Home | History | Annotate | Download | only in ssl
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com).
    108  *
    109  */
    110 /* ====================================================================
    111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
    112  * ECC cipher suite support in OpenSSL originally developed by
    113  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
    114  */
    115 /* ====================================================================
    116  * Copyright 2005 Nokia. All rights reserved.
    117  *
    118  * The portions of the attached software ("Contribution") is developed by
    119  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
    120  * license.
    121  *
    122  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
    123  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
    124  * support (see RFC 4279) to OpenSSL.
    125  *
    126  * No patent licenses or other rights except those expressly stated in
    127  * the OpenSSL open source license shall be deemed granted or received
    128  * expressly, by implication, estoppel, or otherwise.
    129  *
    130  * No assurances are provided by Nokia that the Contribution does not
    131  * infringe the patent or other intellectual property rights of any third
    132  * party or that the license provides you with all the necessary rights
    133  * to make use of the Contribution.
    134  *
    135  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
    136  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
    137  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
    138  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
    139  * OTHERWISE.
    140  */
    141 
    142 #ifndef OPENSSL_HEADER_SSL_INTERNAL_H
    143 #define OPENSSL_HEADER_SSL_INTERNAL_H
    144 
    145 #include <openssl/base.h>
    146 
    147 #include <stdlib.h>
    148 
    149 #include <limits>
    150 #include <new>
    151 #include <type_traits>
    152 #include <utility>
    153 
    154 #include <openssl/aead.h>
    155 #include <openssl/err.h>
    156 #include <openssl/lhash.h>
    157 #include <openssl/mem.h>
    158 #include <openssl/span.h>
    159 #include <openssl/ssl.h>
    160 #include <openssl/stack.h>
    161 
    162 #include "../crypto/err/internal.h"
    163 #include "../crypto/internal.h"
    164 
    165 
    166 #if defined(OPENSSL_WINDOWS)
    167 // Windows defines struct timeval in winsock2.h.
    168 OPENSSL_MSVC_PRAGMA(warning(push, 3))
    169 #include <winsock2.h>
    170 OPENSSL_MSVC_PRAGMA(warning(pop))
    171 #else
    172 #include <sys/time.h>
    173 #endif
    174 
    175 
    176 BSSL_NAMESPACE_BEGIN
    177 
    178 struct SSL_CONFIG;
    179 struct SSL_HANDSHAKE;
    180 struct SSL_PROTOCOL_METHOD;
    181 struct SSL_X509_METHOD;
    182 
    183 // C++ utilities.
    184 
    185 // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
    186 // returns nullptr on allocation error. It only implements single-object
    187 // allocation and not new T[n].
    188 //
    189 // Note: unlike |new|, this does not support non-public constructors.
    190 template <typename T, typename... Args>
    191 T *New(Args &&... args) {
    192   void *t = OPENSSL_malloc(sizeof(T));
    193   if (t == nullptr) {
    194     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    195     return nullptr;
    196   }
    197   return new (t) T(std::forward<Args>(args)...);
    198 }
    199 
    200 // Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
    201 //
    202 // Note: unlike |delete| this does not support non-public destructors.
    203 template <typename T>
    204 void Delete(T *t) {
    205   if (t != nullptr) {
    206     t->~T();
    207     OPENSSL_free(t);
    208   }
    209 }
    210 
    211 // All types with kAllowUniquePtr set may be used with UniquePtr. Other types
    212 // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
    213 namespace internal {
    214 template <typename T>
    215 struct DeleterImpl<T, typename std::enable_if<T::kAllowUniquePtr>::type> {
    216   static void Free(T *t) { Delete(t); }
    217 };
    218 }  // namespace internal
    219 
    220 // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
    221 // error.
    222 template <typename T, typename... Args>
    223 UniquePtr<T> MakeUnique(Args &&... args) {
    224   return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
    225 }
    226 
    227 #if defined(BORINGSSL_ALLOW_CXX_RUNTIME)
    228 #define HAS_VIRTUAL_DESTRUCTOR
    229 #define PURE_VIRTUAL = 0
    230 #else
    231 // HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a
    232 // virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the
    233 // class from being used with |delete|.
    234 #define HAS_VIRTUAL_DESTRUCTOR \
    235   void operator delete(void *) { abort(); }
    236 
    237 // PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual
    238 // functions. This avoids a dependency on |__cxa_pure_virtual| but loses
    239 // compile-time checking.
    240 #define PURE_VIRTUAL \
    241   { abort(); }
    242 #endif
    243 
    244 // CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work
    245 // on constexpr arrays.
    246 #if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910
    247 #define CONSTEXPR_ARRAY const
    248 #else
    249 #define CONSTEXPR_ARRAY constexpr
    250 #endif
    251 
    252 // Array<T> is an owning array of elements of |T|.
    253 template <typename T>
    254 class Array {
    255  public:
    256   // Array's default constructor creates an empty array.
    257   Array() {}
    258   Array(const Array &) = delete;
    259   Array(Array &&other) { *this = std::move(other); }
    260 
    261   ~Array() { Reset(); }
    262 
    263   Array &operator=(const Array &) = delete;
    264   Array &operator=(Array &&other) {
    265     Reset();
    266     other.Release(&data_, &size_);
    267     return *this;
    268   }
    269 
    270   const T *data() const { return data_; }
    271   T *data() { return data_; }
    272   size_t size() const { return size_; }
    273   bool empty() const { return size_ == 0; }
    274 
    275   const T &operator[](size_t i) const { return data_[i]; }
    276   T &operator[](size_t i) { return data_[i]; }
    277 
    278   T *begin() { return data_; }
    279   const T *cbegin() const { return data_; }
    280   T *end() { return data_ + size_; }
    281   const T *cend() const { return data_ + size_; }
    282 
    283   void Reset() { Reset(nullptr, 0); }
    284 
    285   // Reset releases the current contents of the array and takes ownership of the
    286   // raw pointer supplied by the caller.
    287   void Reset(T *new_data, size_t new_size) {
    288     for (size_t i = 0; i < size_; i++) {
    289       data_[i].~T();
    290     }
    291     OPENSSL_free(data_);
    292     data_ = new_data;
    293     size_ = new_size;
    294   }
    295 
    296   // Release releases ownership of the array to a raw pointer supplied by the
    297   // caller.
    298   void Release(T **out, size_t *out_size) {
    299     *out = data_;
    300     *out_size = size_;
    301     data_ = nullptr;
    302     size_ = 0;
    303   }
    304 
    305   // Init replaces the array with a newly-allocated array of |new_size|
    306   // default-constructed copies of |T|. It returns true on success and false on
    307   // error.
    308   //
    309   // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
    310   bool Init(size_t new_size) {
    311     Reset();
    312     if (new_size == 0) {
    313       return true;
    314     }
    315 
    316     if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
    317       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
    318       return false;
    319     }
    320     data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
    321     if (data_ == nullptr) {
    322       OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    323       return false;
    324     }
    325     size_ = new_size;
    326     for (size_t i = 0; i < size_; i++) {
    327       new (&data_[i]) T;
    328     }
    329     return true;
    330   }
    331 
    332   // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
    333   // true on success and false on error.
    334   bool CopyFrom(Span<const T> in) {
    335     if (!Init(in.size())) {
    336       return false;
    337     }
    338     OPENSSL_memcpy(data_, in.data(), sizeof(T) * in.size());
    339     return true;
    340   }
    341 
    342   // Shrink shrinks the stored size of the array to |new_size|. It crashes if
    343   // the new size is larger. Note this does not shrink the allocation itself.
    344   void Shrink(size_t new_size) {
    345     if (new_size > size_) {
    346       abort();
    347     }
    348     size_ = new_size;
    349   }
    350 
    351  private:
    352   T *data_ = nullptr;
    353   size_t size_ = 0;
    354 };
    355 
    356 // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
    357 OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
    358 
    359 
    360 // Protocol versions.
    361 //
    362 // Due to DTLS's historical wire version differences, we maintain two notions of
    363 // version.
    364 //
    365 // The "version" or "wire version" is the actual 16-bit value that appears on
    366 // the wire. It uniquely identifies a version and is also used at API
    367 // boundaries. The set of supported versions differs between TLS and DTLS. Wire
    368 // versions are opaque values and may not be compared numerically.
    369 //
    370 // The "protocol version" identifies the high-level handshake variant being
    371 // used. DTLS versions map to the corresponding TLS versions. Protocol versions
    372 // are sequential and may be compared numerically.
    373 
    374 // ssl_protocol_version_from_wire sets |*out| to the protocol version
    375 // corresponding to wire version |version| and returns true. If |version| is not
    376 // a valid TLS or DTLS version, it returns false.
    377 //
    378 // Note this simultaneously handles both DTLS and TLS. Use one of the
    379 // higher-level functions below for most operations.
    380 bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
    381 
    382 // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
    383 // minimum and maximum enabled protocol versions, respectively.
    384 bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version,
    385                            uint16_t *out_max_version);
    386 
    387 // ssl_supports_version returns whether |hs| supports |version|.
    388 bool ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version);
    389 
    390 // ssl_method_supports_version returns whether |method| supports |version|.
    391 bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method,
    392                                  uint16_t version);
    393 
    394 // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
    395 // decreasing preference order.
    396 bool ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb);
    397 
    398 // ssl_negotiate_version negotiates a common version based on |hs|'s preferences
    399 // and the peer preference list in |peer_versions|. On success, it returns true
    400 // and sets |*out_version| to the selected version. Otherwise, it returns false
    401 // and sets |*out_alert| to an alert to send.
    402 bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
    403                            uint16_t *out_version, const CBS *peer_versions);
    404 
    405 // ssl_protocol_version returns |ssl|'s protocol version. It is an error to
    406 // call this function before the version is determined.
    407 uint16_t ssl_protocol_version(const SSL *ssl);
    408 
    409 // Cipher suites.
    410 
    411 BSSL_NAMESPACE_END
    412 
    413 struct ssl_cipher_st {
    414   // name is the OpenSSL name for the cipher.
    415   const char *name;
    416   // standard_name is the IETF name for the cipher.
    417   const char *standard_name;
    418   // id is the cipher suite value bitwise OR-d with 0x03000000.
    419   uint32_t id;
    420 
    421   // algorithm_* determine the cipher suite. See constants below for the values.
    422   uint32_t algorithm_mkey;
    423   uint32_t algorithm_auth;
    424   uint32_t algorithm_enc;
    425   uint32_t algorithm_mac;
    426   uint32_t algorithm_prf;
    427 };
    428 
    429 BSSL_NAMESPACE_BEGIN
    430 
    431 // Bits for |algorithm_mkey| (key exchange algorithm).
    432 #define SSL_kRSA 0x00000001u
    433 #define SSL_kECDHE 0x00000002u
    434 // SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
    435 #define SSL_kPSK 0x00000004u
    436 #define SSL_kGENERIC 0x00000008u
    437 
    438 // Bits for |algorithm_auth| (server authentication).
    439 #define SSL_aRSA 0x00000001u
    440 #define SSL_aECDSA 0x00000002u
    441 // SSL_aPSK is set for both PSK and ECDHE_PSK.
    442 #define SSL_aPSK 0x00000004u
    443 #define SSL_aGENERIC 0x00000008u
    444 
    445 #define SSL_aCERT (SSL_aRSA | SSL_aECDSA)
    446 
    447 // Bits for |algorithm_enc| (symmetric encryption).
    448 #define SSL_3DES 0x00000001u
    449 #define SSL_AES128 0x00000002u
    450 #define SSL_AES256 0x00000004u
    451 #define SSL_AES128GCM 0x00000008u
    452 #define SSL_AES256GCM 0x00000010u
    453 #define SSL_eNULL 0x00000020u
    454 #define SSL_CHACHA20POLY1305 0x00000040u
    455 
    456 #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
    457 
    458 // Bits for |algorithm_mac| (symmetric authentication).
    459 #define SSL_SHA1 0x00000001u
    460 // SSL_AEAD is set for all AEADs.
    461 #define SSL_AEAD 0x00000002u
    462 
    463 // Bits for |algorithm_prf| (handshake digest).
    464 #define SSL_HANDSHAKE_MAC_DEFAULT 0x1
    465 #define SSL_HANDSHAKE_MAC_SHA256 0x2
    466 #define SSL_HANDSHAKE_MAC_SHA384 0x4
    467 
    468 // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal-
    469 // preference groups. For TLS clients, the groups are moot because the server
    470 // picks the cipher and groups cannot be expressed on the wire. However, for
    471 // servers, the equal-preference groups allow the client's preferences to be
    472 // partially respected. (This only has an effect with
    473 // SSL_OP_CIPHER_SERVER_PREFERENCE).
    474 //
    475 // The equal-preference groups are expressed by grouping SSL_CIPHERs together.
    476 // All elements of a group have the same priority: no ordering is expressed
    477 // within a group.
    478 //
    479 // The values in |ciphers| are in one-to-one correspondence with
    480 // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
    481 // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
    482 // indicate that the corresponding SSL_CIPHER is not the last element of a
    483 // group, or 0 to indicate that it is.
    484 //
    485 // For example, if |in_group_flags| contains all zeros then that indicates a
    486 // traditional, fully-ordered preference. Every SSL_CIPHER is the last element
    487 // of the group (i.e. they are all in a one-element group).
    488 //
    489 // For a more complex example, consider:
    490 //   ciphers:        A  B  C  D  E  F
    491 //   in_group_flags: 1  1  0  0  1  0
    492 //
    493 // That would express the following, order:
    494 //
    495 //    A         E
    496 //    B -> D -> F
    497 //    C
    498 struct SSLCipherPreferenceList {
    499   static constexpr bool kAllowUniquePtr = true;
    500 
    501   SSLCipherPreferenceList() = default;
    502   ~SSLCipherPreferenceList();
    503 
    504   bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers,
    505             Span<const bool> in_group_flags);
    506   bool Init(const SSLCipherPreferenceList &);
    507 
    508   void Remove(const SSL_CIPHER *cipher);
    509 
    510   UniquePtr<STACK_OF(SSL_CIPHER)> ciphers;
    511   bool *in_group_flags = nullptr;
    512 };
    513 
    514 // AllCiphers returns an array of all supported ciphers, sorted by id.
    515 Span<const SSL_CIPHER> AllCiphers();
    516 
    517 // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
    518 // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
    519 // and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
    520 // respectively. The MAC key length is zero except for legacy block and stream
    521 // ciphers. It returns true on success and false on error.
    522 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
    523                              size_t *out_mac_secret_len,
    524                              size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
    525                              uint16_t version, bool is_dtls);
    526 
    527 // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
    528 // |cipher|.
    529 const EVP_MD *ssl_get_handshake_digest(uint16_t version,
    530                                        const SSL_CIPHER *cipher);
    531 
    532 // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
    533 // newly-allocated |SSLCipherPreferenceList| containing the result. It returns
    534 // true on success and false on failure. If |strict| is true, nonsense will be
    535 // rejected. If false, nonsense will be silently ignored. An empty result is
    536 // considered an error regardless of |strict|.
    537 bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
    538                             const char *rule_str, bool strict);
    539 
    540 // ssl_cipher_get_value returns the cipher suite id of |cipher|.
    541 uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher);
    542 
    543 // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
    544 // values suitable for use with |key| in TLS 1.2 and below.
    545 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key);
    546 
    547 // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
    548 // server and, optionally, the client with a certificate.
    549 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
    550 
    551 // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
    552 // ServerKeyExchange message.
    553 //
    554 // This function may return false while still allowing |cipher| an optional
    555 // ServerKeyExchange. This is the case for plain PSK ciphers.
    556 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
    557 
    558 // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
    559 // length of an encrypted 1-byte record, for use in record-splitting. Otherwise
    560 // it returns zero.
    561 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
    562 
    563 
    564 // Transcript layer.
    565 
    566 // SSLTranscript maintains the handshake transcript as a combination of a
    567 // buffer and running hash.
    568 class SSLTranscript {
    569  public:
    570   SSLTranscript();
    571   ~SSLTranscript();
    572 
    573   // Init initializes the handshake transcript. If called on an existing
    574   // transcript, it resets the transcript and hash. It returns true on success
    575   // and false on failure.
    576   bool Init();
    577 
    578   // InitHash initializes the handshake hash based on the PRF and contents of
    579   // the handshake transcript. Subsequent calls to |Update| will update the
    580   // rolling hash. It returns one on success and zero on failure. It is an error
    581   // to call this function after the handshake buffer is released.
    582   bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
    583 
    584   // UpdateForHelloRetryRequest resets the rolling hash with the
    585   // HelloRetryRequest construction. It returns true on success and false on
    586   // failure. It is an error to call this function before the handshake buffer
    587   // is released.
