1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/RegisterPressure.h" 38 #include "llvm/CodeGen/ScheduleDAG.h" 39 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 40 #include "llvm/CodeGen/ScheduleDAGMutation.h" 41 #include "llvm/CodeGen/ScheduleDFS.h" 42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/MachineValueType.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "machine-scheduler" 74 75 namespace llvm { 76 77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 78 cl::desc("Force top-down list scheduling")); 79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 80 cl::desc("Force bottom-up list scheduling")); 81 cl::opt<bool> 82 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 83 cl::desc("Print critical path length to stdout")); 84 85 } // end namespace llvm 86 87 #ifndef NDEBUG 88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 89 cl::desc("Pop up a window to show MISched dags after they are processed")); 90 91 /// In some situations a few uninteresting nodes depend on nearly all other 92 /// nodes in the graph, provide a cutoff to hide them. 93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 94 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 95 96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 97 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 98 99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 100 cl::desc("Only schedule this function")); 101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 102 cl::desc("Only schedule this MBB#")); 103 #else 104 static bool ViewMISchedDAGs = false; 105 #endif // NDEBUG 106 107 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 108 /// size of the ready lists. 109 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 110 cl::desc("Limit ready list to N instructions"), cl::init(256)); 111 112 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 113 cl::desc("Enable register pressure scheduling."), cl::init(true)); 114 115 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 116 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 117 118 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 119 cl::desc("Enable memop clustering."), 120 cl::init(true)); 121 122 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 123 cl::desc("Verify machine instrs before and after machine scheduling")); 124 125 // DAG subtrees must have at least this many nodes. 126 static const unsigned MinSubtreeSize = 8; 127 128 // Pin the vtables to this file. 129 void MachineSchedStrategy::anchor() {} 130 131 void ScheduleDAGMutation::anchor() {} 132 133 //===----------------------------------------------------------------------===// 134 // Machine Instruction Scheduling Pass and Registry 135 //===----------------------------------------------------------------------===// 136 137 MachineSchedContext::MachineSchedContext() { 138 RegClassInfo = new RegisterClassInfo(); 139 } 140 141 MachineSchedContext::~MachineSchedContext() { 142 delete RegClassInfo; 143 } 144 145 namespace { 146 147 /// Base class for a machine scheduler class that can run at any point. 148 class MachineSchedulerBase : public MachineSchedContext, 149 public MachineFunctionPass { 150 public: 151 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 152 153 void print(raw_ostream &O, const Module* = nullptr) const override; 154 155 protected: 156 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 157 }; 158 159 /// MachineScheduler runs after coalescing and before register allocation. 160 class MachineScheduler : public MachineSchedulerBase { 161 public: 162 MachineScheduler(); 163 164 void getAnalysisUsage(AnalysisUsage &AU) const override; 165 166 bool runOnMachineFunction(MachineFunction&) override; 167 168 static char ID; // Class identification, replacement for typeinfo 169 170 protected: 171 ScheduleDAGInstrs *createMachineScheduler(); 172 }; 173 174 /// PostMachineScheduler runs after shortly before code emission. 175 class PostMachineScheduler : public MachineSchedulerBase { 176 public: 177 PostMachineScheduler(); 178 179 void getAnalysisUsage(AnalysisUsage &AU) const override; 180 181 bool runOnMachineFunction(MachineFunction&) override; 182 183 static char ID; // Class identification, replacement for typeinfo 184 185 protected: 186 ScheduleDAGInstrs *createPostMachineScheduler(); 187 }; 188 189 } // end anonymous namespace 190 191 char MachineScheduler::ID = 0; 192 193 char &llvm::MachineSchedulerID = MachineScheduler::ID; 194 195 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 196 "Machine Instruction Scheduler", false, false) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 199 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 200 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 201 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 202 "Machine Instruction Scheduler", false, false) 203 204 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 205 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 206 } 207 208 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 209 AU.setPreservesCFG(); 210 AU.addRequiredID(MachineDominatorsID); 211 AU.addRequired<MachineLoopInfo>(); 212 AU.addRequired<AAResultsWrapperPass>(); 213 AU.addRequired<TargetPassConfig>(); 214 AU.addRequired<SlotIndexes>(); 215 AU.addPreserved<SlotIndexes>(); 216 AU.addRequired<LiveIntervals>(); 217 AU.addPreserved<LiveIntervals>(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 char PostMachineScheduler::ID = 0; 222 223 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 224 225 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 226 "PostRA Machine Instruction Scheduler", false, false) 227 228 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 229 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 230 } 231 232 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 233 AU.setPreservesCFG(); 234 AU.addRequiredID(MachineDominatorsID); 235 AU.addRequired<MachineLoopInfo>(); 236 AU.addRequired<TargetPassConfig>(); 237 MachineFunctionPass::getAnalysisUsage(AU); 238 } 239 240 MachinePassRegistry MachineSchedRegistry::Registry; 241 242 /// A dummy default scheduler factory indicates whether the scheduler 243 /// is overridden on the command line. 244 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 245 return nullptr; 246 } 247 248 /// MachineSchedOpt allows command line selection of the scheduler. 249 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 250 RegisterPassParser<MachineSchedRegistry>> 251 MachineSchedOpt("misched", 252 cl::init(&useDefaultMachineSched), cl::Hidden, 253 cl::desc("Machine instruction scheduler to use")); 254 255 static MachineSchedRegistry 256 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 257 useDefaultMachineSched); 258 259 static cl::opt<bool> EnableMachineSched( 260 "enable-misched", 261 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 262 cl::Hidden); 263 264 static cl::opt<bool> EnablePostRAMachineSched( 265 "enable-post-misched", 266 cl::desc("Enable the post-ra machine instruction scheduling pass."), 267 cl::init(true), cl::Hidden); 268 269 /// Decrement this iterator until reaching the top or a non-debug instr. 270 static MachineBasicBlock::const_iterator 271 priorNonDebug(MachineBasicBlock::const_iterator I, 272 MachineBasicBlock::const_iterator Beg) { 273 assert(I != Beg && "reached the top of the region, cannot decrement"); 274 while (--I != Beg) { 275 if (!I->isDebugInstr()) 276 break; 277 } 278 return I; 279 } 280 281 /// Non-const version. 282 static MachineBasicBlock::iterator 283 priorNonDebug(MachineBasicBlock::iterator I, 284 MachineBasicBlock::const_iterator Beg) { 285 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 286 .getNonConstIterator(); 287 } 288 289 /// If this iterator is a debug value, increment until reaching the End or a 290 /// non-debug instruction. 291 static MachineBasicBlock::const_iterator 292 nextIfDebug(MachineBasicBlock::const_iterator I, 293 MachineBasicBlock::const_iterator End) { 294 for(; I != End; ++I) { 295 if (!I->isDebugInstr()) 296 break; 297 } 298 return I; 299 } 300 301 /// Non-const version. 302 static MachineBasicBlock::iterator 303 nextIfDebug(MachineBasicBlock::iterator I, 304 MachineBasicBlock::const_iterator End) { 305 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 306 .getNonConstIterator(); 307 } 308 309 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 310 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 311 // Select the scheduler, or set the default. 312 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 313 if (Ctor != useDefaultMachineSched) 314 return Ctor(this); 315 316 // Get the default scheduler set by the target for this function. 317 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 318 if (Scheduler) 319 return Scheduler; 320 321 // Default to GenericScheduler. 322 return createGenericSchedLive(this); 323 } 324 325 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 326 /// the caller. We don't have a command line option to override the postRA 327 /// scheduler. The Target must configure it. 328 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 329 // Get the postRA scheduler set by the target for this function. 330 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 331 if (Scheduler) 332 return Scheduler; 333 334 // Default to GenericScheduler. 335 return createGenericSchedPostRA(this); 336 } 337 338 /// Top-level MachineScheduler pass driver. 339 /// 340 /// Visit blocks in function order. Divide each block into scheduling regions 341 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 342 /// consistent with the DAG builder, which traverses the interior of the 343 /// scheduling regions bottom-up. 344 /// 345 /// This design avoids exposing scheduling boundaries to the DAG builder, 346 /// simplifying the DAG builder's support for "special" target instructions. 347 /// At the same time the design allows target schedulers to operate across 348 /// scheduling boundaries, for example to bundle the boundary instructions 349 /// without reordering them. This creates complexity, because the target 350 /// scheduler must update the RegionBegin and RegionEnd positions cached by 351 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 352 /// design would be to split blocks at scheduling boundaries, but LLVM has a 353 /// general bias against block splitting purely for implementation simplicity. 354 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 355 if (skipFunction(mf.getFunction())) 356 return false; 357 358 if (EnableMachineSched.getNumOccurrences()) { 359 if (!EnableMachineSched) 360 return false; 361 } else if (!mf.getSubtarget().enableMachineScheduler()) 362 return false; 363 364 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 365 366 // Initialize the context of the pass. 367 MF = &mf; 368 MLI = &getAnalysis<MachineLoopInfo>(); 369 MDT = &getAnalysis<MachineDominatorTree>(); 370 PassConfig = &getAnalysis<TargetPassConfig>(); 371 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 372 373 LIS = &getAnalysis<LiveIntervals>(); 374 375 if (VerifyScheduling) { 376 LLVM_DEBUG(LIS->dump()); 377 MF->verify(this, "Before machine scheduling."); 378 } 379 RegClassInfo->runOnMachineFunction(*MF); 380 381 // Instantiate the selected scheduler for this target, function, and 382 // optimization level. 