Home | History | Annotate | Download | only in CodeGen
      1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveDebugVariables analysis.
     11 //
     12 // Remove all DBG_VALUE instructions referencing virtual registers and replace
     13 // them with a data structure tracking where live user variables are kept - in a
     14 // virtual register or in a stack slot.
     15 //
     16 // Allow the data structure to be updated during register allocation when values
     17 // are moved between registers and stack slots. Finally emit new DBG_VALUE
     18 // instructions after register allocation is complete.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #include "LiveDebugVariables.h"
     23 #include "llvm/ADT/ArrayRef.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/IntervalMap.h"
     26 #include "llvm/ADT/STLExtras.h"
     27 #include "llvm/ADT/SmallSet.h"
     28 #include "llvm/ADT/SmallVector.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/ADT/StringRef.h"
     31 #include "llvm/CodeGen/LexicalScopes.h"
     32 #include "llvm/CodeGen/LiveInterval.h"
     33 #include "llvm/CodeGen/LiveIntervals.h"
     34 #include "llvm/CodeGen/MachineBasicBlock.h"
     35 #include "llvm/CodeGen/MachineDominators.h"
     36 #include "llvm/CodeGen/MachineFunction.h"
     37 #include "llvm/CodeGen/MachineInstr.h"
     38 #include "llvm/CodeGen/MachineInstrBuilder.h"
     39 #include "llvm/CodeGen/MachineOperand.h"
     40 #include "llvm/CodeGen/MachineRegisterInfo.h"
     41 #include "llvm/CodeGen/SlotIndexes.h"
     42 #include "llvm/CodeGen/TargetInstrInfo.h"
     43 #include "llvm/CodeGen/TargetOpcodes.h"
     44 #include "llvm/CodeGen/TargetRegisterInfo.h"
     45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     46 #include "llvm/CodeGen/VirtRegMap.h"
     47 #include "llvm/Config/llvm-config.h"
     48 #include "llvm/IR/DebugInfoMetadata.h"
     49 #include "llvm/IR/DebugLoc.h"
     50 #include "llvm/IR/Function.h"
     51 #include "llvm/IR/Metadata.h"
     52 #include "llvm/MC/MCRegisterInfo.h"
     53 #include "llvm/Pass.h"
     54 #include "llvm/Support/Casting.h"
     55 #include "llvm/Support/CommandLine.h"
     56 #include "llvm/Support/Compiler.h"
     57 #include "llvm/Support/Debug.h"
     58 #include "llvm/Support/raw_ostream.h"
     59 #include <algorithm>
     60 #include <cassert>
     61 #include <iterator>
     62 #include <memory>
     63 #include <utility>
     64 
     65 using namespace llvm;
     66 
     67 #define DEBUG_TYPE "livedebugvars"
     68 
     69 static cl::opt<bool>
     70 EnableLDV("live-debug-variables", cl::init(true),
     71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
     72 
     73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
     74 
     75 char LiveDebugVariables::ID = 0;
     76 
     77 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
     78                 "Debug Variable Analysis", false, false)
     79 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
     80 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
     81 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
     82                 "Debug Variable Analysis", false, false)
     83 
     84 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
     85   AU.addRequired<MachineDominatorTree>();
     86   AU.addRequiredTransitive<LiveIntervals>();
     87   AU.setPreservesAll();
     88   MachineFunctionPass::getAnalysisUsage(AU);
     89 }
     90 
     91 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
     92   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
     93 }
     94 
     95 enum : unsigned { UndefLocNo = ~0U };
     96 
     97 /// Describes a location by number along with some flags about the original
     98 /// usage of the location.
     99 class DbgValueLocation {
    100 public:
    101   DbgValueLocation(unsigned LocNo, bool WasIndirect)
    102       : LocNo(LocNo), WasIndirect(WasIndirect) {
    103     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
    104     assert(locNo() == LocNo && "location truncation");
    105   }
    106 
    107   DbgValueLocation() : LocNo(0), WasIndirect(0) {}
    108 
    109   unsigned locNo() const {
    110     // Fix up the undef location number, which gets truncated.
    111     return LocNo == INT_MAX ? UndefLocNo : LocNo;
    112   }
    113   bool wasIndirect() const { return WasIndirect; }
    114   bool isUndef() const { return locNo() == UndefLocNo; }
    115 
    116   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
    117     return DbgValueLocation(NewLocNo, WasIndirect);
    118   }
    119 
    120   friend inline bool operator==(const DbgValueLocation &LHS,
    121                                 const DbgValueLocation &RHS) {
    122     return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
    123   }
    124 
    125   friend inline bool operator!=(const DbgValueLocation &LHS,
    126                                 const DbgValueLocation &RHS) {
    127     return !(LHS == RHS);
    128   }
    129 
    130 private:
    131   unsigned LocNo : 31;
    132   unsigned WasIndirect : 1;
    133 };
    134 
    135 /// LocMap - Map of where a user value is live, and its location.
    136 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
    137 
    138 namespace {
    139 
    140 class LDVImpl;
    141 
    142 /// UserValue - A user value is a part of a debug info user variable.
    143 ///
    144 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
    145 /// holds part of a user variable. The part is identified by a byte offset.
    146 ///
    147 /// UserValues are grouped into equivalence classes for easier searching. Two
    148 /// user values are related if they refer to the same variable, or if they are
    149 /// held by the same virtual register. The equivalence class is the transitive
    150 /// closure of that relation.
    151 class UserValue {
    152   const DILocalVariable *Variable; ///< The debug info variable we are part of.
    153   const DIExpression *Expression; ///< Any complex address expression.
    154   DebugLoc dl;            ///< The debug location for the variable. This is
    155                           ///< used by dwarf writer to find lexical scope.