    588   bool UpdateForHelloRetryRequest();
    589 
    590   // CopyHashContext copies the hash context into |ctx| and returns true on
    591   // success.
    592   bool CopyHashContext(EVP_MD_CTX *ctx);
    593 
    594   Span<const uint8_t> buffer() {
    595     return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
    596                          buffer_->length);
    597   }
    598 
    599   // FreeBuffer releases the handshake buffer. Subsequent calls to
    600   // |Update| will not update the handshake buffer.
    601   void FreeBuffer();
    602 
    603   // DigestLen returns the length of the PRF hash.
    604   size_t DigestLen() const;
    605 
    606   // Digest returns the PRF hash. For TLS 1.1 and below, this is
    607   // |EVP_md5_sha1|.
    608   const EVP_MD *Digest() const;
    609 
    610   // Update adds |in| to the handshake buffer and handshake hash, whichever is
    611   // enabled. It returns true on success and false on failure.
    612   bool Update(Span<const uint8_t> in);
    613 
    614   // GetHash writes the handshake hash to |out| which must have room for at
    615   // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
    616   // the number of bytes written. Otherwise, it returns false.
    617   bool GetHash(uint8_t *out, size_t *out_len);
    618 
    619   // GetFinishedMAC computes the MAC for the Finished message into the bytes
    620   // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
    621   // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
    622   // on failure.
    623   bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
    624                       bool from_server);
    625 
    626  private:
    627   // buffer_, if non-null, contains the handshake transcript.
    628   UniquePtr<BUF_MEM> buffer_;
    629   // hash, if initialized with an |EVP_MD|, maintains the handshake hash.
    630   ScopedEVP_MD_CTX hash_;
    631 };
    632 
    633 // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
    634 // as the secret and |label| as the label. |seed1| and |seed2| are concatenated
    635 // to form the seed parameter. It returns true on success and false on failure.
    636 bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
    637               Span<const uint8_t> secret, Span<const char> label,
    638               Span<const uint8_t> seed1, Span<const uint8_t> seed2);
    639 
    640 
    641 // Encryption layer.
    642 
    643 // SSLAEADContext contains information about an AEAD that is being used to
    644 // encrypt an SSL connection.
    645 class SSLAEADContext {
    646  public:
    647   SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
    648   ~SSLAEADContext();
    649   static constexpr bool kAllowUniquePtr = true;
    650 
    651   SSLAEADContext(const SSLAEADContext &&) = delete;
    652   SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
    653 
    654   // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
    655   static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
    656 
    657   // Create creates an |SSLAEADContext| using the supplied key material. It
    658   // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
    659   // resulting object, depending on |direction|. |version| is the normalized
    660   // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
    661   static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
    662                                           uint16_t version, bool is_dtls,
    663                                           const SSL_CIPHER *cipher,
    664                                           Span<const uint8_t> enc_key,
    665                                           Span<const uint8_t> mac_key,
    666                                           Span<const uint8_t> fixed_iv);
    667 
    668   // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the
    669   // given cipher and version. The resulting object can be queried for various
    670   // properties but cannot encrypt or decrypt data.
    671   static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC(
    672       uint16_t version, const SSL_CIPHER *cipher);
    673 
    674   // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
    675   // cipher, to make version-specific determinations in the record layer prior
    676   // to a cipher being selected.
    677   void SetVersionIfNullCipher(uint16_t version);
    678 
    679   // ProtocolVersion returns the protocol version associated with this
    680   // SSLAEADContext. It can only be called once |version_| has been set to a
    681   // valid value.
    682   uint16_t ProtocolVersion() const;
    683 
    684   // RecordVersion returns the record version that should be used with this
    685   // SSLAEADContext for record construction and crypto.
    686   uint16_t RecordVersion() const;
    687 
    688   const SSL_CIPHER *cipher() const { return cipher_; }
    689 
    690   // is_null_cipher returns true if this is the null cipher.
    691   bool is_null_cipher() const { return !cipher_; }
    692 
    693   // ExplicitNonceLen returns the length of the explicit nonce.
    694   size_t ExplicitNonceLen() const;
    695 
    696   // MaxOverhead returns the maximum overhead of calling |Seal|.
    697   size_t MaxOverhead() const;
    698 
    699   // SuffixLen calculates the suffix length written by |SealScatter| and writes
    700   // it to |*out_suffix_len|. It returns true on success and false on error.
    701   // |in_len| and |extra_in_len| should equal the argument of the same names
    702   // passed to |SealScatter|.
    703   bool SuffixLen(size_t *out_suffix_len, size_t in_len,
    704                  size_t extra_in_len) const;
    705 
    706   // CiphertextLen calculates the total ciphertext length written by
    707   // |SealScatter| and writes it to |*out_len|. It returns true on success and
    708   // false on error. |in_len| and |extra_in_len| should equal the argument of
    709   // the same names passed to |SealScatter|.
    710   bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const;
    711 
    712   // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
    713   // to the plaintext in |in| and returns true.  Otherwise, it returns
    714   // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
    715   bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
    716             const uint8_t seqnum[8], Span<const uint8_t> header,
    717             Span<uint8_t> in);
    718 
    719   // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
    720   // result to |out|. It returns true on success and false on error.
    721   //
    722   // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
    723   bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
    724             uint16_t record_version, const uint8_t seqnum[8],
    725             Span<const uint8_t> header, const uint8_t *in, size_t in_len);
    726 
    727   // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
    728   // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
    729   // success and zero on error.
    730   //
    731   // On successful return, exactly |ExplicitNonceLen| bytes are written to
    732   // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
    733   // |out_suffix|.
    734   //
    735   // |extra_in| may point to an additional plaintext buffer. If present,
    736   // |extra_in_len| additional bytes are encrypted and authenticated, and the
    737   // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
    738   // be used to size |out_suffix| accordingly.
    739   //
    740   // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
    741   // alias anything.
    742   bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
    743                    uint8_t type, uint16_t record_version,
    744                    const uint8_t seqnum[8], Span<const uint8_t> header,
    745                    const uint8_t *in, size_t in_len, const uint8_t *extra_in,
    746                    size_t extra_in_len);
    747 
    748   bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
    749 
    750  private:
    751   // GetAdditionalData returns the additional data, writing into |storage| if
    752   // necessary.
    753   Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type,
    754                                         uint16_t record_version,
    755                                         const uint8_t seqnum[8],
    756                                         size_t plaintext_len,
    757                                         Span<const uint8_t> header);
    758 
    759   const SSL_CIPHER *cipher_;
    760   ScopedEVP_AEAD_CTX ctx_;
    761   // fixed_nonce_ contains any bytes of the nonce that are fixed for all
    762   // records.
    763   uint8_t fixed_nonce_[12];
    764   uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
    765   // version_ is the wire version that should be used with this AEAD.
    766   uint16_t version_;
    767   // is_dtls_ is whether DTLS is being used with this AEAD.
    768   bool is_dtls_;
    769   // variable_nonce_included_in_record_ is true if the variable nonce
    770   // for a record is included as a prefix before the ciphertext.
    771   bool variable_nonce_included_in_record_ : 1;
    772   // random_variable_nonce_ is true if the variable nonce is
    773   // randomly generated, rather than derived from the sequence
    774   // number.
    775   bool random_variable_nonce_ : 1;
    776   // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
    777   // variable nonce rather than prepended.
    778   bool xor_fixed_nonce_ : 1;
    779   // omit_length_in_ad_ is true if the length should be omitted in the
    780   // AEAD's ad parameter.
    781   bool omit_length_in_ad_ : 1;
    782   // ad_is_header_ is true if the AEAD's ad parameter is the record header.
    783   bool ad_is_header_ : 1;
    784 };
    785 
    786 
    787 // DTLS replay bitmap.
    788 
    789 // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
    790 // replayed packets. It should be initialized by zeroing every field.
    791 struct DTLS1_BITMAP {
    792   // map is a bit mask of the last 64 sequence numbers. Bit
    793   // |1<<i| corresponds to |max_seq_num - i|.
    794   uint64_t map = 0;
    795   // max_seq_num is the largest sequence number seen so far as a 64-bit
    796   // integer.
    797   uint64_t max_seq_num = 0;
    798 };
    799 
    800 
    801 // Record layer.
    802 
    803 // ssl_record_sequence_update increments the sequence number in |seq|. It
    804 // returns true on success and false on wraparound.
    805 bool ssl_record_sequence_update(uint8_t *seq, size_t seq_len);
    806 
    807 // ssl_record_prefix_len returns the length of the prefix before the ciphertext
    808 // of a record for |ssl|.
    809 //
    810 // TODO(davidben): Expose this as part of public API once the high-level
    811 // buffer-free APIs are available.
    812 size_t ssl_record_prefix_len(const SSL *ssl);
    813 
    814 enum ssl_open_record_t {
    815   ssl_open_record_success,
    816   ssl_open_record_discard,
    817   ssl_open_record_partial,
    818   ssl_open_record_close_notify,
    819   ssl_open_record_error,
    820 };
    821 
    822 // tls_open_record decrypts a record from |in| in-place.
    823 //
    824 // If the input did not contain a complete record, it returns
    825 // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
    826 // bytes necessary. It is guaranteed that a successful call to |tls_open_record|
    827 // will consume at least that many bytes.
    828 //
    829 // Otherwise, it sets |*out_consumed| to the number of bytes of input
    830 // consumed. Note that input may be consumed on all return codes if a record was
    831 // decrypted.
    832 //
    833 // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
    834 // record type and |*out| to the record body in |in|. Note that |*out| may be
    835 // empty.
    836 //
    837 // If a record was successfully processed but should be discarded, it returns
    838 // |ssl_open_record_discard|.
    839 //
    840 // If a record was successfully processed but is a close_notify, it returns
    841 // |ssl_open_record_close_notify|.
    842 //
    843 // On failure or fatal alert, it returns |ssl_open_record_error| and sets
    844 // |*out_alert| to an alert to emit, or zero if no alert should be emitted.
    845 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
    846                                        Span<uint8_t> *out, size_t *out_consumed,
    847                                        uint8_t *out_alert, Span<uint8_t> in);
    848 
    849 // dtls_open_record implements |tls_open_record| for DTLS. It only returns
    850 // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
    851 // zero. The caller should read one packet and try again.
    852 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
    853                                         Span<uint8_t> *out,
    854                                         size_t *out_consumed,
    855                                         uint8_t *out_alert, Span<uint8_t> in);
    856 
    857 // ssl_seal_align_prefix_len returns the length of the prefix before the start
    858 // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
    859 // use this to align buffers.
    860 //
    861 // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
    862 // record and is the offset into second record's ciphertext. Thus sealing a
    863 // small record may result in a smaller output than this value.
    864 //
    865 // TODO(davidben): Is this alignment valuable? Record-splitting makes this a
    866 // mess.
    867 size_t ssl_seal_align_prefix_len(const SSL *ssl);
    868 
    869 // tls_seal_record seals a new record of type |type| and body |in| and writes it
    870 // to |out|. At most |max_out| bytes will be written. It returns true on success
    871 // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC
    872 // 1/n-1 record splitting and may write two records concatenated.
    873 //
    874 // For a large record, the bulk of the ciphertext will begin
    875 // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
    876 // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
    877 // bytes to |out|.
    878 //
    879 // |in| and |out| may not alias.
    880 bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
    881                      uint8_t type, const uint8_t *in, size_t in_len);
    882 
    883 enum dtls1_use_epoch_t {
    884   dtls1_use_previous_epoch,
    885   dtls1_use_current_epoch,
    886 };
    887 
    888 // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
    889 // record.
    890 size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
    891 
    892 // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
    893 // front of the plaintext when sealing a record in-place.
    894 size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
    895 
    896 // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
    897 // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
    898 // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
    899 // ahead of |out|.
    900 bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
    901                       uint8_t type, const uint8_t *in, size_t in_len,
    902                       enum dtls1_use_epoch_t use_epoch);
    903 
    904 // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
    905 // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
    906 // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
    907 // appropriate.
    908 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
    909                                          Span<const uint8_t> in);
    910 
    911 
    912 // Private key operations.
    913 
    914 // ssl_has_private_key returns whether |hs| has a private key configured.
    915 bool ssl_has_private_key(const SSL_HANDSHAKE *hs);
    916 
    917 // ssl_private_key_* perform the corresponding operation on
    918 // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
    919 // call the corresponding function or |complete| depending on whether there is a
    920 // pending operation. Otherwise, they implement the operation with
    921 // |EVP_PKEY|.
    922 
    923 enum ssl_private_key_result_t ssl_private_key_sign(
    924     SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
    925     uint16_t sigalg, Span<const uint8_t> in);
    926 
    927 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
    928                                                       uint8_t *out,
    929                                                       size_t *out_len,
    930                                                       size_t max_out,
    931                                                       Span<const uint8_t> in);
    932 
    933 // ssl_private_key_supports_signature_algorithm returns whether |hs|'s private
    934 // key supports |sigalg|.
    935 bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
    936                                                   uint16_t sigalg);
    937 
    938 // ssl_public_key_verify verifies that the |signature| is valid for the public
    939 // key |pkey| and input |in|, using the signature algorithm |sigalg|.
    940 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
    941                            uint16_t sigalg, EVP_PKEY *pkey,
    942                            Span<const uint8_t> in);
    943 
    944 
    945 // Key shares.
    946 
    947 // SSLKeyShare abstracts over Diffie-Hellman-like key exchanges.
    948 class SSLKeyShare {
    949  public:
    950   virtual ~SSLKeyShare() {}
    951   static constexpr bool kAllowUniquePtr = true;
    952   HAS_VIRTUAL_DESTRUCTOR
    953 
    954   // Create returns a SSLKeyShare instance for use with group |group_id| or
    955   // nullptr on error.
    956   static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
    957 
    958   // Create deserializes an SSLKeyShare instance previously serialized by
    959   // |Serialize|.
    960   static UniquePtr<SSLKeyShare> Create(CBS *in);
    961 
    962   // GroupID returns the group ID.
    963   virtual uint16_t GroupID() const PURE_VIRTUAL;
    964 
    965   // Offer generates a keypair and writes the public value to
    966   // |out_public_key|. It returns true on success and false on error.
    967   virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL;
    968 
    969   // Accept performs a key exchange against the |peer_key| generated by |Offer|.
    970   // On success, it returns true, writes the public value to |out_public_key|,
    971   // and sets |*out_secret| to the shared secret. On failure, it returns false
    972   // and sets |*out_alert| to an alert to send to the peer.
    973   //
    974   // The default implementation calls |Offer| and then |Finish|, assuming a key
    975   // exchange protocol where the peers are symmetric.
    976   virtual bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret,
    977                       uint8_t *out_alert, Span<const uint8_t> peer_key);
    978 
    979   // Finish performs a key exchange against the |peer_key| generated by
    980   // |Accept|. On success, it returns true and sets |*out_secret| to the shared
    981   // secret. On failure, it returns false and sets |*out_alert| to an alert to
    982   // send to the peer.
    983   virtual bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert,
    984                       Span<const uint8_t> peer_key) PURE_VIRTUAL;
    985 
    986   // Serialize writes the state of the key exchange to |out|, returning true if
    987   // successful and false otherwise.
    988   virtual bool Serialize(CBB *out) { return false; }
    989 
    990   // Deserialize initializes the state of the key exchange from |in|, returning
    991   // true if successful and false otherwise.  It is called by |Create|.
    992   virtual bool Deserialize(CBS *in) { return false; }
    993 };
    994 
    995 struct NamedGroup {
    996   int nid;
    997   uint16_t group_id;
    998   const char name[8], alias[11];
    999 };
   1000 
   1001 // NamedGroups returns all supported groups.
   1002 Span<const NamedGroup> NamedGroups();
   1003 
   1004 // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
   1005 // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns
   1006 // false.
   1007 bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
   1008 
   1009 // ssl_name_to_group_id looks up the group corresponding to the |name| string of
   1010 // length |len|. On success, it sets |*out_group_id| to the group ID and returns
   1011 // true. Otherwise, it returns false.
   1012 bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
   1013 
   1014 
   1015 // Handshake messages.
   1016 
   1017 struct SSLMessage {
   1018   bool is_v2_hello;
   1019   uint8_t type;
   1020   CBS body;
   1021   // raw is the entire serialized handshake message, including the TLS or DTLS
   1022   // message header.
   1023   CBS raw;
   1024 };
   1025 
   1026 // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
   1027 // ChangeCipherSpec, in the longest handshake flight. Currently this is the
   1028 // client's second leg in a full handshake when client certificates, NPN, and
   1029 // Channel ID, are all enabled.
