Home | History | Annotate | Download | only in dsp
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE2 version of speed-critical encoding functions.
     11 //
     12 // Author: Christian Duvivier (cduvivier (at) google.com)
     13 
     14 #include "src/dsp/dsp.h"
     15 
     16 #if defined(WEBP_USE_SSE2)
     17 #include <assert.h>
     18 #include <stdlib.h>  // for abs()
     19 #include <emmintrin.h>
     20 
     21 #include "src/dsp/common_sse2.h"
     22 #include "src/enc/cost_enc.h"
     23 #include "src/enc/vp8i_enc.h"
     24 
     25 //------------------------------------------------------------------------------
     26 // Transforms (Paragraph 14.4)
     27 
     28 // Does one or two inverse transforms.
     29 static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
     30                             int do_two) {
     31   // This implementation makes use of 16-bit fixed point versions of two
     32   // multiply constants:
     33   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
     34   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
     35   //
     36   // To be able to use signed 16-bit integers, we use the following trick to
     37   // have constants within range:
     38   // - Associated constants are obtained by subtracting the 16-bit fixed point
     39   //   version of one:
     40   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
     41   //      K1 = 85267  =>  k1 =  20091
     42   //      K2 = 35468  =>  k2 = -30068
     43   // - The multiplication of a variable by a constant become the sum of the
     44   //   variable and the multiplication of that variable by the associated
     45   //   constant:
     46   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
     47   const __m128i k1 = _mm_set1_epi16(20091);
     48   const __m128i k2 = _mm_set1_epi16(-30068);
     49   __m128i T0, T1, T2, T3;
     50 
     51   // Load and concatenate the transform coefficients (we'll do two inverse
     52   // transforms in parallel). In the case of only one inverse transform, the
     53   // second half of the vectors will just contain random value we'll never
     54   // use nor store.
     55   __m128i in0, in1, in2, in3;
     56   {
     57     in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
     58     in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
     59     in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
     60     in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
     61     // a00 a10 a20 a30   x x x x
     62     // a01 a11 a21 a31   x x x x
     63     // a02 a12 a22 a32   x x x x
     64     // a03 a13 a23 a33   x x x x
     65     if (do_two) {
     66       const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
     67       const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
     68       const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
     69       const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
     70       in0 = _mm_unpacklo_epi64(in0, inB0);
     71       in1 = _mm_unpacklo_epi64(in1, inB1);
     72       in2 = _mm_unpacklo_epi64(in2, inB2);
     73       in3 = _mm_unpacklo_epi64(in3, inB3);
     74       // a00 a10 a20 a30   b00 b10 b20 b30
     75       // a01 a11 a21 a31   b01 b11 b21 b31
     76       // a02 a12 a22 a32   b02 b12 b22 b32
     77       // a03 a13 a23 a33   b03 b13 b23 b33
     78     }
     79   }
     80 
     81   // Vertical pass and subsequent transpose.
     82   {
     83     // First pass, c and d calculations are longer because of the "trick"
     84     // multiplications.
     85     const __m128i a = _mm_add_epi16(in0, in2);
     86     const __m128i b = _mm_sub_epi16(in0, in2);
     87     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
     88     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
     89     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
     90     const __m128i c3 = _mm_sub_epi16(in1, in3);
     91     const __m128i c4 = _mm_sub_epi16(c1, c2);
     92     const __m128i c = _mm_add_epi16(c3, c4);
     93     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
     94     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
     95     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
     96     const __m128i d3 = _mm_add_epi16(in1, in3);
     97     const __m128i d4 = _mm_add_epi16(d1, d2);
     98     const __m128i d = _mm_add_epi16(d3, d4);
     99 
    100     // Second pass.
    101     const __m128i tmp0 = _mm_add_epi16(a, d);
    102     const __m128i tmp1 = _mm_add_epi16(b, c);
    103     const __m128i tmp2 = _mm_sub_epi16(b, c);
    104     const __m128i tmp3 = _mm_sub_epi16(a, d);
    105 
    106     // Transpose the two 4x4.
    107     VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
    108   }
    109 
    110   // Horizontal pass and subsequent transpose.
    111   {
    112     // First pass, c and d calculations are longer because of the "trick"
    113     // multiplications.
    114     const __m128i four = _mm_set1_epi16(4);
    115     const __m128i dc = _mm_add_epi16(T0, four);
    116     const __m128i a =  _mm_add_epi16(dc, T2);
    117     const __m128i b =  _mm_sub_epi16(dc, T2);
    118     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    119     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    120     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    121     const __m128i c3 = _mm_sub_epi16(T1, T3);
    122     const __m128i c4 = _mm_sub_epi16(c1, c2);
    123     const __m128i c = _mm_add_epi16(c3, c4);
    124     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    125     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    126     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    127     const __m128i d3 = _mm_add_epi16(T1, T3);
    128     const __m128i d4 = _mm_add_epi16(d1, d2);
    129     const __m128i d = _mm_add_epi16(d3, d4);
    130 
    131     // Second pass.
    132     const __m128i tmp0 = _mm_add_epi16(a, d);
    133     const __m128i tmp1 = _mm_add_epi16(b, c);
    134     const __m128i tmp2 = _mm_sub_epi16(b, c);
    135     const __m128i tmp3 = _mm_sub_epi16(a, d);
    136     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    137     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    138     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    139     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
    140 
    141     // Transpose the two 4x4.
    142     VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
    143                            &T2, &T3);
    144   }
    145 
    146   // Add inverse transform to 'ref' and store.
    147   {
    148     const __m128i zero = _mm_setzero_si128();
    149     // Load the reference(s).
    150     __m128i ref0, ref1, ref2, ref3;
    151     if (do_two) {
    152       // Load eight bytes/pixels per line.
    153       ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
    154       ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
    155       ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
    156       ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
    157     } else {
    158       // Load four bytes/pixels per line.
    159       ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS]));
    160       ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS]));
    161       ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS]));
    162       ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS]));
    163     }
    164     // Convert to 16b.