    156   UserValue *leader;      ///< Equivalence class leader.
    157   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
    158 
    159   /// Numbered locations referenced by locmap.
    160   SmallVector<MachineOperand, 4> locations;
    161 
    162   /// Map of slot indices where this value is live.
    163   LocMap locInts;
    164 
    165   /// Set of interval start indexes that have been trimmed to the
    166   /// lexical scope.
    167   SmallSet<SlotIndex, 2> trimmedDefs;
    168 
    169   /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
    170   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
    171                         SlotIndex StopIdx,
    172                         DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS,
    173                         const TargetInstrInfo &TII,
    174                         const TargetRegisterInfo &TRI);
    175 
    176   /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
    177   /// is live. Returns true if any changes were made.
    178   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
    179                      LiveIntervals &LIS);
    180 
    181 public:
    182   /// UserValue - Create a new UserValue.
    183   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
    184             LocMap::Allocator &alloc)
    185       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
    186         locInts(alloc) {}
    187 
    188   /// getLeader - Get the leader of this value's equivalence class.
    189   UserValue *getLeader() {
    190     UserValue *l = leader;
    191     while (l != l->leader)
    192       l = l->leader;
    193     return leader = l;
    194   }
    195 
    196   /// getNext - Return the next UserValue in the equivalence class.
    197   UserValue *getNext() const { return next; }
    198 
    199   /// match - Does this UserValue match the parameters?
    200   bool match(const DILocalVariable *Var, const DIExpression *Expr,
    201              const DILocation *IA) const {
    202     // FIXME: The fragment should be part of the equivalence class, but not
    203     // other things in the expression like stack values.
    204     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
    205   }
    206 
    207   /// merge - Merge equivalence classes.
    208   static UserValue *merge(UserValue *L1, UserValue *L2) {
    209     L2 = L2->getLeader();
    210     if (!L1)
    211       return L2;
    212     L1 = L1->getLeader();
    213     if (L1 == L2)
    214       return L1;
    215     // Splice L2 before L1's members.
    216     UserValue *End = L2;
    217     while (End->next) {
    218       End->leader = L1;
    219       End = End->next;
    220     }
    221     End->leader = L1;
    222     End->next = L1->next;
    223     L1->next = L2;
    224     return L1;
    225   }
    226 
    227   /// Return the location number that matches Loc.
    228   ///
    229   /// For undef values we always return location number UndefLocNo without
    230   /// inserting anything in locations. Since locations is a vector and the
    231   /// location number is the position in the vector and UndefLocNo is ~0,
    232   /// we would need a very big vector to put the value at the right position.
    233   unsigned getLocationNo(const MachineOperand &LocMO) {
    234     if (LocMO.isReg()) {
    235       if (LocMO.getReg() == 0)
    236         return UndefLocNo;
    237       // For register locations we dont care about use/def and other flags.
    238       for (unsigned i = 0, e = locations.size(); i != e; ++i)
    239         if (locations[i].isReg() &&
    240             locations[i].getReg() == LocMO.getReg() &&
    241             locations[i].getSubReg() == LocMO.getSubReg())
    242           return i;
    243     } else
    244       for (unsigned i = 0, e = locations.size(); i != e; ++i)
    245         if (LocMO.isIdenticalTo(locations[i]))
    246           return i;
    247     locations.push_back(LocMO);
    248     // We are storing a MachineOperand outside a MachineInstr.
    249     locations.back().clearParent();
    250     // Don't store def operands.
    251     if (locations.back().isReg()) {
    252       if (locations.back().isDef())
    253         locations.back().setIsDead(false);
    254       locations.back().setIsUse();
    255     }
    256     return locations.size() - 1;
    257   }
    258 
    259   /// mapVirtRegs - Ensure that all virtual register locations are mapped.
    260   void mapVirtRegs(LDVImpl *LDV);
    261 
    262   /// addDef - Add a definition point to this value.
    263   void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
    264     DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
    265     // Add a singular (Idx,Idx) -> Loc mapping.
    266     LocMap::iterator I = locInts.find(Idx);
    267     if (!I.valid() || I.start() != Idx)
    268       I.insert(Idx, Idx.getNextSlot(), Loc);
    269     else
    270       // A later DBG_VALUE at the same SlotIndex overrides the old location.
    271       I.setValue(Loc);
    272   }
    273 
    274   /// extendDef - Extend the current definition as far as possible down.
    275   /// Stop when meeting an existing def or when leaving the live
    276   /// range of VNI.
    277   /// End points where VNI is no longer live are added to Kills.
    278   /// @param Idx   Starting point for the definition.
    279   /// @param Loc   Location number to propagate.
    280   /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
    281   /// @param VNI   When LR is not null, this is the value to restrict to.
    282   /// @param Kills Append end points of VNI's live range to Kills.
    283   /// @param LIS   Live intervals analysis.
    284   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
    285                  LiveRange *LR, const VNInfo *VNI,
    286                  SmallVectorImpl<SlotIndex> *Kills,
    287                  LiveIntervals &LIS);
    288 
    289   /// addDefsFromCopies - The value in LI/LocNo may be copies to other
    290   /// registers. Determine if any of the copies are available at the kill
    291   /// points, and add defs if possible.
    292   /// @param LI      Scan for copies of the value in LI->reg.
    293   /// @param LocNo   Location number of LI->reg.
    294   /// @param WasIndirect Indicates if the original use of LI->reg was indirect
    295   /// @param Kills   Points where the range of LocNo could be extended.
    296   /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
    297   void addDefsFromCopies(
    298       LiveInterval *LI, unsigned LocNo, bool WasIndirect,
    299       const SmallVectorImpl<SlotIndex> &Kills,
    300       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
    301       MachineRegisterInfo &MRI, LiveIntervals &LIS);
    302 
    303   /// computeIntervals - Compute the live intervals of all locations after
    304   /// collecting all their def points.