   1030 #define SSL_MAX_HANDSHAKE_FLIGHT 7
   1031 
   1032 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
   1033 extern const uint8_t kTLS12DowngradeRandom[8];
   1034 extern const uint8_t kTLS13DowngradeRandom[8];
   1035 extern const uint8_t kJDK11DowngradeRandom[8];
   1036 
   1037 // ssl_max_handshake_message_len returns the maximum number of bytes permitted
   1038 // in a handshake message for |ssl|.
   1039 size_t ssl_max_handshake_message_len(const SSL *ssl);
   1040 
   1041 // tls_can_accept_handshake_data returns whether |ssl| is able to accept more
   1042 // data into handshake buffer.
   1043 bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
   1044 
   1045 // tls_has_unprocessed_handshake_data returns whether there is buffered
   1046 // handshake data that has not been consumed by |get_message|.
   1047 bool tls_has_unprocessed_handshake_data(const SSL *ssl);
   1048 
   1049 // tls_append_handshake_data appends |data| to the handshake buffer. It returns
   1050 // true on success and false on allocation failure.
   1051 bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data);
   1052 
   1053 // dtls_has_unprocessed_handshake_data behaves like
   1054 // |tls_has_unprocessed_handshake_data| for DTLS.
   1055 bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
   1056 
   1057 // tls_flush_pending_hs_data flushes any handshake plaintext data.
   1058 bool tls_flush_pending_hs_data(SSL *ssl);
   1059 
   1060 struct DTLS_OUTGOING_MESSAGE {
   1061   DTLS_OUTGOING_MESSAGE() {}
   1062   DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
   1063   DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
   1064   ~DTLS_OUTGOING_MESSAGE() { Clear(); }
   1065 
   1066   void Clear();
   1067 
   1068   uint8_t *data = nullptr;
   1069   uint32_t len = 0;
   1070   uint16_t epoch = 0;
   1071   bool is_ccs = false;
   1072 };
   1073 
   1074 // dtls_clear_outgoing_messages releases all buffered outgoing messages.
   1075 void dtls_clear_outgoing_messages(SSL *ssl);
   1076 
   1077 
   1078 // Callbacks.
   1079 
   1080 // ssl_do_info_callback calls |ssl|'s info callback, if set.
   1081 void ssl_do_info_callback(const SSL *ssl, int type, int value);
   1082 
   1083 // ssl_do_msg_callback calls |ssl|'s message callback, if set.
   1084 void ssl_do_msg_callback(SSL *ssl, int is_write, int content_type,
   1085                          Span<const uint8_t> in);
   1086 
   1087 
   1088 // Transport buffers.
   1089 
   1090 class SSLBuffer {
   1091  public:
   1092   SSLBuffer() {}
   1093   ~SSLBuffer() { Clear(); }
   1094 
   1095   SSLBuffer(const SSLBuffer &) = delete;
   1096   SSLBuffer &operator=(const SSLBuffer &) = delete;
   1097 
   1098   uint8_t *data() { return buf_ + offset_; }
   1099   size_t size() const { return size_; }
   1100   bool empty() const { return size_ == 0; }
   1101   size_t cap() const { return cap_; }
   1102 
   1103   Span<uint8_t> span() { return MakeSpan(data(), size()); }
   1104 
   1105   Span<uint8_t> remaining() {
   1106     return MakeSpan(data() + size(), cap() - size());
   1107   }
   1108 
   1109   // Clear releases the buffer.
   1110   void Clear();
   1111 
   1112   // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
   1113   // that data written after |header_len| is aligned to a
   1114   // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
   1115   // on error.
   1116   bool EnsureCap(size_t header_len, size_t new_cap);
   1117 
   1118   // DidWrite extends the buffer by |len|. The caller must have filled in to
   1119   // this point.
   1120   void DidWrite(size_t len);
   1121 
   1122   // Consume consumes |len| bytes from the front of the buffer.  The memory
   1123   // consumed will remain valid until the next call to |DiscardConsumed| or
   1124   // |Clear|.
   1125   void Consume(size_t len);
   1126 
   1127   // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
   1128   // is now empty, it releases memory used by it.
   1129   void DiscardConsumed();
   1130 
   1131  private:
   1132   // buf_ is the memory allocated for this buffer.
   1133   uint8_t *buf_ = nullptr;
   1134   // offset_ is the offset into |buf_| which the buffer contents start at.
   1135   uint16_t offset_ = 0;
   1136   // size_ is the size of the buffer contents from |buf_| + |offset_|.
   1137   uint16_t size_ = 0;
   1138   // cap_ is how much memory beyond |buf_| + |offset_| is available.
   1139   uint16_t cap_ = 0;
   1140 };
   1141 
   1142 // ssl_read_buffer_extend_to extends the read buffer to the desired length. For
   1143 // TLS, it reads to the end of the buffer until the buffer is |len| bytes
   1144 // long. For DTLS, it reads a new packet and ignores |len|. It returns one on
   1145 // success, zero on EOF, and a negative number on error.
   1146 //
   1147 // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
   1148 // non-empty.
   1149 int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
   1150 
   1151 // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
   1152 // to a record-processing function. If |ret| is a success or if the caller
   1153 // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
   1154 // 0.
   1155 int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
   1156                            size_t consumed, uint8_t alert);
   1157 
   1158 // ssl_write_buffer_flush flushes the write buffer to the transport. It returns
   1159 // one on success and <= 0 on error. For DTLS, whether or not the write
   1160 // succeeds, the write buffer will be cleared.
   1161 int ssl_write_buffer_flush(SSL *ssl);
   1162 
   1163 
   1164 // Certificate functions.
   1165 
   1166 // ssl_has_certificate returns whether a certificate and private key are
   1167 // configured.
   1168 bool ssl_has_certificate(const SSL_HANDSHAKE *hs);
   1169 
   1170 // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
   1171 // by a TLS Certificate message. On success, it advances |cbs| and returns
   1172 // true. Otherwise, it returns false and sets |*out_alert| to an alert to send
   1173 // to the peer.
   1174 //
   1175 // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
   1176 // the certificate chain and the leaf certificate's public key
   1177 // respectively. Otherwise, both will be set to nullptr.
   1178 //
   1179 // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
   1180 // SHA-256 hash of the leaf to |out_leaf_sha256|.
   1181 bool ssl_parse_cert_chain(uint8_t *out_alert,
   1182                           UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
   1183                           UniquePtr<EVP_PKEY> *out_pubkey,
   1184                           uint8_t *out_leaf_sha256, CBS *cbs,
   1185                           CRYPTO_BUFFER_POOL *pool);
   1186 
   1187 // ssl_add_cert_chain adds |hs->ssl|'s certificate chain to |cbb| in the format
   1188 // used by a TLS Certificate message. If there is no certificate chain, it emits
   1189 // an empty certificate list. It returns true on success and false on error.
   1190 bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb);
   1191 
   1192 enum ssl_key_usage_t {
   1193   key_usage_digital_signature = 0,
   1194   key_usage_encipherment = 2,
   1195 };
   1196 
   1197 // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in|
   1198 // and returns true if doesn't specify a key usage or, if it does, if it
   1199 // includes |bit|. Otherwise it pushes to the error queue and returns false.
   1200 bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit);
   1201 
   1202 // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
   1203 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
   1204 // nullptr and pushes to the error queue.
   1205 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
   1206 
   1207 // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
   1208 // TLS CertificateRequest message. On success, it returns a newly-allocated
   1209 // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
   1210 // sets |*out_alert| to an alert to send to the peer.
   1211 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
   1212                                                             uint8_t *out_alert,
   1213                                                             CBS *cbs);
   1214 
   1215 // ssl_has_client_CAs returns there are configured CAs.
   1216 bool ssl_has_client_CAs(const SSL_CONFIG *cfg);
   1217 
   1218 // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
   1219 // used by a TLS CertificateRequest message. It returns true on success and
   1220 // false on error.
   1221 bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb);
   1222 
   1223 // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
   1224 // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
   1225 // an error on the error queue.
   1226 bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
   1227                                const CRYPTO_BUFFER *leaf);
   1228 
   1229 // ssl_on_certificate_selected is called once the certificate has been selected.
   1230 // It finalizes the certificate and initializes |hs->local_pubkey|. It returns
   1231 // true on success and false on error.
   1232 bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs);
   1233 
   1234 
   1235 // TLS 1.3 key derivation.
   1236 
   1237 // tls13_init_key_schedule initializes the handshake hash and key derivation
   1238 // state, and incorporates the PSK. The cipher suite and PRF hash must have been
   1239 // selected at this point. It returns true on success and false on error.
   1240 bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk,
   1241                              size_t psk_len);
   1242 
   1243 // tls13_init_early_key_schedule initializes the handshake hash and key
   1244 // derivation state from the resumption secret and incorporates the PSK to
   1245 // derive the early secrets. It returns one on success and zero on error.
   1246 bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk,
   1247                                    size_t psk_len);
   1248 
   1249 // tls13_advance_key_schedule incorporates |in| into the key schedule with
   1250 // HKDF-Extract. It returns true on success and false on error.
   1251 bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in,
   1252                                size_t len);
   1253 
   1254 // tls13_set_traffic_key sets the read or write traffic keys to
   1255 // |traffic_secret|. It returns true on success and false on error.
   1256 bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
   1257                            enum evp_aead_direction_t direction,
   1258                            const uint8_t *traffic_secret,
   1259                            size_t traffic_secret_len);
   1260 
   1261 // tls13_derive_early_secrets derives the early traffic secret. It returns true
   1262 // on success and false on error.
   1263 bool tls13_derive_early_secrets(SSL_HANDSHAKE *hs);
   1264 
   1265 // tls13_derive_handshake_secrets derives the handshake traffic secret. It
   1266 // returns true on success and false on error.
   1267 bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
   1268 
   1269 // tls13_rotate_traffic_key derives the next read or write traffic secret. It
   1270 // returns true on success and false on error.
   1271 bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
   1272 
   1273 // tls13_derive_application_secrets derives the initial application data traffic
   1274 // and exporter secrets based on the handshake transcripts and |master_secret|.
   1275 // It returns true on success and false on error.
   1276 bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
   1277 
   1278 // tls13_derive_resumption_secret derives the |resumption_secret|.
   1279 bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
   1280 
   1281 // tls13_export_keying_material provides an exporter interface to use the
   1282 // |exporter_secret|.
   1283 bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
   1284                                   Span<const uint8_t> secret,
   1285                                   Span<const char> label,
   1286                                   Span<const uint8_t> context);
   1287 
   1288 // tls13_finished_mac calculates the MAC of the handshake transcript to verify
   1289 // the integrity of the Finished message, and stores the result in |out| and
   1290 // length in |out_len|. |is_server| is true if this is for the Server Finished
   1291 // and false for the Client Finished.
   1292 bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
   1293                         bool is_server);
   1294 
   1295 // tls13_derive_session_psk calculates the PSK for this session based on the
   1296 // resumption master secret and |nonce|. It returns true on success, and false
   1297 // on failure.
   1298 bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
   1299 
   1300 // tls13_write_psk_binder calculates the PSK binder value and replaces the last
   1301 // bytes of |msg| with the resulting value. It returns true on success, and
   1302 // false on failure.
   1303 bool tls13_write_psk_binder(SSL_HANDSHAKE *hs, uint8_t *msg, size_t len);
   1304 
   1305 // tls13_verify_psk_binder verifies that the handshake transcript, truncated up
   1306 // to the binders has a valid signature using the value of |session|'s
   1307 // resumption secret. It returns true on success, and false on failure.
   1308 bool tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session,
   1309                              const SSLMessage &msg, CBS *binders);
   1310 
   1311 
   1312 // Handshake functions.
   1313 
   1314 enum ssl_hs_wait_t {
   1315   ssl_hs_error,
   1316   ssl_hs_ok,
   1317   ssl_hs_read_server_hello,
   1318   ssl_hs_read_message,
   1319   ssl_hs_flush,
   1320   ssl_hs_certificate_selection_pending,
   1321   ssl_hs_handoff,
   1322   ssl_hs_handback,
   1323   ssl_hs_x509_lookup,
   1324   ssl_hs_channel_id_lookup,
   1325   ssl_hs_private_key_operation,
   1326   ssl_hs_pending_session,
   1327   ssl_hs_pending_ticket,
   1328   ssl_hs_early_return,
   1329   ssl_hs_early_data_rejected,
   1330   ssl_hs_read_end_of_early_data,
   1331   ssl_hs_read_change_cipher_spec,
   1332   ssl_hs_certificate_verify,
   1333 };
   1334 
   1335 enum ssl_grease_index_t {
   1336   ssl_grease_cipher = 0,
   1337   ssl_grease_group,
   1338   ssl_grease_extension1,
   1339   ssl_grease_extension2,
   1340   ssl_grease_version,
   1341   ssl_grease_ticket_extension,
   1342   ssl_grease_last_index = ssl_grease_ticket_extension,
   1343 };
   1344 
   1345 enum tls12_server_hs_state_t {
   1346   state12_start_accept = 0,
   1347   state12_read_client_hello,
   1348   state12_select_certificate,
   1349   state12_tls13,
   1350   state12_select_parameters,
   1351   state12_send_server_hello,
   1352   state12_send_server_certificate,
   1353   state12_send_server_key_exchange,
   1354   state12_send_server_hello_done,
   1355   state12_read_client_certificate,
   1356   state12_verify_client_certificate,
   1357   state12_read_client_key_exchange,
   1358   state12_read_client_certificate_verify,
   1359   state12_read_change_cipher_spec,
   1360   state12_process_change_cipher_spec,
   1361   state12_read_next_proto,
   1362   state12_read_channel_id,
   1363   state12_read_client_finished,
   1364   state12_send_server_finished,
   1365   state12_finish_server_handshake,
   1366   state12_done,
   1367 };
   1368 
   1369 // handback_t lists the points in the state machine where a handback can occur.
   1370 // These are the different points at which key material is no longer needed.
   1371 enum handback_t {
   1372   handback_after_session_resumption,
   1373   handback_after_ecdhe,
   1374   handback_after_handshake,
   1375 };
   1376 
   1377 
   1378 // Delegated credentials.
   1379 
   1380 // This structure stores a delegated credential (DC) as defined by
   1381 // draft-ietf-tls-subcerts-03.
   1382 struct DC {
   1383   static constexpr bool kAllowUniquePtr = true;
   1384   ~DC();
   1385 
   1386   // Dup returns a copy of this DC and takes references to |raw| and |pkey|.
   1387   UniquePtr<DC> Dup();
   1388 
   1389   // Parse parses the delegated credential stored in |in|. If successful it
   1390   // returns the parsed structure, otherwise it returns |nullptr| and sets
   1391   // |*out_alert|.
   1392   static UniquePtr<DC> Parse(CRYPTO_BUFFER *in, uint8_t *out_alert);
   1393 
   1394   // raw is the delegated credential encoded as specified in draft-ietf-tls-
   1395   // subcerts-02.
   1396   UniquePtr<CRYPTO_BUFFER> raw;
   1397 
   1398   // expected_cert_verify_algorithm is the signature scheme of the DC public
   1399   // key.
   1400   uint16_t expected_cert_verify_algorithm = 0;
   1401 
   1402   // pkey is the public key parsed from |public_key|.
   1403   UniquePtr<EVP_PKEY> pkey;
   1404 
   1405  private:
   1406   friend DC* New<DC>();
   1407   DC();
   1408 };
   1409 
   1410 // ssl_signing_with_dc returns true if the peer has indicated support for
   1411 // delegated credentials and this host has sent a delegated credential in
   1412 // response. If this is true then we've committed to using the DC in the
   1413 // handshake.
   1414 bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs);
   1415 
   1416 
   1417 struct SSL_HANDSHAKE {
   1418   explicit SSL_HANDSHAKE(SSL *ssl);
   1419   ~SSL_HANDSHAKE();
   1420   static constexpr bool kAllowUniquePtr = true;
   1421 
   1422   // ssl is a non-owning pointer to the parent |SSL| object.
   1423   SSL *ssl;
   1424 
   1425   // config is a non-owning pointer to the handshake configuration.
   1426   SSL_CONFIG *config;
   1427 
   1428   // wait contains the operation the handshake is currently blocking on or
   1429   // |ssl_hs_ok| if none.
   1430   enum ssl_hs_wait_t wait = ssl_hs_ok;
   1431 
   1432   // state is the internal state for the TLS 1.2 and below handshake. Its
   1433   // values depend on |do_handshake| but the starting state is always zero.
