|. Note that despite the name, this is not the same as 2632 // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name. 2633 uint16_t ssl_session_protocol_version(const SSL_SESSION *session); 2634 2635 // ssl_session_get_digest returns the digest used in |session|. 2636 const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session); 2637 2638 void ssl_set_session(SSL *ssl, SSL_SESSION *session); 2639 2640 // ssl_get_prev_session looks up the previous session based on |client_hello|. 2641 // On success, it sets |*out_session| to the session or nullptr if none was 2642 // found. If the session could not be looked up synchronously, it returns 2643 // |ssl_hs_pending_session| and should be called again. If a ticket could not be 2644 // decrypted immediately it returns |ssl_hs_pending_ticket| and should also 2645 // be called again. Otherwise, it returns |ssl_hs_error|. 2646 enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs, 2647 UniquePtr<SSL_SESSION> *out_session, 2648 bool *out_tickets_supported, 2649 bool *out_renew_ticket, 2650 const SSL_CLIENT_HELLO *client_hello); 2651 2652 // The following flags determine which parts of the session are duplicated. 2653 #define SSL_SESSION_DUP_AUTH_ONLY 0x0 2654 #define SSL_SESSION_INCLUDE_TICKET 0x1 2655 #define SSL_SESSION_INCLUDE_NONAUTH 0x2 2656 #define SSL_SESSION_DUP_ALL \ 2657 (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH) 2658 2659 // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the 2660 // fields in |session| or nullptr on error. The new session is non-resumable and 2661 // must be explicitly marked resumable once it has been filled in. 2662 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session, 2663 int dup_flags); 2664 2665 // ssl_session_rebase_time updates |session|'s start time to the current time, 2666 // adjusting the timeout so the expiration time is unchanged. 2667 void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session); 2668 2669 // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews 2670 // |session|'s timeout to |timeout| (measured from the current time). The 2671 // renewal is clamped to the session's auth_timeout. 2672 void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session, 2673 uint32_t timeout); 2674 2675 void ssl_update_cache(SSL_HANDSHAKE *hs, int mode); 2676 2677 int ssl_send_alert(SSL *ssl, int level, int desc); 2678 bool ssl3_get_message(SSL *ssl, SSLMessage *out); 2679 ssl_open_record_t ssl3_open_handshake(SSL *ssl, size_t *out_consumed, 2680 uint8_t *out_alert, Span<uint8_t> in); 2681 void ssl3_next_message(SSL *ssl); 2682 2683 int ssl3_dispatch_alert(SSL *ssl); 2684 ssl_open_record_t ssl3_open_app_data(SSL *ssl, Span<uint8_t> *out, 2685 size_t *out_consumed, uint8_t *out_alert, 2686 Span<uint8_t> in); 2687 ssl_open_record_t ssl3_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, 2688 uint8_t *out_alert, 2689 Span<uint8_t> in); 2690 int ssl3_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf, 2691 int len); 2692 2693 bool ssl3_new(SSL *ssl); 2694 void ssl3_free(SSL *ssl); 2695 2696 bool ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); 2697 bool ssl3_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); 2698 bool ssl3_add_message(SSL *ssl, Array<uint8_t> msg); 2699 bool ssl3_add_change_cipher_spec(SSL *ssl); 2700 int ssl3_flush_flight(SSL *ssl); 2701 2702 bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); 2703 bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); 2704 bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg); 2705 bool dtls1_add_change_cipher_spec(SSL *ssl); 2706 int dtls1_flush_flight(SSL *ssl); 2707 2708 // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to 2709 // the pending flight. It returns true on success and false on error. 2710 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb); 2711 2712 // ssl_hash_message incorporates |msg| into the handshake hash. It returns true 2713 // on success and false on allocation failure. 