1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_LLT_H 11 #define EIGEN_LLT_H 12 13 namespace Eigen { 14 15 namespace internal{ 16 template<typename MatrixType, int UpLo> struct LLT_Traits; 17 } 18 19 /** \ingroup Cholesky_Module 20 * 21 * \class LLT 22 * 23 * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features 24 * 25 * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition 26 * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. 27 * The other triangular part won't be read. 28 * 29 * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite 30 * matrix A such that A = LL^* = U^*U, where L is lower triangular. 31 * 32 * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, 33 * for that purpose, we recommend the Cholesky decomposition without square root which is more stable 34 * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other 35 * situations like generalised eigen problems with hermitian matrices. 36 * 37 * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, 38 * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations 39 * has a solution. 40 * 41 * Example: \include LLT_example.cpp 42 * Output: \verbinclude LLT_example.out 43 * 44 * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. 45 * 46 * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT 47 */ 48 /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) 49 * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, 50 * the strict lower part does not have to store correct values. 51 */ 52 template<typename _MatrixType, int _UpLo> class LLT 53 { 54 public: 55 typedef _MatrixType MatrixType; 56 enum { 57 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 58 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 59 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 60 }; 61 typedef typename MatrixType::Scalar Scalar; 62 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; 63 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 64 typedef typename MatrixType::StorageIndex StorageIndex; 65 66 enum { 67 PacketSize = internal::packet_traits<Scalar>::size, 68 AlignmentMask = int(PacketSize)-1, 69 UpLo = _UpLo 70 }; 71 72 typedef internal::LLT_Traits<MatrixType,UpLo> Traits; 73 74 /** 75 * \brief Default Constructor. 76 * 77 * The default constructor is useful in cases in which the user intends to 78 * perform decompositions via LLT::compute(const MatrixType&). 79 */ 80 LLT() : m_matrix(), m_isInitialized(false) {} 81 82 /** \brief Default Constructor with memory preallocation 83 * 84 * Like the default constructor but with preallocation of the internal data 85 * according to the specified problem \a size. 86 * \sa LLT() 87 */ 88 explicit LLT(Index size) : m_matrix(size, size), 89 m_isInitialized(false) {} 90 91 template<typename InputType> 92 explicit LLT(const EigenBase<InputType>& matrix) 93 : m_matrix(matrix.rows(), matrix.cols()), 94 m_isInitialized(false) 95 { 96 compute(matrix.derived()); 97 } 98 99 /** \brief Constructs a LDLT factorization from a given matrix 100 * 101 * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when 102 * \c MatrixType is a Eigen::Ref. 103 * 104 * \sa LLT(const EigenBase&) 105 */ 106 template<typename InputType> 107 explicit LLT(EigenBase<InputType>& matrix) 108 : m_matrix(matrix.derived()), 109 m_isInitialized(false) 110 { 111 compute(matrix.derived()); 112 } 113 114 /** \returns a view of the upper triangular matrix U */ 115 inline typename Traits::MatrixU matrixU() const 116 { 117 eigen_assert(m_isInitialized && "LLT is not initialized."); 118 return Traits::getU(m_matrix); 119 } 120 121 /** \returns a view of the lower triangular matrix L */ 122 inline typename Traits::MatrixL matrixL() const 123 { 124 eigen_assert(m_isInitialized && "LLT is not initialized."); 125 return Traits::getL(m_matrix); 126 } 127 128 /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. 