    165     ref0 = _mm_unpacklo_epi8(ref0, zero);
    166     ref1 = _mm_unpacklo_epi8(ref1, zero);
    167     ref2 = _mm_unpacklo_epi8(ref2, zero);
    168     ref3 = _mm_unpacklo_epi8(ref3, zero);
    169     // Add the inverse transform(s).
    170     ref0 = _mm_add_epi16(ref0, T0);
    171     ref1 = _mm_add_epi16(ref1, T1);
    172     ref2 = _mm_add_epi16(ref2, T2);
    173     ref3 = _mm_add_epi16(ref3, T3);
    174     // Unsigned saturate to 8b.
    175     ref0 = _mm_packus_epi16(ref0, ref0);
    176     ref1 = _mm_packus_epi16(ref1, ref1);
    177     ref2 = _mm_packus_epi16(ref2, ref2);
    178     ref3 = _mm_packus_epi16(ref3, ref3);
    179     // Store the results.
    180     if (do_two) {
    181       // Store eight bytes/pixels per line.
    182       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
    183       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
    184       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
    185       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
    186     } else {
    187       // Store four bytes/pixels per line.
    188       WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0));
    189       WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1));
    190       WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2));
    191       WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3));
    192     }
    193   }
    194 }
    195 
    196 static void FTransformPass1_SSE2(const __m128i* const in01,
    197                                  const __m128i* const in23,
    198                                  __m128i* const out01,
    199                                  __m128i* const out32) {
    200   const __m128i k937 = _mm_set1_epi32(937);
    201   const __m128i k1812 = _mm_set1_epi32(1812);
    202 
    203   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
    204   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
    205   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
    206                                             2217, 5352, 2217, 5352);
    207   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
    208                                             -5352, 2217, -5352, 2217);
    209 
    210   // *in01 = 00 01 10 11 02 03 12 13
    211   // *in23 = 20 21 30 31 22 23 32 33
    212   const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
    213   const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
    214   // 00 01 10 11 03 02 13 12
    215   // 20 21 30 31 23 22 33 32
    216   const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
    217   const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
    218   // 00 01 10 11 20 21 30 31
    219   // 03 02 13 12 23 22 33 32
    220   const __m128i a01 = _mm_add_epi16(s01, s32);
    221   const __m128i a32 = _mm_sub_epi16(s01, s32);
    222   // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
    223   // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
    224 
    225   const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
    226   const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
    227   const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
    228   const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
    229   const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
    230   const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
    231   const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
    232   const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
    233   const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
    234   const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
    235   const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
    236   const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
    237   const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
    238   *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
    239   *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
    240 }
    241 
    242 static void FTransformPass2_SSE2(const __m128i* const v01,
    243                                  const __m128i* const v32,
    244                                  int16_t* out) {
    245   const __m128i zero = _mm_setzero_si128();
    246   const __m128i seven = _mm_set1_epi16(7);
    247   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
    248                                            5352,  2217, 5352,  2217);
    249   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
    250                                            2217, -5352, 2217, -5352);
    251   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
    252   const __m128i k51000 = _mm_set1_epi32(51000);
    253 
    254   // Same operations are done on the (0,3) and (1,2) pairs.
    255   // a3 = v0 - v3
    256   // a2 = v1 - v2
    257   const __m128i a32 = _mm_sub_epi16(*v01, *v32);
    258   const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
    259 
    260   const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
    261   const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
    262   const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
    263   const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
    264   const __m128i d3 = _mm_add_epi32(c3, k51000);
    265   const __m128i e1 = _mm_srai_epi32(d1, 16);
    266   const __m128i e3 = _mm_srai_epi32(d3, 16);
    267   // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
    268   // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
    269   const __m128i f1 = _mm_packs_epi32(e1, e1);
    270   const __m128i f3 = _mm_packs_epi32(e3, e3);
    271   // g1 = f1 + (a3 != 0);
    272   // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
    273   // desired (0, 1), we add one earlier through k12000_plus_one.
    274   // -> g1 = f1 + 1 - (a3 == 0)
    275   const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
    276 
    277   // a0 = v0 + v3
    278   // a1 = v1 + v2
    279   const __m128i a01 = _mm_add_epi16(*v01, *v32);
    280   const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
    281   const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
    282   const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
    283   const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
    284   // d0 = (a0 + a1 + 7) >> 4;
    285   // d2 = (a0 - a1 + 7) >> 4;
    286   const __m128i d0 = _mm_srai_epi16(c0, 4);
    287   const __m128i d2 = _mm_srai_epi16(c2, 4);
    288 
    289   const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
    290   const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
    291   _mm_storeu_si128((__m128i*)&out[0], d0_g1);
    292   _mm_storeu_si128((__m128i*)&out[8], d2_f3);
    293 }
    294 
    295 static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref,
    296                             int16_t* out) {
    297   const __m128i zero = _mm_setzero_si128();
    298   // Load src.
    299   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
    300   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
    301   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
    302   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
    303   // 00 01 02 03 *
    304   // 10 11 12 13 *
    305   // 20 21 22 23 *
    306   // 30 31 32 33 *
    307   // Shuffle.
    308   const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
    309   const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
    310   // 00 01 10 11 02 03 12 13 * * ...
    311   // 20 21 30 31 22 22 32 33 * * ...
    312 
    313   // Load ref.
    314   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
    315   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
    316   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
    317   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
    318   const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
    319   const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
    320 
    321   // Convert both to 16 bit.
    322   const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
    323   const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
    324   const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
    325   const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
    326 
    327   // Compute the difference.
    328   const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
    329   const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
    330   __m128i v01, v32;
    331 
    332   // First pass
    333   FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
    334 
    335   // Second pass
    336   FTransformPass2_SSE2(&v01, &v32, out);
    337 }
    338 
    339 static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref,
    340                              int16_t* out) {
    341   const __m128i zero = _mm_setzero_si128();
    342 
    343   // Load src and convert to 16b.
    344   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
    345   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
    346   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
    347   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
    348   const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
    349   const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
    350   const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
    351   const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
    352   // Load ref and convert to 16b.