2714 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg); 2715 2716 ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out, 2717 size_t *out_consumed, uint8_t *out_alert, 2718 Span<uint8_t> in); 2719 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, 2720 uint8_t *out_alert, 2721 Span<uint8_t> in); 2722 2723 int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake, 2724 const uint8_t *buf, int len); 2725 2726 // dtls1_write_record sends a record. It returns one on success and <= 0 on 2727 // error. 2728 int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len, 2729 enum dtls1_use_epoch_t use_epoch); 2730 2731 int dtls1_retransmit_outgoing_messages(SSL *ssl); 2732 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, 2733 CBS *out_body); 2734 bool dtls1_check_timeout_num(SSL *ssl); 2735 2736 void dtls1_start_timer(SSL *ssl); 2737 void dtls1_stop_timer(SSL *ssl); 2738 bool dtls1_is_timer_expired(SSL *ssl); 2739 unsigned int dtls1_min_mtu(void); 2740 2741 bool dtls1_new(SSL *ssl); 2742 void dtls1_free(SSL *ssl); 2743 2744 bool dtls1_get_message(SSL *ssl, SSLMessage *out); 2745 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, 2746 uint8_t *out_alert, Span<uint8_t> in); 2747 void dtls1_next_message(SSL *ssl); 2748 int dtls1_dispatch_alert(SSL *ssl); 2749 2750 // tls1_configure_aead configures either the read or write direction AEAD (as 2751 // determined by |direction|) using the keys generated by the TLS KDF. The 2752 // |key_block_cache| argument is used to store the generated key block, if 2753 // empty. Otherwise it's assumed that the key block is already contained within 2754 // it. Returns one on success or zero on error. 2755 int tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction, 2756 Array<uint8_t> *key_block_cache, 2757 const SSL_CIPHER *cipher, 2758 Span<const uint8_t> iv_override); 2759 2760 int tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction); 2761 int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out, 2762 Span<const uint8_t> premaster); 2763 2764 // tls1_get_grouplist returns the locally-configured group preference list. 2765 Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl); 2766 2767 // tls1_check_group_id returns whether |group_id| is consistent with locally- 2768 // configured group preferences. 2769 bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id); 2770 2771 // tls1_get_shared_group sets |*out_group_id| to the first preferred shared 2772 // group between client and server preferences and returns true. If none may be 2773 // found, it returns false. 2774 bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id); 2775 2776 // tls1_set_curves converts the array of NIDs in |curves| into a newly allocated 2777 // array of TLS group IDs. On success, the function returns true and writes the 2778 // array to |*out_group_ids|. Otherwise, it returns false. 2779 bool tls1_set_curves(Array<uint16_t> *out_group_ids, Span<const int> curves); 2780 2781 // tls1_set_curves_list converts the string of curves pointed to by |curves| 2782 // into a newly allocated array of TLS group IDs. On success, the function 2783 // returns true and writes the array to |*out_group_ids|. Otherwise, it returns 2784 // false. 2785 bool tls1_set_curves_list(Array<uint16_t> *out_group_ids, const char *curves); 2786 2787 // ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It returns 2788 // true on success and false on failure. The |header_len| argument is the length 2789 // of the ClientHello written so far and is used to compute the padding length. 2790 // (It does not include the record header.) 2791 bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len); 2792 2793 bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out); 2794 bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs, 2795 const SSL_CLIENT_HELLO *client_hello); 2796 bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs); 2797 2798 #define tlsext_tick_md EVP_sha256 2799 2800 // ssl_process_ticket processes a session ticket from the client. It returns 2801 // one of: 2802 // |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and 2803 // |*out_renew_ticket| is set to whether the ticket should be renewed. 