   1434   int state = 0;
   1435 
   1436   // tls13_state is the internal state for the TLS 1.3 handshake. Its values
   1437   // depend on |do_handshake| but the starting state is always zero.
   1438   int tls13_state = 0;
   1439 
   1440   // min_version is the minimum accepted protocol version, taking account both
   1441   // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
   1442   uint16_t min_version = 0;
   1443 
   1444   // max_version is the maximum accepted protocol version, taking account both
   1445   // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
   1446   uint16_t max_version = 0;
   1447 
   1448   size_t hash_len = 0;
   1449   uint8_t secret[EVP_MAX_MD_SIZE] = {0};
   1450   uint8_t early_traffic_secret[EVP_MAX_MD_SIZE] = {0};
   1451   uint8_t client_handshake_secret[EVP_MAX_MD_SIZE] = {0};
   1452   uint8_t server_handshake_secret[EVP_MAX_MD_SIZE] = {0};
   1453   uint8_t client_traffic_secret_0[EVP_MAX_MD_SIZE] = {0};
   1454   uint8_t server_traffic_secret_0[EVP_MAX_MD_SIZE] = {0};
   1455   uint8_t expected_client_finished[EVP_MAX_MD_SIZE] = {0};
   1456 
   1457   union {
   1458     // sent is a bitset where the bits correspond to elements of kExtensions
   1459     // in t1_lib.c. Each bit is set if that extension was sent in a
   1460     // ClientHello. It's not used by servers.
   1461     uint32_t sent = 0;
   1462     // received is a bitset, like |sent|, but is used by servers to record
   1463     // which extensions were received from a client.
   1464     uint32_t received;
   1465   } extensions;
   1466 
   1467   // retry_group is the group ID selected by the server in HelloRetryRequest in
   1468   // TLS 1.3.
   1469   uint16_t retry_group = 0;
   1470 
   1471   // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
   1472   UniquePtr<ERR_SAVE_STATE> error;
   1473 
   1474   // key_shares are the current key exchange instances. The second is only used
   1475   // as a client if we believe that we should offer two key shares in a
   1476   // ClientHello.
   1477   UniquePtr<SSLKeyShare> key_shares[2];
   1478 
   1479   // transcript is the current handshake transcript.
   1480   SSLTranscript transcript;
   1481 
   1482   // cookie is the value of the cookie received from the server, if any.
   1483   Array<uint8_t> cookie;
   1484 
   1485   // key_share_bytes is the value of the previously sent KeyShare extension by
   1486   // the client in TLS 1.3.
   1487   Array<uint8_t> key_share_bytes;
   1488 
   1489   // ecdh_public_key, for servers, is the key share to be sent to the client in
   1490   // TLS 1.3.
   1491   Array<uint8_t> ecdh_public_key;
   1492 
   1493   // peer_sigalgs are the signature algorithms that the peer supports. These are
   1494   // taken from the contents of the signature algorithms extension for a server
   1495   // or from the CertificateRequest for a client.
   1496   Array<uint16_t> peer_sigalgs;
   1497 
   1498   // peer_supported_group_list contains the supported group IDs advertised by
   1499   // the peer. This is only set on the server's end. The server does not
   1500   // advertise this extension to the client.
   1501   Array<uint16_t> peer_supported_group_list;
   1502 
   1503   // peer_key is the peer's ECDH key for a TLS 1.2 client.
   1504   Array<uint8_t> peer_key;
   1505 
   1506   // negotiated_token_binding_version is used by a server to store the
   1507   // on-the-wire encoding of the Token Binding protocol version to advertise in
   1508   // the ServerHello/EncryptedExtensions if the Token Binding extension is to be
   1509   // sent.
   1510   uint16_t negotiated_token_binding_version;
   1511 
   1512   // cert_compression_alg_id, for a server, contains the negotiated certificate
   1513   // compression algorithm for this client. It is only valid if
   1514   // |cert_compression_negotiated| is true.
   1515   uint16_t cert_compression_alg_id;
   1516 
   1517   // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
   1518   // parameters. It has client and server randoms prepended for signing
   1519   // convenience.
   1520   Array<uint8_t> server_params;
   1521 
   1522   // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
   1523   // server when using a TLS 1.2 PSK key exchange.
   1524   UniquePtr<char> peer_psk_identity_hint;
   1525 
   1526   // ca_names, on the client, contains the list of CAs received in a
   1527   // CertificateRequest message.
   1528   UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
   1529 
   1530   // cached_x509_ca_names contains a cache of parsed versions of the elements of
   1531   // |ca_names|. This pointer is left non-owning so only
   1532   // |ssl_crypto_x509_method| needs to link against crypto/x509.
   1533   STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
   1534 
   1535   // certificate_types, on the client, contains the set of certificate types
   1536   // received in a CertificateRequest message.
   1537   Array<uint8_t> certificate_types;
   1538 
   1539   // local_pubkey is the public key we are authenticating as.
   1540   UniquePtr<EVP_PKEY> local_pubkey;
   1541 
   1542   // peer_pubkey is the public key parsed from the peer's leaf certificate.
   1543   UniquePtr<EVP_PKEY> peer_pubkey;
   1544 
   1545   // new_session is the new mutable session being established by the current
   1546   // handshake. It should not be cached.
   1547   UniquePtr<SSL_SESSION> new_session;
   1548 
   1549   // early_session is the session corresponding to the current 0-RTT state on
   1550   // the client if |in_early_data| is true.
   1551   UniquePtr<SSL_SESSION> early_session;
   1552 
   1553   // new_cipher is the cipher being negotiated in this handshake.
   1554   const SSL_CIPHER *new_cipher = nullptr;
   1555 
   1556   // key_block is the record-layer key block for TLS 1.2 and earlier.
   1557   Array<uint8_t> key_block;
   1558 
   1559   // scts_requested is true if the SCT extension is in the ClientHello.
   1560   bool scts_requested : 1;
   1561 
   1562   // needs_psk_binder is true if the ClientHello has a placeholder PSK binder to
   1563   // be filled in.
   1564   bool needs_psk_binder : 1;
   1565 
   1566   bool received_hello_retry_request : 1;
   1567   bool sent_hello_retry_request : 1;
   1568 
   1569   // handshake_finalized is true once the handshake has completed, at which
   1570   // point accessors should use the established state.
   1571   bool handshake_finalized : 1;
   1572 
   1573   // accept_psk_mode stores whether the client's PSK mode is compatible with our
   1574   // preferences.
   1575   bool accept_psk_mode : 1;
   1576 
   1577   // cert_request is true if a client certificate was requested.
   1578   bool cert_request : 1;
   1579 
   1580   // certificate_status_expected is true if OCSP stapling was negotiated and the
   1581   // server is expected to send a CertificateStatus message. (This is used on
   1582   // both the client and server sides.)
   1583   bool certificate_status_expected : 1;
   1584 
   1585   // ocsp_stapling_requested is true if a client requested OCSP stapling.
   1586   bool ocsp_stapling_requested : 1;
   1587 
   1588   // delegated_credential_requested is true if the peer indicated support for
   1589   // the delegated credential extension.
   1590   bool delegated_credential_requested : 1;
   1591 
   1592   // should_ack_sni is used by a server and indicates that the SNI extension
   1593   // should be echoed in the ServerHello.
   1594   bool should_ack_sni : 1;
   1595 
   1596   // in_false_start is true if there is a pending client handshake in False
   1597   // Start. The client may write data at this point.
   1598   bool in_false_start : 1;
   1599 
   1600   // in_early_data is true if there is a pending handshake that has progressed
   1601   // enough to send and receive early data.
   1602   bool in_early_data : 1;
   1603 
   1604   // early_data_offered is true if the client sent the early_data extension.
   1605   bool early_data_offered : 1;
   1606 
   1607   // can_early_read is true if application data may be read at this point in the
   1608   // handshake.
   1609   bool can_early_read : 1;
   1610 
   1611   // can_early_write is true if application data may be written at this point in
   1612   // the handshake.
   1613   bool can_early_write : 1;
   1614 
   1615   // next_proto_neg_seen is one of NPN was negotiated.
   1616   bool next_proto_neg_seen : 1;
   1617 
   1618   // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
   1619   // or received.
   1620   bool ticket_expected : 1;
   1621 
   1622   // extended_master_secret is true if the extended master secret extension is
   1623   // negotiated in this handshake.
   1624   bool extended_master_secret : 1;
   1625 
   1626   // pending_private_key_op is true if there is a pending private key operation
   1627   // in progress.
   1628   bool pending_private_key_op : 1;
   1629 
   1630   // grease_seeded is true if |grease_seed| has been initialized.
   1631   bool grease_seeded : 1;
   1632 
   1633   // handback indicates that a server should pause the handshake after
   1634   // finishing operations that require private key material, in such a way that
   1635   // |SSL_get_error| returns |SSL_HANDBACK|.  It is set by |SSL_apply_handoff|.
   1636   bool handback : 1;
   1637 
   1638   // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid.
   1639   bool cert_compression_negotiated : 1;
   1640 
   1641   // apply_jdk11_workaround is true if the peer is probably a JDK 11 client
   1642   // which implemented TLS 1.3 incorrectly.
   1643   bool apply_jdk11_workaround : 1;
   1644 
   1645   // client_version is the value sent or received in the ClientHello version.
   1646   uint16_t client_version = 0;
   1647 
   1648   // early_data_read is the amount of early data that has been read by the
   1649   // record layer.
   1650   uint16_t early_data_read = 0;
   1651 
   1652   // early_data_written is the amount of early data that has been written by the
   1653   // record layer.
   1654   uint16_t early_data_written = 0;
   1655 
   1656   // session_id is the session ID in the ClientHello.
   1657   uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
   1658   uint8_t session_id_len = 0;
   1659 
   1660   // grease_seed is the entropy for GREASE values. It is valid if
   1661   // |grease_seeded| is true.
   1662   uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
   1663 };
   1664 
   1665 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
   1666 
   1667 // ssl_check_message_type checks if |msg| has type |type|. If so it returns
   1668 // one. Otherwise, it sends an alert and returns zero.
   1669 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
   1670 
   1671 // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
   1672 // on error. It sets |out_early_return| to one if we've completed the handshake
   1673 // early.
   1674 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
   1675 
   1676 // The following are implementations of |do_handshake| for the client and
   1677 // server.
   1678 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
   1679 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
   1680 enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
   1681 enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
   1682 
   1683 // The following functions return human-readable representations of the TLS
   1684 // handshake states for debugging.
   1685 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
   1686 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
   1687 const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
   1688 const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
   1689 
   1690 // tls13_add_key_update queues a KeyUpdate message on |ssl|. The
   1691 // |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or
   1692 // |SSL_KEY_UPDATE_NOT_REQUESTED|.
   1693 bool tls13_add_key_update(SSL *ssl, int update_requested);
   1694 
   1695 // tls13_post_handshake processes a post-handshake message. It returns true on
   1696 // success and false on failure.
   1697 bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
   1698 
   1699 bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
   1700                                bool allow_anonymous);
   1701 bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
   1702 
   1703 // tls13_process_finished processes |msg| as a Finished message from the
   1704 // peer. If |use_saved_value| is true, the verify_data is compared against
   1705 // |hs->expected_client_finished| rather than computed fresh.
   1706 bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
   1707                             bool use_saved_value);
   1708 
   1709 bool tls13_add_certificate(SSL_HANDSHAKE *hs);
   1710 
   1711 // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
   1712 // handshake. If it returns |ssl_private_key_retry|, it should be called again
   1713 // to retry when the signing operation is completed.
   1714 enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
   1715 
   1716 bool tls13_add_finished(SSL_HANDSHAKE *hs);
   1717 bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
   1718 
   1719 bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
   1720                                          Array<uint8_t> *out_secret,
   1721                                          uint8_t *out_alert, CBS *contents);
   1722 bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
   1723                                          Array<uint8_t> *out_secret,
   1724                                          uint8_t *out_alert, CBS *contents);
   1725 bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
   1726 
   1727 bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
   1728                                               uint8_t *out_alert,
   1729                                               CBS *contents);
   1730 bool ssl_ext_pre_shared_key_parse_clienthello(
   1731     SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
   1732     uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, CBS *contents);
   1733 bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
   1734 
   1735 // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
   1736 // returns whether it's valid.
   1737 bool ssl_is_sct_list_valid(const CBS *contents);
   1738 
   1739 bool ssl_write_client_hello(SSL_HANDSHAKE *hs);
   1740 
   1741 enum ssl_cert_verify_context_t {
   1742   ssl_cert_verify_server,
   1743   ssl_cert_verify_client,
   1744   ssl_cert_verify_channel_id,
   1745 };
   1746 
   1747 // tls13_get_cert_verify_signature_input generates the message to be signed for
   1748 // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
   1749 // type of signature. It sets |*out| to a newly allocated buffer containing the
   1750 // result. This function returns true on success and false on failure.
   1751 bool tls13_get_cert_verify_signature_input(
   1752     SSL_HANDSHAKE *hs, Array<uint8_t> *out,
   1753     enum ssl_cert_verify_context_t cert_verify_context);
   1754 
   1755 // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
   1756 // selection for |hs->ssl|'s client preferences.
   1757 bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs,
   1758                                   Span<const uint8_t> protocol);
   1759 
   1760 // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
   1761 // true on successful negotiation or if nothing was negotiated. It returns false
   1762 // and sets |*out_alert| to an alert on error.
   1763 bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
   1764                         const SSL_CLIENT_HELLO *client_hello);
   1765 
   1766 struct SSL_EXTENSION_TYPE {
   1767   uint16_t type;
   1768   bool *out_present;
   1769   CBS *out_data;
   1770 };
   1771 
   1772 // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
   1773 // it. It writes the parsed extensions to pointers denoted by |ext_types|. On
   1774 // success, it fills in the |out_present| and |out_data| fields and returns one.
   1775 // Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown
   1776 // extensions are rejected unless |ignore_unknown| is 1.
   1777 int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
   1778                          const SSL_EXTENSION_TYPE *ext_types,
   1779                          size_t num_ext_types, int ignore_unknown);
   1780 
   1781 // ssl_verify_peer_cert verifies the peer certificate for |hs|.
   1782 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
   1783 // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a
   1784 // session.
   1785 enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs);
   1786 
   1787 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
   1788 bool ssl_send_finished(SSL_HANDSHAKE *hs);
   1789 bool ssl_output_cert_chain(SSL_HANDSHAKE *hs);
   1790 
   1791 // SSLKEYLOGFILE functions.
   1792 
   1793 // ssl_log_secret logs |secret| with label |label|, if logging is enabled for
   1794 // |ssl|. It returns one on success and zero on failure.
   1795 int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret,
   1796                    size_t secret_len);
   1797 
   1798 
   1799 // ClientHello functions.
   1800 
   1801 bool ssl_client_hello_init(SSL *ssl, SSL_CLIENT_HELLO *out,
   1802                            const SSLMessage &msg);
   1803 
   1804 bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
   1805                                     CBS *out, uint16_t extension_type);
   1806 
   1807 bool ssl_client_cipher_list_contains_cipher(
   1808     const SSL_CLIENT_HELLO *client_hello, uint16_t id);
   1809 
   1810 
   1811 // GREASE.
   1812 
   1813 // ssl_get_grease_value returns a GREASE value for |hs|. For a given
   1814 // connection, the values for each index will be deterministic. This allows the
   1815 // same ClientHello be sent twice for a HelloRetryRequest or the same group be
   1816 // advertised in both supported_groups and key_shares.
   1817 uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs, enum ssl_grease_index_t index);
   1818 
   1819 
   1820 // Signature algorithms.
   1821 
   1822 // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
   1823 // algorithms and saves them on |hs|. It returns true on success and false on
   1824 // error.
   1825 bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
   1826 
   1827 // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
   1828 // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
   1829 // success and false if |pkey| may not be used at those versions.
   1830 bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
   1831 
   1832 // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
   1833 // with |hs|'s private key based on the peer's preferences and the algorithms
   1834 // supported. It returns true on success and false on error.
   1835 bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out);
   1836 
   1837 // tls1_get_peer_verify_algorithms returns the signature schemes for which the
   1838 // peer indicated support.
   1839 //
   1840 // NOTE: The related function |SSL_get0_peer_verify_algorithms| only has
   1841 // well-defined behavior during the callbacks set by |SSL_CTX_set_cert_cb| and
   1842 // |SSL_CTX_set_client_cert_cb|, or when the handshake is paused because of
   1843 // them.