    353   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
    354   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
    355   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
    356   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
    357   const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
    358   const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
    359   const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
    360   const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
    361   // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
    362   const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
    363   const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
    364   const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
    365   const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
    366 
    367   // Unpack and shuffle
    368   // 00 01 02 03   0 0 0 0
    369   // 10 11 12 13   0 0 0 0
    370   // 20 21 22 23   0 0 0 0
    371   // 30 31 32 33   0 0 0 0
    372   const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
    373   const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
    374   const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
    375   const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
    376   __m128i v01l, v32l;
    377   __m128i v01h, v32h;
    378 
    379   // First pass
    380   FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
    381   FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
    382 
    383   // Second pass
    384   FTransformPass2_SSE2(&v01l, &v32l, out + 0);
    385   FTransformPass2_SSE2(&v01h, &v32h, out + 16);
    386 }
    387 
    388 static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) {
    389   const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
    390   const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
    391   const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
    392   const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
    393   const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
    394   const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
    395   const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
    396   const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
    397   const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
    398   const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
    399   const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
    400   const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
    401   *out = _mm_madd_epi16(D, kMult);
    402 }
    403 
    404 static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) {
    405   // Input is 12b signed.
    406   __m128i row0, row1, row2, row3;
    407   // Rows are 14b signed.
    408   FTransformWHTRow_SSE2(in + 0 * 64, &row0);
    409   FTransformWHTRow_SSE2(in + 1 * 64, &row1);
    410   FTransformWHTRow_SSE2(in + 2 * 64, &row2);
    411   FTransformWHTRow_SSE2(in + 3 * 64, &row3);
    412 
    413   {
    414     // The a* are 15b signed.
    415     const __m128i a0 = _mm_add_epi32(row0, row2);
    416     const __m128i a1 = _mm_add_epi32(row1, row3);
    417     const __m128i a2 = _mm_sub_epi32(row1, row3);
    418     const __m128i a3 = _mm_sub_epi32(row0, row2);
    419     const __m128i a0a3 = _mm_packs_epi32(a0, a3);
    420     const __m128i a1a2 = _mm_packs_epi32(a1, a2);
    421 
    422     // The b* are 16b signed.
    423     const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
    424     const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
    425     const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
    426     const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
    427 
    428     _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
    429     _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
    430   }
    431 }
    432 
    433 //------------------------------------------------------------------------------
    434 // Compute susceptibility based on DCT-coeff histograms:
    435 // the higher, the "easier" the macroblock is to compress.
    436 
    437 static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred,
    438                                   int start_block, int end_block,
    439                                   VP8Histogram* const histo) {
    440   const __m128i zero = _mm_setzero_si128();
    441   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
    442   int j;
    443   int distribution[MAX_COEFF_THRESH + 1] = { 0 };
    444   for (j = start_block; j < end_block; ++j) {
    445     int16_t out[16];
    446     int k;
    447 
    448     FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
    449 
    450     // Convert coefficients to bin (within out[]).
    451     {
    452       // Load.
    453       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
    454       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
    455       const __m128i d0 = _mm_sub_epi16(zero, out0);
    456       const __m128i d1 = _mm_sub_epi16(zero, out1);
    457       const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
    458       const __m128i abs1 = _mm_max_epi16(out1, d1);
    459       // v = abs(out) >> 3
    460       const __m128i v0 = _mm_srai_epi16(abs0, 3);
    461       const __m128i v1 = _mm_srai_epi16(abs1, 3);
    462       // bin = min(v, MAX_COEFF_THRESH)
    463       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
    464       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
    465       // Store.
    466       _mm_storeu_si128((__m128i*)&out[0], bin0);
    467       _mm_storeu_si128((__m128i*)&out[8], bin1);
    468     }
    469 
    470     // Convert coefficients to bin.
    471     for (k = 0; k < 16; ++k) {
    472       ++distribution[out[k]];
    473     }
    474   }
    475   VP8SetHistogramData(distribution, histo);
    476 }
    477 
    478 //------------------------------------------------------------------------------
    479 // Intra predictions
    480 
    481 // helper for chroma-DC predictions
    482 static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
    483   int j;
    484   const __m128i values = _mm_set1_epi8(v);
    485   for (j = 0; j < 8; ++j) {
    486     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
    487   }
    488 }
    489 
    490 static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
    491   int j;
    492   const __m128i values = _mm_set1_epi8(v);
    493   for (j = 0; j < 16; ++j) {
    494     _mm_store_si128((__m128i*)(dst + j * BPS), values);
    495   }
    496 }
    497 
    498 static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
    499   if (size == 4) {
    500     int j;
    501     for (j = 0; j < 4; ++j) {
    502       memset(dst + j * BPS, value, 4);
    503     }
    504   } else if (size == 8) {
    505     Put8x8uv_SSE2(value, dst);
    506   } else {
    507     Put16_SSE2(value, dst);
    508   }
    509 }
    510 
    511 static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) {
    512   int j;
    513   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