2804 // |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a 2805 // fresh ticket should be sent, but the given ticket cannot be used. 2806 // |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted. 2807 // Retry later. 2808 // |ssl_ticket_aead_error|: an error occured that is fatal to the connection. 2809 enum ssl_ticket_aead_result_t ssl_process_ticket( 2810 SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session, 2811 bool *out_renew_ticket, Span<const uint8_t> ticket, 2812 Span<const uint8_t> session_id); 2813 2814 // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies 2815 // the signature. If the key is valid, it saves the Channel ID and returns true. 2816 // Otherwise, it returns false. 2817 bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg); 2818 2819 // tls1_write_channel_id generates a Channel ID message and puts the output in 2820 // |cbb|. |ssl->channel_id_private| must already be set before calling. This 2821 // function returns true on success and false on error. 2822 bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb); 2823 2824 // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes 2825 // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns 2826 // true on success and false on failure. 2827 bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len); 2828 2829 // tls1_record_handshake_hashes_for_channel_id records the current handshake 2830 // hashes in |hs->new_session| so that Channel ID resumptions can sign that 2831 // data. 2832 bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs); 2833 2834 // ssl_do_channel_id_callback checks runs |hs->ssl->ctx->channel_id_cb| if 2835 // necessary. It returns true on success and false on fatal error. Note that, on 2836 // success, |hs->ssl->channel_id_private| may be unset, in which case the 2837 // operation should be retried later. 2838 bool ssl_do_channel_id_callback(SSL_HANDSHAKE *hs); 2839 2840 // ssl_can_write returns whether |ssl| is allowed to write. 2841 bool ssl_can_write(const SSL *ssl); 2842 2843 // ssl_can_read returns wheter |ssl| is allowed to read. 2844 bool ssl_can_read(const SSL *ssl); 2845 2846 void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock); 2847 void ssl_ctx_get_current_time(const SSL_CTX *ctx, 2848 struct OPENSSL_timeval *out_clock); 2849 2850 // ssl_reset_error_state resets state for |SSL_get_error|. 2851 void ssl_reset_error_state(SSL *ssl); 2852 2853 // ssl_set_read_error sets |ssl|'s read half into an error state, saving the 2854 // current state of the error queue. 2855 void ssl_set_read_error(SSL *ssl); 2856 2857 BSSL_NAMESPACE_END 2858 2859 2860 // Opaque C types. 2861 // 2862 // The following types are exported to C code as public typedefs, so they must 2863 // be defined outside of the namespace. 2864 2865 // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility 2866 // structure to support the legacy version-locked methods. 2867 struct ssl_method_st { 2868 // version, if non-zero, is the only protocol version acceptable to an 2869 // SSL_CTX initialized from this method. 2870 uint16_t version; 2871 // method is the underlying SSL_PROTOCOL_METHOD that initializes the 2872 // SSL_CTX. 2873 const bssl::SSL_PROTOCOL_METHOD *method; 2874 // x509_method contains pointers to functions that might deal with |X509| 2875 // compatibility, or might be a no-op, depending on the application. 2876 const bssl::SSL_X509_METHOD *x509_method; 2877 }; 2878 2879 struct ssl_ctx_st { 2880 explicit ssl_ctx_st(const SSL_METHOD *ssl_method); 2881 ssl_ctx_st(const ssl_ctx_st &) = delete; 2882 ssl_ctx_st &operator=(const ssl_ctx_st &) = delete; 2883 2884 const bssl::SSL_PROTOCOL_METHOD *method = nullptr; 2885 const bssl::SSL_X509_METHOD *x509_method = nullptr; 2886 2887 // lock is used to protect various operations on this object. 2888 CRYPTO_MUTEX lock; 2889 2890 // conf_max_version is the maximum acceptable protocol version configured by 2891 // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS 2892 // and is further constrainted by |SSL_OP_NO_*|. 2893 uint16_t conf_max_version = 0; 2894 2895 // conf_min_version is the minimum acceptable protocol version configured by 2896 // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS 2897 // and is further constrainted by |SSL_OP_NO_*|. 