383 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 384 scheduleRegions(*Scheduler, false); 385 386 LLVM_DEBUG(LIS->dump()); 387 if (VerifyScheduling) 388 MF->verify(this, "After machine scheduling."); 389 return true; 390 } 391 392 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 393 if (skipFunction(mf.getFunction())) 394 return false; 395 396 if (EnablePostRAMachineSched.getNumOccurrences()) { 397 if (!EnablePostRAMachineSched) 398 return false; 399 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 400 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 401 return false; 402 } 403 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 404 405 // Initialize the context of the pass. 406 MF = &mf; 407 MLI = &getAnalysis<MachineLoopInfo>(); 408 PassConfig = &getAnalysis<TargetPassConfig>(); 409 410 if (VerifyScheduling) 411 MF->verify(this, "Before post machine scheduling."); 412 413 // Instantiate the selected scheduler for this target, function, and 414 // optimization level. 415 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 416 scheduleRegions(*Scheduler, true); 417 418 if (VerifyScheduling) 419 MF->verify(this, "After post machine scheduling."); 420 return true; 421 } 422 423 /// Return true of the given instruction should not be included in a scheduling 424 /// region. 425 /// 426 /// MachineScheduler does not currently support scheduling across calls. To 427 /// handle calls, the DAG builder needs to be modified to create register 428 /// anti/output dependencies on the registers clobbered by the call's regmask 429 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 430 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 431 /// the boundary, but there would be no benefit to postRA scheduling across 432 /// calls this late anyway. 433 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 434 MachineBasicBlock *MBB, 435 MachineFunction *MF, 436 const TargetInstrInfo *TII) { 437 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 438 } 439 440 /// A region of an MBB for scheduling. 441 namespace { 442 struct SchedRegion { 443 /// RegionBegin is the first instruction in the scheduling region, and 444 /// RegionEnd is either MBB->end() or the scheduling boundary after the 445 /// last instruction in the scheduling region. These iterators cannot refer 446 /// to instructions outside of the identified scheduling region because 447 /// those may be reordered before scheduling this region. 448 MachineBasicBlock::iterator RegionBegin; 449 MachineBasicBlock::iterator RegionEnd; 450 unsigned NumRegionInstrs; 451 452 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 453 unsigned N) : 454 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 455 }; 456 } // end anonymous namespace 457 458 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 459 460 static void 461 getSchedRegions(MachineBasicBlock *MBB, 462 MBBRegionsVector &Regions, 463 bool RegionsTopDown) { 464 MachineFunction *MF = MBB->getParent(); 465 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 466 467 MachineBasicBlock::iterator I = nullptr; 468 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 469 RegionEnd != MBB->begin(); RegionEnd = I) { 470 471 // Avoid decrementing RegionEnd for blocks with no terminator. 472 if (RegionEnd != MBB->end() || 473 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 474 --RegionEnd; 475 } 476 477 // The next region starts above the previous region. Look backward in the 478 // instruction stream until we find the nearest boundary. 479 unsigned NumRegionInstrs = 0; 480 I = RegionEnd; 481 for (;I != MBB->begin(); --I) { 482 MachineInstr &MI = *std::prev(I); 483 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 484 break; 485 if (!MI.isDebugInstr()) 486 // MBB::size() uses instr_iterator to count. Here we need a bundle to 487 // count as a single instruction. 488 ++NumRegionInstrs; 489 } 490 491 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 492 } 493 494 if (RegionsTopDown) 495 std::reverse(Regions.begin(), Regions.end()); 496 } 497 498 /// Main driver for both MachineScheduler and PostMachineScheduler. 499 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 500 bool FixKillFlags) { 501 // Visit all machine basic blocks. 502 // 503 // TODO: Visit blocks in global postorder or postorder within the bottom-up 504 // loop tree. Then we can optionally compute global RegPressure. 505 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 506 MBB != MBBEnd; ++MBB) { 507 508 Scheduler.startBlock(&*MBB); 509 510 #ifndef NDEBUG 511 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 512 continue; 513 if (SchedOnlyBlock.getNumOccurrences() 514 && (int)SchedOnlyBlock != MBB->getNumber()) 515 continue; 516 #endif 517 518 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 519 // points to the scheduling boundary at the bottom of the region. The DAG 520 // does not include RegionEnd, but the region does (i.e. the next 521 // RegionEnd is above the previous RegionBegin). If the current block has 522 // no terminator then RegionEnd == MBB->end() for the bottom region. 523 // 524 // All the regions of MBB are first found and stored in MBBRegions, which 525 // will be processed (MBB) top-down if initialized with true. 526 // 527 // The Scheduler may insert instructions during either schedule() or 528 // exitRegion(), even for empty regions. So the local iterators 'I' and 529 // 'RegionEnd' are invalid across these calls. Instructions must not be 530 // added to other regions than the current one without updating MBBRegions. 531 532 MBBRegionsVector MBBRegions; 533 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 534 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 535 R != MBBRegions.end(); ++R) { 536 MachineBasicBlock::iterator I = R->RegionBegin; 537 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 538 unsigned NumRegionInstrs = R->NumRegionInstrs; 539 540 // Notify the scheduler of the region, even if we may skip scheduling 541 // it. Perhaps it still needs to be bundled. 542 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 543 544 // Skip empty scheduling regions (0 or 1 schedulable instructions). 545 if (I == RegionEnd || I == std::prev(RegionEnd)) { 546 // Close the current region. Bundle the terminator if needed. 547 // This invalidates 'RegionEnd' and 'I'. 548 Scheduler.exitRegion(); 549 continue; 550 } 551 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 552 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 553 << " " << MBB->getName() << "\n From: " << *I 554 << " To: "; 555 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 556 else dbgs() << "End"; 557 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 558 if (DumpCriticalPathLength) { 559 errs() << MF->getName(); 560 errs() << ":%bb. " << MBB->getNumber(); 561 errs() << " " << MBB->getName() << " \n"; 562 } 563 564 // Schedule a region: possibly reorder instructions. 565 // This invalidates the original region iterators. 566 Scheduler.schedule(); 567 568 // Close the current region. 569 Scheduler.exitRegion(); 570 } 571 Scheduler.finishBlock(); 572 // FIXME: Ideally, no further passes should rely on kill flags. However, 573 // thumb2 size reduction is currently an exception, so the PostMIScheduler 574 // needs to do this. 575 if (FixKillFlags) 576 Scheduler.fixupKills(*MBB); 577 } 578 Scheduler.finalizeSchedule(); 579 } 580 581 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 582 // unimplemented 583 } 584 585 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 586 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 587 dbgs() << "Queue " << Name << ": "; 588 for (const SUnit *SU : Queue) 589 dbgs() << SU->NodeNum << " "; 590 dbgs() << "\n"; 591 } 592 #endif 593 594 //===----------------------------------------------------------------------===// 595 // ScheduleDAGMI - Basic machine instruction scheduling. This is 596 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 597 // virtual registers. 598 // ===----------------------------------------------------------------------===/ 599 600 // Provide a vtable anchor. 601 ScheduleDAGMI::~ScheduleDAGMI() = default; 602 603 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 604 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 605 } 606 607 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 608 if (SuccSU != &ExitSU) { 609 // Do not use WillCreateCycle, it assumes SD scheduling. 610 // If Pred is reachable from Succ, then the edge creates a cycle. 611 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 612 return false; 613 Topo.AddPred(SuccSU, PredDep.getSUnit()); 614 } 615 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 616 // Return true regardless of whether a new edge needed to be inserted. 617 return true; 618 } 619 620 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 621 /// NumPredsLeft reaches zero, release the successor node. 622 /// 623 /// FIXME: Adjust SuccSU height based on MinLatency. 624 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 625 SUnit *SuccSU = SuccEdge->getSUnit(); 626 627 if (SuccEdge->isWeak()) { 628 --SuccSU->WeakPredsLeft; 629 if (SuccEdge->isCluster()) 630 NextClusterSucc = SuccSU; 631 return; 632 } 633 #ifndef NDEBUG 634 if (SuccSU->NumPredsLeft == 0) { 635 dbgs() << "*** Scheduling failed! ***\n"; 636 SuccSU->dump(this); 637 dbgs() << " has been released too many times!\n"; 638 llvm_unreachable(nullptr); 639 } 640 #endif 641 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 642 // CurrCycle may have advanced since then. 643 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 644 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 645 646 --SuccSU->NumPredsLeft; 647 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 648 SchedImpl->releaseTopNode(SuccSU); 649 } 650 651 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 652 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 653 for (SDep &Succ : SU->Succs) 654 releaseSucc(SU, &Succ); 655 } 656 657 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 658 /// NumSuccsLeft reaches zero, release the predecessor node. 659 /// 660 /// FIXME: Adjust PredSU height based on MinLatency. 661 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 662 SUnit *PredSU = PredEdge->getSUnit(); 663 664 if (PredEdge->isWeak()) { 665 --PredSU->WeakSuccsLeft; 666 if (PredEdge->isCluster()) 667 NextClusterPred = PredSU; 668 return; 669 } 670 #ifndef NDEBUG 671 if (PredSU->NumSuccsLeft == 0) { 672 dbgs() << "*** Scheduling failed! ***\n"; 673 PredSU->dump(this); 674 dbgs() << " has been released too many times!