    514   for (j = 0; j < 8; ++j) {
    515     _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
    516   }
    517 }
    518 
    519 static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) {
    520   const __m128i top_values = _mm_load_si128((const __m128i*)top);
    521   int j;
    522   for (j = 0; j < 16; ++j) {
    523     _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
    524   }
    525 }
    526 
    527 static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst,
    528                                           const uint8_t* top, int size) {
    529   if (top != NULL) {
    530     if (size == 8) {
    531       VE8uv_SSE2(dst, top);
    532     } else {
    533       VE16_SSE2(dst, top);
    534     }
    535   } else {
    536     Fill_SSE2(dst, 127, size);
    537   }
    538 }
    539 
    540 static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) {
    541   int j;
    542   for (j = 0; j < 8; ++j) {
    543     const __m128i values = _mm_set1_epi8(left[j]);
    544     _mm_storel_epi64((__m128i*)dst, values);
    545     dst += BPS;
    546   }
    547 }
    548 
    549 static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) {
    550   int j;
    551   for (j = 0; j < 16; ++j) {
    552     const __m128i values = _mm_set1_epi8(left[j]);
    553     _mm_store_si128((__m128i*)dst, values);
    554     dst += BPS;
    555   }
    556 }
    557 
    558 static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst,
    559                                             const uint8_t* left, int size) {
    560   if (left != NULL) {
    561     if (size == 8) {
    562       HE8uv_SSE2(dst, left);
    563     } else {
    564       HE16_SSE2(dst, left);
    565     }
    566   } else {
    567     Fill_SSE2(dst, 129, size);
    568   }
    569 }
    570 
    571 static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left,
    572                                 const uint8_t* top, int size) {
    573   const __m128i zero = _mm_setzero_si128();
    574   int y;
    575   if (size == 8) {
    576     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
    577     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
    578     for (y = 0; y < 8; ++y, dst += BPS) {
    579       const int val = left[y] - left[-1];
    580       const __m128i base = _mm_set1_epi16(val);
    581       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
    582       _mm_storel_epi64((__m128i*)dst, out);
    583     }
    584   } else {
    585     const __m128i top_values = _mm_load_si128((const __m128i*)top);
    586     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
    587     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
    588     for (y = 0; y < 16; ++y, dst += BPS) {
    589       const int val = left[y] - left[-1];
    590       const __m128i base = _mm_set1_epi16(val);
    591       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
    592       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
    593       const __m128i out = _mm_packus_epi16(out_0, out_1);
    594       _mm_store_si128((__m128i*)dst, out);
    595     }
    596   }
    597 }
    598 
    599 static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left,
    600                                         const uint8_t* top, int size) {
    601   if (left != NULL) {
    602     if (top != NULL) {
    603       TM_SSE2(dst, left, top, size);
    604     } else {
    605       HorizontalPred_SSE2(dst, left, size);
    606     }
    607   } else {
    608     // true motion without left samples (hence: with default 129 value)
    609     // is equivalent to VE prediction where you just copy the top samples.
    610     // Note that if top samples are not available, the default value is
    611     // then 129, and not 127 as in the VerticalPred case.
    612     if (top != NULL) {
    613       VerticalPred_SSE2(dst, top, size);
    614     } else {
    615       Fill_SSE2(dst, 129, size);
    616     }
    617   }
    618 }
    619 
    620 static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left,
    621                                    const uint8_t* top) {
    622   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
    623   const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
    624   const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
    625   const int DC = VP8HorizontalAdd8b(&combined) + 8;
    626   Put8x8uv_SSE2(DC >> 4, dst);
    627 }
    628 
    629 static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
    630   const __m128i zero = _mm_setzero_si128();
    631   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
    632   const __m128i sum = _mm_sad_epu8(top_values, zero);
    633   const int DC = _mm_cvtsi128_si32(sum) + 4;
    634   Put8x8uv_SSE2(DC >> 3, dst);
    635 }
    636 
    637 static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) {
    638   // 'left' is contiguous so we can reuse the top summation.
    639   DC8uvNoLeft_SSE2(dst, left);
    640 }
    641 
    642 static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
    643   Put8x8uv_SSE2(0x80, dst);
    644 }
    645 
    646 static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left,
    647                                        const uint8_t* top) {
    648   if (top != NULL) {
    649     if (left != NULL) {  // top and left present
    650       DC8uv_SSE2(dst, left, top);
    651     } else {  // top, but no left
    652       DC8uvNoLeft_SSE2(dst, top);
    653     }
    654   } else if (left != NULL) {  // left but no top
    655     DC8uvNoTop_SSE2(dst, left);
    656   } else {  // no top, no left, nothing.
    657     DC8uvNoTopLeft_SSE2(dst);
    658   }
    659 }
    660 
    661 static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left,
    662                                   const uint8_t* top) {
    663   const __m128i top_row = _mm_load_si128((const __m128i*)top);
    664   const __m128i left_row = _mm_load_si128((const __m128i*)left);
    665   const int DC =
    666       VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
    667   Put16_SSE2(DC >> 5, dst);
    668 }
    669 
    670 static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
    671   const __m128i top_row = _mm_load_si128((const __m128i*)top);
    672   const int DC = VP8HorizontalAdd8b(&top_row) + 8;
    673   Put16_SSE2(DC >> 4, dst);
    674 }
    675 
    676 static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) {
    677   // 'left' is contiguous so we can reuse the top summation.
    678   DC16NoLeft_SSE2(dst, left);
    679 }
    680 
    681 static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
    682   Put16_SSE2(0x80, dst);
    683 }
    684 
    685 static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left,
    686                                       const uint8_t* top) {
    687   if (top != NULL) {
    688     if (left != NULL) {  // top and left present
    689       DC16_SSE2(dst, left, top);
    690     } else {  // top, but no left
    691       DC16NoLeft_SSE2(dst, top);
    692     }
    693   } else if (left != NULL) {  // left but no top
    694     DC16NoTop_SSE2(dst, left);
    695   } else {  // no top, no left, nothing.