129 * 130 * Since this LLT class assumes anyway that the matrix A is invertible, the solution 131 * theoretically exists and is unique regardless of b. 132 * 133 * Example: \include LLT_solve.cpp 134 * Output: \verbinclude LLT_solve.out 135 * 136 * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() 137 */ 138 template<typename Rhs> 139 inline const Solve<LLT, Rhs> 140 solve(const MatrixBase<Rhs>& b) const 141 { 142 eigen_assert(m_isInitialized && "LLT is not initialized."); 143 eigen_assert(m_matrix.rows()==b.rows() 144 && "LLT::solve(): invalid number of rows of the right hand side matrix b"); 145 return Solve<LLT, Rhs>(*this, b.derived()); 146 } 147 148 template<typename Derived> 149 void solveInPlace(MatrixBase<Derived> &bAndX) const; 150 151 template<typename InputType> 152 LLT& compute(const EigenBase<InputType>& matrix); 153 154 /** \returns an estimate of the reciprocal condition number of the matrix of 155 * which \c *this is the Cholesky decomposition. 156 */ 157 RealScalar rcond() const 158 { 159 eigen_assert(m_isInitialized && "LLT is not initialized."); 160 eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); 161 return internal::rcond_estimate_helper(m_l1_norm, *this); 162 } 163 164 /** \returns the LLT decomposition matrix 165 * 166 * TODO: document the storage layout 167 */ 168 inline const MatrixType& matrixLLT() const 169 { 170 eigen_assert(m_isInitialized && "LLT is not initialized."); 171 return m_matrix; 172 } 173 174 MatrixType reconstructedMatrix() const; 175 176 177 /** \brief Reports whether previous computation was successful. 178 * 179 * \returns \c Success if computation was succesful, 180 * \c NumericalIssue if the matrix.appears to be negative. 181 */ 182 ComputationInfo info() const 183 { 184 eigen_assert(m_isInitialized && "LLT is not initialized."); 185 return m_info; 186 } 187 188 /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. 189 * 190 * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: 191 * \code x = decomposition.adjoint().solve(b) \endcode 192 */ 193 const LLT& adjoint() const { return *this; }; 194 195 inline Index rows() const { return m_matrix.rows(); } 196 inline Index cols() const { return m_matrix.cols(); } 197 198 template<typename VectorType> 199 LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); 200 201 #ifndef EIGEN_PARSED_BY_DOXYGEN 202 template<typename RhsType, typename DstType> 203 EIGEN_DEVICE_FUNC 204 void _solve_impl(const RhsType &rhs, DstType &dst) const; 205 #endif 206 207 protected: 208 209 static void check_template_parameters() 210 { 211 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 212 } 213 214 /** \internal 215 * Used to compute and store L 216 * The strict upper part is not used and even not initialized. 217 */ 218 MatrixType m_matrix; 219 RealScalar m_l1_norm; 220 bool m_isInitialized; 221 ComputationInfo m_info; 222 }; 223 224 namespace internal { 225 226 template<typename Scalar, int UpLo> struct llt_inplace; 227 228 template<typename MatrixType, typename VectorType> 229 static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) 230 { 231 using std::sqrt; 232 typedef typename MatrixType::Scalar Scalar; 233 typedef typename MatrixType::RealScalar RealScalar; 234 typedef typename MatrixType::ColXpr ColXpr; 235 typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; 236 typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; 237 typedef Matrix<Scalar,Dynamic,1> TempVectorType; 238 typedef typename TempVectorType::SegmentReturnType TempVecSegment; 239 240 Index n = mat.cols(); 241 eigen_assert(mat.rows()==n && vec.size()==n); 242 243 TempVectorType temp; 244 245 if(sigma>0) 246 { 247 // This version is based on Givens rotations. 