2898 uint16_t conf_min_version = 0; 2899 2900 // quic_method is the method table corresponding to the QUIC hooks. 2901 const SSL_QUIC_METHOD *quic_method = nullptr; 2902 2903 bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list; 2904 2905 X509_STORE *cert_store = nullptr; 2906 LHASH_OF(SSL_SESSION) *sessions = nullptr; 2907 // Most session-ids that will be cached, default is 2908 // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited. 2909 unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; 2910 SSL_SESSION *session_cache_head = nullptr; 2911 SSL_SESSION *session_cache_tail = nullptr; 2912 2913 // handshakes_since_cache_flush is the number of successful handshakes since 2914 // the last cache flush. 2915 int handshakes_since_cache_flush = 0; 2916 2917 // This can have one of 2 values, ored together, 2918 // SSL_SESS_CACHE_CLIENT, 2919 // SSL_SESS_CACHE_SERVER, 2920 // Default is SSL_SESSION_CACHE_SERVER, which means only 2921 // SSL_accept which cache SSL_SESSIONS. 2922 int session_cache_mode = SSL_SESS_CACHE_SERVER; 2923 2924 // session_timeout is the default lifetime for new sessions in TLS 1.2 and 2925 // earlier, in seconds. 2926 uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT; 2927 2928 // session_psk_dhe_timeout is the default lifetime for new sessions in TLS 2929 // 1.3, in seconds. 2930 uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT; 2931 2932 // If this callback is not null, it will be called each time a session id is 2933 // added to the cache. If this function returns 1, it means that the 2934 // callback will do a SSL_SESSION_free() when it has finished using it. 2935 // Otherwise, on 0, it means the callback has finished with it. If 2936 // remove_session_cb is not null, it will be called when a session-id is 2937 // removed from the cache. After the call, OpenSSL will SSL_SESSION_free() 2938 // it. 2939 int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr; 2940 void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr; 2941 SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len, 2942 int *copy) = nullptr; 2943 2944 CRYPTO_refcount_t references = 1; 2945 2946 // if defined, these override the X509_verify_cert() calls 2947 int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr; 2948 void *app_verify_arg = nullptr; 2949 2950 ssl_verify_result_t (*custom_verify_callback)(SSL *ssl, 2951 uint8_t *out_alert) = nullptr; 2952 2953 // Default password callback. 2954 pem_password_cb *default_passwd_callback = nullptr; 2955 2956 // Default password callback user data. 2957 void *default_passwd_callback_userdata = nullptr; 2958 2959 // get client cert callback 2960 int (*client_cert_cb)(SSL *ssl, X509 **out_x509, 2961 EVP_PKEY **out_pkey) = nullptr; 2962 2963 // get channel id callback 2964 void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey) = nullptr; 2965 2966 CRYPTO_EX_DATA ex_data; 2967 2968 // Default values used when no per-SSL value is defined follow 2969 2970 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; 2971 2972 // what we put in client cert requests 2973 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA; 2974 2975 // cached_x509_client_CA is a cache of parsed versions of the elements of 2976 // |client_CA|. 2977 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; 2978 2979 2980 // Default values to use in SSL structures follow (these are copied by 2981 // SSL_new) 2982 2983 uint32_t options = 0; 2984 // Disable the auto-chaining feature by default. wpa_supplicant relies on this 2985 // feature, but require callers opt into it. 2986 uint32_t mode = SSL_MODE_NO_AUTO_CHAIN; 2987 uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; 2988 2989 bssl::UniquePtr<bssl::CERT> cert; 2990 2991 // callback that allows applications to peek at protocol messages 2992 void (*msg_callback)(int write_p, int version, int content_type, 2993 const void *buf, size_t len, SSL *ssl, 2994 void *arg) = nullptr; 2995 void *msg_callback_arg = nullptr; 2996 2997 int verify_mode = SSL_VERIFY_NONE; 2998 int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) = 2999 nullptr; // called 'verify_callback' in the SSL 3000 3001 X509_VERIFY_PARAM *param = nullptr; 3002 3003 // select_certificate_cb is called before most ClientHello processing and 3004 // before the decision whether to resume a session is made. See 3005 // |ssl_select_cert_result_t| for details of the return values. 