    305   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
    306                         LiveIntervals &LIS, LexicalScopes &LS);
    307 
    308   /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
    309   /// live. Returns true if any changes were made.
    310   bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
    311                      LiveIntervals &LIS);
    312 
    313   /// rewriteLocations - Rewrite virtual register locations according to the
    314   /// provided virtual register map. Record which locations were spilled.
    315   void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
    316                         BitVector &SpilledLocations);
    317 
    318   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
    319   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
    320                        const TargetInstrInfo &TII,
    321                        const TargetRegisterInfo &TRI,
    322                        const BitVector &SpilledLocations);
    323 
    324   /// getDebugLoc - Return DebugLoc of this UserValue.
    325   DebugLoc getDebugLoc() { return dl;}
    326 
    327   void print(raw_ostream &, const TargetRegisterInfo *);
    328 };
    329 
    330 /// LDVImpl - Implementation of the LiveDebugVariables pass.
    331 class LDVImpl {
    332   LiveDebugVariables &pass;
    333   LocMap::Allocator allocator;
    334   MachineFunction *MF = nullptr;
    335   LiveIntervals *LIS;
    336   const TargetRegisterInfo *TRI;
    337 
    338   /// Whether emitDebugValues is called.
    339   bool EmitDone = false;
    340 
    341   /// Whether the machine function is modified during the pass.
    342   bool ModifiedMF = false;
    343 
    344   /// userValues - All allocated UserValue instances.
    345   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
    346 
    347   /// Map virtual register to eq class leader.
    348   using VRMap = DenseMap<unsigned, UserValue *>;
    349   VRMap virtRegToEqClass;
    350 
    351   /// Map user variable to eq class leader.
    352   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
    353   UVMap userVarMap;
    354 
    355   /// getUserValue - Find or create a UserValue.
    356   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
    357                           const DebugLoc &DL);
    358 
    359   /// lookupVirtReg - Find the EC leader for VirtReg or null.
    360   UserValue *lookupVirtReg(unsigned VirtReg);
    361 
    362   /// handleDebugValue - Add DBG_VALUE instruction to our maps.
    363   /// @param MI  DBG_VALUE instruction
    364   /// @param Idx Last valid SLotIndex before instruction.
    365   /// @return    True if the DBG_VALUE instruction should be deleted.
    366   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
    367 
    368   /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
    369   /// a UserValue def for each instruction.
    370   /// @param mf MachineFunction to be scanned.
    371   /// @return True if any debug values were found.
    372   bool collectDebugValues(MachineFunction &mf);
    373 
    374   /// computeIntervals - Compute the live intervals of all user values after
    375   /// collecting all their def points.
    376   void computeIntervals();
    377 
    378 public:
    379   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
    380 
    381   bool runOnMachineFunction(MachineFunction &mf);
    382 
    383   /// clear - Release all memory.
    384   void clear() {
    385     MF = nullptr;
    386     userValues.clear();
    387     virtRegToEqClass.clear();
    388     userVarMap.clear();
    389     // Make sure we call emitDebugValues if the machine function was modified.
    390     assert((!ModifiedMF || EmitDone) &&
    391            "Dbg values are not emitted in LDV");
    392     EmitDone = false;
    393     ModifiedMF = false;
    394   }
    395 
    396   /// mapVirtReg - Map virtual register to an equivalence class.
    397   void mapVirtReg(unsigned VirtReg, UserValue *EC);
    398 
    399   /// splitRegister -  Replace all references to OldReg with NewRegs.
    400   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
    401 
    402   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
    403   void emitDebugValues(VirtRegMap *VRM);
    404 
    405   void print(raw_ostream&);
    406 };
    407 
    408 } // end anonymous namespace
    409 
    410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    411 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
    412                           const LLVMContext &Ctx) {
    413   if (!DL)
    414     return;
    415 
    416   auto *Scope = cast<DIScope>(DL.getScope());
    417   // Omit the directory, because it's likely to be long and uninteresting.