   1844 Span<const uint16_t> tls1_get_peer_verify_algorithms(const SSL_HANDSHAKE *hs);
   1845 
   1846 // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
   1847 // peer signature to |out|. It returns true on success and false on error. If
   1848 // |for_certs| is true, the potentially more restrictive list of algorithms for
   1849 // certificates is used. Otherwise, the online signature one is used.
   1850 bool tls12_add_verify_sigalgs(const SSL *ssl, CBB *out, bool for_certs);
   1851 
   1852 // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
   1853 // signature. It returns true on success and false on error, setting
   1854 // |*out_alert| to an alert to send.
   1855 bool tls12_check_peer_sigalg(const SSL *ssl, uint8_t *out_alert,
   1856                              uint16_t sigalg);
   1857 
   1858 // tls12_has_different_verify_sigalgs_for_certs returns whether |ssl| has a
   1859 // different, more restrictive, list of signature algorithms acceptable for the
   1860 // certificate than the online signature.
   1861 bool tls12_has_different_verify_sigalgs_for_certs(const SSL *ssl);
   1862 
   1863 
   1864 // Underdocumented functions.
   1865 //
   1866 // Functions below here haven't been touched up and may be underdocumented.
   1867 
   1868 #define TLSEXT_CHANNEL_ID_SIZE 128
   1869 
   1870 // From RFC4492, used in encoding the curve type in ECParameters
   1871 #define NAMED_CURVE_TYPE 3
   1872 
   1873 struct CERT {
   1874   static constexpr bool kAllowUniquePtr = true;
   1875 
   1876   explicit CERT(const SSL_X509_METHOD *x509_method);
   1877   ~CERT();
   1878 
   1879   UniquePtr<EVP_PKEY> privatekey;
   1880 
   1881   // chain contains the certificate chain, with the leaf at the beginning. The
   1882   // first element of |chain| may be NULL to indicate that the leaf certificate
   1883   // has not yet been set.
   1884   //   If |chain| != NULL -> len(chain) >= 1
   1885   //   If |chain[0]| == NULL -> len(chain) >= 2.
   1886   //   |chain[1..]| != NULL
   1887   UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain;
   1888 
   1889   // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as
   1890   // a cache in order to implement get0 functions that return a non-owning
   1891   // pointer to the certificate chain.
   1892   STACK_OF(X509) *x509_chain = nullptr;
   1893 
   1894   // x509_leaf may contain a parsed copy of the first element of |chain|. This
   1895   // is only used as a cache in order to implement get0 functions that return
   1896   // a non-owning pointer to the certificate chain.
   1897   X509 *x509_leaf = nullptr;
   1898 
   1899   // x509_stash contains the last |X509| object append to the chain. This is a
   1900   // workaround for some third-party code that continue to use an |X509| object
   1901   // even after passing ownership with an add0 function.
   1902   X509 *x509_stash = nullptr;
   1903 
   1904   // key_method, if non-NULL, is a set of callbacks to call for private key
   1905   // operations.
   1906   const SSL_PRIVATE_KEY_METHOD *key_method = nullptr;
   1907 
   1908   // x509_method contains pointers to functions that might deal with |X509|
   1909   // compatibility, or might be a no-op, depending on the application.
   1910   const SSL_X509_METHOD *x509_method = nullptr;
   1911 
   1912   // sigalgs, if non-empty, is the set of signature algorithms supported by
   1913   // |privatekey| in decreasing order of preference.
   1914   Array<uint16_t> sigalgs;
   1915 
   1916   // Certificate setup callback: if set is called whenever a
   1917   // certificate may be required (client or server). the callback
   1918   // can then examine any appropriate parameters and setup any
   1919   // certificates required. This allows advanced applications
   1920   // to select certificates on the fly: for example based on
   1921   // supported signature algorithms or curves.
   1922   int (*cert_cb)(SSL *ssl, void *arg) = nullptr;
   1923   void *cert_cb_arg = nullptr;
   1924 
   1925   // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
   1926   // store is used instead.
   1927   X509_STORE *verify_store = nullptr;
   1928 
   1929   // Signed certificate timestamp list to be sent to the client, if requested
   1930   UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
   1931 
   1932   // OCSP response to be sent to the client, if requested.
   1933   UniquePtr<CRYPTO_BUFFER> ocsp_response;
   1934 
   1935   // sid_ctx partitions the session space within a shared session cache or
   1936   // ticket key. Only sessions with a matching value will be accepted.
   1937   uint8_t sid_ctx_length = 0;
   1938   uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
   1939 
   1940   // Delegated credentials.
   1941 
   1942   // dc is the delegated credential to send to the peer (if requested).
   1943   UniquePtr<DC> dc = nullptr;
   1944 
   1945   // dc_privatekey is used instead of |privatekey| or |key_method| to
   1946   // authenticate the host if a delegated credential is used in the handshake.
   1947   UniquePtr<EVP_PKEY> dc_privatekey = nullptr;
   1948 
   1949   // dc_key_method, if not NULL, is used instead of |dc_privatekey| to
   1950   // authenticate the host.
   1951   const SSL_PRIVATE_KEY_METHOD *dc_key_method = nullptr;
   1952 };
   1953 
   1954 // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
   1955 struct SSL_PROTOCOL_METHOD {
   1956   bool is_dtls;
   1957   bool (*ssl_new)(SSL *ssl);
   1958   void (*ssl_free)(SSL *ssl);
   1959   // get_message sets |*out| to the current handshake message and returns true
   1960   // if one has been received. It returns false if more input is needed.
   1961   bool (*get_message)(SSL *ssl, SSLMessage *out);
   1962   // next_message is called to release the current handshake message.
   1963   void (*next_message)(SSL *ssl);
   1964   // Use the |ssl_open_handshake| wrapper.
   1965   ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
   1966                                       uint8_t *out_alert, Span<uint8_t> in);
   1967   // Use the |ssl_open_change_cipher_spec| wrapper.
   1968   ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
   1969                                                uint8_t *out_alert,
   1970                                                Span<uint8_t> in);
   1971   // Use the |ssl_open_app_data| wrapper.
   1972   ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
   1973                                      size_t *out_consumed, uint8_t *out_alert,
   1974                                      Span<uint8_t> in);
   1975   int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
   1976                         int len);
   1977   int (*dispatch_alert)(SSL *ssl);
   1978   // init_message begins a new handshake message of type |type|. |cbb| is the
   1979   // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
   1980   // the caller should write to. It returns true on success and false on error.
   1981   bool (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
   1982   // finish_message finishes a handshake message. It sets |*out_msg| to the
   1983   // serialized message. It returns true on success and false on error.
   1984   bool (*finish_message)(SSL *ssl, CBB *cbb, bssl::Array<uint8_t> *out_msg);
   1985   // add_message adds a handshake message to the pending flight. It returns
   1986   // true on success and false on error.
   1987   bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
   1988   // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
   1989   // flight. It returns true on success and false on error.
   1990   bool (*add_change_cipher_spec)(SSL *ssl);
   1991   // flush_flight flushes the pending flight to the transport. It returns one on
   1992   // success and <= 0 on error.
   1993   int (*flush_flight)(SSL *ssl);
   1994   // on_handshake_complete is called when the handshake is complete.
   1995   void (*on_handshake_complete)(SSL *ssl);
   1996   // set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It returns
   1997   // true on success and false if changing the read state is forbidden at this
   1998   // point.
   1999   bool (*set_read_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
   2000   // set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It returns
   2001   // true on success and false if changing the write state is forbidden at this
   2002   // point.
   2003   bool (*set_write_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
   2004 };
   2005 
   2006 // The following wrappers call |open_*| but handle |read_shutdown| correctly.
   2007 
   2008 // ssl_open_handshake processes a record from |in| for reading a handshake
   2009 // message.
   2010 ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
   2011                                      uint8_t *out_alert, Span<uint8_t> in);
   2012 
   2013 // ssl_open_change_cipher_spec processes a record from |in| for reading a
   2014 // ChangeCipherSpec.
   2015 ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
   2016                                               uint8_t *out_alert,
   2017                                               Span<uint8_t> in);
   2018 
   2019 // ssl_open_app_data processes a record from |in| for reading application data.
   2020 // On success, it returns |ssl_open_record_success| and sets |*out| to the
   2021 // input. If it encounters a post-handshake message, it returns
   2022 // |ssl_open_record_discard|. The caller should then retry, after processing any
   2023 // messages received with |get_message|.
   2024 ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
   2025                                     size_t *out_consumed, uint8_t *out_alert,
   2026                                     Span<uint8_t> in);
   2027 
   2028 struct SSL_X509_METHOD {
   2029   // check_client_CA_list returns one if |names| is a good list of X.509
   2030   // distinguished names and zero otherwise. This is used to ensure that we can
   2031   // reject unparsable values at handshake time when using crypto/x509.
   2032   int (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
   2033 
   2034   // cert_clear frees and NULLs all X509 certificate-related state.
   2035   void (*cert_clear)(CERT *cert);
   2036   // cert_free frees all X509-related state.
   2037   void (*cert_free)(CERT *cert);
   2038   // cert_flush_cached_chain drops any cached |X509|-based certificate chain
   2039   // from |cert|.
   2040   // cert_dup duplicates any needed fields from |cert| to |new_cert|.
   2041   void (*cert_dup)(CERT *new_cert, const CERT *cert);
   2042   void (*cert_flush_cached_chain)(CERT *cert);
   2043   // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
   2044   // from |cert|.
   2045   void (*cert_flush_cached_leaf)(CERT *cert);
   2046 
   2047   // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
   2048   // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
   2049   // one on success or zero on error.
   2050   int (*session_cache_objects)(SSL_SESSION *session);
   2051   // session_dup duplicates any needed fields from |session| to |new_session|.
   2052   // It returns one on success or zero on error.
   2053   int (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
   2054   // session_clear frees any X509-related state from |session|.
   2055   void (*session_clear)(SSL_SESSION *session);
   2056   // session_verify_cert_chain verifies the certificate chain in |session|,
   2057   // sets |session->verify_result| and returns one on success or zero on
   2058   // error.
   2059   int (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl,
   2060                                    uint8_t *out_alert);
   2061 
   2062   // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
   2063   void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs);
   2064   // ssl_new does any neccessary initialisation of |hs|. It returns one on
   2065   // success or zero on error.
   2066   int (*ssl_new)(SSL_HANDSHAKE *hs);
   2067   // ssl_free frees anything created by |ssl_new|.
   2068   void (*ssl_config_free)(SSL_CONFIG *cfg);
   2069   // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
   2070   void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg);
   2071   // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
   2072   // necessary. On success, it updates |ssl|'s certificate configuration as
   2073   // needed and returns one. Otherwise, it returns zero.
   2074   int (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs);
   2075   // ssl_ctx_new does any neccessary initialisation of |ctx|. It returns one on
   2076   // success or zero on error.
   2077   int (*ssl_ctx_new)(SSL_CTX *ctx);
   2078   // ssl_ctx_free frees anything created by |ssl_ctx_new|.
   2079   void (*ssl_ctx_free)(SSL_CTX *ctx);
   2080   // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
   2081   void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
   2082 };
   2083 
   2084 // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
   2085 // crypto/x509.
   2086 extern const SSL_X509_METHOD ssl_crypto_x509_method;
   2087 
   2088 // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
   2089 // crypto/x509.
   2090 extern const SSL_X509_METHOD ssl_noop_x509_method;
   2091 
   2092 struct TicketKey {
   2093   static constexpr bool kAllowUniquePtr = true;
   2094 
   2095   uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0};
   2096   uint8_t hmac_key[16] = {0};
   2097   uint8_t aes_key[16] = {0};
   2098   // next_rotation_tv_sec is the time (in seconds from the epoch) when the
   2099   // current key should be superseded by a new key, or the time when a previous
   2100   // key should be dropped. If zero, then the key should not be automatically
   2101   // rotated.
   2102   uint64_t next_rotation_tv_sec = 0;
   2103 };
   2104 
   2105 struct CertCompressionAlg {
   2106   static constexpr bool kAllowUniquePtr = true;
   2107 
   2108   ssl_cert_compression_func_t compress = nullptr;
   2109   ssl_cert_decompression_func_t decompress = nullptr;
   2110   uint16_t alg_id = 0;
   2111 };
   2112 
   2113 BSSL_NAMESPACE_END
   2114 
   2115 DEFINE_LHASH_OF(SSL_SESSION)
   2116 
   2117 DEFINE_NAMED_STACK_OF(CertCompressionAlg, bssl::CertCompressionAlg)
   2118 
   2119 BSSL_NAMESPACE_BEGIN
   2120 
   2121 // An ssl_shutdown_t describes the shutdown state of one end of the connection,
   2122 // whether it is alive or has been shutdown via close_notify or fatal alert.
   2123 enum ssl_shutdown_t {
   2124   ssl_shutdown_none = 0,
   2125   ssl_shutdown_close_notify = 1,
   2126   ssl_shutdown_error = 2,
   2127 };
   2128 
   2129 struct SSL3_STATE {
   2130   static constexpr bool kAllowUniquePtr = true;
   2131 
   2132   SSL3_STATE();
   2133   ~SSL3_STATE();
   2134 
   2135   uint8_t read_sequence[8] = {0};
   2136   uint8_t write_sequence[8] = {0};
   2137 
   2138   uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
   2139   uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
   2140 
   2141   // read_buffer holds data from the transport to be processed.
   2142   SSLBuffer read_buffer;
   2143   // write_buffer holds data to be written to the transport.
   2144   SSLBuffer write_buffer;
   2145 
   2146   // pending_app_data is the unconsumed application data. It points into
   2147   // |read_buffer|.
   2148   Span<uint8_t> pending_app_data;
   2149 
   2150   // partial write - check the numbers match
   2151   unsigned int wnum = 0;  // number of bytes sent so far
   2152   int wpend_tot = 0;      // number bytes written
   2153   int wpend_type = 0;
   2154   int wpend_ret = 0;  // number of bytes submitted
   2155   const uint8_t *wpend_buf = nullptr;
   2156 
   2157   // read_shutdown is the shutdown state for the read half of the connection.
   2158   enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
   2159 
   2160   // write_shutdown is the shutdown state for the write half of the connection.
   2161   enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
   2162 
   2163   // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
   2164   // the receive half of the connection.
   2165   UniquePtr<ERR_SAVE_STATE> read_error;
   2166 
   2167   int alert_dispatch = 0;
   2168 
   2169   int total_renegotiations = 0;
   2170 
   2171   // This holds a variable that indicates what we were doing when a 0 or -1 is
   2172   // returned.  This is needed for non-blocking IO so we know what request
   2173   // needs re-doing when in SSL_accept or SSL_connect
   2174   int rwstate = SSL_NOTHING;
   2175 
   2176   enum ssl_encryption_level_t read_level = ssl_encryption_initial;
   2177   enum ssl_encryption_level_t write_level = ssl_encryption_initial;
   2178 
   2179   // early_data_skipped is the amount of early data that has been skipped by the
   2180   // record layer.
   2181   uint16_t early_data_skipped = 0;
   2182 
   2183   // empty_record_count is the number of consecutive empty records received.
   2184   uint8_t empty_record_count = 0;
   2185 
   2186   // warning_alert_count is the number of consecutive warning alerts
   2187   // received.
   2188   uint8_t warning_alert_count = 0;
   2189 
   2190   // key_update_count is the number of consecutive KeyUpdates received.
   2191   uint8_t key_update_count = 0;
   2192 
   2193   // The negotiated Token Binding key parameter. Only valid if
   2194   // |token_binding_negotiated| is set.
   2195   uint8_t negotiated_token_binding_param = 0;
   2196 
   2197   // skip_early_data instructs the record layer to skip unexpected early data
   2198   // messages when 0RTT is rejected.
   2199   bool skip_early_data : 1;
   2200 
   2201   // have_version is true if the connection's final version is known. Otherwise
   2202   // the version has not been negotiated yet.
   2203   bool have_version : 1;
   2204 
   2205   // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
   2206   // and future messages should use the record layer.
   2207   bool v2_hello_done : 1;
   2208 
   2209   // is_v2_hello is true if the current handshake message was derived from a
   2210   // V2ClientHello rather than received from the peer directly.
   2211   bool is_v2_hello : 1;
   2212 
   2213   // has_message is true if the current handshake message has been returned
   2214   // at least once by |get_message| and false otherwise.
   2215   bool has_message : 1;
   2216 
   2217   // initial_handshake_complete is true if the initial handshake has
   2218   // completed.
   2219   bool initial_handshake_complete : 1;
   2220 
   2221   // session_reused indicates whether a session was resumed.