3006 ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) = 3007 nullptr; 3008 3009 // dos_protection_cb is called once the resumption decision for a ClientHello 3010 // has been made. It returns one to continue the handshake or zero to 3011 // abort. 3012 int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr; 3013 3014 // Controls whether to verify certificates when resuming connections. They 3015 // were already verified when the connection was first made, so the default is 3016 // false. For now, this is only respected on clients, not servers. 3017 bool reverify_on_resume = false; 3018 3019 // Maximum amount of data to send in one fragment. actual record size can be 3020 // more than this due to padding and MAC overheads. 3021 uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; 3022 3023 // TLS extensions servername callback 3024 int (*servername_callback)(SSL *, int *, void *) = nullptr; 3025 void *servername_arg = nullptr; 3026 3027 // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the 3028 // first handshake and |ticket_key_prev| may be NULL at any time. 3029 // Automatically generated ticket keys are rotated as needed at handshake 3030 // time. Hence, all access must be synchronized through |lock|. 3031 bssl::UniquePtr<bssl::TicketKey> ticket_key_current; 3032 bssl::UniquePtr<bssl::TicketKey> ticket_key_prev; 3033 3034 // Callback to support customisation of ticket key setting 3035 int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv, 3036 EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr; 3037 3038 // Server-only: psk_identity_hint is the default identity hint to send in 3039 // PSK-based key exchanges. 3040 bssl::UniquePtr<char> psk_identity_hint; 3041 3042 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, 3043 unsigned max_identity_len, uint8_t *psk, 3044 unsigned max_psk_len) = nullptr; 3045 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, 3046 unsigned max_psk_len) = nullptr; 3047 3048 3049 // Next protocol negotiation information 3050 // (for experimental NPN extension). 3051 3052 // For a server, this contains a callback function by which the set of 3053 // advertised protocols can be provided. 3054 int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out, 3055 unsigned *out_len, void *arg) = nullptr; 3056 void *next_protos_advertised_cb_arg = nullptr; 3057 // For a client, this contains a callback function that selects the 3058 // next protocol from the list provided by the server. 3059 int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, 3060 const uint8_t *in, unsigned in_len, 3061 void *arg) = nullptr; 3062 void *next_proto_select_cb_arg = nullptr; 3063 3064 // ALPN information 3065 // (we are in the process of transitioning from NPN to ALPN.) 3066 3067 // For a server, this contains a callback function that allows the 3068 // server to select the protocol for the connection. 3069 // out: on successful return, this must point to the raw protocol 3070 // name (without the length prefix). 3071 // outlen: on successful return, this contains the length of |*out|. 3072 // in: points to the client's list of supported protocols in 3073 // wire-format. 3074 // inlen: the length of |in|. 3075 int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, 3076 const uint8_t *in, unsigned in_len, 3077 void *arg) = nullptr; 3078 void *alpn_select_cb_arg = nullptr; 3079 3080 // For a client, this contains the list of supported protocols in wire 3081 // format. 3082 bssl::Array<uint8_t> alpn_client_proto_list; 3083 3084 // SRTP profiles we are willing to do from RFC 5764 3085 bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles; 3086 3087 // Defined compression algorithms for certificates. 