    418   CommentOS << Scope->getFilename();
    419   CommentOS << ':' << DL.getLine();
    420   if (DL.getCol() != 0)
    421     CommentOS << ':' << DL.getCol();
    422 
    423   DebugLoc InlinedAtDL = DL.getInlinedAt();
    424   if (!InlinedAtDL)
    425     return;
    426 
    427   CommentOS << " @[ ";
    428   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
    429   CommentOS << " ]";
    430 }
    431 
    432 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
    433                               const DILocation *DL) {
    434   const LLVMContext &Ctx = V->getContext();
    435   StringRef Res = V->getName();
    436   if (!Res.empty())
    437     OS << Res << "," << V->getLine();
    438   if (auto *InlinedAt = DL->getInlinedAt()) {
    439     if (DebugLoc InlinedAtDL = InlinedAt) {
    440       OS << " @[";
    441       printDebugLoc(InlinedAtDL, OS, Ctx);
    442       OS << "]";
    443     }
    444   }
    445 }
    446 
    447 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
    448   auto *DV = cast<DILocalVariable>(Variable);
    449   OS << "!\"";
    450   printExtendedName(OS, DV, dl);
    451 
    452   OS << "\"\t";
    453   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
    454     OS << " [" << I.start() << ';' << I.stop() << "):";
    455     if (I.value().isUndef())
    456       OS << "undef";
    457     else {
    458       OS << I.value().locNo();
    459       if (I.value().wasIndirect())
    460         OS << " ind";
    461     }
    462   }
    463   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
    464     OS << " Loc" << i << '=';
    465     locations[i].print(OS, TRI);
    466   }
    467   OS << '\n';
    468 }
    469 
    470 void LDVImpl::print(raw_ostream &OS) {
    471   OS << "********** DEBUG VARIABLES **********\n";
    472   for (unsigned i = 0, e = userValues.size(); i != e; ++i)
    473     userValues[i]->print(OS, TRI);
    474 }
    475 #endif
    476 
    477 void UserValue::mapVirtRegs(LDVImpl *LDV) {
    478   for (unsigned i = 0, e = locations.size(); i != e; ++i)
    479     if (locations[i].isReg() &&
    480         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
    481       LDV->mapVirtReg(locations[i].getReg(), this);
    482 }
    483 
    484 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
    485                                  const DIExpression *Expr, const DebugLoc &DL) {
    486   UserValue *&Leader = userVarMap[Var];
    487   if (Leader) {
    488     UserValue *UV = Leader->getLeader();
    489     Leader = UV;
    490     for (; UV; UV = UV->getNext())
    491       if (UV->match(Var, Expr, DL->getInlinedAt()))
    492         return UV;
    493   }
    494 
    495   userValues.push_back(
    496       llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
    497   UserValue *UV = userValues.back().get();
    498   Leader = UserValue::merge(Leader, UV);
    499   return UV;
    500 }
    501 
    502 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
    503   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
    504   UserValue *&Leader = virtRegToEqClass[VirtReg];
    505   Leader = UserValue::merge(Leader, EC);
    506 }
    507 
    508 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
    509   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
    510     return UV->getLeader();
    511   return nullptr;
    512 }
    513 
    514 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
    515   // DBG_VALUE loc, offset, variable
    516   if (MI.getNumOperands() != 4 ||
    517       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
    518       !MI.getOperand(2).isMetadata()) {
    519     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
    520     return false;
    521   }
    522 
    523   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
    524   // register that hasn't been defined yet. If we do not remove those here, then
    525   // the re-insertion of the DBG_VALUE instruction after register allocation
    526   // will be incorrect.
    527   // TODO: If earlier passes are corrected to generate sane debug information
    528   // (and if the machine verifier is improved to catch this), then these checks
    529   // could be removed or replaced by asserts.
    530   bool Discard = false;
    531   if (MI.getOperand(0).isReg() &&
    532       TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) {
    533     const unsigned Reg = MI.getOperand(0).getReg();
    534     if (!LIS->hasInterval(Reg)) {
    535       // The DBG_VALUE is described by a virtual register that does not have a
    536       // live interval. Discard the DBG_VALUE.
    537       Discard = true;
    538       LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
    539                         << " " << MI);
    540     } else {
    541       // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
    542       // is defined dead at Idx (where Idx is the slot index for the instruction
    543       // preceeding the DBG_VALUE).
    544       const LiveInterval &LI = LIS->getInterval(Reg);
    545       LiveQueryResult LRQ = LI.Query(Idx);
    546       if (!LRQ.valueOutOrDead()) {
    547         // We have found a DBG_VALUE with the value in a virtual register that
    548         // is not live. Discard the DBG_VALUE.
    549         Discard = true;
    550         LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
    551                           << " " << MI);
    552       }
    553     }
    554   }
    555 
    556   // Get or create the UserValue for (variable,offset) here.
    557   bool IsIndirect = MI.getOperand(1).isImm();
    558   if (IsIndirect)
    559     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
    560   const DILocalVariable *Var = MI.getDebugVariable();
    561   const DIExpression *Expr = MI.getDebugExpression();
    562   UserValue *UV =
    563       getUserValue(Var, Expr, MI.getDebugLoc());
    564   if (!Discard)
    565     UV->addDef(Idx, MI.getOperand(0), IsIndirect);
    566   else {
    567     MachineOperand MO = MachineOperand::CreateReg(0U, false);
    568     MO.setIsDebug();
    569     UV->addDef(Idx, MO, false);
    570   }
    571   return true;
    572 }
    573 
    574 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
    575   bool Changed = false;
    576   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
    577        ++MFI) {
    578     MachineBasicBlock *MBB = &*MFI;
    579     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
    580          MBBI != MBBE;) {
    581       if (!MBBI->isDebugValue()) {
    582         ++MBBI;
    583         continue;
    584       }
    585       // DBG_VALUE has no slot index, use the previous instruction instead.
    586       SlotIndex Idx =
    587           MBBI == MBB->begin()
    588               ? LIS->getMBBStartIdx(MBB)
    589               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
    590       // Handle consecutive DBG_VALUE instructions with the same slot index.
    591       do {
    592         if (handleDebugValue(*MBBI, Idx)) {
    593           MBBI = MBB->erase(MBBI);
    594           Changed = true;
    595         } else
    596           ++MBBI;
    597       } while (MBBI != MBBE && MBBI->isDebugValue());
    598     }
    599   }
    600   return Changed;
    601 }
    602 
    603 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
    604 /// data-flow analysis to propagate them beyond basic block boundaries.
    605 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
    606                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
    607                           LiveIntervals &LIS) {
    608   SlotIndex Start = Idx;
    609   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
    610   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
    611   LocMap::iterator I = locInts.find(Start);
    612 
    613   // Limit to VNI's live range.
    614   bool ToEnd = true;
    615   if (LR && VNI) {
    616     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
    617     if (!Segment || Segment->valno != VNI) {
    618       if (Kills)
    619         Kills->push_back(Start);
    620       return;
    621     }
    622     if (Segment->end < Stop) {
    623       Stop = Segment->end;
    624       ToEnd = false;
    625     }
    626   }
    627 
    628   // There could already be a short def at Start.
    629   if (I.valid() && I.start() <= Start) {
    630     // Stop when meeting a different location or an already extended interval.
    631     Start = Start.getNextSlot();
    632     if (I.value() != Loc || I.stop() != Start)
    633       return;
    634     // This is a one-slot placeholder. Just skip it.