    696     DC16NoTopLeft_SSE2(dst);
    697   }
    698 }
    699 
    700 //------------------------------------------------------------------------------
    701 // 4x4 predictions
    702 
    703 #define DST(x, y) dst[(x) + (y) * BPS]
    704 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
    705 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
    706 
    707 // We use the following 8b-arithmetic tricks:
    708 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
    709 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
    710 // and:
    711 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
    712 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
    713 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
    714 
    715 static WEBP_INLINE void VE4_SSE2(uint8_t* dst,
    716                                  const uint8_t* top) {  // vertical
    717   const __m128i one = _mm_set1_epi8(1);
    718   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
    719   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
    720   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
    721   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
    722   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
    723   const __m128i b = _mm_subs_epu8(a, lsb);
    724   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
    725   const uint32_t vals = _mm_cvtsi128_si32(avg);
    726   int i;
    727   for (i = 0; i < 4; ++i) {
    728     WebPUint32ToMem(dst + i * BPS, vals);
    729   }
    730 }
    731 
    732 static WEBP_INLINE void HE4_SSE2(uint8_t* dst,
    733                                  const uint8_t* top) {  // horizontal
    734   const int X = top[-1];
    735   const int I = top[-2];
    736   const int J = top[-3];
    737   const int K = top[-4];
    738   const int L = top[-5];
    739   WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
    740   WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
    741   WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
    742   WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
    743 }
    744 
    745 static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) {
    746   uint32_t dc = 4;
    747   int i;
    748   for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
    749   Fill_SSE2(dst, dc >> 3, 4);
    750 }
    751 
    752 static WEBP_INLINE void LD4_SSE2(uint8_t* dst,
    753                                  const uint8_t* top) {  // Down-Left
    754   const __m128i one = _mm_set1_epi8(1);
    755   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
    756   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
    757   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
    758   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
    759   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
    760   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
    761   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
    762   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
    763   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
    764   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
    765   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
    766   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
    767 }
    768 
    769 static WEBP_INLINE void VR4_SSE2(uint8_t* dst,
    770                                  const uint8_t* top) {  // Vertical-Right
    771   const __m128i one = _mm_set1_epi8(1);
    772   const int I = top[-2];
    773   const int J = top[-3];
    774   const int K = top[-4];
    775   const int X = top[-1];
    776   const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
    777   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
    778   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
    779   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
    780   const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
    781   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
    782   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
    783   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
    784   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
    785   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
    786   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
    787   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
    788   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
    789 
    790   // these two are hard to implement in SSE2, so we keep the C-version:
    791   DST(0, 2) = AVG3(J, I, X);
    792   DST(0, 3) = AVG3(K, J, I);
    793 }
    794 
    795 static WEBP_INLINE void VL4_SSE2(uint8_t* dst,
    796                                  const uint8_t* top) {  // Vertical-Left
    797   const __m128i one = _mm_set1_epi8(1);
    798   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
    799   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
    800   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
    801   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
    802   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
    803   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
    804   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
    805   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
    806   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
    807   const __m128i abbc = _mm_or_si128(ab, bc);
    808   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
    809   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
    810   const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
    811   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
    812   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
    813   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
    814   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
    815 
    816   // these two are hard to get and irregular
    817   DST(3, 2) = (extra_out >> 0) & 0xff;
    818   DST(3, 3) = (extra_out >> 8) & 0xff;
    819 }
    820 
    821 static WEBP_INLINE void RD4_SSE2(uint8_t* dst,
    822                                  const uint8_t* top) {  // Down-right
    823   const __m128i one = _mm_set1_epi8(1);
    824   const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
    825   const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
    826   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
    827   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
    828   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
    829   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
    830   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
    831   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
    832   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
    833   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
    834   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
    835   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
    836 }
    837 
    838 static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) {
    839   const int I = top[-2];
    840   const int J = top[-3];
    841   const int K = top[-4];
    842   const int L = top[-5];
    843   DST(0, 0) =             AVG2(I, J);
    844   DST(2, 0) = DST(0, 1) = AVG2(J, K);
    845   DST(2, 1) = DST(0, 2) = AVG2(K, L);
    846   DST(1, 0) =             AVG3(I, J, K);
    847   DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
    848   DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
    849   DST(3, 2) = DST(2, 2) =
    850   DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
    851 }
    852 
    853 static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) {
    854   const int X = top[-1];
    855   const int I = top[-2];
    856   const int J = top[-3];
    857   const int K = top[-4];
    858   const int L = top[-5];
    859   const int A = top[0];
    860   const int B = top[1];
    861   const int C = top[2];
    862 
    863   DST(0, 0) = DST(2, 1) = AVG2(I, X);
    864   DST(0, 1) = DST(2, 2) = AVG2(J, I);
    865   DST(0, 2) = DST(2, 3) = AVG2(K, J);
    866   DST(0, 3)             = AVG2(L, K);
    867 
    868   DST(3, 0)             = AVG3(A, B, C);
    869   DST(2, 0)             = AVG3(X, A, B);
    870   DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
    871   DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
    872   DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
    873   DST(1, 3)             = AVG3(L, K, J);
    874 }
    875 
    876 static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) {
    877   const __m128i zero = _mm_setzero_si128();
    878   const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
    879   const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
    880   int y;
    881   for (y = 0; y < 4; ++y, dst += BPS) {
    882     const int val = top[-2 - y] - top[-1];
    883     const __m128i base = _mm_set1_epi16(val);
    884     const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
    885     WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
    886   }
    887 }
    888 
    889 #undef DST
    890 #undef AVG3