3088 bssl::UniquePtr<STACK_OF(CertCompressionAlg)> cert_compression_algs; 3089 3090 // Supported group values inherited by SSL structure 3091 bssl::Array<uint16_t> supported_group_list; 3092 3093 // The client's Channel ID private key. 3094 bssl::UniquePtr<EVP_PKEY> channel_id_private; 3095 3096 // keylog_callback, if not NULL, is the key logging callback. See 3097 // |SSL_CTX_set_keylog_callback|. 3098 void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr; 3099 3100 // current_time_cb, if not NULL, is the function to use to get the current 3101 // time. It sets |*out_clock| to the current time. The |ssl| argument is 3102 // always NULL. See |SSL_CTX_set_current_time_cb|. 3103 void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr; 3104 3105 // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate 3106 // memory. 3107 CRYPTO_BUFFER_POOL *pool = nullptr; 3108 3109 // ticket_aead_method contains function pointers for opening and sealing 3110 // session tickets. 3111 const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr; 3112 3113 // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL 3114 // compatibility. 3115 int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr; 3116 void *legacy_ocsp_callback_arg = nullptr; 3117 3118 // verify_sigalgs, if not empty, is the set of signature algorithms 3119 // accepted from the peer in decreasing order of preference. 3120 bssl::Array<uint16_t> verify_sigalgs; 3121 3122 // retain_only_sha256_of_client_certs is true if we should compute the SHA256 3123 // hash of the peer's certificate and then discard it to save memory and 3124 // session space. Only effective on the server side. 3125 bool retain_only_sha256_of_client_certs : 1; 3126 3127 // quiet_shutdown is true if the connection should not send a close_notify on 3128 // shutdown. 3129 bool quiet_shutdown : 1; 3130 3131 // ocsp_stapling_enabled is only used by client connections and indicates 3132 // whether OCSP stapling will be requested. 3133 bool ocsp_stapling_enabled : 1; 3134 3135 // If true, a client will request certificate timestamps. 3136 bool signed_cert_timestamps_enabled : 1; 3137 3138 // channel_id_enabled is whether Channel ID is enabled. For a server, means 3139 // that we'll accept Channel IDs from clients. For a client, means that we'll 3140 // advertise support. 3141 bool channel_id_enabled : 1; 3142 3143 // grease_enabled is whether draft-davidben-tls-grease-01 is enabled. 3144 bool grease_enabled : 1; 3145 3146 // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN 3147 // protocols from the peer. 3148 bool allow_unknown_alpn_protos : 1; 3149 3150 // ed25519_enabled is whether Ed25519 is advertised in the handshake. 3151 bool ed25519_enabled : 1; 3152 3153 // rsa_pss_rsae_certs_enabled is whether rsa_pss_rsae_* are supported by the 3154 // certificate verifier. 3155 bool rsa_pss_rsae_certs_enabled : 1; 3156 3157 // false_start_allowed_without_alpn is whether False Start (if 3158 // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN. 3159 bool false_start_allowed_without_alpn : 1; 3160 3161 // ignore_tls13_downgrade is whether a connection should continue when the 3162 // server random signals a downgrade. 3163 bool ignore_tls13_downgrade:1; 3164 3165 // handoff indicates that a server should stop after receiving the 3166 // ClientHello and pause the handshake in such a way that |SSL_get_error| 3167 // returns |SSL_HANDOFF|. 3168 bool handoff : 1; 3169 3170 // If enable_early_data is true, early data can be sent and accepted. 3171 bool enable_early_data : 1; 3172 3173 private: 3174 ~ssl_ctx_st(); 3175 friend void SSL_CTX_free(SSL_CTX *); 3176 }; 3177 3178 struct ssl_st { 3179 explicit ssl_st(SSL_CTX *ctx_arg); 3180 ssl_st(const ssl_st &) = delete; 3181 ssl_st &operator=(const ssl_st &) = delete; 3182 ~ssl_st(); 3183 3184 // method is the method table corresponding to the current protocol (DTLS or 3185 // TLS). 3186 const bssl::SSL_PROTOCOL_METHOD *method = nullptr; 3187 3188 // config is a container for handshake configuration. Accesses to this field 3189 // should check for nullptr, since configuration may be shed after the 3190 // handshake completes. (If you have the |SSL_HANDSHAKE| object at hand, use 3191 // that instead, and skip the null check.) 