   2222   bool session_reused : 1;
   2223 
   2224   bool send_connection_binding : 1;
   2225 
   2226   // In a client, this means that the server supported Channel ID and that a
   2227   // Channel ID was sent. In a server it means that we echoed support for
   2228   // Channel IDs and that |channel_id| will be valid after the handshake.
   2229   bool channel_id_valid : 1;
   2230 
   2231   // key_update_pending is true if we have a KeyUpdate acknowledgment
   2232   // outstanding.
   2233   bool key_update_pending : 1;
   2234 
   2235   // wpend_pending is true if we have a pending write outstanding.
   2236   bool wpend_pending : 1;
   2237 
   2238   // early_data_accepted is true if early data was accepted by the server.
   2239   bool early_data_accepted : 1;
   2240 
   2241   // tls13_downgrade is whether the TLS 1.3 anti-downgrade logic fired.
   2242   bool tls13_downgrade : 1;
   2243 
   2244   // token_binding_negotiated is set if Token Binding was negotiated.
   2245   bool token_binding_negotiated : 1;
   2246 
   2247   // hs_buf is the buffer of handshake data to process.
   2248   UniquePtr<BUF_MEM> hs_buf;
   2249 
   2250   // pending_hs_data contains the pending handshake data that has not yet
   2251   // been encrypted to |pending_flight|. This allows packing the handshake into
   2252   // fewer records.
   2253   UniquePtr<BUF_MEM> pending_hs_data;
   2254 
   2255   // pending_flight is the pending outgoing flight. This is used to flush each
   2256   // handshake flight in a single write. |write_buffer| must be written out
   2257   // before this data.
   2258   UniquePtr<BUF_MEM> pending_flight;
   2259 
   2260   // pending_flight_offset is the number of bytes of |pending_flight| which have
   2261   // been successfully written.
   2262   uint32_t pending_flight_offset = 0;
   2263 
   2264   // ticket_age_skew is the difference, in seconds, between the client-sent
   2265   // ticket age and the server-computed value in TLS 1.3 server connections
   2266   // which resumed a session.
   2267   int32_t ticket_age_skew = 0;
   2268 
   2269   // aead_read_ctx is the current read cipher state.
   2270   UniquePtr<SSLAEADContext> aead_read_ctx;
   2271 
   2272   // aead_write_ctx is the current write cipher state.
   2273   UniquePtr<SSLAEADContext> aead_write_ctx;
   2274 
   2275   // hs is the handshake state for the current handshake or NULL if there isn't
   2276   // one.
   2277   UniquePtr<SSL_HANDSHAKE> hs;
   2278 
   2279   uint8_t write_traffic_secret[EVP_MAX_MD_SIZE] = {0};
   2280   uint8_t read_traffic_secret[EVP_MAX_MD_SIZE] = {0};
   2281   uint8_t exporter_secret[EVP_MAX_MD_SIZE] = {0};
   2282   uint8_t early_exporter_secret[EVP_MAX_MD_SIZE] = {0};
   2283   uint8_t write_traffic_secret_len = 0;
   2284   uint8_t read_traffic_secret_len = 0;
   2285   uint8_t exporter_secret_len = 0;
   2286   uint8_t early_exporter_secret_len = 0;
   2287 
   2288   // Connection binding to prevent renegotiation attacks
   2289   uint8_t previous_client_finished[12] = {0};
   2290   uint8_t previous_client_finished_len = 0;
   2291   uint8_t previous_server_finished_len = 0;
   2292   uint8_t previous_server_finished[12] = {0};
   2293 
   2294   uint8_t send_alert[2] = {0};
   2295 
   2296   // established_session is the session established by the connection. This
   2297   // session is only filled upon the completion of the handshake and is
   2298   // immutable.
   2299   UniquePtr<SSL_SESSION> established_session;
   2300 
   2301   // Next protocol negotiation. For the client, this is the protocol that we
   2302   // sent in NextProtocol and is set when handling ServerHello extensions.
   2303   //
   2304   // For a server, this is the client's selected_protocol from NextProtocol and
   2305   // is set when handling the NextProtocol message, before the Finished
   2306   // message.
   2307   Array<uint8_t> next_proto_negotiated;
   2308 
   2309   // ALPN information
   2310   // (we are in the process of transitioning from NPN to ALPN.)
   2311 
   2312   // In a server these point to the selected ALPN protocol after the
   2313   // ClientHello has been processed. In a client these contain the protocol
   2314   // that the server selected once the ServerHello has been processed.
   2315   Array<uint8_t> alpn_selected;
   2316 
   2317   // hostname, on the server, is the value of the SNI extension.
   2318   UniquePtr<char> hostname;
   2319 
   2320   // For a server:
   2321   //     If |channel_id_valid| is true, then this contains the
   2322   //     verified Channel ID from the client: a P256 point, (x,y), where
   2323   //     each are big-endian values.
   2324   uint8_t channel_id[64] = {0};
   2325 
   2326   // Contains the QUIC transport params received by the peer.
   2327   Array<uint8_t> peer_quic_transport_params;
   2328 
   2329   // srtp_profile is the selected SRTP protection profile for
   2330   // DTLS-SRTP.
   2331   const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr;
   2332 };
   2333 
   2334 // lengths of messages
   2335 #define DTLS1_COOKIE_LENGTH 256
   2336 
   2337 #define DTLS1_RT_HEADER_LENGTH 13
   2338 
   2339 #define DTLS1_HM_HEADER_LENGTH 12
   2340 
   2341 #define DTLS1_CCS_HEADER_LENGTH 1
   2342 
   2343 #define DTLS1_AL_HEADER_LENGTH 2
   2344 
   2345 struct hm_header_st {
   2346   uint8_t type;
   2347   uint32_t msg_len;
   2348   uint16_t seq;
   2349   uint32_t frag_off;
   2350   uint32_t frag_len;
   2351 };
   2352 
   2353 // An hm_fragment is an incoming DTLS message, possibly not yet assembled.
   2354 struct hm_fragment {
   2355   static constexpr bool kAllowUniquePtr = true;
   2356 
   2357   hm_fragment() {}
   2358   hm_fragment(const hm_fragment &) = delete;
   2359   hm_fragment &operator=(const hm_fragment &) = delete;
   2360 
   2361   ~hm_fragment();
   2362 
   2363   // type is the type of the message.
   2364   uint8_t type = 0;
   2365   // seq is the sequence number of this message.
   2366   uint16_t seq = 0;
   2367   // msg_len is the length of the message body.
   2368   uint32_t msg_len = 0;
   2369   // data is a pointer to the message, including message header. It has length
   2370   // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
   2371   uint8_t *data = nullptr;
   2372   // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
   2373   // the message have been received. It is NULL if the message is complete.
   2374   uint8_t *reassembly = nullptr;
   2375 };
   2376 
   2377 struct OPENSSL_timeval {
   2378   uint64_t tv_sec;
   2379   uint32_t tv_usec;
   2380 };
   2381 
   2382 struct DTLS1_STATE {
   2383   static constexpr bool kAllowUniquePtr = true;
   2384 
   2385   DTLS1_STATE();
   2386   ~DTLS1_STATE();
   2387 
   2388   // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
   2389   // the peer in this epoch.
   2390   bool has_change_cipher_spec : 1;
   2391 
   2392   // outgoing_messages_complete is true if |outgoing_messages| has been
   2393   // completed by an attempt to flush it. Future calls to |add_message| and
   2394   // |add_change_cipher_spec| will start a new flight.
   2395   bool outgoing_messages_complete : 1;
   2396 
   2397   // flight_has_reply is true if the current outgoing flight is complete and has
   2398   // processed at least one message. This is used to detect whether we or the
   2399   // peer sent the final flight.
   2400   bool flight_has_reply : 1;
   2401 
   2402   uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0};
   2403   size_t cookie_len = 0;
   2404 
   2405   // The current data and handshake epoch.  This is initially undefined, and
   2406   // starts at zero once the initial handshake is completed.
   2407   uint16_t r_epoch = 0;
   2408   uint16_t w_epoch = 0;
   2409 
   2410   // records being received in the current epoch
   2411   DTLS1_BITMAP bitmap;
   2412 
   2413   uint16_t handshake_write_seq = 0;
   2414   uint16_t handshake_read_seq = 0;
   2415 
   2416   // save last sequence number for retransmissions
   2417   uint8_t last_write_sequence[8] = {0};
   2418   UniquePtr<SSLAEADContext> last_aead_write_ctx;
   2419 
   2420   // incoming_messages is a ring buffer of incoming handshake messages that have
   2421   // yet to be processed. The front of the ring buffer is message number
   2422   // |handshake_read_seq|, at position |handshake_read_seq| %
   2423   // |SSL_MAX_HANDSHAKE_FLIGHT|.
   2424   UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
   2425 
   2426   // outgoing_messages is the queue of outgoing messages from the last handshake
   2427   // flight.
   2428   DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
   2429   uint8_t outgoing_messages_len = 0;
   2430 
   2431   // outgoing_written is the number of outgoing messages that have been
   2432   // written.
   2433   uint8_t outgoing_written = 0;
   2434   // outgoing_offset is the number of bytes of the next outgoing message have
   2435   // been written.
   2436   uint32_t outgoing_offset = 0;
   2437 
   2438   unsigned mtu = 0;  // max DTLS packet size
   2439 
   2440   // num_timeouts is the number of times the retransmit timer has fired since
   2441   // the last time it was reset.
   2442   unsigned num_timeouts = 0;
   2443 
   2444   // Indicates when the last handshake msg or heartbeat sent will
   2445   // timeout.
   2446   struct OPENSSL_timeval next_timeout = {0, 0};
   2447 
   2448   // timeout_duration_ms is the timeout duration in milliseconds.
   2449   unsigned timeout_duration_ms = 0;
   2450 };
   2451 
   2452 // SSL_CONFIG contains configuration bits that can be shed after the handshake
   2453 // completes.  Objects of this type are not shared; they are unique to a
   2454 // particular |SSL|.
   2455 //
   2456 // See SSL_shed_handshake_config() for more about the conditions under which
   2457 // configuration can be shed.
   2458 struct SSL_CONFIG {
   2459   static constexpr bool kAllowUniquePtr = true;
   2460 
   2461   explicit SSL_CONFIG(SSL *ssl_arg);
   2462   ~SSL_CONFIG();
   2463 
   2464   // ssl is a non-owning pointer to the parent |SSL| object.
   2465   SSL *const ssl = nullptr;
   2466 
   2467   // conf_max_version is the maximum acceptable protocol version configured by
   2468   // |SSL_set_max_proto_version|. Note this version is normalized in DTLS and is
   2469   // further constrainted by |SSL_OP_NO_*|.
   2470   uint16_t conf_max_version = 0;
   2471 
   2472   // conf_min_version is the minimum acceptable protocol version configured by
   2473   // |SSL_set_min_proto_version|. Note this version is normalized in DTLS and is
   2474   // further constrainted by |SSL_OP_NO_*|.
   2475   uint16_t conf_min_version = 0;
   2476 
   2477   X509_VERIFY_PARAM *param = nullptr;
   2478 
   2479   // crypto
   2480   UniquePtr<SSLCipherPreferenceList> cipher_list;
   2481 
   2482   // This is used to hold the local certificate used (i.e. the server
   2483   // certificate for a server or the client certificate for a client).
   2484   UniquePtr<CERT> cert;
   2485 
   2486   int (*verify_callback)(int ok,
   2487                          X509_STORE_CTX *ctx) =
   2488       nullptr;  // fail if callback returns 0
   2489 
   2490   enum ssl_verify_result_t (*custom_verify_callback)(
   2491       SSL *ssl, uint8_t *out_alert) = nullptr;
   2492   // Server-only: psk_identity_hint is the identity hint to send in
   2493   // PSK-based key exchanges.
   2494   UniquePtr<char> psk_identity_hint;
   2495 
   2496   unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
   2497                                   unsigned max_identity_len, uint8_t *psk,
   2498                                   unsigned max_psk_len) = nullptr;
   2499   unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
   2500                                   unsigned max_psk_len) = nullptr;
   2501 
   2502   // for server side, keep the list of CA_dn we can use
   2503   UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
   2504 
   2505   // cached_x509_client_CA is a cache of parsed versions of the elements of
   2506   // |client_CA|.
   2507   STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
   2508 
   2509   Array<uint16_t> supported_group_list;  // our list
   2510 
   2511   // The client's Channel ID private key.
   2512   UniquePtr<EVP_PKEY> channel_id_private;
   2513 
   2514   // For a client, this contains the list of supported protocols in wire
   2515   // format.
   2516   Array<uint8_t> alpn_client_proto_list;
   2517 
   2518   // Contains a list of supported Token Binding key parameters.
   2519   Array<uint8_t> token_binding_params;
   2520 
   2521   // Contains the QUIC transport params that this endpoint will send.
   2522   Array<uint8_t> quic_transport_params;
   2523 
   2524   // verify_sigalgs, if not empty, is the set of signature algorithms
   2525   // accepted from the peer in decreasing order of preference.
   2526   Array<uint16_t> verify_sigalgs;
   2527 
   2528   // srtp_profiles is the list of configured SRTP protection profiles for
   2529   // DTLS-SRTP.
   2530   UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
   2531 
   2532   // verify_mode is a bitmask of |SSL_VERIFY_*| values.
   2533   uint8_t verify_mode = SSL_VERIFY_NONE;
   2534 
   2535   // Enable signed certificate time stamps. Currently client only.
   2536   bool signed_cert_timestamps_enabled : 1;
   2537 
   2538   // ocsp_stapling_enabled is only used by client connections and indicates
   2539   // whether OCSP stapling will be requested.
   2540   bool ocsp_stapling_enabled : 1;
   2541 
   2542   // channel_id_enabled is copied from the |SSL_CTX|. For a server, means that
   2543   // we'll accept Channel IDs from clients. For a client, means that we'll
   2544   // advertise support.
   2545   bool channel_id_enabled : 1;
   2546 
   2547   // If enforce_rsa_key_usage is true, the handshake will fail if the
   2548   // keyUsage extension is present and incompatible with the TLS usage.
   2549   // This field is not read until after certificate verification.
   2550   bool enforce_rsa_key_usage : 1;
   2551 
   2552   // retain_only_sha256_of_client_certs is true if we should compute the SHA256
   2553   // hash of the peer's certificate and then discard it to save memory and
   2554   // session space. Only effective on the server side.
   2555   bool retain_only_sha256_of_client_certs : 1;
   2556 
   2557   // handoff indicates that a server should stop after receiving the
   2558   // ClientHello and pause the handshake in such a way that |SSL_get_error|
   2559   // returns |SSL_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
   2560   // element of the same name and may be cleared if the handoff is declined.
   2561   bool handoff : 1;
   2562 
   2563   // shed_handshake_config indicates that the handshake config (this object!)
   2564   // should be freed after the handshake completes.
   2565   bool shed_handshake_config : 1;
   2566 
   2567   // ignore_tls13_downgrade is whether the connection should continue when the
   2568   // server random signals a downgrade.
   2569   bool ignore_tls13_downgrade : 1;
   2570 
   2571   // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a
   2572   // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806.
   2573   bool jdk11_workaround : 1;
   2574 };
   2575 
   2576 // From RFC 8446, used in determining PSK modes.
   2577 #define SSL_PSK_DHE_KE 0x1
   2578 
   2579 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
   2580 // data that will be accepted. This value should be slightly below
   2581 // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
   2582 static const size_t kMaxEarlyDataAccepted = 14336;
   2583 
   2584 UniquePtr<CERT> ssl_cert_dup(CERT *cert);
   2585 void ssl_cert_clear_certs(CERT *cert);
   2586 bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
   2587 bool ssl_is_key_type_supported(int key_type);
   2588 // ssl_compare_public_and_private_key returns true if |pubkey| is the public
   2589 // counterpart to |privkey|. Otherwise it returns false and pushes a helpful
   2590 // message on the error queue.
   2591 bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
   2592                                        const EVP_PKEY *privkey);
   2593 bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey);
   2594 int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server);
   2595 int ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, const SSL_SESSION *session);
   2596 int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
   2597 
   2598 // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
   2599 // error.
   2600 UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
   2601 
   2602 // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table
   2603 // keyed on session IDs.
   2604 uint32_t ssl_hash_session_id(Span<const uint8_t> session_id);
   2605 
   2606 // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
   2607 // the parsed data.
   2608 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse(
   2609     CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool);
   2610 
   2611 // ssl_session_serialize writes |in| to |cbb| as if it were serialising a
   2612 // session for Session-ID resumption. It returns one on success and zero on
   2613 // error.