    891 #undef AVG2
    892 
    893 //------------------------------------------------------------------------------
    894 // luma 4x4 prediction
    895 
    896 // Left samples are top[-5 .. -2], top_left is top[-1], top are
    897 // located at top[0..3], and top right is top[4..7]
    898 static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) {
    899   DC4_SSE2(I4DC4 + dst, top);
    900   TM4_SSE2(I4TM4 + dst, top);
    901   VE4_SSE2(I4VE4 + dst, top);
    902   HE4_SSE2(I4HE4 + dst, top);
    903   RD4_SSE2(I4RD4 + dst, top);
    904   VR4_SSE2(I4VR4 + dst, top);
    905   LD4_SSE2(I4LD4 + dst, top);
    906   VL4_SSE2(I4VL4 + dst, top);
    907   HD4_SSE2(I4HD4 + dst, top);
    908   HU4_SSE2(I4HU4 + dst, top);
    909 }
    910 
    911 //------------------------------------------------------------------------------
    912 // Chroma 8x8 prediction (paragraph 12.2)
    913 
    914 static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left,
    915                                   const uint8_t* top) {
    916   // U block
    917   DC8uvMode_SSE2(C8DC8 + dst, left, top);
    918   VerticalPred_SSE2(C8VE8 + dst, top, 8);
    919   HorizontalPred_SSE2(C8HE8 + dst, left, 8);
    920   TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
    921   // V block
    922   dst += 8;
    923   if (top != NULL) top += 8;
    924   if (left != NULL) left += 16;
    925   DC8uvMode_SSE2(C8DC8 + dst, left, top);
    926   VerticalPred_SSE2(C8VE8 + dst, top, 8);
    927   HorizontalPred_SSE2(C8HE8 + dst, left, 8);
    928   TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
    929 }
    930 
    931 //------------------------------------------------------------------------------
    932 // luma 16x16 prediction (paragraph 12.3)
    933 
    934 static void Intra16Preds_SSE2(uint8_t* dst,
    935                               const uint8_t* left, const uint8_t* top) {
    936   DC16Mode_SSE2(I16DC16 + dst, left, top);
    937   VerticalPred_SSE2(I16VE16 + dst, top, 16);
    938   HorizontalPred_SSE2(I16HE16 + dst, left, 16);
    939   TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
    940 }
    941 
    942 //------------------------------------------------------------------------------
    943 // Metric
    944 
    945 static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
    946                                                    const __m128i b,
    947                                                    __m128i* const sum) {
    948   // take abs(a-b) in 8b
    949   const __m128i a_b = _mm_subs_epu8(a, b);
    950   const __m128i b_a = _mm_subs_epu8(b, a);
    951   const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
    952   // zero-extend to 16b
    953   const __m128i zero = _mm_setzero_si128();
    954   const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
    955   const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
    956   // multiply with self
    957   const __m128i sum1 = _mm_madd_epi16(C0, C0);
    958   const __m128i sum2 = _mm_madd_epi16(C1, C1);
    959   *sum = _mm_add_epi32(sum1, sum2);
    960 }
    961 
    962 static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b,
    963                                      int num_pairs) {
    964   __m128i sum = _mm_setzero_si128();
    965   int32_t tmp[4];
    966   int i;
    967 
    968   for (i = 0; i < num_pairs; ++i) {
    969     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
    970     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
    971     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
    972     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
    973     __m128i sum1, sum2;
    974     SubtractAndAccumulate_SSE2(a0, b0, &sum1);
    975     SubtractAndAccumulate_SSE2(a1, b1, &sum2);
    976     sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
    977     a += 2 * BPS;
    978     b += 2 * BPS;
    979   }
    980   _mm_storeu_si128((__m128i*)tmp, sum);
    981   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
    982 }
    983 
    984 static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) {
    985   return SSE_16xN_SSE2(a, b, 8);
    986 }
    987 
    988 static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) {
    989   return SSE_16xN_SSE2(a, b, 4);
    990 }
    991 
    992 #define LOAD_8x16b(ptr) \
    993   _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
    994 
    995 static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) {
    996   const __m128i zero = _mm_setzero_si128();
    997   int num_pairs = 4;
    998   __m128i sum = zero;
    999   int32_t tmp[4];
   1000   while (num_pairs-- > 0) {
   1001     const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
   1002     const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
   1003     const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
   1004     const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
   1005     // subtract
   1006     const __m128i c0 = _mm_subs_epi16(a0, b0);
   1007     const __m128i c1 = _mm_subs_epi16(a1, b1);
   1008     // multiply/accumulate with self
   1009     const __m128i d0 = _mm_madd_epi16(c0, c0);
   1010     const __m128i d1 = _mm_madd_epi16(c1, c1);
   1011     // collect
   1012     const __m128i sum01 = _mm_add_epi32(d0, d1);
   1013     sum = _mm_add_epi32(sum, sum01);
   1014     a += 2 * BPS;
   1015     b += 2 * BPS;
   1016   }
   1017   _mm_storeu_si128((__m128i*)tmp, sum);
   1018   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
   1019 }
   1020 #undef LOAD_8x16b
   1021 
   1022 static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) {
   1023   const __m128i zero = _mm_setzero_si128();
   1024 
   1025   // Load values. Note that we read 8 pixels instead of 4,
   1026   // but the a/b buffers are over-allocated to that effect.
   1027   const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
   1028   const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
   1029   const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
   1030   const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
   1031   const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
   1032   const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
   1033   const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
   1034   const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
   1035   // Combine pair of lines.
   1036   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
   1037   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
   1038   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
   1039   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
   1040   // Convert to 16b.
   1041   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
   1042   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
   1043   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
   1044   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
   1045   // subtract, square and accumulate
   1046   const __m128i d0 = _mm_subs_epi16(a01s, b01s);
   1047   const __m128i d1 = _mm_subs_epi16(a23s, b23s);
   1048   const __m128i e0 = _mm_madd_epi16(d0, d0);
   1049   const __m128i e1 = _mm_madd_epi16(d1, d1);
   1050   const __m128i sum = _mm_add_epi32(e0, e1);
   1051 
   1052   int32_t tmp[4];
   1053   _mm_storeu_si128((__m128i*)tmp, sum);
   1054   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
   1055 }
   1056 
   1057 //------------------------------------------------------------------------------
   1058 
   1059 static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) {
   1060   const __m128i mask = _mm_set1_epi16(0x00ff);
   1061   const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
   1062   const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
   1063   const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
   1064   const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
   1065   const __m128i b0 = _mm_srli_epi16(a0, 8);     // hi byte
   1066   const __m128i b1 = _mm_srli_epi16(a1, 8);
   1067   const __m128i b2 = _mm_srli_epi16(a2, 8);
   1068   const __m128i b3 = _mm_srli_epi16(a3, 8);
   1069   const __m128i c0 = _mm_and_si128(a0, mask);   // lo byte
   1070   const __m128i c1 = _mm_and_si128(a1, mask);
   1071   const __m128i c2 = _mm_and_si128(a2, mask);
   1072   const __m128i c3 = _mm_and_si128(a3, mask);
   1073   const __m128i d0 = _mm_add_epi32(b0, c0);
   1074   const __m128i d1 = _mm_add_epi32(b1, c1);
   1075   const __m128i d2 = _mm_add_epi32(b2, c2);
   1076   const __m128i d3 = _mm_add_epi32(b3, c3);
   1077   const __m128i e0 = _mm_add_epi32(d0, d1);
   1078   const __m128i e1 = _mm_add_epi32(d2, d3);
   1079   const __m128i f0 = _mm_add_epi32(e0, e1);
   1080   uint16_t tmp[8];
   1081   _mm_storeu_si128((__m128i*)tmp, f0);
   1082   dc[0] = tmp[0] + tmp[1];
   1083   dc[1] = tmp[2] + tmp[3];
   1084   dc[2] = tmp[4] + tmp[5];
   1085   dc[3] = tmp[6] + tmp[7];
   1086 }
   1087 
   1088 //------------------------------------------------------------------------------
   1089 // Texture distortion
   1090 //
   1091 // We try to match the spectral content (weighted) between source and
   1092 // reconstructed samples.