3192 bssl::UniquePtr<bssl::SSL_CONFIG> config; 3193 3194 // version is the protocol version. 3195 uint16_t version = 0; 3196 3197 uint16_t max_send_fragment = 0; 3198 3199 // There are 2 BIO's even though they are normally both the same. This is so 3200 // data can be read and written to different handlers 3201 3202 bssl::UniquePtr<BIO> rbio; // used by SSL_read 3203 bssl::UniquePtr<BIO> wbio; // used by SSL_write 3204 3205 // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|. 3206 // Otherwise, it returns a value corresponding to what operation is needed to 3207 // progress. 3208 bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr; 3209 3210 bssl::SSL3_STATE *s3 = nullptr; // TLS variables 3211 bssl::DTLS1_STATE *d1 = nullptr; // DTLS variables 3212 3213 // callback that allows applications to peek at protocol messages 3214 void (*msg_callback)(int write_p, int version, int content_type, 3215 const void *buf, size_t len, SSL *ssl, 3216 void *arg) = nullptr; 3217 void *msg_callback_arg = nullptr; 3218 3219 // session info 3220 3221 // initial_timeout_duration_ms is the default DTLS timeout duration in 3222 // milliseconds. It's used to initialize the timer any time it's restarted. 3223 // 3224 // RFC 6347 states that implementations SHOULD use an initial timer value of 1 3225 // second. 3226 unsigned initial_timeout_duration_ms = 1000; 3227 3228 // session is the configured session to be offered by the client. This session 3229 // is immutable. 3230 bssl::UniquePtr<SSL_SESSION> session; 3231 3232 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; 3233 3234 bssl::UniquePtr<SSL_CTX> ctx; 3235 3236 // session_ctx is the |SSL_CTX| used for the session cache and related 3237 // settings. 3238 bssl::UniquePtr<SSL_CTX> session_ctx; 3239 3240 // extra application data 3241 CRYPTO_EX_DATA ex_data; 3242 3243 uint32_t options = 0; // protocol behaviour 3244 uint32_t mode = 0; // API behaviour 3245 uint32_t max_cert_list = 0; 3246 bssl::UniquePtr<char> hostname; 3247 3248 // quic_method is the method table corresponding to the QUIC hooks. 3249 const SSL_QUIC_METHOD *quic_method = nullptr; 3250 3251 // renegotiate_mode controls how peer renegotiation attempts are handled. 3252 ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never; 3253 3254 // server is true iff the this SSL* is the server half. Note: before the SSL* 3255 // is initialized by either SSL_set_accept_state or SSL_set_connect_state, 3256 // the side is not determined. In this state, server is always false. 3257 bool server : 1; 3258 3259 // quiet_shutdown is true if the connection should not send a close_notify on 3260 // shutdown. 3261 bool quiet_shutdown : 1; 3262 3263 // If enable_early_data is true, early data can be sent and accepted. 3264 bool enable_early_data : 1; 3265 }; 3266 3267 struct ssl_session_st { 3268 explicit ssl_session_st(const bssl::SSL_X509_METHOD *method); 3269 ssl_session_st(const ssl_session_st &) = delete; 3270 ssl_session_st &operator=(const ssl_session_st &) = delete; 3271 3272 CRYPTO_refcount_t references = 1; 3273 3274 // ssl_version is the (D)TLS version that established the session. 3275 uint16_t ssl_version = 0; 3276 3277 // group_id is the ID of the ECDH group used to establish this session or zero 3278 // if not applicable or unknown. 3279 uint16_t group_id = 0; 3280 3281 // peer_signature_algorithm is the signature algorithm used to authenticate 3282 // the peer, or zero if not applicable or unknown. 3283 uint16_t peer_signature_algorithm = 0; 3284 3285 // master_key, in TLS 1.2 and below, is the master secret associated with the 3286 // session. In TLS 1.3 and up, it is the resumption secret. 3287 int master_key_length = 0; 3288 uint8_t master_key[SSL_MAX_MASTER_KEY_LENGTH] = {0}; 3289 3290 // session_id - valid? 3291 unsigned session_id_length = 0; 3292 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0}; 3293 // this is used to determine whether the session is being reused in 3294 // the appropriate context. It is up to the application to set this, 3295 // via SSL_new 3296 uint8_t sid_ctx_length = 0; 3297 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0}; 3298 3299 bssl::UniquePtr<char> psk_identity; 3300 3301 // certs contains the certificate chain from the peer, starting with the leaf 3302 // certificate. 