    635     ++I;
    636   }
    637 
    638   // Limited by the next def.
    639   if (I.valid() && I.start() < Stop) {
    640     Stop = I.start();
    641     ToEnd = false;
    642   }
    643   // Limited by VNI's live range.
    644   else if (!ToEnd && Kills)
    645     Kills->push_back(Stop);
    646 
    647   if (Start < Stop)
    648     I.insert(Start, Stop, Loc);
    649 }
    650 
    651 void UserValue::addDefsFromCopies(
    652     LiveInterval *LI, unsigned LocNo, bool WasIndirect,
    653     const SmallVectorImpl<SlotIndex> &Kills,
    654     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
    655     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
    656   if (Kills.empty())
    657     return;
    658   // Don't track copies from physregs, there are too many uses.
    659   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
    660     return;
    661 
    662   // Collect all the (vreg, valno) pairs that are copies of LI.
    663   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
    664   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
    665     MachineInstr *MI = MO.getParent();
    666     // Copies of the full value.
    667     if (MO.getSubReg() || !MI->isCopy())
    668       continue;
    669     unsigned DstReg = MI->getOperand(0).getReg();
    670 
    671     // Don't follow copies to physregs. These are usually setting up call
    672     // arguments, and the argument registers are always call clobbered. We are
    673     // better off in the source register which could be a callee-saved register,
    674     // or it could be spilled.
    675     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
    676       continue;
    677 
    678     // Is LocNo extended to reach this copy? If not, another def may be blocking
    679     // it, or we are looking at a wrong value of LI.
    680     SlotIndex Idx = LIS.getInstructionIndex(*MI);
    681     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
    682     if (!I.valid() || I.value().locNo() != LocNo)
    683       continue;
    684 
    685     if (!LIS.hasInterval(DstReg))
    686       continue;
    687     LiveInterval *DstLI = &LIS.getInterval(DstReg);
    688     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
    689     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
    690     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
    691   }
    692 
    693   if (CopyValues.empty())
    694     return;
    695 
    696   LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
    697                     << '\n');
    698 
    699   // Try to add defs of the copied values for each kill point.
    700   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
    701     SlotIndex Idx = Kills[i];
    702     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
    703       LiveInterval *DstLI = CopyValues[j].first;
    704       const VNInfo *DstVNI = CopyValues[j].second;
    705       if (DstLI->getVNInfoAt(Idx) != DstVNI)
    706         continue;
    707       // Check that there isn't already a def at Idx
    708       LocMap::iterator I = locInts.find(Idx);
    709       if (I.valid() && I.start() <= Idx)
    710         continue;
    711       LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
    712                         << DstVNI->id << " in " << *DstLI << '\n');
    713       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
    714       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
    715       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
    716       DbgValueLocation NewLoc(LocNo, WasIndirect);
    717       I.insert(Idx, Idx.getNextSlot(), NewLoc);
    718       NewDefs.push_back(std::make_pair(Idx, NewLoc));
    719       break;
    720     }
    721   }
    722 }
    723 
    724 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
    725                                  const TargetRegisterInfo &TRI,
    726                                  LiveIntervals &LIS, LexicalScopes &LS) {
    727   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
    728 
    729   // Collect all defs to be extended (Skipping undefs).
    730   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
    731     if (!I.value().isUndef())
    732       Defs.push_back(std::make_pair(I.start(), I.value()));
    733 
    734   // Extend all defs, and possibly add new ones along the way.
    735   for (unsigned i = 0; i != Defs.size(); ++i) {
    736     SlotIndex Idx = Defs[i].first;
    737     DbgValueLocation Loc = Defs[i].second;
    738     const MachineOperand &LocMO = locations[Loc.locNo()];
    739 
    740     if (!LocMO.isReg()) {
    741       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
    742       continue;
    743     }
    744 
    745     // Register locations are constrained to where the register value is live.
    746     if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
    747       LiveInterval *LI = nullptr;
    748       const VNInfo *VNI = nullptr;
    749       if (LIS.hasInterval(LocMO.getReg())) {
    750         LI = &LIS.getInterval(LocMO.getReg());
    751         VNI = LI->getVNInfoAt(Idx);
    752       }
    753       SmallVector<SlotIndex, 16> Kills;
    754       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
    755       if (LI)
    756         addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
    757                           LIS);
    758       continue;
    759     }
    760 
    761     // For physregs, we only mark the start slot idx. DwarfDebug will see it
    762     // as if the DBG_VALUE is valid up until the end of the basic block, or
    763     // the next def of the physical register. So we do not need to extend the
    764     // range. It might actually happen that the DBG_VALUE is the last use of
    765     // the physical register (e.g. if this is an unused input argument to a
    766     // function).
    767   }
    768 
    769   // The computed intervals may extend beyond the range of the debug
    770   // location's lexical scope. In this case, splitting of an interval
    771   // can result in an interval outside of the scope being created,
    772   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
    773   // this, trim the intervals to the lexical scope.
    774 
    775   LexicalScope *Scope = LS.findLexicalScope(dl);
    776   if (!Scope)
    777     return;
    778 
    779   SlotIndex PrevEnd;
    780   LocMap::iterator I = locInts.begin();
    781 
    782   // Iterate over the lexical scope ranges. Each time round the loop
    783   // we check the intervals for overlap with the end of the previous
    784   // range and the start of the next. The first range is handled as
    785   // a special case where there is no PrevEnd.
    786   for (const InsnRange &Range : Scope->getRanges()) {
    787     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
    788     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
    789 
    790     // At the start of each iteration I has been advanced so that
    791     // I.stop() >= PrevEnd. Check for overlap.