   2614 OPENSSL_EXPORT int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
   2615 
   2616 // ssl_session_is_context_valid returns one if |session|'s session ID context
   2617 // matches the one set on |hs| and zero otherwise.
   2618 int ssl_session_is_context_valid(const SSL_HANDSHAKE *hs,
   2619                                  const SSL_SESSION *session);
   2620 
   2621 // ssl_session_is_time_valid returns one if |session| is still valid and zero if
   2622 // it has expired.
   2623 int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
   2624 
   2625 // ssl_session_is_resumable returns one if |session| is resumable for |hs| and
   2626 // zero otherwise.
   2627 int ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
   2628                              const SSL_SESSION *session);
   2629 
   2630 // ssl_session_protocol_version returns the protocol version associated with
   2631 // |session|. Note that despite the name, this is not the same as
   2632 // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
   2633 uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
   2634 
   2635 // ssl_session_get_digest returns the digest used in |session|.
   2636 const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
   2637 
   2638 void ssl_set_session(SSL *ssl, SSL_SESSION *session);
   2639 
   2640 // ssl_get_prev_session looks up the previous session based on |client_hello|.
   2641 // On success, it sets |*out_session| to the session or nullptr if none was
   2642 // found. If the session could not be looked up synchronously, it returns
   2643 // |ssl_hs_pending_session| and should be called again. If a ticket could not be
   2644 // decrypted immediately it returns |ssl_hs_pending_ticket| and should also
   2645 // be called again. Otherwise, it returns |ssl_hs_error|.
   2646 enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs,
   2647                                         UniquePtr<SSL_SESSION> *out_session,
   2648                                         bool *out_tickets_supported,
   2649                                         bool *out_renew_ticket,
   2650                                         const SSL_CLIENT_HELLO *client_hello);
   2651 
   2652 // The following flags determine which parts of the session are duplicated.
   2653 #define SSL_SESSION_DUP_AUTH_ONLY 0x0
   2654 #define SSL_SESSION_INCLUDE_TICKET 0x1
   2655 #define SSL_SESSION_INCLUDE_NONAUTH 0x2
   2656 #define SSL_SESSION_DUP_ALL \
   2657   (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
   2658 
   2659 // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
   2660 // fields in |session| or nullptr on error. The new session is non-resumable and
   2661 // must be explicitly marked resumable once it has been filled in.
   2662 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
   2663                                                       int dup_flags);
   2664 
   2665 // ssl_session_rebase_time updates |session|'s start time to the current time,
   2666 // adjusting the timeout so the expiration time is unchanged.
   2667 void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
   2668 
   2669 // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
   2670 // |session|'s timeout to |timeout| (measured from the current time). The
   2671 // renewal is clamped to the session's auth_timeout.
   2672 void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
   2673                                uint32_t timeout);
   2674 
   2675 void ssl_update_cache(SSL_HANDSHAKE *hs, int mode);
   2676 
   2677 int ssl_send_alert(SSL *ssl, int level, int desc);
   2678 bool ssl3_get_message(SSL *ssl, SSLMessage *out);
   2679 ssl_open_record_t ssl3_open_handshake(SSL *ssl, size_t *out_consumed,
   2680                                       uint8_t *out_alert, Span<uint8_t> in);
   2681 void ssl3_next_message(SSL *ssl);
   2682 
   2683 int ssl3_dispatch_alert(SSL *ssl);
   2684 ssl_open_record_t ssl3_open_app_data(SSL *ssl, Span<uint8_t> *out,
   2685                                      size_t *out_consumed, uint8_t *out_alert,
   2686                                      Span<uint8_t> in);
   2687 ssl_open_record_t ssl3_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
   2688                                                uint8_t *out_alert,
   2689                                                Span<uint8_t> in);
   2690 int ssl3_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
   2691                         int len);
   2692 
   2693 bool ssl3_new(SSL *ssl);
   2694 void ssl3_free(SSL *ssl);
   2695 
   2696 bool ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
   2697 bool ssl3_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
   2698 bool ssl3_add_message(SSL *ssl, Array<uint8_t> msg);
   2699 bool ssl3_add_change_cipher_spec(SSL *ssl);
   2700 int ssl3_flush_flight(SSL *ssl);
   2701 
   2702 bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
   2703 bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
   2704 bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
   2705 bool dtls1_add_change_cipher_spec(SSL *ssl);
   2706 int dtls1_flush_flight(SSL *ssl);
   2707 
   2708 // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
   2709 // the pending flight. It returns true on success and false on error.
   2710 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
   2711 
   2712 // ssl_hash_message incorporates |msg| into the handshake hash. It returns true
   2713 // on success and false on allocation failure.
   2714 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
   2715 
   2716 ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
   2717                                       size_t *out_consumed, uint8_t *out_alert,
   2718                                       Span<uint8_t> in);
   2719 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
   2720                                                 uint8_t *out_alert,
   2721                                                 Span<uint8_t> in);
   2722 
   2723 int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
   2724                          const uint8_t *buf, int len);
   2725 
   2726 // dtls1_write_record sends a record. It returns one on success and <= 0 on
   2727 // error.
   2728 int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len,
   2729                        enum dtls1_use_epoch_t use_epoch);
   2730 
   2731 int dtls1_retransmit_outgoing_messages(SSL *ssl);
   2732 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
   2733                           CBS *out_body);
   2734 bool dtls1_check_timeout_num(SSL *ssl);
   2735 
   2736 void dtls1_start_timer(SSL *ssl);
   2737 void dtls1_stop_timer(SSL *ssl);
   2738 bool dtls1_is_timer_expired(SSL *ssl);
   2739 unsigned int dtls1_min_mtu(void);
   2740 
   2741 bool dtls1_new(SSL *ssl);
   2742 void dtls1_free(SSL *ssl);
   2743 
   2744 bool dtls1_get_message(SSL *ssl, SSLMessage *out);
   2745 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
   2746                                        uint8_t *out_alert, Span<uint8_t> in);
   2747 void dtls1_next_message(SSL *ssl);
   2748 int dtls1_dispatch_alert(SSL *ssl);
   2749 
   2750 // tls1_configure_aead configures either the read or write direction AEAD (as
   2751 // determined by |direction|) using the keys generated by the TLS KDF. The
   2752 // |key_block_cache| argument is used to store the generated key block, if
   2753 // empty. Otherwise it's assumed that the key block is already contained within
   2754 // it. Returns one on success or zero on error.
   2755 int tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
   2756                         Array<uint8_t> *key_block_cache,
   2757                         const SSL_CIPHER *cipher,
   2758                         Span<const uint8_t> iv_override);
   2759 
   2760 int tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction);
   2761 int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
   2762                                 Span<const uint8_t> premaster);
   2763 
   2764 // tls1_get_grouplist returns the locally-configured group preference list.
   2765 Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl);
   2766 
   2767 // tls1_check_group_id returns whether |group_id| is consistent with locally-
   2768 // configured group preferences.
   2769 bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id);
   2770 
   2771 // tls1_get_shared_group sets |*out_group_id| to the first preferred shared
   2772 // group between client and server preferences and returns true. If none may be
   2773 // found, it returns false.
   2774 bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
   2775 
   2776 // tls1_set_curves converts the array of NIDs in |curves| into a newly allocated
   2777 // array of TLS group IDs. On success, the function returns true and writes the
   2778 // array to |*out_group_ids|. Otherwise, it returns false.
   2779 bool tls1_set_curves(Array<uint16_t> *out_group_ids, Span<const int> curves);
   2780 
   2781 // tls1_set_curves_list converts the string of curves pointed to by |curves|
   2782 // into a newly allocated array of TLS group IDs. On success, the function
   2783 // returns true and writes the array to |*out_group_ids|. Otherwise, it returns
   2784 // false.
   2785 bool tls1_set_curves_list(Array<uint16_t> *out_group_ids, const char *curves);
   2786 
   2787 // ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It returns
   2788 // true on success and false on failure. The |header_len| argument is the length
   2789 // of the ClientHello written so far and is used to compute the padding length.
   2790 // (It does not include the record header.)
   2791 bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len);
   2792 
   2793 bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
   2794 bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
   2795                                   const SSL_CLIENT_HELLO *client_hello);
   2796 bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs);
   2797 
   2798 #define tlsext_tick_md EVP_sha256
   2799 
   2800 // ssl_process_ticket processes a session ticket from the client. It returns
   2801 // one of:
   2802 //   |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
   2803 //       |*out_renew_ticket| is set to whether the ticket should be renewed.
   2804 //   |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
   2805 //       fresh ticket should be sent, but the given ticket cannot be used.
   2806 //   |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
   2807 //       Retry later.
   2808 //   |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
   2809 enum ssl_ticket_aead_result_t ssl_process_ticket(
   2810     SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session,
   2811     bool *out_renew_ticket, Span<const uint8_t> ticket,
   2812     Span<const uint8_t> session_id);
   2813 
   2814 // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
   2815 // the signature. If the key is valid, it saves the Channel ID and returns true.
   2816 // Otherwise, it returns false.
   2817 bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
   2818 
   2819 // tls1_write_channel_id generates a Channel ID message and puts the output in
   2820 // |cbb|. |ssl->channel_id_private| must already be set before calling.  This
   2821 // function returns true on success and false on error.
   2822 bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
   2823 
   2824 // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
   2825 // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
   2826 // true on success and false on failure.
   2827 bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
   2828 
   2829 // tls1_record_handshake_hashes_for_channel_id records the current handshake
   2830 // hashes in |hs->new_session| so that Channel ID resumptions can sign that
   2831 // data.
   2832 bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
   2833 
   2834 // ssl_do_channel_id_callback checks runs |hs->ssl->ctx->channel_id_cb| if
   2835 // necessary. It returns true on success and false on fatal error. Note that, on
   2836 // success, |hs->ssl->channel_id_private| may be unset, in which case the
   2837 // operation should be retried later.
   2838 bool ssl_do_channel_id_callback(SSL_HANDSHAKE *hs);
   2839 
   2840 // ssl_can_write returns whether |ssl| is allowed to write.
   2841 bool ssl_can_write(const SSL *ssl);
   2842 
   2843 // ssl_can_read returns wheter |ssl| is allowed to read.
   2844 bool ssl_can_read(const SSL *ssl);
   2845 
   2846 void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
   2847 void ssl_ctx_get_current_time(const SSL_CTX *ctx,
   2848                               struct OPENSSL_timeval *out_clock);
   2849 
   2850 // ssl_reset_error_state resets state for |SSL_get_error|.
   2851 void ssl_reset_error_state(SSL *ssl);
   2852 
   2853 // ssl_set_read_error sets |ssl|'s read half into an error state, saving the
   2854 // current state of the error queue.
   2855 void ssl_set_read_error(SSL *ssl);
   2856 
   2857 BSSL_NAMESPACE_END
   2858 
   2859 
   2860 // Opaque C types.
   2861 //
   2862 // The following types are exported to C code as public typedefs, so they must
   2863 // be defined outside of the namespace.
   2864 
   2865 // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
   2866 // structure to support the legacy version-locked methods.
   2867 struct ssl_method_st {
   2868   // version, if non-zero, is the only protocol version acceptable to an
   2869   // SSL_CTX initialized from this method.
   2870   uint16_t version;
   2871   // method is the underlying SSL_PROTOCOL_METHOD that initializes the
   2872   // SSL_CTX.
   2873   const bssl::SSL_PROTOCOL_METHOD *method;
   2874   // x509_method contains pointers to functions that might deal with |X509|
   2875   // compatibility, or might be a no-op, depending on the application.
   2876   const bssl::SSL_X509_METHOD *x509_method;
   2877 };
   2878 
   2879 struct ssl_ctx_st {
   2880   explicit ssl_ctx_st(const SSL_METHOD *ssl_method);
   2881   ssl_ctx_st(const ssl_ctx_st &) = delete;
   2882   ssl_ctx_st &operator=(const ssl_ctx_st &) = delete;
   2883 
   2884   const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
   2885   const bssl::SSL_X509_METHOD *x509_method = nullptr;
   2886 
   2887   // lock is used to protect various operations on this object.
   2888   CRYPTO_MUTEX lock;
   2889 
   2890   // conf_max_version is the maximum acceptable protocol version configured by
   2891   // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
   2892   // and is further constrainted by |SSL_OP_NO_*|.
   2893   uint16_t conf_max_version = 0;
   2894 
   2895   // conf_min_version is the minimum acceptable protocol version configured by
   2896   // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
   2897   // and is further constrainted by |SSL_OP_NO_*|.
   2898   uint16_t conf_min_version = 0;
   2899 
   2900   // quic_method is the method table corresponding to the QUIC hooks.
   2901   const SSL_QUIC_METHOD *quic_method = nullptr;
   2902 
   2903   bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list;
   2904 
   2905   X509_STORE *cert_store = nullptr;
   2906   LHASH_OF(SSL_SESSION) *sessions = nullptr;
   2907   // Most session-ids that will be cached, default is
   2908   // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
   2909   unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
   2910   SSL_SESSION *session_cache_head = nullptr;
   2911   SSL_SESSION *session_cache_tail = nullptr;
   2912 
   2913   // handshakes_since_cache_flush is the number of successful handshakes since
   2914   // the last cache flush.
   2915   int handshakes_since_cache_flush = 0;
   2916 
   2917   // This can have one of 2 values, ored together,
   2918   // SSL_SESS_CACHE_CLIENT,
   2919   // SSL_SESS_CACHE_SERVER,
   2920   // Default is SSL_SESSION_CACHE_SERVER, which means only
   2921   // SSL_accept which cache SSL_SESSIONS.
   2922   int session_cache_mode = SSL_SESS_CACHE_SERVER;
   2923 
   2924   // session_timeout is the default lifetime for new sessions in TLS 1.2 and
   2925   // earlier, in seconds.
   2926   uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
   2927 
   2928   // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
   2929   // 1.3, in seconds.
   2930   uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT;
   2931 
   2932   // If this callback is not null, it will be called each time a session id is
   2933   // added to the cache.  If this function returns 1, it means that the
   2934   // callback will do a SSL_SESSION_free() when it has finished using it.
   2935   // Otherwise, on 0, it means the callback has finished with it. If
   2936   // remove_session_cb is not null, it will be called when a session-id is
   2937   // removed from the cache.  After the call, OpenSSL will SSL_SESSION_free()
   2938   // it.
   2939   int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr;
   2940   void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr;
   2941   SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
   2942                                  int *copy) = nullptr;
   2943 
   2944   CRYPTO_refcount_t references = 1;
   2945 
   2946   // if defined, these override the X509_verify_cert() calls
   2947   int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr;
   2948   void *app_verify_arg = nullptr;
   2949 
   2950   ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
   2951                                                 uint8_t *out_alert) = nullptr;
   2952 
   2953   // Default password callback.
   2954   pem_password_cb *default_passwd_callback = nullptr;
   2955 
   2956   // Default password callback user data.
   2957   void *default_passwd_callback_userdata = nullptr;
   2958 
   2959   // get client cert callback
   2960   int (*client_cert_cb)(SSL *ssl, X509 **out_x509,
   2961                         EVP_PKEY **out_pkey) = nullptr;
   2962 
   2963   // get channel id callback
   2964   void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey) = nullptr;
   2965 
   2966   CRYPTO_EX_DATA ex_data;
   2967 
   2968   // Default values used when no per-SSL value is defined follow
   2969 
   2970   void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
   2971 
   2972   // what we put in client cert requests
   2973   bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
   2974 
   2975   // cached_x509_client_CA is a cache of parsed versions of the elements of
   2976   // |client_CA|.
   2977   STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
   2978 
   2979 
   2980   // Default values to use in SSL structures follow (these are copied by
   2981   // SSL_new)
   2982 
   2983   uint32_t options = 0;
   2984   // Disable the auto-chaining feature by default. wpa_supplicant relies on this
   2985   // feature, but require callers opt into it.
   2986   uint32_t mode = SSL_MODE_NO_AUTO_CHAIN;
   2987   uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
   2988 
   2989   bssl::UniquePtr<bssl::CERT> cert;
   2990 
   2991   // callback that allows applications to peek at protocol messages
   2992   void (*msg_callback)(int write_p, int version, int content_type,
   2993                        const void *buf, size_t len, SSL *ssl,
   2994                        void *arg) = nullptr;
   2995   void *msg_callback_arg = nullptr;
   2996 
   2997   int verify_mode = SSL_VERIFY_NONE;
   2998   int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) =
   2999       nullptr;  // called 'verify_callback' in the SSL
   3000 
   3001   X509_VERIFY_PARAM *param = nullptr;
   3002 
   3003   // select_certificate_cb is called before most ClientHello processing and
   3004   // before the decision whether to resume a session is made. See
   3005   // |ssl_select_cert_result_t| for details of the return values.