\n"; 675 llvm_unreachable(nullptr); 676 } 677 #endif 678 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 679 // CurrCycle may have advanced since then. 680 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 681 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 682 683 --PredSU->NumSuccsLeft; 684 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 685 SchedImpl->releaseBottomNode(PredSU); 686 } 687 688 /// releasePredecessors - Call releasePred on each of SU's predecessors. 689 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 690 for (SDep &Pred : SU->Preds) 691 releasePred(SU, &Pred); 692 } 693 694 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 695 ScheduleDAGInstrs::startBlock(bb); 696 SchedImpl->enterMBB(bb); 697 } 698 699 void ScheduleDAGMI::finishBlock() { 700 SchedImpl->leaveMBB(); 701 ScheduleDAGInstrs::finishBlock(); 702 } 703 704 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 705 /// crossing a scheduling boundary. [begin, end) includes all instructions in 706 /// the region, including the boundary itself and single-instruction regions 707 /// that don't get scheduled. 708 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 709 MachineBasicBlock::iterator begin, 710 MachineBasicBlock::iterator end, 711 unsigned regioninstrs) 712 { 713 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 714 715 SchedImpl->initPolicy(begin, end, regioninstrs); 716 } 717 718 /// This is normally called from the main scheduler loop but may also be invoked 719 /// by the scheduling strategy to perform additional code motion. 720 void ScheduleDAGMI::moveInstruction( 721 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 722 // Advance RegionBegin if the first instruction moves down. 723 if (&*RegionBegin == MI) 724 ++RegionBegin; 725 726 // Update the instruction stream. 727 BB->splice(InsertPos, BB, MI); 728 729 // Update LiveIntervals 730 if (LIS) 731 LIS->handleMove(*MI, /*UpdateFlags=*/true); 732 733 // Recede RegionBegin if an instruction moves above the first. 734 if (RegionBegin == InsertPos) 735 RegionBegin = MI; 736 } 737 738 bool ScheduleDAGMI::checkSchedLimit() { 739 #ifndef NDEBUG 740 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 741 CurrentTop = CurrentBottom; 742 return false; 743 } 744 ++NumInstrsScheduled; 745 #endif 746 return true; 747 } 748 749 /// Per-region scheduling driver, called back from 750 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 751 /// does not consider liveness or register pressure. It is useful for PostRA 752 /// scheduling and potentially other custom schedulers. 753 void ScheduleDAGMI::schedule() { 754 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 755 LLVM_DEBUG(SchedImpl->dumpPolicy()); 756 757 // Build the DAG. 758 buildSchedGraph(AA); 759 760 Topo.InitDAGTopologicalSorting(); 761 762 postprocessDAG(); 763 764 SmallVector<SUnit*, 8> TopRoots, BotRoots; 765 findRootsAndBiasEdges(TopRoots, BotRoots); 766 767 LLVM_DEBUG(if (EntrySU.getInstr() != nullptr) EntrySU.dumpAll(this); 768 for (const SUnit &SU 769 : SUnits) SU.dumpAll(this); 770 if (ExitSU.getInstr() != nullptr) ExitSU.dumpAll(this);); 771 if (ViewMISchedDAGs) viewGraph(); 772 773 // Initialize the strategy before modifying the DAG. 774 // This may initialize a DFSResult to be used for queue priority. 775 SchedImpl->initialize(this); 776 777 // Initialize ready queues now that the DAG and priority data are finalized. 778 initQueues(TopRoots, BotRoots); 779 780 bool IsTopNode = false; 781 while (true) { 782 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 783 SUnit *SU = SchedImpl->pickNode(IsTopNode); 784 if (!SU) break; 785 786 assert(!SU->isScheduled && "Node already scheduled"); 787 if (!checkSchedLimit()) 788 break; 789 790 MachineInstr *MI = SU->getInstr(); 791 if (IsTopNode) { 792 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 793 if (&*CurrentTop == MI) 794 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 795 else 796 moveInstruction(MI, CurrentTop); 797 } else { 798 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 799 MachineBasicBlock::iterator priorII = 800 priorNonDebug(CurrentBottom, CurrentTop); 801 if (&*priorII == MI) 802 CurrentBottom = priorII; 803 else { 804 if (&*CurrentTop == MI) 805 CurrentTop = nextIfDebug(++CurrentTop, priorII); 806 moveInstruction(MI, CurrentBottom); 807 CurrentBottom = MI; 808 } 809 } 810 // Notify the scheduling strategy before updating the DAG. 811 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 812 // runs, it can then use the accurate ReadyCycle time to determine whether 813 // newly released nodes can move to the readyQ. 814 SchedImpl->schedNode(SU, IsTopNode); 815 816 updateQueues(SU, IsTopNode); 817 } 818 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 819 820 placeDebugValues(); 821 822 LLVM_DEBUG({ 823 dbgs() << "*** Final schedule for " 824 << printMBBReference(*begin()->getParent()) << " ***\n"; 825 dumpSchedule(); 826 dbgs() << '\n'; 827 }); 828 } 829 830 /// Apply each ScheduleDAGMutation step in order. 831 void ScheduleDAGMI::postprocessDAG() { 832 for (auto &m : Mutations) 833 m->apply(this); 834 } 835 836 void ScheduleDAGMI:: 837 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 838 SmallVectorImpl<SUnit*> &BotRoots) { 839 for (SUnit &SU : SUnits) { 840 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 841 842 // Order predecessors so DFSResult follows the critical path. 843 SU.biasCriticalPath(); 844 845 // A SUnit is ready to top schedule if it has no predecessors. 846 if (!SU.NumPredsLeft) 847 TopRoots.push_back(&SU); 848 // A SUnit is ready to bottom schedule if it has no successors. 849 if (!SU.NumSuccsLeft) 850 BotRoots.push_back(&SU); 851 } 852 ExitSU.biasCriticalPath(); 853 } 854 855 /// Identify DAG roots and setup scheduler queues. 856 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 857 ArrayRef<SUnit*> BotRoots) { 858 NextClusterSucc = nullptr; 859 NextClusterPred = nullptr; 860 861 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 862 // 863 // Nodes with unreleased weak edges can still be roots. 864 // Release top roots in forward order. 865 for (SUnit *SU : TopRoots) 866 SchedImpl->releaseTopNode(SU); 867 868 // Release bottom roots in reverse order so the higher priority nodes appear 869 // first. This is more natural and slightly more efficient. 870 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 871 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 872 SchedImpl->releaseBottomNode(*I); 873 } 874 875 releaseSuccessors(&EntrySU); 876 releasePredecessors(&ExitSU); 877 878 SchedImpl->registerRoots(); 879 880 // Advance past initial DebugValues. 881 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 882 CurrentBottom = RegionEnd; 883 } 884 885 /// Update scheduler queues after scheduling an instruction. 886 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 887 // Release dependent instructions for scheduling. 888 if (IsTopNode) 889 releaseSuccessors(SU); 890 else 891 releasePredecessors(SU); 892 893 SU->isScheduled = true; 894 } 895 896 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 897 void ScheduleDAGMI::placeDebugValues() { 898 // If first instruction was a DBG_VALUE then put it back. 899 if (FirstDbgValue) { 900 BB->splice(RegionBegin, BB, FirstDbgValue); 901 RegionBegin = FirstDbgValue; 902 } 903 904 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 905 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 906 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 907 MachineInstr *DbgValue = P.first; 908 MachineBasicBlock::iterator OrigPrevMI = P.second; 909 if (&*RegionBegin == DbgValue) 910 ++RegionBegin; 911 BB->splice(++OrigPrevMI, BB, DbgValue); 912 if (OrigPrevMI == std::prev(RegionEnd)) 913 RegionEnd = DbgValue; 914 } 915 DbgValues.clear(); 916 FirstDbgValue = nullptr; 917 } 918 919 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 920 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 921 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 922 if (SUnit *SU = getSUnit(&(*MI))) 923 SU->dump(this); 924 else 925 dbgs() << "Missing SUnit\n"; 926 } 927 } 928 #endif 929 930 //===----------------------------------------------------------------------===// 931 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 932 // preservation. 933 //===----------------------------------------------------------------------===// 934 935 ScheduleDAGMILive::~ScheduleDAGMILive() { 936 delete DFSResult; 937 } 938 939 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 940 const MachineInstr &MI = *SU.getInstr(); 941 for (const MachineOperand &MO : MI.operands()) { 942 if (!MO.isReg()) 943 continue; 944 if (!MO.readsReg()) 945 continue; 946 if (TrackLaneMasks && !MO.isUse()) 947 continue; 948 949 unsigned Reg = MO.getReg(); 950 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 951 continue; 952 953 // Ignore re-defs. 954 if (TrackLaneMasks) { 955 bool FoundDef = false; 956 for (const MachineOperand &MO2 : MI.operands()) { 957 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 958 FoundDef = true; 959 break; 960 } 961 } 962 if (FoundDef) 963 continue; 964 } 965 966 // Record this local VReg use. 967 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 968 for (; UI != VRegUses.end(); ++UI) { 969 if (UI->SU == &SU) 970 break; 971 } 972 if (UI == VRegUses.end()) 973 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 974 } 975 } 976 977 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 978 /// crossing a scheduling boundary. [begin, end) includes all instructions in 979 /// the region, including the boundary itself and single-instruction regions 980 /// that don't get scheduled. 981 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 982 MachineBasicBlock::iterator begin, 983 MachineBasicBlock::iterator end, 984 unsigned regioninstrs) 985 { 986 // ScheduleDAGMI initializes SchedImpl's per-region policy. 987 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 988 989 // For convenience remember the end of the liveness region. 990 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 991 992 SUPressureDiffs.clear(); 993 994 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 995 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 996 997 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 998 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 999 } 1000 1001 // Setup the register pressure trackers for the top scheduled top and bottom 1002 // scheduled regions. 