    792     if (PrevEnd && I.start() < PrevEnd) {
    793       SlotIndex IStop = I.stop();
    794       DbgValueLocation Loc = I.value();
    795 
    796       // Stop overlaps previous end - trim the end of the interval to
    797       // the scope range.
    798       I.setStopUnchecked(PrevEnd);
    799       ++I;
    800 
    801       // If the interval also overlaps the start of the "next" (i.e.
    802       // current) range create a new interval for the remainder (which
    803       // may be further trimmed).
    804       if (RStart < IStop)
    805         I.insert(RStart, IStop, Loc);
    806     }
    807 
    808     // Advance I so that I.stop() >= RStart, and check for overlap.
    809     I.advanceTo(RStart);
    810     if (!I.valid())
    811       return;
    812 
    813     if (I.start() < RStart) {
    814       // Interval start overlaps range - trim to the scope range.
    815       I.setStartUnchecked(RStart);
    816       // Remember that this interval was trimmed.
    817       trimmedDefs.insert(RStart);
    818     }
    819 
    820     // The end of a lexical scope range is the last instruction in the
    821     // range. To convert to an interval we need the index of the
    822     // instruction after it.
    823     REnd = REnd.getNextIndex();
    824 
    825     // Advance I to first interval outside current range.
    826     I.advanceTo(REnd);
    827     if (!I.valid())
    828       return;
    829 
    830     PrevEnd = REnd;
    831   }
    832 
    833   // Check for overlap with end of final range.
    834   if (PrevEnd && I.start() < PrevEnd)
    835     I.setStopUnchecked(PrevEnd);
    836 }
    837 
    838 void LDVImpl::computeIntervals() {
    839   LexicalScopes LS;
    840   LS.initialize(*MF);
    841 
    842   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
    843     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
    844     userValues[i]->mapVirtRegs(this);
    845   }
    846 }
    847 
    848 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
    849   clear();
    850   MF = &mf;
    851   LIS = &pass.getAnalysis<LiveIntervals>();
    852   TRI = mf.getSubtarget().getRegisterInfo();
    853   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
    854                     << mf.getName() << " **********\n");
    855 
    856   bool Changed = collectDebugValues(mf);
    857   computeIntervals();
    858   LLVM_DEBUG(print(dbgs()));
    859   ModifiedMF = Changed;
    860   return Changed;
    861 }
    862 
    863 static void removeDebugValues(MachineFunction &mf) {
    864   for (MachineBasicBlock &MBB : mf) {
    865     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
    866       if (!MBBI->isDebugValue()) {
    867         ++MBBI;
    868         continue;
    869       }
    870       MBBI = MBB.erase(MBBI);
    871     }
    872   }
    873 }
    874 
    875 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
    876   if (!EnableLDV)
    877     return false;
    878   if (!mf.getFunction().getSubprogram()) {
    879     removeDebugValues(mf);
    880     return false;
    881   }
    882   if (!pImpl)
    883     pImpl = new LDVImpl(this);
    884   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
    885 }
    886 
    887 void LiveDebugVariables::releaseMemory() {
    888   if (pImpl)
    889     static_cast<LDVImpl*>(pImpl)->clear();
    890 }
    891 
    892 LiveDebugVariables::~LiveDebugVariables() {
    893   if (pImpl)
    894     delete static_cast<LDVImpl*>(pImpl);
    895 }
    896 
    897 //===----------------------------------------------------------------------===//
    898 //                           Live Range Splitting
    899 //===----------------------------------------------------------------------===//
    900 
    901 bool
    902 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
    903                          LiveIntervals& LIS) {
    904   LLVM_DEBUG({
    905     dbgs() << "Splitting Loc" << OldLocNo << '\t';
    906     print(dbgs(), nullptr);
    907   });
    908   bool DidChange = false;
    909   LocMap::iterator LocMapI;
    910   LocMapI.setMap(locInts);
    911   for (unsigned i = 0; i != NewRegs.size(); ++i) {
    912     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
    913     if (LI->empty())
    914       continue;
    915 
    916     // Don't allocate the new LocNo until it is needed.
    917     unsigned NewLocNo = UndefLocNo;
    918 
    919     // Iterate over the overlaps between locInts and LI.
    920     LocMapI.find(LI->beginIndex());
    921     if (!LocMapI.valid())
    922       continue;
    923     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
    924     LiveInterval::iterator LIE = LI->end();
    925     while (LocMapI.valid() && LII != LIE) {
    926       // At this point, we know that LocMapI.stop() > LII->start.
    927       LII = LI->advanceTo(LII, LocMapI.start());
    928       if (LII == LIE)
    929         break;
    930 
    931       // Now LII->end > LocMapI.start(). Do we have an overlap?
    932       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
    933         // Overlapping correct location. Allocate NewLocNo now.
    934         if (NewLocNo == UndefLocNo) {
    935           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
    936           MO.setSubReg(locations[OldLocNo].getSubReg());
    937           NewLocNo = getLocationNo(MO);
    938           DidChange = true;
    939         }
    940 
    941         SlotIndex LStart = LocMapI.start();
    942         SlotIndex LStop  = LocMapI.stop();
    943         DbgValueLocation OldLoc = LocMapI.value();
    944 
    945         // Trim LocMapI down to the LII overlap.
    946         if (LStart < LII->start)
    947           LocMapI.setStartUnchecked(LII->start);
    948         if (LStop > LII->end)
    949           LocMapI.setStopUnchecked(LII->end);
    950 
    951         // Change the value in the overlap. This may trigger coalescing.
    952         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
    953 
    954         // Re-insert any removed OldLocNo ranges.
    955         if (LStart < LocMapI.start()) {
    956           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
    957           ++LocMapI;
    958           assert(LocMapI.valid() && "Unexpected coalescing");
    959         }
    960         if (LStop > LocMapI.stop()) {
    961           ++LocMapI;
    962           LocMapI.insert(LII->end, LStop, OldLoc);
    963           --LocMapI;
    964         }
    965       }
    966 
    967       // Advance to the next overlap.