   3006   ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) =
   3007       nullptr;
   3008 
   3009   // dos_protection_cb is called once the resumption decision for a ClientHello
   3010   // has been made. It returns one to continue the handshake or zero to
   3011   // abort.
   3012   int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr;
   3013 
   3014   // Controls whether to verify certificates when resuming connections. They
   3015   // were already verified when the connection was first made, so the default is
   3016   // false. For now, this is only respected on clients, not servers.
   3017   bool reverify_on_resume = false;
   3018 
   3019   // Maximum amount of data to send in one fragment. actual record size can be
   3020   // more than this due to padding and MAC overheads.
   3021   uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
   3022 
   3023   // TLS extensions servername callback
   3024   int (*servername_callback)(SSL *, int *, void *) = nullptr;
   3025   void *servername_arg = nullptr;
   3026 
   3027   // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the
   3028   // first handshake and |ticket_key_prev| may be NULL at any time.
   3029   // Automatically generated ticket keys are rotated as needed at handshake
   3030   // time. Hence, all access must be synchronized through |lock|.
   3031   bssl::UniquePtr<bssl::TicketKey> ticket_key_current;
   3032   bssl::UniquePtr<bssl::TicketKey> ticket_key_prev;
   3033 
   3034   // Callback to support customisation of ticket key setting
   3035   int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
   3036                        EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr;
   3037 
   3038   // Server-only: psk_identity_hint is the default identity hint to send in
   3039   // PSK-based key exchanges.
   3040   bssl::UniquePtr<char> psk_identity_hint;
   3041 
   3042   unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
   3043                                   unsigned max_identity_len, uint8_t *psk,
   3044                                   unsigned max_psk_len) = nullptr;
   3045   unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
   3046                                   unsigned max_psk_len) = nullptr;
   3047 
   3048 
   3049   // Next protocol negotiation information
   3050   // (for experimental NPN extension).
   3051 
   3052   // For a server, this contains a callback function by which the set of
   3053   // advertised protocols can be provided.
   3054   int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
   3055                                    unsigned *out_len, void *arg) = nullptr;
   3056   void *next_protos_advertised_cb_arg = nullptr;
   3057   // For a client, this contains a callback function that selects the
   3058   // next protocol from the list provided by the server.
   3059   int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
   3060                               const uint8_t *in, unsigned in_len,
   3061                               void *arg) = nullptr;
   3062   void *next_proto_select_cb_arg = nullptr;
   3063 
   3064   // ALPN information
   3065   // (we are in the process of transitioning from NPN to ALPN.)
   3066 
   3067   // For a server, this contains a callback function that allows the
   3068   // server to select the protocol for the connection.
   3069   //   out: on successful return, this must point to the raw protocol
   3070   //        name (without the length prefix).
   3071   //   outlen: on successful return, this contains the length of |*out|.
   3072   //   in: points to the client's list of supported protocols in
   3073   //       wire-format.
   3074   //   inlen: the length of |in|.
   3075   int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
   3076                         const uint8_t *in, unsigned in_len,
   3077                         void *arg) = nullptr;
   3078   void *alpn_select_cb_arg = nullptr;
   3079 
   3080   // For a client, this contains the list of supported protocols in wire
   3081   // format.
   3082   bssl::Array<uint8_t> alpn_client_proto_list;
   3083 
   3084   // SRTP profiles we are willing to do from RFC 5764
   3085   bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
   3086 
   3087   // Defined compression algorithms for certificates.
   3088   bssl::UniquePtr<STACK_OF(CertCompressionAlg)> cert_compression_algs;
   3089 
   3090   // Supported group values inherited by SSL structure
   3091   bssl::Array<uint16_t> supported_group_list;
   3092 
   3093   // The client's Channel ID private key.
   3094   bssl::UniquePtr<EVP_PKEY> channel_id_private;
   3095 
   3096   // keylog_callback, if not NULL, is the key logging callback. See
   3097   // |SSL_CTX_set_keylog_callback|.
   3098   void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr;
   3099 
   3100   // current_time_cb, if not NULL, is the function to use to get the current
   3101   // time. It sets |*out_clock| to the current time. The |ssl| argument is
   3102   // always NULL. See |SSL_CTX_set_current_time_cb|.
   3103   void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr;
   3104 
   3105   // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
   3106   // memory.
   3107   CRYPTO_BUFFER_POOL *pool = nullptr;
   3108 
   3109   // ticket_aead_method contains function pointers for opening and sealing
   3110   // session tickets.
   3111   const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr;
   3112 
   3113   // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL
   3114   // compatibility.
   3115   int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr;
   3116   void *legacy_ocsp_callback_arg = nullptr;
   3117 
   3118   // verify_sigalgs, if not empty, is the set of signature algorithms
   3119   // accepted from the peer in decreasing order of preference.
   3120   bssl::Array<uint16_t> verify_sigalgs;
   3121 
   3122   // retain_only_sha256_of_client_certs is true if we should compute the SHA256
   3123   // hash of the peer's certificate and then discard it to save memory and
   3124   // session space. Only effective on the server side.
   3125   bool retain_only_sha256_of_client_certs : 1;
   3126 
   3127   // quiet_shutdown is true if the connection should not send a close_notify on
   3128   // shutdown.
   3129   bool quiet_shutdown : 1;
   3130 
   3131   // ocsp_stapling_enabled is only used by client connections and indicates
   3132   // whether OCSP stapling will be requested.
   3133   bool ocsp_stapling_enabled : 1;
   3134 
   3135   // If true, a client will request certificate timestamps.
   3136   bool signed_cert_timestamps_enabled : 1;
   3137 
   3138   // channel_id_enabled is whether Channel ID is enabled. For a server, means
   3139   // that we'll accept Channel IDs from clients.  For a client, means that we'll
   3140   // advertise support.
   3141   bool channel_id_enabled : 1;
   3142 
   3143   // grease_enabled is whether draft-davidben-tls-grease-01 is enabled.
   3144   bool grease_enabled : 1;
   3145 
   3146   // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
   3147   // protocols from the peer.
   3148   bool allow_unknown_alpn_protos : 1;
   3149 
   3150   // ed25519_enabled is whether Ed25519 is advertised in the handshake.
   3151   bool ed25519_enabled : 1;
   3152 
   3153   // rsa_pss_rsae_certs_enabled is whether rsa_pss_rsae_* are supported by the
   3154   // certificate verifier.
   3155   bool rsa_pss_rsae_certs_enabled : 1;
   3156 
   3157   // false_start_allowed_without_alpn is whether False Start (if
   3158   // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
   3159   bool false_start_allowed_without_alpn : 1;
   3160 
   3161   // ignore_tls13_downgrade is whether a connection should continue when the
   3162   // server random signals a downgrade.
   3163   bool ignore_tls13_downgrade:1;
   3164 
   3165   // handoff indicates that a server should stop after receiving the
   3166   // ClientHello and pause the handshake in such a way that |SSL_get_error|
   3167   // returns |SSL_HANDOFF|.
   3168   bool handoff : 1;
   3169 
   3170   // If enable_early_data is true, early data can be sent and accepted.
   3171   bool enable_early_data : 1;
   3172 
   3173  private:
   3174   ~ssl_ctx_st();
   3175   friend void SSL_CTX_free(SSL_CTX *);
   3176 };
   3177 
   3178 struct ssl_st {
   3179   explicit ssl_st(SSL_CTX *ctx_arg);
   3180   ssl_st(const ssl_st &) = delete;
   3181   ssl_st &operator=(const ssl_st &) = delete;
   3182   ~ssl_st();
   3183 
   3184   // method is the method table corresponding to the current protocol (DTLS or
   3185   // TLS).
   3186   const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
   3187 
   3188   // config is a container for handshake configuration.  Accesses to this field
   3189   // should check for nullptr, since configuration may be shed after the
   3190   // handshake completes.  (If you have the |SSL_HANDSHAKE| object at hand, use
   3191   // that instead, and skip the null check.)
   3192   bssl::UniquePtr<bssl::SSL_CONFIG> config;
   3193 
   3194   // version is the protocol version.
   3195   uint16_t version = 0;
   3196 
   3197   uint16_t max_send_fragment = 0;
   3198 
   3199   // There are 2 BIO's even though they are normally both the same. This is so
   3200   // data can be read and written to different handlers
   3201 
   3202   bssl::UniquePtr<BIO> rbio;  // used by SSL_read
   3203   bssl::UniquePtr<BIO> wbio;  // used by SSL_write
   3204 
   3205   // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
   3206   // Otherwise, it returns a value corresponding to what operation is needed to
   3207   // progress.
   3208   bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr;
   3209 
   3210   bssl::SSL3_STATE *s3 = nullptr;   // TLS variables
   3211   bssl::DTLS1_STATE *d1 = nullptr;  // DTLS variables
   3212 
   3213   // callback that allows applications to peek at protocol messages
   3214   void (*msg_callback)(int write_p, int version, int content_type,
   3215                        const void *buf, size_t len, SSL *ssl,
   3216                        void *arg) = nullptr;
   3217   void *msg_callback_arg = nullptr;
   3218 
   3219   // session info
   3220 
   3221   // initial_timeout_duration_ms is the default DTLS timeout duration in
   3222   // milliseconds. It's used to initialize the timer any time it's restarted.
   3223   //
   3224   // RFC 6347 states that implementations SHOULD use an initial timer value of 1
   3225   // second.
   3226   unsigned initial_timeout_duration_ms = 1000;
   3227 
   3228   // session is the configured session to be offered by the client. This session
   3229   // is immutable.
   3230   bssl::UniquePtr<SSL_SESSION> session;
   3231 
   3232   void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
   3233 
   3234   bssl::UniquePtr<SSL_CTX> ctx;
   3235 
   3236   // session_ctx is the |SSL_CTX| used for the session cache and related
   3237   // settings.
   3238   bssl::UniquePtr<SSL_CTX> session_ctx;
   3239 
   3240   // extra application data
   3241   CRYPTO_EX_DATA ex_data;
   3242 
   3243   uint32_t options = 0;  // protocol behaviour
   3244   uint32_t mode = 0;     // API behaviour
   3245   uint32_t max_cert_list = 0;
   3246   bssl::UniquePtr<char> hostname;
   3247 
   3248   // quic_method is the method table corresponding to the QUIC hooks.
   3249   const SSL_QUIC_METHOD *quic_method = nullptr;
   3250 
   3251   // renegotiate_mode controls how peer renegotiation attempts are handled.
   3252   ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never;
   3253 
   3254   // server is true iff the this SSL* is the server half. Note: before the SSL*
   3255   // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
   3256   // the side is not determined. In this state, server is always false.
   3257   bool server : 1;
   3258 
   3259   // quiet_shutdown is true if the connection should not send a close_notify on
   3260   // shutdown.
   3261   bool quiet_shutdown : 1;
   3262 
   3263   // If enable_early_data is true, early data can be sent and accepted.
   3264   bool enable_early_data : 1;
   3265 };
   3266 
   3267 struct ssl_session_st {
   3268   explicit ssl_session_st(const bssl::SSL_X509_METHOD *method);
   3269   ssl_session_st(const ssl_session_st &) = delete;
   3270   ssl_session_st &operator=(const ssl_session_st &) = delete;
   3271 
   3272   CRYPTO_refcount_t references = 1;
   3273 
   3274   // ssl_version is the (D)TLS version that established the session.
   3275   uint16_t ssl_version = 0;
   3276 
   3277   // group_id is the ID of the ECDH group used to establish this session or zero
   3278   // if not applicable or unknown.
   3279   uint16_t group_id = 0;
   3280 
   3281   // peer_signature_algorithm is the signature algorithm used to authenticate
   3282   // the peer, or zero if not applicable or unknown.
   3283   uint16_t peer_signature_algorithm = 0;
   3284 
   3285   // master_key, in TLS 1.2 and below, is the master secret associated with the
   3286   // session. In TLS 1.3 and up, it is the resumption secret.
   3287   int master_key_length = 0;
   3288   uint8_t master_key[SSL_MAX_MASTER_KEY_LENGTH] = {0};
   3289 
   3290   // session_id - valid?
   3291   unsigned session_id_length = 0;
   3292   uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
   3293   // this is used to determine whether the session is being reused in
   3294   // the appropriate context. It is up to the application to set this,
   3295   // via SSL_new
   3296   uint8_t sid_ctx_length = 0;
   3297   uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
   3298 
   3299   bssl::UniquePtr<char> psk_identity;
   3300 
   3301   // certs contains the certificate chain from the peer, starting with the leaf
   3302   // certificate.
   3303   bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs;
   3304 
   3305   const bssl::SSL_X509_METHOD *x509_method = nullptr;
   3306 
   3307   // x509_peer is the peer's certificate.
   3308   X509 *x509_peer = nullptr;
   3309 
   3310   // x509_chain is the certificate chain sent by the peer. NOTE: for historical
   3311   // reasons, when a client (so the peer is a server), the chain includes
   3312   // |peer|, but when a server it does not.
   3313   STACK_OF(X509) *x509_chain = nullptr;
   3314 
   3315   // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that
   3316   // omits the leaf certificate. This exists because OpenSSL, historically,
   3317   // didn't include the leaf certificate in the chain for a server, but did for
   3318   // a client. The |x509_chain| always includes it and, if an API call requires
   3319   // a chain without, it is stored here.
   3320   STACK_OF(X509) *x509_chain_without_leaf = nullptr;
   3321 
   3322   // verify_result is the result of certificate verification in the case of
   3323   // non-fatal certificate errors.
   3324   long verify_result = X509_V_ERR_INVALID_CALL;
   3325 
   3326   // timeout is the lifetime of the session in seconds, measured from |time|.
   3327   // This is renewable up to |auth_timeout|.
   3328   uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT;
   3329 
   3330   // auth_timeout is the non-renewable lifetime of the session in seconds,
   3331   // measured from |time|.
   3332   uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
   3333 
   3334   // time is the time the session was issued, measured in seconds from the UNIX
   3335   // epoch.
   3336   uint64_t time = 0;
   3337 
   3338   const SSL_CIPHER *cipher = nullptr;
   3339 
   3340   CRYPTO_EX_DATA ex_data;  // application specific data
   3341 
   3342   // These are used to make removal of session-ids more efficient and to
   3343   // implement a maximum cache size.
   3344   SSL_SESSION *prev = nullptr, *next = nullptr;
   3345 
   3346   bssl::Array<uint8_t> ticket;
   3347 
   3348   bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
   3349 
   3350   // The OCSP response that came with the session.
   3351   bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
   3352 
   3353   // peer_sha256 contains the SHA-256 hash of the peer's certificate if
   3354   // |peer_sha256_valid| is true.
   3355   uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0};
   3356 
   3357   // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or
   3358   // SHA-2, depending on TLS version) for the original, full handshake that
   3359   // created a session. This is used by Channel IDs during resumption.
   3360   uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0};
   3361   uint8_t original_handshake_hash_len = 0;
   3362 
   3363   uint32_t ticket_lifetime_hint = 0;  // Session lifetime hint in seconds
   3364 
   3365   uint32_t ticket_age_add = 0;
   3366 
   3367   // ticket_max_early_data is the maximum amount of data allowed to be sent as
   3368   // early data. If zero, 0-RTT is disallowed.
   3369   uint32_t ticket_max_early_data = 0;
   3370 
   3371   // early_alpn is the ALPN protocol from the initial handshake. This is only
   3372   // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT
   3373   // resumptions.
   3374   bssl::Array<uint8_t> early_alpn;
   3375 
   3376   // extended_master_secret is whether the master secret in this session was
   3377   // generated using EMS and thus isn't vulnerable to the Triple Handshake
   3378   // attack.
   3379   bool extended_master_secret : 1;
   3380 
   3381   // peer_sha256_valid is whether |peer_sha256| is valid.
   3382   bool peer_sha256_valid : 1;  // Non-zero if peer_sha256 is valid
   3383 
   3384   // not_resumable is used to indicate that session resumption is disallowed.
   3385   bool not_resumable : 1;
   3386 
   3387   // ticket_age_add_valid is whether |ticket_age_add| is valid.
   3388   bool ticket_age_add_valid : 1;
   3389 
   3390   // is_server is whether this session was created by a server.
   3391   bool is_server : 1;
   3392 
   3393  private:
   3394   ~ssl_session_st();
   3395   friend void SSL_SESSION_free(SSL_SESSION *);
   3396 };
   3397 
   3398 
   3399 #endif  // OPENSSL_HEADER_SSL_INTERNAL_H
   3400