1003 void ScheduleDAGMILive::initRegPressure() { 1004 VRegUses.clear(); 1005 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1006 for (SUnit &SU : SUnits) 1007 collectVRegUses(SU); 1008 1009 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1010 ShouldTrackLaneMasks, false); 1011 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1012 ShouldTrackLaneMasks, false); 1013 1014 // Close the RPTracker to finalize live ins. 1015 RPTracker.closeRegion(); 1016 1017 LLVM_DEBUG(RPTracker.dump()); 1018 1019 // Initialize the live ins and live outs. 1020 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1021 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1022 1023 // Close one end of the tracker so we can call 1024 // getMaxUpward/DownwardPressureDelta before advancing across any 1025 // instructions. This converts currently live regs into live ins/outs. 1026 TopRPTracker.closeTop(); 1027 BotRPTracker.closeBottom(); 1028 1029 BotRPTracker.initLiveThru(RPTracker); 1030 if (!BotRPTracker.getLiveThru().empty()) { 1031 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1032 LLVM_DEBUG(dbgs() << "Live Thru: "; 1033 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1034 }; 1035 1036 // For each live out vreg reduce the pressure change associated with other 1037 // uses of the same vreg below the live-out reaching def. 1038 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1039 1040 // Account for liveness generated by the region boundary. 1041 if (LiveRegionEnd != RegionEnd) { 1042 SmallVector<RegisterMaskPair, 8> LiveUses; 1043 BotRPTracker.recede(&LiveUses); 1044 updatePressureDiffs(LiveUses); 1045 } 1046 1047 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1048 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1049 dbgs() << "Bottom Pressure:\n"; 1050 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1051 1052 assert((BotRPTracker.getPos() == RegionEnd || 1053 (RegionEnd->isDebugInstr() && 1054 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1055 "Can't find the region bottom"); 1056 1057 // Cache the list of excess pressure sets in this region. This will also track 1058 // the max pressure in the scheduled code for these sets. 1059 RegionCriticalPSets.clear(); 1060 const std::vector<unsigned> &RegionPressure = 1061 RPTracker.getPressure().MaxSetPressure; 1062 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1063 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1064 if (RegionPressure[i] > Limit) { 1065 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1066 << " Actual " << RegionPressure[i] << "\n"); 1067 RegionCriticalPSets.push_back(PressureChange(i)); 1068 } 1069 } 1070 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1071 for (const PressureChange &RCPS 1072 : RegionCriticalPSets) dbgs() 1073 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1074 dbgs() << "\n"); 1075 } 1076 1077 void ScheduleDAGMILive:: 1078 updateScheduledPressure(const SUnit *SU, 1079 const std::vector<unsigned> &NewMaxPressure) { 1080 const PressureDiff &PDiff = getPressureDiff(SU); 1081 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1082 for (const PressureChange &PC : PDiff) { 1083 if (!PC.isValid()) 1084 break; 1085 unsigned ID = PC.getPSet(); 1086 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1087 ++CritIdx; 1088 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1089 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1090 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1091 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1092 } 1093 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1094 if (NewMaxPressure[ID] >= Limit - 2) { 1095 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1096 << NewMaxPressure[ID] 1097 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1098 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1099 << " livethru)\n"); 1100 } 1101 } 1102 } 1103 1104 /// Update the PressureDiff array for liveness after scheduling this 1105 /// instruction. 1106 void ScheduleDAGMILive::updatePressureDiffs( 1107 ArrayRef<RegisterMaskPair> LiveUses) { 1108 for (const RegisterMaskPair &P : LiveUses) { 1109 unsigned Reg = P.RegUnit; 1110 /// FIXME: Currently assuming single-use physregs. 1111 if (!TRI->isVirtualRegister(Reg)) 1112 continue; 1113 1114 if (ShouldTrackLaneMasks) { 1115 // If the register has just become live then other uses won't change 1116 // this fact anymore => decrement pressure. 1117 // If the register has just become dead then other uses make it come 1118 // back to life => increment pressure. 1119 bool Decrement = P.LaneMask.any(); 1120 1121 for (const VReg2SUnit &V2SU 1122 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1123 SUnit &SU = *V2SU.SU; 1124 if (SU.isScheduled || &SU == &ExitSU) 1125 continue; 1126 1127 PressureDiff &PDiff = getPressureDiff(&SU); 1128 PDiff.addPressureChange(Reg, Decrement, &MRI); 1129 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1130 << printReg(Reg, TRI) << ':' 1131 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1132 dbgs() << " to "; PDiff.dump(*TRI);); 1133 } 1134 } else { 1135 assert(P.LaneMask.any()); 1136 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1137 // This may be called before CurrentBottom has been initialized. However, 1138 // BotRPTracker must have a valid position. We want the value live into the 1139 // instruction or live out of the block, so ask for the previous 1140 // instruction's live-out. 1141 const LiveInterval &LI = LIS->getInterval(Reg); 1142 VNInfo *VNI; 1143 MachineBasicBlock::const_iterator I = 1144 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1145 if (I == BB->end()) 1146 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1147 else { 1148 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1149 VNI = LRQ.valueIn(); 1150 } 1151 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1152 assert(VNI && "No live value at use."); 1153 for (const VReg2SUnit &V2SU 1154 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1155 SUnit *SU = V2SU.SU; 1156 // If this use comes before the reaching def, it cannot be a last use, 1157 // so decrease its pressure change. 1158 if (!SU->isScheduled && SU != &ExitSU) { 1159 LiveQueryResult LRQ = 1160 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1161 if (LRQ.valueIn() == VNI) { 1162 PressureDiff &PDiff = getPressureDiff(SU); 1163 PDiff.addPressureChange(Reg, true, &MRI); 1164 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1165 << *SU->getInstr(); 1166 dbgs() << " to "; PDiff.dump(*TRI);); 1167 } 1168 } 1169 } 1170 } 1171 } 1172 } 1173 1174 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1175 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1176 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1177 /// 1178 /// This is a skeletal driver, with all the functionality pushed into helpers, 1179 /// so that it can be easily extended by experimental schedulers. Generally, 1180 /// implementing MachineSchedStrategy should be sufficient to implement a new 1181 /// scheduling algorithm. However, if a scheduler further subclasses 1182 /// ScheduleDAGMILive then it will want to override this virtual method in order 1183 /// to update any specialized state. 1184 void ScheduleDAGMILive::schedule() { 1185 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1186 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1187 buildDAGWithRegPressure(); 1188 1189 Topo.InitDAGTopologicalSorting(); 1190 1191 postprocessDAG(); 1192 1193 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1194 findRootsAndBiasEdges(TopRoots, BotRoots); 1195 1196 // Initialize the strategy before modifying the DAG. 1197 // This may initialize a DFSResult to be used for queue priority. 1198 SchedImpl->initialize(this); 1199 1200 LLVM_DEBUG(if (EntrySU.getInstr() != nullptr) EntrySU.dumpAll(this); 1201 for (const SUnit &SU 1202 : SUnits) { 1203 SU.dumpAll(this); 1204 if (ShouldTrackPressure) { 1205 dbgs() << " Pressure Diff : "; 1206 getPressureDiff(&SU).dump(*TRI); 1207 } 1208 dbgs() << " Single Issue : "; 1209 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1210 SchedModel.mustEndGroup(SU.getInstr())) 1211 dbgs() << "true;"; 1212 else 1213 dbgs() << "false;"; 1214 dbgs() << '\n'; 1215 } if (ExitSU.getInstr() != nullptr) ExitSU.dumpAll(this);); 1216 if (ViewMISchedDAGs) viewGraph(); 1217 1218 // Initialize ready queues now that the DAG and priority data are finalized. 1219 initQueues(TopRoots, BotRoots); 1220 1221 bool IsTopNode = false; 1222 while (true) { 1223 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1224 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1225 if (!SU) break; 1226 1227 assert(!SU->isScheduled && "Node already scheduled"); 1228 if (!checkSchedLimit()) 1229 break; 1230 1231 scheduleMI(SU, IsTopNode); 1232 1233 if (DFSResult) { 1234 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1235 if (!ScheduledTrees.test(SubtreeID)) { 1236 ScheduledTrees.set(SubtreeID); 1237 DFSResult->scheduleTree(SubtreeID); 1238 SchedImpl->scheduleTree(SubtreeID); 1239 } 1240 } 1241 1242 // Notify the scheduling strategy after updating the DAG. 1243 SchedImpl->schedNode(SU, IsTopNode); 1244 1245 updateQueues(SU, IsTopNode); 1246 } 1247 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1248 1249 placeDebugValues(); 1250 1251 LLVM_DEBUG({ 1252 dbgs() << "*** Final schedule for " 1253 << printMBBReference(*begin()->getParent()) << " ***\n"; 1254 dumpSchedule(); 1255 dbgs() << '\n'; 1256 }); 1257 } 1258 1259 /// Build the DAG and setup three register pressure trackers. 1260 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1261 if (!ShouldTrackPressure) { 1262 RPTracker.reset(); 1263 RegionCriticalPSets.clear(); 1264 buildSchedGraph(AA); 1265 return; 1266 } 1267 1268 // Initialize the register pressure tracker used by buildSchedGraph. 1269 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1270 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1271 1272 // Account for liveness generate by the region boundary. 1273 if (LiveRegionEnd != RegionEnd) 1274 RPTracker.recede(); 1275 1276 // Build the DAG, and compute current register pressure. 1277 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1278 1279 // Initialize top/bottom trackers after computing region pressure. 1280 initRegPressure(); 1281 } 1282 1283 void ScheduleDAGMILive::computeDFSResult() { 1284 if (!DFSResult) 1285 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1286 DFSResult->clear(); 1287 ScheduledTrees.clear(); 1288 DFSResult->resize(SUnits.size()); 1289 DFSResult->compute(SUnits); 1290 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1291 } 1292 1293 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1294 /// only provides the critical path for single block loops. To handle loops that 1295 /// span blocks, we could use the vreg path latencies provided by 1296 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1297 /// available for use in the scheduler. 1298 /// 1299 /// The cyclic path estimation identifies a def-use pair that crosses the back 1300 /// edge and considers the depth and height of the nodes. For example, consider 1301 /// the following instruction sequence where each instruction has unit latency 1302 /// and defines an epomymous virtual register: 1303 /// 1304 /// a->b(a,c)->c(b)->d(c)->exit 1305 /// 1306 /// The cyclic critical path is a two cycles: b->c->b 1307 /// The acyclic critical path is four cycles: a->b->c->d->exit 1308 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1309 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1310 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1311 /// LiveInDepth = depth(b) = len(a->b) = 1 1312 /// 1313 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1314 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1315 /// CyclicCriticalPath = min(2, 2) = 2 1316 /// 1317 /// This could be relevant to PostRA scheduling, but is currently implemented 1318 /// assuming LiveIntervals. 