    968       if (LII->end < LocMapI.stop()) {
    969         if (++LII == LIE)
    970           break;
    971         LocMapI.advanceTo(LII->start);
    972       } else {
    973         ++LocMapI;
    974         if (!LocMapI.valid())
    975           break;
    976         LII = LI->advanceTo(LII, LocMapI.start());
    977       }
    978     }
    979   }
    980 
    981   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
    982   locations.erase(locations.begin() + OldLocNo);
    983   LocMapI.goToBegin();
    984   while (LocMapI.valid()) {
    985     DbgValueLocation v = LocMapI.value();
    986     if (v.locNo() == OldLocNo) {
    987       LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
    988                         << LocMapI.stop() << ")\n");
    989       LocMapI.erase();
    990     } else {
    991       // Undef values always have location number UndefLocNo, so don't change
    992       // locNo in that case. See getLocationNo().
    993       if (!v.isUndef() && v.locNo() > OldLocNo)
    994         LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
    995       ++LocMapI;
    996     }
    997   }
    998 
    999   LLVM_DEBUG({
   1000     dbgs() << "Split result: \t";
   1001     print(dbgs(), nullptr);
   1002   });
   1003   return DidChange;
   1004 }
   1005 
   1006 bool
   1007 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
   1008                          LiveIntervals &LIS) {
   1009   bool DidChange = false;
   1010   // Split locations referring to OldReg. Iterate backwards so splitLocation can
   1011   // safely erase unused locations.
   1012   for (unsigned i = locations.size(); i ; --i) {
   1013     unsigned LocNo = i-1;
   1014     const MachineOperand *Loc = &locations[LocNo];
   1015     if (!Loc->isReg() || Loc->getReg() != OldReg)
   1016       continue;
   1017     DidChange |= splitLocation(LocNo, NewRegs, LIS);
   1018   }
   1019   return DidChange;
   1020 }
   1021 
   1022 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
   1023   bool DidChange = false;
   1024   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
   1025     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
   1026 
   1027   if (!DidChange)
   1028     return;
   1029 
   1030   // Map all of the new virtual registers.
   1031   UserValue *UV = lookupVirtReg(OldReg);
   1032   for (unsigned i = 0; i != NewRegs.size(); ++i)
   1033     mapVirtReg(NewRegs[i], UV);
   1034 }
   1035 
   1036 void LiveDebugVariables::
   1037 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
   1038   if (pImpl)
   1039     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
   1040 }
   1041 
   1042 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
   1043                                  BitVector &SpilledLocations) {
   1044   // Build a set of new locations with new numbers so we can coalesce our
   1045   // IntervalMap if two vreg intervals collapse to the same physical location.
   1046   // Use MapVector instead of SetVector because MapVector::insert returns the
   1047   // position of the previously or newly inserted element. The boolean value
   1048   // tracks if the location was produced by a spill.
   1049   // FIXME: This will be problematic if we ever support direct and indirect
   1050   // frame index locations, i.e. expressing both variables in memory and
   1051   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
   1052   MapVector<MachineOperand, bool> NewLocations;
   1053   SmallVector<unsigned, 4> LocNoMap(locations.size());
   1054   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
   1055     bool Spilled = false;
   1056     MachineOperand Loc = locations[I];
   1057     // Only virtual registers are rewritten.
   1058     if (Loc.isReg() && Loc.getReg() &&
   1059         TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
   1060       unsigned VirtReg = Loc.getReg();
   1061       if (VRM.isAssignedReg(VirtReg) &&
   1062           TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
   1063         // This can create a %noreg operand in rare cases when the sub-register
   1064         // index is no longer available. That means the user value is in a
   1065         // non-existent sub-register, and %noreg is exactly what we want.
   1066         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
   1067       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
   1068         // FIXME: Translate SubIdx to a stackslot offset.
   1069         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
   1070         Spilled = true;
   1071       } else {
   1072         Loc.setReg(0);
   1073         Loc.setSubReg(0);
   1074       }
   1075     }
   1076 
   1077     // Insert this location if it doesn't already exist and record a mapping
   1078     // from the old number to the new number.
   1079     auto InsertResult = NewLocations.insert({Loc, Spilled});
   1080     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
   1081     LocNoMap[I] = NewLocNo;
   1082   }
   1083 
   1084   // Rewrite the locations and record which ones were spill slots.
   1085   locations.clear();
   1086   SpilledLocations.clear();
   1087   SpilledLocations.resize(NewLocations.size());
   1088   for (auto &Pair : NewLocations) {
   1089     locations.push_back(Pair.first);
   1090     if (Pair.second) {
   1091       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
   1092       SpilledLocations.set(NewLocNo);
   1093     }
   1094   }
   1095 
   1096   // Update the interval map, but only coalesce left, since intervals to the
   1097   // right use the old location numbers. This should merge two contiguous
   1098   // DBG_VALUE intervals with different vregs that were allocated to the same
   1099   // physical register.
   1100   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
   1101     DbgValueLocation Loc = I.value();
   1102     // Undef values don't exist in locations (and thus not in LocNoMap either)
   1103     // so skip over them. See getLocationNo().
   1104     if (Loc.isUndef())
   1105       continue;
   1106     unsigned NewLocNo = LocNoMap[Loc.locNo()];
   1107     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
   1108     I.setStart(I.start());
   1109   }
   1110 }
   1111 
   1112 /// Find an iterator for inserting a DBG_VALUE instruction.