   1093 
   1094 // Hadamard transform
   1095 // Returns the weighted sum of the absolute value of transformed coefficients.
   1096 // w[] contains a row-major 4 by 4 symmetric matrix.
   1097 static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB,
   1098                            const uint16_t* const w) {
   1099   int32_t sum[4];
   1100   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
   1101   const __m128i zero = _mm_setzero_si128();
   1102 
   1103   // Load and combine inputs.
   1104   {
   1105     const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
   1106     const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
   1107     const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
   1108     const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
   1109     const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
   1110     const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
   1111     const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
   1112     const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
   1113 
   1114     // Combine inA and inB (we'll do two transforms in parallel).
   1115     const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
   1116     const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
   1117     const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
   1118     const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
   1119     tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
   1120     tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
   1121     tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
   1122     tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
   1123     // a00 a01 a02 a03   b00 b01 b02 b03
   1124     // a10 a11 a12 a13   b10 b11 b12 b13
   1125     // a20 a21 a22 a23   b20 b21 b22 b23
   1126     // a30 a31 a32 a33   b30 b31 b32 b33
   1127   }
   1128 
   1129   // Vertical pass first to avoid a transpose (vertical and horizontal passes
   1130   // are commutative because w/kWeightY is symmetric) and subsequent transpose.
   1131   {
   1132     // Calculate a and b (two 4x4 at once).
   1133     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
   1134     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
   1135     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
   1136     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
   1137     const __m128i b0 = _mm_add_epi16(a0, a1);
   1138     const __m128i b1 = _mm_add_epi16(a3, a2);
   1139     const __m128i b2 = _mm_sub_epi16(a3, a2);
   1140     const __m128i b3 = _mm_sub_epi16(a0, a1);
   1141     // a00 a01 a02 a03   b00 b01 b02 b03
   1142     // a10 a11 a12 a13   b10 b11 b12 b13
   1143     // a20 a21 a22 a23   b20 b21 b22 b23
   1144     // a30 a31 a32 a33   b30 b31 b32 b33
   1145 
   1146     // Transpose the two 4x4.
   1147     VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
   1148   }
   1149 
   1150   // Horizontal pass and difference of weighted sums.
   1151   {
   1152     // Load all inputs.
   1153     const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
   1154     const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
   1155 
   1156     // Calculate a and b (two 4x4 at once).
   1157     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
   1158     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
   1159     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
   1160     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
   1161     const __m128i b0 = _mm_add_epi16(a0, a1);
   1162     const __m128i b1 = _mm_add_epi16(a3, a2);
   1163     const __m128i b2 = _mm_sub_epi16(a3, a2);
   1164     const __m128i b3 = _mm_sub_epi16(a0, a1);
   1165 
   1166     // Separate the transforms of inA and inB.
   1167     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
   1168     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
   1169     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
   1170     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
   1171 
   1172     {
   1173       const __m128i d0 = _mm_sub_epi16(zero, A_b0);
   1174       const __m128i d1 = _mm_sub_epi16(zero, A_b2);
   1175       const __m128i d2 = _mm_sub_epi16(zero, B_b0);
   1176       const __m128i d3 = _mm_sub_epi16(zero, B_b2);
   1177       A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
   1178       A_b2 = _mm_max_epi16(A_b2, d1);
   1179       B_b0 = _mm_max_epi16(B_b0, d2);
   1180       B_b2 = _mm_max_epi16(B_b2, d3);
   1181     }
   1182 
   1183     // weighted sums
   1184     A_b0 = _mm_madd_epi16(A_b0, w_0);
   1185     A_b2 = _mm_madd_epi16(A_b2, w_8);
   1186     B_b0 = _mm_madd_epi16(B_b0, w_0);
   1187     B_b2 = _mm_madd_epi16(B_b2, w_8);
   1188     A_b0 = _mm_add_epi32(A_b0, A_b2);
   1189     B_b0 = _mm_add_epi32(B_b0, B_b2);
   1190 
   1191     // difference of weighted sums
   1192     A_b0 = _mm_sub_epi32(A_b0, B_b0);
   1193     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
   1194   }
   1195   return sum[0] + sum[1] + sum[2] + sum[3];
   1196 }
   1197 
   1198 static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b,
   1199                          const uint16_t* const w) {
   1200   const int diff_sum = TTransform_SSE2(a, b, w);
   1201   return abs(diff_sum) >> 5;
   1202 }
   1203 
   1204 static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b,
   1205                            const uint16_t* const w) {
   1206   int D = 0;
   1207   int x, y;
   1208   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
   1209     for (x = 0; x < 16; x += 4) {
   1210       D += Disto4x4_SSE2(a + x + y, b + x + y, w);
   1211     }
   1212   }
   1213   return D;
   1214 }
   1215 
   1216 //------------------------------------------------------------------------------
   1217 // Quantization
   1218 //
   1219 
   1220 static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
   1221                                             const uint16_t* const sharpen,
   1222                                             const VP8Matrix* const mtx) {
   1223   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
   1224   const __m128i zero = _mm_setzero_si128();
   1225   __m128i coeff0, coeff8;
   1226   __m128i out0, out8;
   1227   __m128i packed_out;
   1228 
   1229   // Load all inputs.