1319 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1320 // This only applies to single block loop. 1321 if (!BB->isSuccessor(BB)) 1322 return 0; 1323 1324 unsigned MaxCyclicLatency = 0; 1325 // Visit each live out vreg def to find def/use pairs that cross iterations. 1326 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1327 unsigned Reg = P.RegUnit; 1328 if (!TRI->isVirtualRegister(Reg)) 1329 continue; 1330 const LiveInterval &LI = LIS->getInterval(Reg); 1331 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1332 if (!DefVNI) 1333 continue; 1334 1335 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1336 const SUnit *DefSU = getSUnit(DefMI); 1337 if (!DefSU) 1338 continue; 1339 1340 unsigned LiveOutHeight = DefSU->getHeight(); 1341 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1342 // Visit all local users of the vreg def. 1343 for (const VReg2SUnit &V2SU 1344 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1345 SUnit *SU = V2SU.SU; 1346 if (SU == &ExitSU) 1347 continue; 1348 1349 // Only consider uses of the phi. 1350 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1351 if (!LRQ.valueIn()->isPHIDef()) 1352 continue; 1353 1354 // Assume that a path spanning two iterations is a cycle, which could 1355 // overestimate in strange cases. This allows cyclic latency to be 1356 // estimated as the minimum slack of the vreg's depth or height. 1357 unsigned CyclicLatency = 0; 1358 if (LiveOutDepth > SU->getDepth()) 1359 CyclicLatency = LiveOutDepth - SU->getDepth(); 1360 1361 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1362 if (LiveInHeight > LiveOutHeight) { 1363 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1364 CyclicLatency = LiveInHeight - LiveOutHeight; 1365 } else 1366 CyclicLatency = 0; 1367 1368 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1369 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1370 if (CyclicLatency > MaxCyclicLatency) 1371 MaxCyclicLatency = CyclicLatency; 1372 } 1373 } 1374 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1375 return MaxCyclicLatency; 1376 } 1377 1378 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1379 /// the Top RP tracker in case the region beginning has changed. 1380 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1381 ArrayRef<SUnit*> BotRoots) { 1382 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1383 if (ShouldTrackPressure) { 1384 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1385 TopRPTracker.setPos(CurrentTop); 1386 } 1387 } 1388 1389 /// Move an instruction and update register pressure. 1390 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1391 // Move the instruction to its new location in the instruction stream. 1392 MachineInstr *MI = SU->getInstr(); 1393 1394 if (IsTopNode) { 1395 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1396 if (&*CurrentTop == MI) 1397 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1398 else { 1399 moveInstruction(MI, CurrentTop); 1400 TopRPTracker.setPos(MI); 1401 } 1402 1403 if (ShouldTrackPressure) { 1404 // Update top scheduled pressure. 1405 RegisterOperands RegOpers; 1406 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1407 if (ShouldTrackLaneMasks) { 1408 // Adjust liveness and add missing dead+read-undef flags. 1409 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1410 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1411 } else { 1412 // Adjust for missing dead-def flags. 1413 RegOpers.detectDeadDefs(*MI, *LIS); 1414 } 1415 1416 TopRPTracker.advance(RegOpers); 1417 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1418 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1419 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1420 1421 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1422 } 1423 } else { 1424 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1425 MachineBasicBlock::iterator priorII = 1426 priorNonDebug(CurrentBottom, CurrentTop); 1427 if (&*priorII == MI) 1428 CurrentBottom = priorII; 1429 else { 1430 if (&*CurrentTop == MI) { 1431 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1432 TopRPTracker.setPos(CurrentTop); 1433 } 1434 moveInstruction(MI, CurrentBottom); 1435 CurrentBottom = MI; 1436 BotRPTracker.setPos(CurrentBottom); 1437 } 1438 if (ShouldTrackPressure) { 1439 RegisterOperands RegOpers; 1440 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1441 if (ShouldTrackLaneMasks) { 1442 // Adjust liveness and add missing dead+read-undef flags. 1443 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1444 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1445 } else { 1446 // Adjust for missing dead-def flags. 1447 RegOpers.detectDeadDefs(*MI, *LIS); 1448 } 1449 1450 if (BotRPTracker.getPos() != CurrentBottom) 1451 BotRPTracker.recedeSkipDebugValues(); 1452 SmallVector<RegisterMaskPair, 8> LiveUses; 1453 BotRPTracker.recede(RegOpers, &LiveUses); 1454 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1455 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1456 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1457 1458 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1459 updatePressureDiffs(LiveUses); 1460 } 1461 } 1462 } 1463 1464 //===----------------------------------------------------------------------===// 1465 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1466 //===----------------------------------------------------------------------===// 1467 1468 namespace { 1469 1470 /// Post-process the DAG to create cluster edges between neighboring 1471 /// loads or between neighboring stores. 1472 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1473 struct MemOpInfo { 1474 SUnit *SU; 1475 unsigned BaseReg; 1476 int64_t Offset; 1477 1478 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1479 : SU(su), BaseReg(reg), Offset(ofs) {} 1480 1481 bool operator<(const MemOpInfo&RHS) const { 1482 return std::tie(BaseReg, Offset, SU->NodeNum) < 1483 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1484 } 1485 }; 1486 1487 const TargetInstrInfo *TII; 1488 const TargetRegisterInfo *TRI; 1489 bool IsLoad; 1490 1491 public: 1492 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1493 const TargetRegisterInfo *tri, bool IsLoad) 1494 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1495 1496 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1497 1498 protected: 1499 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1500 }; 1501 1502 class StoreClusterMutation : public BaseMemOpClusterMutation { 1503 public: 1504 StoreClusterMutation(const TargetInstrInfo *tii, 1505 const TargetRegisterInfo *tri) 1506 : BaseMemOpClusterMutation(tii, tri, false) {} 1507 }; 1508 1509 class LoadClusterMutation : public BaseMemOpClusterMutation { 1510 public: 1511 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1512 : BaseMemOpClusterMutation(tii, tri, true) {} 1513 }; 1514 1515 } // end anonymous namespace 1516 1517 namespace llvm { 1518 1519 std::unique_ptr<ScheduleDAGMutation> 1520 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1521 const TargetRegisterInfo *TRI) { 1522 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1523 : nullptr; 1524 } 1525 1526 std::unique_ptr<ScheduleDAGMutation> 1527 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1528 const TargetRegisterInfo *TRI) { 1529 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1530 : nullptr; 1531 } 1532 1533 } // end namespace llvm 1534 1535 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1536 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1537 SmallVector<MemOpInfo, 32> MemOpRecords; 1538 for (SUnit *SU : MemOps) { 1539 unsigned BaseReg; 1540 int64_t Offset; 1541 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1542 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1543 } 1544 if (MemOpRecords.size() < 2) 1545 return; 1546 1547 llvm::sort(MemOpRecords.begin(), MemOpRecords.end()); 1548 unsigned ClusterLength = 1; 1549 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1550 SUnit *SUa = MemOpRecords[Idx].SU; 1551 SUnit *SUb = MemOpRecords[Idx+1].SU; 1552 if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg, 1553 *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg, 1554 ClusterLength) && 1555 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1556 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1557 << SUb->NodeNum << ")\n"); 1558 // Copy successor edges from SUa to SUb. Interleaving computation 1559 // dependent on SUa can prevent load combining due to register reuse. 1560 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1561 // loads should have effectively the same inputs. 1562 for (const SDep &Succ : SUa->Succs) { 1563 if (Succ.getSUnit() == SUb) 1564 continue; 1565 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1566 << ")\n"); 1567 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1568 } 1569 ++ClusterLength; 1570 } else 1571 ClusterLength = 1; 1572 } 1573 } 1574 1575 /// Callback from DAG postProcessing to create cluster edges for loads. 1576 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1577 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1578 1579 // Map DAG NodeNum to store chain ID. 1580 DenseMap<unsigned, unsigned> StoreChainIDs; 1581 // Map each store chain to a set of dependent MemOps. 1582 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1583 for (SUnit &SU : DAG->SUnits) { 1584 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1585 (!IsLoad && !SU.getInstr()->mayStore())) 1586 continue; 1587 1588 unsigned ChainPredID = DAG->SUnits.size(); 1589 for (const SDep &Pred : SU.Preds) { 1590 if (Pred.isCtrl()) { 1591 ChainPredID = Pred.getSUnit()->NodeNum; 1592 break; 1593 } 1594 } 1595 // Check if this chain-like pred has been seen 1596 // before. ChainPredID==MaxNodeID at the top of the schedule. 1597 unsigned NumChains = StoreChainDependents.size(); 1598 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1599 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1600 if (Result.second) 1601 StoreChainDependents.resize(NumChains + 1); 1602 StoreChainDependents[Result.first->second].push_back(&SU); 1603 } 1604 1605 // Iterate over the store chains. 1606 for (auto &SCD : StoreChainDependents) 1607 clusterNeighboringMemOps(SCD, DAG); 1608 } 1609 1610 //===----------------------------------------------------------------------===// 1611 // CopyConstrain - DAG post-processing to encourage copy elimination. 1612 //===----------------------------------------------------------------------===// 1613 1614 namespace { 1615 1616 /// Post-process the DAG to create weak edges from all uses of a copy to 1617 /// the one use that defines the copy's source vreg, most likely an induction 1618 /// variable increment. 