3303 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs; 3304 3305 const bssl::SSL_X509_METHOD *x509_method = nullptr; 3306 3307 // x509_peer is the peer's certificate. 3308 X509 *x509_peer = nullptr; 3309 3310 // x509_chain is the certificate chain sent by the peer. NOTE: for historical 3311 // reasons, when a client (so the peer is a server), the chain includes 3312 // |peer|, but when a server it does not. 3313 STACK_OF(X509) *x509_chain = nullptr; 3314 3315 // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that 3316 // omits the leaf certificate. This exists because OpenSSL, historically, 3317 // didn't include the leaf certificate in the chain for a server, but did for 3318 // a client. The |x509_chain| always includes it and, if an API call requires 3319 // a chain without, it is stored here. 3320 STACK_OF(X509) *x509_chain_without_leaf = nullptr; 3321 3322 // verify_result is the result of certificate verification in the case of 3323 // non-fatal certificate errors. 3324 long verify_result = X509_V_ERR_INVALID_CALL; 3325 3326 // timeout is the lifetime of the session in seconds, measured from |time|. 3327 // This is renewable up to |auth_timeout|. 3328 uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT; 3329 3330 // auth_timeout is the non-renewable lifetime of the session in seconds, 3331 // measured from |time|. 3332 uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT; 3333 3334 // time is the time the session was issued, measured in seconds from the UNIX 3335 // epoch. 3336 uint64_t time = 0; 3337 3338 const SSL_CIPHER *cipher = nullptr; 3339 3340 CRYPTO_EX_DATA ex_data; // application specific data 3341 3342 // These are used to make removal of session-ids more efficient and to 3343 // implement a maximum cache size. 3344 SSL_SESSION *prev = nullptr, *next = nullptr; 3345 3346 bssl::Array<uint8_t> ticket; 3347 3348 bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list; 3349 3350 // The OCSP response that came with the session. 3351 bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response; 3352 3353 // peer_sha256 contains the SHA-256 hash of the peer's certificate if 3354 // |peer_sha256_valid| is true. 3355 uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0}; 3356 3357 // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or 3358 // SHA-2, depending on TLS version) for the original, full handshake that 3359 // created a session. This is used by Channel IDs during resumption. 3360 uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0}; 3361 uint8_t original_handshake_hash_len = 0; 3362 3363 uint32_t ticket_lifetime_hint = 0; // Session lifetime hint in seconds 3364 3365 uint32_t ticket_age_add = 0; 3366 3367 // ticket_max_early_data is the maximum amount of data allowed to be sent as 3368 // early data. If zero, 0-RTT is disallowed. 3369 uint32_t ticket_max_early_data = 0; 3370 3371 // early_alpn is the ALPN protocol from the initial handshake. This is only 3372 // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT 3373 // resumptions. 3374 bssl::Array<uint8_t> early_alpn; 3375 3376 // extended_master_secret is whether the master secret in this session was 3377 // generated using EMS and thus isn't vulnerable to the Triple Handshake 3378 // attack. 3379 bool extended_master_secret : 1; 3380 3381 // peer_sha256_valid is whether |peer_sha256| is valid. 3382 bool peer_sha256_valid : 1; // Non-zero if peer_sha256 is valid 3383 3384 // not_resumable is used to indicate that session resumption is disallowed. 3385 bool not_resumable : 1; 3386 3387 // ticket_age_add_valid is whether |ticket_age_add| is valid. 3388 bool ticket_age_add_valid : 1; 3389 3390 // is_server is whether this session was created by a server. 3391 bool is_server : 1; 3392 3393 private: 3394 ~ssl_session_st(); 3395 friend void SSL_SESSION_free(SSL_SESSION *); 3396 }; 3397 3398 3399 #endif // OPENSSL_HEADER_SSL_INTERNAL_H 3400