248 // It is faster than the other one below, but only works for updates, 249 // i.e., for sigma > 0 250 temp = sqrt(sigma) * vec; 251 252 for(Index i=0; i<n; ++i) 253 { 254 JacobiRotation<Scalar> g; 255 g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); 256 257 Index rs = n-i-1; 258 if(rs>0) 259 { 260 ColXprSegment x(mat.col(i).tail(rs)); 261 TempVecSegment y(temp.tail(rs)); 262 apply_rotation_in_the_plane(x, y, g); 263 } 264 } 265 } 266 else 267 { 268 temp = vec; 269 RealScalar beta = 1; 270 for(Index j=0; j<n; ++j) 271 { 272 RealScalar Ljj = numext::real(mat.coeff(j,j)); 273 RealScalar dj = numext::abs2(Ljj); 274 Scalar wj = temp.coeff(j); 275 RealScalar swj2 = sigma*numext::abs2(wj); 276 RealScalar gamma = dj*beta + swj2; 277 278 RealScalar x = dj + swj2/beta; 279 if (x<=RealScalar(0)) 280 return j; 281 RealScalar nLjj = sqrt(x); 282 mat.coeffRef(j,j) = nLjj; 283 beta += swj2/dj; 284 285 // Update the terms of L 286 Index rs = n-j-1; 287 if(rs) 288 { 289 temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); 290 if(gamma != 0) 291 mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); 292 } 293 } 294 } 295 return -1; 296 } 297 298 template<typename Scalar> struct llt_inplace<Scalar, Lower> 299 { 300 typedef typename NumTraits<Scalar>::Real RealScalar; 301 template<typename MatrixType> 302 static Index unblocked(MatrixType& mat) 303 { 304 using std::sqrt; 305 306 eigen_assert(mat.rows()==mat.cols()); 307 const Index size = mat.rows(); 308 for(Index k = 0; k < size; ++k) 309 { 310 Index rs = size-k-1; // remaining size 311 312 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); 313 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); 314 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); 315 316 RealScalar x = numext::real(mat.coeff(k,k)); 317 if (k>0) x -= A10.squaredNorm(); 318 if (x<=RealScalar(0)) 319 return k; 320 mat.coeffRef(k,k) = x = sqrt(x); 321 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); 322 if (rs>0) A21 /= x; 323 } 324 return -1; 325 } 326 327 template<typename MatrixType> 328 static Index blocked(MatrixType& m) 329 { 330 eigen_assert(m.rows()==m.cols()); 331 Index size = m.rows(); 332 if(size<32) 333 return unblocked(m); 334 335 Index blockSize = size/8; 336 blockSize = (blockSize/16)*16; 337 blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); 338 339 for (Index k=0; k<size; k+=blockSize) 340 { 341 // partition the matrix: 342 // A00 | - | - 343 // lu = A10 | A11 | - 344 // A20 | A21 | A22 345 Index bs = (std::min)(blockSize, size-k); 346 Index rs = size - k - bs; 347 Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); 348 Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); 349 Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); 350 351 Index ret; 352 if((ret=unblocked(A11))>=0) return k+ret; 353 if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); 354 if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck 355 } 356 return -1; 357 } 358 359 template<typename MatrixType, typename VectorType> 360 static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) 361 { 362 return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); 363 } 364 }; 365 366 template<typename Scalar> struct llt_inplace<Scalar, Upper> 367 { 368 typedef typename NumTraits<Scalar>::Real RealScalar; 369 370 template<typename MatrixType> 371 static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) 372 { 373 Transpose<MatrixType> matt(mat); 374 return llt_inplace<Scalar, Lower>::unblocked(matt); 375 } 376 template<typename MatrixType> 377 static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) 378 { 379 Transpose<MatrixType> matt(mat); 380 return llt_inplace<Scalar, Lower>::blocked(matt); 381 } 382 template<typename MatrixType, typename VectorType> 383 static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) 384 { 385 Transpose<MatrixType> matt(mat); 386 return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); 387 } 388 }; 389 390 template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> 391 { 392 typedef const TriangularView<const MatrixType, Lower> MatrixL; 393 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; 394 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } 395 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } 396 static bool inplace_decomposition(MatrixType& m) 397 { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } 398 }; 399 400 template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> 401 { 402 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; 403 typedef const TriangularView<const MatrixType, Upper> MatrixU; 404 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } 405 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } 406 static bool inplace_decomposition(MatrixType& m) 407 { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } 408 }; 409 410 } // end namespace internal 411 412 /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix 413 * 414 * \returns a reference to *this 415 * 416 * Example: \include TutorialLinAlgComputeTwice.cpp 417 * Output: \verbinclude TutorialLinAlgComputeTwice.out 418 */ 419 template<typename MatrixType, int _UpLo> 420 template<typename InputType> 421 LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) 422 { 423 check_template_parameters(); 424 425 eigen_assert(a.rows()==a.cols()); 426 const Index size = a.rows(); 427 m_matrix.resize(size, size); 428 m_matrix = a.derived(); 429 430 // Compute matrix L1 norm = max abs column sum. 431 m_l1_norm = RealScalar(0); 432 // TODO move this code to SelfAdjointView 433 for (Index col = 0; col < size; ++col) { 434 RealScalar abs_col_sum; 435 if (_UpLo == Lower) 436 abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); 437 else 438 abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); 439 if (abs_col_sum > m_l1_norm) 440 m_l1_norm = abs_col_sum; 441 } 442 443 m_isInitialized = true; 444 bool ok = Traits::inplace_decomposition(m_matrix); 445 m_info = ok ? Success : NumericalIssue; 446 447 return *this; 448 } 449 450 /** Performs a rank one update (or dowdate) of the current decomposition. 451 * If A = LL^* before the rank one update, 452 * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector 453 * of same dimension. 454 */ 455 template<typename _MatrixType, int _UpLo> 456 template<typename VectorType> 457 LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) 458 { 459 EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); 460 eigen_assert(v.size()==m_matrix.cols()); 461 eigen_assert(m_isInitialized); 462 if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) 463 m_info = NumericalIssue; 464 else 465 m_info = Success; 466 467 return *this; 468 } 469 470 #ifndef EIGEN_PARSED_BY_DOXYGEN 471 template<typename _MatrixType,int _UpLo> 472 template<typename RhsType, typename DstType> 473 void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const 474 { 475 dst = rhs; 476 solveInPlace(dst); 477 } 478 #endif 479 480 /** \internal use x = llt_object.solve(x); 481 * 482 * This is the \em in-place version of solve(). 483 * 484 * \param bAndX represents both the right-hand side matrix b and result x. 485 * 486 * This version avoids a copy when the right hand side matrix b is not needed anymore. 487 * 488 * \sa LLT::solve(), MatrixBase::llt() 489 */ 490 template<typename MatrixType, int _UpLo> 491 template<typename Derived> 492 void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const 493 { 494 eigen_assert(m_isInitialized && "LLT is not initialized."); 495 eigen_assert(m_matrix.rows()==bAndX.rows()); 496 matrixL().solveInPlace(bAndX); 497 matrixU().solveInPlace(bAndX); 498 } 499 500 /** \returns the matrix represented by the decomposition, 501 * i.e., it returns the product: L L^*. 502 * This function is provided for debug purpose. */ 503 template<typename MatrixType, int _UpLo> 504 MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const 505 { 506 eigen_assert(m_isInitialized && "LLT is not initialized."); 507 return matrixL() * matrixL().adjoint().toDenseMatrix(); 508 } 509 510 /** \cholesky_module 511 * \returns the LLT decomposition of \c *this 512 * \sa SelfAdjointView::llt() 513 */ 514 template<typename Derived> 515 inline const LLT<typename MatrixBase<Derived>::PlainObject> 516 MatrixBase<Derived>::llt() const 517 { 518 return LLT<PlainObject>(derived()); 519 } 520 521 /** \cholesky_module 522 * \returns the LLT decomposition of \c *this 523 * \sa SelfAdjointView::llt() 524 */ 525 template<typename MatrixType, unsigned int UpLo> 526 inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> 527 SelfAdjointView<MatrixType, UpLo>::llt() const 528 { 529 return LLT<PlainObject,UpLo>(m_matrix); 530 } 531 532 } // end namespace Eigen 533 534 #endif // EIGEN_LLT_H 535