1619 class CopyConstrain : public ScheduleDAGMutation { 1620 // Transient state. 1621 SlotIndex RegionBeginIdx; 1622 1623 // RegionEndIdx is the slot index of the last non-debug instruction in the 1624 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1625 SlotIndex RegionEndIdx; 1626 1627 public: 1628 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1629 1630 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1631 1632 protected: 1633 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1634 }; 1635 1636 } // end anonymous namespace 1637 1638 namespace llvm { 1639 1640 std::unique_ptr<ScheduleDAGMutation> 1641 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1642 const TargetRegisterInfo *TRI) { 1643 return llvm::make_unique<CopyConstrain>(TII, TRI); 1644 } 1645 1646 } // end namespace llvm 1647 1648 /// constrainLocalCopy handles two possibilities: 1649 /// 1) Local src: 1650 /// I0: = dst 1651 /// I1: src = ... 1652 /// I2: = dst 1653 /// I3: dst = src (copy) 1654 /// (create pred->succ edges I0->I1, I2->I1) 1655 /// 1656 /// 2) Local copy: 1657 /// I0: dst = src (copy) 1658 /// I1: = dst 1659 /// I2: src = ... 1660 /// I3: = dst 1661 /// (create pred->succ edges I1->I2, I3->I2) 1662 /// 1663 /// Although the MachineScheduler is currently constrained to single blocks, 1664 /// this algorithm should handle extended blocks. An EBB is a set of 1665 /// contiguously numbered blocks such that the previous block in the EBB is 1666 /// always the single predecessor. 1667 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1668 LiveIntervals *LIS = DAG->getLIS(); 1669 MachineInstr *Copy = CopySU->getInstr(); 1670 1671 // Check for pure vreg copies. 1672 const MachineOperand &SrcOp = Copy->getOperand(1); 1673 unsigned SrcReg = SrcOp.getReg(); 1674 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1675 return; 1676 1677 const MachineOperand &DstOp = Copy->getOperand(0); 1678 unsigned DstReg = DstOp.getReg(); 1679 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1680 return; 1681 1682 // Check if either the dest or source is local. If it's live across a back 1683 // edge, it's not local. Note that if both vregs are live across the back 1684 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1685 // If both the copy's source and dest are local live intervals, then we 1686 // should treat the dest as the global for the purpose of adding 1687 // constraints. This adds edges from source's other uses to the copy. 1688 unsigned LocalReg = SrcReg; 1689 unsigned GlobalReg = DstReg; 1690 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1691 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1692 LocalReg = DstReg; 1693 GlobalReg = SrcReg; 1694 LocalLI = &LIS->getInterval(LocalReg); 1695 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1696 return; 1697 } 1698 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1699 1700 // Find the global segment after the start of the local LI. 1701 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1702 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1703 // local live range. We could create edges from other global uses to the local 1704 // start, but the coalescer should have already eliminated these cases, so 1705 // don't bother dealing with it. 1706 if (GlobalSegment == GlobalLI->end()) 1707 return; 1708 1709 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1710 // returned the next global segment. But if GlobalSegment overlaps with 1711 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1712 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1713 if (GlobalSegment->contains(LocalLI->beginIndex())) 1714 ++GlobalSegment; 1715 1716 if (GlobalSegment == GlobalLI->end()) 1717 return; 1718 1719 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1720 if (GlobalSegment != GlobalLI->begin()) { 1721 // Two address defs have no hole. 1722 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1723 GlobalSegment->start)) { 1724 return; 1725 } 1726 // If the prior global segment may be defined by the same two-address 1727 // instruction that also defines LocalLI, then can't make a hole here. 1728 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1729 LocalLI->beginIndex())) { 1730 return; 1731 } 1732 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1733 // it would be a disconnected component in the live range. 1734 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1735 "Disconnected LRG within the scheduling region."); 1736 } 1737 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1738 if (!GlobalDef) 1739 return; 1740 1741 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1742 if (!GlobalSU) 1743 return; 1744 1745 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1746 // constraining the uses of the last local def to precede GlobalDef. 1747 SmallVector<SUnit*,8> LocalUses; 1748 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1749 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1750 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1751 for (const SDep &Succ : LastLocalSU->Succs) { 1752 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1753 continue; 1754 if (Succ.getSUnit() == GlobalSU) 1755 continue; 1756 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1757 return; 1758 LocalUses.push_back(Succ.getSUnit()); 1759 } 1760 // Open the top of the GlobalLI hole by constraining any earlier global uses 1761 // to precede the start of LocalLI. 1762 SmallVector<SUnit*,8> GlobalUses; 1763 MachineInstr *FirstLocalDef = 1764 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1765 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1766 for (const SDep &Pred : GlobalSU->Preds) { 1767 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1768 continue; 1769 if (Pred.getSUnit() == FirstLocalSU) 1770 continue; 1771 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1772 return; 1773 GlobalUses.push_back(Pred.getSUnit()); 1774 } 1775 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1776 // Add the weak edges. 1777 for (SmallVectorImpl<SUnit*>::const_iterator 1778 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1779 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1780 << GlobalSU->NodeNum << ")\n"); 1781 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1782 } 1783 for (SmallVectorImpl<SUnit*>::const_iterator 1784 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1785 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1786 << FirstLocalSU->NodeNum << ")\n"); 1787 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1788 } 1789 } 1790 1791 /// Callback from DAG postProcessing to create weak edges to encourage 1792 /// copy elimination. 1793 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1794 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1795 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1796 1797 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1798 if (FirstPos == DAG->end()) 1799 return; 1800 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1801 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1802 *priorNonDebug(DAG->end(), DAG->begin())); 1803 1804 for (SUnit &SU : DAG->SUnits) { 1805 if (!SU.getInstr()->isCopy()) 1806 continue; 1807 1808 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1809 } 1810 } 1811 1812 //===----------------------------------------------------------------------===// 1813 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1814 // and possibly other custom schedulers. 1815 //===----------------------------------------------------------------------===// 1816 1817 static const unsigned InvalidCycle = ~0U; 1818 1819 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1820 1821 /// Given a Count of resource usage and a Latency value, return true if a 1822 /// SchedBoundary becomes resource limited. 1823 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1824 unsigned Latency) { 1825 return (int)(Count - (Latency * LFactor)) > (int)LFactor; 1826 } 1827 1828 void SchedBoundary::reset() { 1829 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1830 // Destroying and reconstructing it is very expensive though. So keep 1831 // invalid, placeholder HazardRecs. 1832 if (HazardRec && HazardRec->isEnabled()) { 1833 delete HazardRec; 1834 HazardRec = nullptr; 1835 } 1836 Available.clear(); 1837 Pending.clear(); 1838 CheckPending = false; 1839 CurrCycle = 0; 1840 CurrMOps = 0; 1841 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1842 ExpectedLatency = 0; 1843 DependentLatency = 0; 1844 RetiredMOps = 0; 1845 MaxExecutedResCount = 0; 1846 ZoneCritResIdx = 0; 1847 IsResourceLimited = false; 1848 ReservedCycles.clear(); 1849 #ifndef NDEBUG 1850 // Track the maximum number of stall cycles that could arise either from the 1851 // latency of a DAG edge or the number of cycles that a processor resource is 1852 // reserved (SchedBoundary::ReservedCycles). 1853 MaxObservedStall = 0; 1854 #endif 1855 // Reserve a zero-count for invalid CritResIdx. 1856 ExecutedResCounts.resize(1); 1857 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1858 } 1859 1860 void SchedRemainder:: 1861 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1862 reset(); 1863 if (!SchedModel->hasInstrSchedModel()) 1864 return; 1865 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1866 for (SUnit &SU : DAG->SUnits) { 1867 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1868 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1869 * SchedModel->getMicroOpFactor(); 1870 for (TargetSchedModel::ProcResIter 1871 PI = SchedModel->getWriteProcResBegin(SC), 1872 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1873 unsigned PIdx = PI->ProcResourceIdx; 1874 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1875 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1876 } 1877 } 1878 } 1879 1880 void SchedBoundary:: 1881 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1882 reset(); 1883 DAG = dag; 1884 SchedModel = smodel; 1885 Rem = rem; 1886 if (SchedModel->hasInstrSchedModel()) { 1887 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1888 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1889 } 1890 } 1891 1892 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1893 /// these "soft stalls" differently than the hard stall cycles based on CPU 1894 /// resources and computed by checkHazard(). A fully in-order model 1895 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1896 /// available for scheduling until they are ready. However, a weaker in-order 1897 /// model may use this for heuristics. For example, if a processor has in-order 1898 /// behavior when reading certain resources, this may come into play. 1899 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1900 if (!SU->isUnbuffered) 1901 return 0; 1902 1903 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1904 if (ReadyCycle > CurrCycle) 1905 return ReadyCycle - CurrCycle; 1906 return 0; 1907 } 1908 1909 /// Compute the next cycle at which the given processor resource can be 1910 /// scheduled. 