   1230   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
   1231   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
   1232   const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
   1233   const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
   1234   const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
   1235   const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
   1236 
   1237   // extract sign(in)  (0x0000 if positive, 0xffff if negative)
   1238   const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
   1239   const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
   1240 
   1241   // coeff = abs(in) = (in ^ sign) - sign
   1242   coeff0 = _mm_xor_si128(in0, sign0);
   1243   coeff8 = _mm_xor_si128(in8, sign8);
   1244   coeff0 = _mm_sub_epi16(coeff0, sign0);
   1245   coeff8 = _mm_sub_epi16(coeff8, sign8);
   1246 
   1247   // coeff = abs(in) + sharpen
   1248   if (sharpen != NULL) {
   1249     const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
   1250     const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
   1251     coeff0 = _mm_add_epi16(coeff0, sharpen0);
   1252     coeff8 = _mm_add_epi16(coeff8, sharpen8);
   1253   }
   1254 
   1255   // out = (coeff * iQ + B) >> QFIX
   1256   {
   1257     // doing calculations with 32b precision (QFIX=17)
   1258     // out = (coeff * iQ)
   1259     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
   1260     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
   1261     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
   1262     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
   1263     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
   1264     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
   1265     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
   1266     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
   1267     // out = (coeff * iQ + B)
   1268     const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
   1269     const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
   1270     const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
   1271     const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
   1272     out_00 = _mm_add_epi32(out_00, bias_00);
   1273     out_04 = _mm_add_epi32(out_04, bias_04);
   1274     out_08 = _mm_add_epi32(out_08, bias_08);
   1275     out_12 = _mm_add_epi32(out_12, bias_12);
   1276     // out = QUANTDIV(coeff, iQ, B, QFIX)
   1277     out_00 = _mm_srai_epi32(out_00, QFIX);
   1278     out_04 = _mm_srai_epi32(out_04, QFIX);
   1279     out_08 = _mm_srai_epi32(out_08, QFIX);
   1280     out_12 = _mm_srai_epi32(out_12, QFIX);
   1281 
   1282     // pack result as 16b
   1283     out0 = _mm_packs_epi32(out_00, out_04);
   1284     out8 = _mm_packs_epi32(out_08, out_12);
   1285 
   1286     // if (coeff > 2047) coeff = 2047
   1287     out0 = _mm_min_epi16(out0, max_coeff_2047);
   1288     out8 = _mm_min_epi16(out8, max_coeff_2047);
   1289   }
   1290 
   1291   // get sign back (if (sign[j]) out_n = -out_n)
   1292   out0 = _mm_xor_si128(out0, sign0);
   1293   out8 = _mm_xor_si128(out8, sign8);
   1294   out0 = _mm_sub_epi16(out0, sign0);
   1295   out8 = _mm_sub_epi16(out8, sign8);
   1296 
   1297   // in = out * Q
   1298   in0 = _mm_mullo_epi16(out0, q0);
   1299   in8 = _mm_mullo_epi16(out8, q8);
   1300 
   1301   _mm_storeu_si128((__m128i*)&in[0], in0);
   1302   _mm_storeu_si128((__m128i*)&in[8], in8);
   1303 
   1304   // zigzag the output before storing it.
   1305   //
   1306   // The zigzag pattern can almost be reproduced with a small sequence of
   1307   // shuffles. After it, we only need to swap the 7th (ending up in third
   1308   // position instead of twelfth) and 8th values.
   1309   {
   1310     __m128i outZ0, outZ8;
   1311     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
   1312     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
   1313     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
   1314     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
   1315     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
   1316     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
   1317     _mm_storeu_si128((__m128i*)&out[0], outZ0);
   1318     _mm_storeu_si128((__m128i*)&out[8], outZ8);
   1319     packed_out = _mm_packs_epi16(outZ0, outZ8);
   1320   }
   1321   {
   1322     const int16_t outZ_12 = out[12];
   1323     const int16_t outZ_3 = out[3];
   1324     out[3] = outZ_12;
   1325     out[12] = outZ_3;
   1326   }
   1327 
   1328   // detect if all 'out' values are zeroes or not
   1329   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
   1330 }
   1331 
   1332 static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
   1333                               const VP8Matrix* const mtx) {
   1334   return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
   1335 }
   1336 
   1337 static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
   1338                                  const VP8Matrix* const mtx) {
   1339   return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
   1340 }
   1341 
   1342 static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
   1343                                 const VP8Matrix* const mtx) {
   1344   int nz;
   1345   const uint16_t* const sharpen = &mtx->sharpen_[0];
   1346   nz  = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
   1347   nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
   1348   return nz;
   1349 }
   1350 
   1351 //------------------------------------------------------------------------------
   1352 // Entry point
   1353 
   1354 extern void VP8EncDspInitSSE2(void);
   1355 
   1356 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
   1357   VP8CollectHistogram = CollectHistogram_SSE2;
   1358   VP8EncPredLuma16 = Intra16Preds_SSE2;
   1359   VP8EncPredChroma8 = IntraChromaPreds_SSE2;
   1360   VP8EncPredLuma4 = Intra4Preds_SSE2;
   1361   VP8EncQuantizeBlock = QuantizeBlock_SSE2;
   1362   VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
   1363   VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
   1364   VP8ITransform = ITransform_SSE2;
   1365   VP8FTransform = FTransform_SSE2;
   1366   VP8FTransform2 = FTransform2_SSE2;
   1367   VP8FTransformWHT = FTransformWHT_SSE2;
   1368   VP8SSE16x16 = SSE16x16_SSE2;
   1369   VP8SSE16x8 = SSE16x8_SSE2;
   1370   VP8SSE8x8 = SSE8x8_SSE2;
   1371   VP8SSE4x4 = SSE4x4_SSE2;
   1372   VP8TDisto4x4 = Disto4x4_SSE2;
   1373   VP8TDisto16x16 = Disto16x16_SSE2;
   1374   VP8Mean16x4 = Mean16x4_SSE2;
   1375 }
   1376 
   1377 #else  // !WEBP_USE_SSE2
   1378 
   1379 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
   1380 
   1381 #endif  // WEBP_USE_SSE2
   1382