   1113 static MachineBasicBlock::iterator
   1114 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
   1115                    LiveIntervals &LIS) {
   1116   SlotIndex Start = LIS.getMBBStartIdx(MBB);
   1117   Idx = Idx.getBaseIndex();
   1118 
   1119   // Try to find an insert location by going backwards from Idx.
   1120   MachineInstr *MI;
   1121   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
   1122     // We've reached the beginning of MBB.
   1123     if (Idx == Start) {
   1124       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
   1125       return I;
   1126     }
   1127     Idx = Idx.getPrevIndex();
   1128   }
   1129 
   1130   // Don't insert anything after the first terminator, though.
   1131   return MI->isTerminator() ? MBB->getFirstTerminator() :
   1132                               std::next(MachineBasicBlock::iterator(MI));
   1133 }
   1134 
   1135 /// Find an iterator for inserting the next DBG_VALUE instruction
   1136 /// (or end if no more insert locations found).
   1137 static MachineBasicBlock::iterator
   1138 findNextInsertLocation(MachineBasicBlock *MBB,
   1139                        MachineBasicBlock::iterator I,
   1140                        SlotIndex StopIdx, MachineOperand &LocMO,
   1141                        LiveIntervals &LIS,
   1142                        const TargetRegisterInfo &TRI) {
   1143   if (!LocMO.isReg())
   1144     return MBB->instr_end();
   1145   unsigned Reg = LocMO.getReg();
   1146 
   1147   // Find the next instruction in the MBB that define the register Reg.
   1148   while (I != MBB->end() && !I->isTerminator()) {
   1149     if (!LIS.isNotInMIMap(*I) &&
   1150         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
   1151       break;
   1152     if (I->definesRegister(Reg, &TRI))
   1153       // The insert location is directly after the instruction/bundle.
   1154       return std::next(I);
   1155     ++I;
   1156   }
   1157   return MBB->end();
   1158 }
   1159 
   1160 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
   1161                                  SlotIndex StopIdx,
   1162                                  DbgValueLocation Loc, bool Spilled,
   1163                                  LiveIntervals &LIS,
   1164                                  const TargetInstrInfo &TII,
   1165                                  const TargetRegisterInfo &TRI) {
   1166   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
   1167   // Only search within the current MBB.
   1168   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
   1169   MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
   1170   // Undef values don't exist in locations so create new "noreg" register MOs
   1171   // for them. See getLocationNo().
   1172   MachineOperand MO = !Loc.isUndef() ?
   1173     locations[Loc.locNo()] :
   1174     MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
   1175                               /* isKill */ false, /* isDead */ false,
   1176                               /* isUndef */ false, /* isEarlyClobber */ false,
   1177                               /* SubReg */ 0, /* isDebug */ true);
   1178 
   1179   ++NumInsertedDebugValues;
   1180 
   1181   assert(cast<DILocalVariable>(Variable)
   1182              ->isValidLocationForIntrinsic(getDebugLoc()) &&
   1183          "Expected inlined-at fields to agree");
   1184 
   1185   // If the location was spilled, the new DBG_VALUE will be indirect. If the
   1186   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
   1187   // that the original virtual register was a pointer.
   1188   const DIExpression *Expr = Expression;
   1189   bool IsIndirect = Loc.wasIndirect();
   1190   if (Spilled) {
   1191     if (IsIndirect)
   1192       Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
   1193     IsIndirect = true;
   1194   }
   1195 
   1196   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
   1197 
   1198   do {
   1199     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
   1200             IsIndirect, MO, Variable, Expr);
   1201 
   1202     // Continue and insert DBG_VALUES after every redefinition of register
   1203     // associated with the debug value within the range
   1204     I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
   1205   } while (I != MBB->end());
   1206 }
   1207 
   1208 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
   1209                                 const TargetInstrInfo &TII,
   1210                                 const TargetRegisterInfo &TRI,
   1211                                 const BitVector &SpilledLocations) {
   1212   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
   1213 
   1214   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
   1215     SlotIndex Start = I.start();
   1216     SlotIndex Stop = I.stop();
   1217     DbgValueLocation Loc = I.value();
   1218     bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false;
   1219 
   1220     // If the interval start was trimmed to the lexical scope insert the
   1221     // DBG_VALUE at the previous index (otherwise it appears after the
   1222     // first instruction in the range).
   1223     if (trimmedDefs.count(Start))
   1224       Start = Start.getPrevIndex();
   1225 
   1226     LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
   1227     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
   1228     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
   1229 
   1230     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
   1231     insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
   1232     // This interval may span multiple basic blocks.
   1233     // Insert a DBG_VALUE into each one.
   1234     while (Stop > MBBEnd) {
   1235       // Move to the next block.
   1236       Start = MBBEnd;
   1237       if (++MBB == MFEnd)
   1238         break;
   1239       MBBEnd = LIS.getMBBEndIdx(&*MBB);
   1240       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
   1241       insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
   1242     }
   1243     LLVM_DEBUG(dbgs() << '\n');
   1244     if (MBB == MFEnd)
   1245       break;
   1246 
   1247     ++I;
   1248   }
   1249 }
   1250 
   1251 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
   1252   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
   1253   if (!MF)
   1254     return;
   1255   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
   1256   BitVector SpilledLocations;
   1257   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
   1258     LLVM_DEBUG(userValues[i]->print(dbgs(), TRI));
   1259     userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations);
   1260     userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations);
   1261   }
   1262   EmitDone = true;
   1263 }
   1264 
   1265 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
   1266   if (pImpl)
   1267     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
   1268 }
   1269 
   1270 bool LiveDebugVariables::doInitialization(Module &M) {
   1271   return Pass::doInitialization(M);
   1272 }
   1273 
   1274 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1275 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
   1276   if (pImpl)
   1277     static_cast<LDVImpl*>(pImpl)->print(dbgs());
   1278 }
   1279 #endif
   1280