1911 unsigned SchedBoundary:: 1912 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1913 unsigned NextUnreserved = ReservedCycles[PIdx]; 1914 // If this resource has never been used, always return cycle zero. 1915 if (NextUnreserved == InvalidCycle) 1916 return 0; 1917 // For bottom-up scheduling add the cycles needed for the current operation. 1918 if (!isTop()) 1919 NextUnreserved += Cycles; 1920 return NextUnreserved; 1921 } 1922 1923 /// Does this SU have a hazard within the current instruction group. 1924 /// 1925 /// The scheduler supports two modes of hazard recognition. The first is the 1926 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1927 /// supports highly complicated in-order reservation tables 1928 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 1929 /// 1930 /// The second is a streamlined mechanism that checks for hazards based on 1931 /// simple counters that the scheduler itself maintains. It explicitly checks 1932 /// for instruction dispatch limitations, including the number of micro-ops that 1933 /// can dispatch per cycle. 1934 /// 1935 /// TODO: Also check whether the SU must start a new group. 1936 bool SchedBoundary::checkHazard(SUnit *SU) { 1937 if (HazardRec->isEnabled() 1938 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1939 return true; 1940 } 1941 1942 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1943 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1944 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1945 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1946 return true; 1947 } 1948 1949 if (CurrMOps > 0 && 1950 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1951 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1952 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1953 << (isTop() ? "begin" : "end") << " group\n"); 1954 return true; 1955 } 1956 1957 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1958 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1959 for (const MCWriteProcResEntry &PE : 1960 make_range(SchedModel->getWriteProcResBegin(SC), 1961 SchedModel->getWriteProcResEnd(SC))) { 1962 unsigned ResIdx = PE.ProcResourceIdx; 1963 unsigned Cycles = PE.Cycles; 1964 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 1965 if (NRCycle > CurrCycle) { 1966 #ifndef NDEBUG 1967 MaxObservedStall = std::max(Cycles, MaxObservedStall); 1968 #endif 1969 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1970 << SchedModel->getResourceName(ResIdx) << "=" 1971 << NRCycle << "c\n"); 1972 return true; 1973 } 1974 } 1975 } 1976 return false; 1977 } 1978 1979 // Find the unscheduled node in ReadySUs with the highest latency. 1980 unsigned SchedBoundary:: 1981 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1982 SUnit *LateSU = nullptr; 1983 unsigned RemLatency = 0; 1984 for (SUnit *SU : ReadySUs) { 1985 unsigned L = getUnscheduledLatency(SU); 1986 if (L > RemLatency) { 1987 RemLatency = L; 1988 LateSU = SU; 1989 } 1990 } 1991 if (LateSU) { 1992 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1993 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1994 } 1995 return RemLatency; 1996 } 1997 1998 // Count resources in this zone and the remaining unscheduled 1999 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2000 // resource index, or zero if the zone is issue limited. 2001 unsigned SchedBoundary:: 2002 getOtherResourceCount(unsigned &OtherCritIdx) { 2003 OtherCritIdx = 0; 2004 if (!SchedModel->hasInstrSchedModel()) 2005 return 0; 2006 2007 unsigned OtherCritCount = Rem->RemIssueCount 2008 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2009 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2010 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2011 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2012 PIdx != PEnd; ++PIdx) { 2013 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2014 if (OtherCount > OtherCritCount) { 2015 OtherCritCount = OtherCount; 2016 OtherCritIdx = PIdx; 2017 } 2018 } 2019 if (OtherCritIdx) { 2020 LLVM_DEBUG( 2021 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2022 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2023 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2024 } 2025 return OtherCritCount; 2026 } 2027 2028 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2029 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2030 2031 #ifndef NDEBUG 2032 // ReadyCycle was been bumped up to the CurrCycle when this node was 2033 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2034 // scheduling, so may now be greater than ReadyCycle. 2035 if (ReadyCycle > CurrCycle) 2036 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2037 #endif 2038 2039 if (ReadyCycle < MinReadyCycle) 2040 MinReadyCycle = ReadyCycle; 2041 2042 // Check for interlocks first. For the purpose of other heuristics, an 2043 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2044 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2045 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2046 Available.size() >= ReadyListLimit) 2047 Pending.push(SU); 2048 else 2049 Available.push(SU); 2050 } 2051 2052 /// Move the boundary of scheduled code by one cycle. 2053 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2054 if (SchedModel->getMicroOpBufferSize() == 0) { 2055 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2056 "MinReadyCycle uninitialized"); 2057 if (MinReadyCycle > NextCycle) 2058 NextCycle = MinReadyCycle; 2059 } 2060 // Update the current micro-ops, which will issue in the next cycle. 2061 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2062 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2063 2064 // Decrement DependentLatency based on the next cycle. 2065 if ((NextCycle - CurrCycle) > DependentLatency) 2066 DependentLatency = 0; 2067 else 2068 DependentLatency -= (NextCycle - CurrCycle); 2069 2070 if (!HazardRec->isEnabled()) { 2071 // Bypass HazardRec virtual calls. 2072 CurrCycle = NextCycle; 2073 } else { 2074 // Bypass getHazardType calls in case of long latency. 2075 for (; CurrCycle != NextCycle; ++CurrCycle) { 2076 if (isTop()) 2077 HazardRec->AdvanceCycle(); 2078 else 2079 HazardRec->RecedeCycle(); 2080 } 2081 } 2082 CheckPending = true; 2083 IsResourceLimited = 2084 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2085 getScheduledLatency()); 2086 2087 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2088 << '\n'); 2089 } 2090 2091 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2092 ExecutedResCounts[PIdx] += Count; 2093 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2094 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2095 } 2096 2097 /// Add the given processor resource to this scheduled zone. 2098 /// 2099 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2100 /// during which this resource is consumed. 2101 /// 2102 /// \return the next cycle at which the instruction may execute without 2103 /// oversubscribing resources. 2104 unsigned SchedBoundary:: 2105 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2106 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2107 unsigned Count = Factor * Cycles; 2108 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2109 << Cycles << "x" << Factor << "u\n"); 2110 2111 // Update Executed resources counts. 2112 incExecutedResources(PIdx, Count); 2113 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2114 Rem->RemainingCounts[PIdx] -= Count; 2115 2116 // Check if this resource exceeds the current critical resource. If so, it 2117 // becomes the critical resource. 2118 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2119 ZoneCritResIdx = PIdx; 2120 LLVM_DEBUG(dbgs() << " *** Critical resource " 2121 << SchedModel->getResourceName(PIdx) << ": " 2122 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2123 << "c\n"); 2124 } 2125 // For reserved resources, record the highest cycle using the resource. 2126 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2127 if (NextAvailable > CurrCycle) { 2128 LLVM_DEBUG(dbgs() << " Resource conflict: " 2129 << SchedModel->getProcResource(PIdx)->Name 2130 << " reserved until @" << NextAvailable << "\n"); 2131 } 2132 return NextAvailable; 2133 } 2134 2135 /// Move the boundary of scheduled code by one SUnit. 2136 void SchedBoundary::bumpNode(SUnit *SU) { 2137 // Update the reservation table. 2138 if (HazardRec->isEnabled()) { 2139 if (!isTop() && SU->isCall) { 2140 // Calls are scheduled with their preceding instructions. For bottom-up 2141 // scheduling, clear the pipeline state before emitting. 2142 HazardRec->Reset(); 2143 } 2144 HazardRec->EmitInstruction(SU); 2145 } 2146 // checkHazard should prevent scheduling multiple instructions per cycle that 2147 // exceed the issue width. 2148 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2149 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2150 assert( 2151 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2152 "Cannot schedule this instruction's MicroOps in the current cycle."); 2153 2154 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2155 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2156 2157 unsigned NextCycle = CurrCycle; 2158 switch (SchedModel->getMicroOpBufferSize()) { 2159 case 0: 2160 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2161 break; 2162 case 1: 2163 if (ReadyCycle > NextCycle) { 2164 NextCycle = ReadyCycle; 2165 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2166 } 2167 break; 2168 default: 2169 // We don't currently model the OOO reorder buffer, so consider all 2170 // scheduled MOps to be "retired". We do loosely model in-order resource 2171 // latency. If this instruction uses an in-order resource, account for any 2172 // likely stall cycles. 2173 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2174 NextCycle = ReadyCycle; 2175 break; 2176 } 2177 RetiredMOps += IncMOps; 2178 2179 // Update resource counts and critical resource. 2180 if (SchedModel->hasInstrSchedModel()) { 2181 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2182 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2183 Rem->RemIssueCount -= DecRemIssue; 2184 if (ZoneCritResIdx) { 2185 // Scale scheduled micro-ops for comparing with the critical resource. 2186 unsigned ScaledMOps = 2187 RetiredMOps * SchedModel->getMicroOpFactor(); 2188 2189 // If scaled micro-ops are now more than the previous critical resource by 2190 // a full cycle, then micro-ops issue becomes critical. 2191 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2192 >= (int)SchedModel->getLatencyFactor()) { 2193 ZoneCritResIdx = 0; 2194 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2195 << ScaledMOps / SchedModel->getLatencyFactor() 2196 << "c\n"); 2197 } 2198 } 2199 for (TargetSchedModel::ProcResIter 2200 PI = SchedModel->getWriteProcResBegin(SC), 2201 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2202 unsigned RCycle = 2203 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2204 if (RCycle > NextCycle) 2205 NextCycle = RCycle; 2206 } 2207 if (SU->hasReservedResource) { 2208 // For reserved resources, record the highest cycle using the resource. 2209 // For top-down scheduling, this is the cycle in which we schedule this 2210 // instruction plus the number of cycles the operations reserves the 2211 // resource. For bottom-up is it simply the instruction's cycle. 2212 for (TargetSchedModel::ProcResIter 2213 PI = SchedModel->getWriteProcResBegin(SC), 2214 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2215 unsigned PIdx = PI->ProcResourceIdx; 2216 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2217 if (isTop()) { 2218 ReservedCycles[PIdx] = 2219 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2220 } 2221 else 2222 ReservedCycles[PIdx] = NextCycle; 2223 } 2224 } 2225 } 2226 } 2227 // Update ExpectedLatency and DependentLatency. 2228 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2229 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2230 if (SU->getDepth() > TopLatency) { 2231 TopLatency = SU->getDepth(); 2232 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2233 << SU->NodeNum << ") " << TopLatency << "c\n"); 2234 } 2235 if (SU->getHeight() > BotLatency) { 2236 BotLatency = SU->getHeight(); 2237 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2238 << SU->NodeNum << ") " << BotLatency << "c\n"); 2239 } 2240 // If we stall for any reason, bump the cycle. 2241 if (NextCycle > CurrCycle) 2242 bumpCycle(NextCycle); 2243 else 2244 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2245 // resource limited. If a stall occurred, bumpCycle does this. 2246 IsResourceLimited = 2247 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2248 getScheduledLatency()); 2249 2250 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2251 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2252 // one cycle. Since we commonly reach the max MOps here, opportunistically 2253 // bump the cycle to avoid uselessly checking everything in the readyQ. 2254 CurrMOps += IncMOps; 2255 2256 // Bump the cycle count for issue group constraints. 2257 // This must be done after NextCycle has been adjust for all other stalls. 2258 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2259 // currCycle to X. 2260 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2261 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2262 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2263 << " group\n"); 2264 bumpCycle(++NextCycle); 2265 } 2266 2267 while (CurrMOps >= SchedModel->getIssueWidth()) { 2268 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2269 << CurrCycle << '\n'); 2270 bumpCycle(++NextCycle); 2271 } 2272 LLVM_DEBUG(dumpScheduledState()); 2273 } 2274 2275 /// Release pending ready nodes in to the available queue. This makes them 2276 /// visible to heuristics. 2277 void SchedBoundary::releasePending() { 2278 // If the available queue is empty, it is safe to reset MinReadyCycle. 2279 if (Available.empty()) 2280 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2281 2282 // Check to see if any of the pending instructions are ready to issue. If 2283 // so, add them to the available queue. 2284 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2285 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2286 SUnit *SU = *(Pending.begin()+i); 2287 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2288 2289 if (ReadyCycle < MinReadyCycle) 2290 MinReadyCycle = ReadyCycle; 2291 2292 if (!IsBuffered && ReadyCycle > CurrCycle) 2293 continue; 2294 2295 if (checkHazard(SU)) 2296 continue; 2297 2298 if (Available.size() >= ReadyListLimit) 2299 break; 2300 2301 Available.push(SU); 2302 Pending.remove(Pending.begin()+i); 2303 --i; --e; 2304 } 2305 CheckPending = false; 2306 } 2307 2308 /// Remove SU from the ready set for this boundary. 2309 void SchedBoundary::removeReady(SUnit *SU) { 2310 if (Available.isInQueue(SU)) 2311 Available.remove(Available.find(SU)); 2312 else { 2313 assert(Pending.isInQueue(SU) && "bad ready count"); 2314 Pending.remove(Pending.find(SU)); 2315 } 2316 } 2317 2318 /// If this queue only has one ready candidate, return it. As a side effect, 2319 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2320 /// one node is ready. If multiple instructions are ready, return NULL. 2321 SUnit *SchedBoundary::pickOnlyChoice() { 2322 if (CheckPending) 2323 releasePending(); 2324 2325 if (CurrMOps > 0) { 2326 // Defer any ready instrs that now have a hazard. 2327 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2328 if (checkHazard(*I)) { 2329 Pending.push(*I); 2330 I = Available.remove(I); 2331 continue; 2332 } 2333 ++I; 2334 } 2335 } 2336 for (unsigned i = 0; Available.empty(); ++i) { 2337 // FIXME: Re-enable assert once PR20057 is resolved. 2338 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2339 // "permanent hazard"); 2340 (void)i; 2341 bumpCycle(CurrCycle + 1); 2342 releasePending(); 2343 } 2344 2345 LLVM_DEBUG(Pending.dump()); 2346 LLVM_DEBUG(Available.dump()); 2347 2348 if (Available.size() == 1) 2349 return *Available.begin(); 2350 return nullptr; 2351 } 2352 2353 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2354 // This is useful information to dump after bumpNode. 2355 // Note that the Queue contents are more useful before pickNodeFromQueue. 2356 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2357 unsigned ResFactor; 2358 unsigned ResCount; 2359 if (ZoneCritResIdx) { 2360 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2361 ResCount = getResourceCount(ZoneCritResIdx); 2362 } else { 2363 ResFactor = SchedModel->getMicroOpFactor(); 2364 ResCount = RetiredMOps * ResFactor; 2365 } 2366 unsigned LFactor = SchedModel->getLatencyFactor(); 2367 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2368 << " Retired: " << RetiredMOps; 2369 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2370 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2371 << ResCount / ResFactor << " " 2372 << SchedModel->getResourceName(ZoneCritResIdx) 2373 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2374 << (IsResourceLimited ? " - Resource" : " - Latency") 2375 << " limited.\n"; 2376 } 2377 #endif 2378 2379 //===----------------------------------------------------------------------===// 2380 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2381 //===----------------------------------------------------------------------===// 2382 2383 void GenericSchedulerBase::SchedCandidate:: 2384 initResourceDelta(const ScheduleDAGMI *DAG, 2385 const TargetSchedModel *SchedModel) { 2386 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2387 return; 2388 2389 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2390 for (TargetSchedModel::ProcResIter 2391 PI = SchedModel->getWriteProcResBegin(SC), 2392 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2393 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2394 ResDelta.CritResources += PI->Cycles; 2395 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2396 ResDelta.DemandedResources += PI->Cycles; 2397 } 2398 } 2399 2400 /// Set the CandPolicy given a scheduling zone given the current resources and 2401 /// latencies inside and outside the zone. 2402 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2403 SchedBoundary &CurrZone, 2404 SchedBoundary *OtherZone) { 2405 // Apply preemptive heuristics based on the total latency and resources 2406 // inside and outside this zone. Potential stalls should be considered before 2407 // following this policy. 2408 2409 // Compute remaining latency. We need this both to determine whether the 2410 // overall schedule has become latency-limited and whether the instructions 2411 // outside this zone are resource or latency limited. 2412 // 2413 // The "dependent" latency is updated incrementally during scheduling as the 2414 // max height/depth of scheduled nodes minus the cycles since it was 2415 // scheduled: 2416 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2417 // 2418 // The "independent" latency is the max ready queue depth: 2419 // ILat = max N.depth for N in Available|Pending 2420 // 2421 // RemainingLatency is the greater of independent and dependent latency. 2422 unsigned RemLatency = CurrZone.getDependentLatency(); 2423 RemLatency = std::max(RemLatency, 2424 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2425 RemLatency = std::max(RemLatency, 2426 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2427 2428 // Compute the critical resource outside the zone. 2429 unsigned OtherCritIdx = 0; 2430 unsigned OtherCount = 2431 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2432 2433 bool OtherResLimited = false; 2434 if (SchedModel->hasInstrSchedModel()) 2435 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2436 OtherCount, RemLatency); 2437 2438 // Schedule aggressively for latency in PostRA mode. We don't check for 2439 // acyclic latency during PostRA, and highly out-of-order processors will 2440 // skip PostRA scheduling. 2441 if (!OtherResLimited) { 2442 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2443 Policy.ReduceLatency |= true; 2444 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2445 << " RemainingLatency " << RemLatency << " + " 2446 << CurrZone.getCurrCycle() << "c > CritPath " 2447 << Rem.CriticalPath << "\n"); 2448 } 2449 } 2450 // If the same resource is limiting inside and outside the zone, do nothing. 2451 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2452 return; 2453 2454 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2455 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2456 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2457 } if (OtherResLimited) dbgs() 2458 << " RemainingLimit: " 2459 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2460 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2461 << " Latency limited both directions.\n"); 2462 2463 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2464 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2465 2466 if (OtherResLimited) 2467 Policy.DemandResIdx = OtherCritIdx; 2468 } 2469 2470 #ifndef NDEBUG 2471 const char *GenericSchedulerBase::getReasonStr( 2472 GenericSchedulerBase::CandReason Reason) { 2473 switch (Reason) { 2474 case NoCand: return "NOCAND "; 2475 case Only1: return "ONLY1 "; 2476 case PhysRegCopy: return "PREG-COPY "; 2477 case RegExcess: return "REG-EXCESS"; 2478 case RegCritical: return "REG-CRIT "; 2479 case Stall: return "STALL "; 2480 case Cluster: return "CLUSTER "; 2481 case Weak: return "WEAK "; 2482 case RegMax: return "REG-MAX "; 2483 case ResourceReduce: return "RES-REDUCE"; 2484 case ResourceDemand: return "RES-DEMAND"; 2485 case TopDepthReduce: return "TOP-DEPTH "; 2486 case TopPathReduce: return "TOP-PATH "; 2487 case BotHeightReduce:return "BOT-HEIGHT"; 2488 case BotPathReduce: return "BOT-PATH "; 2489 case NextDefUse: return "DEF-USE "; 2490 case NodeOrder: return "ORDER "; 2491 }; 2492 llvm_unreachable("Unknown reason!"); 2493 } 2494 2495 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2496 PressureChange P; 2497 unsigned ResIdx = 0; 2498 unsigned Latency = 0; 2499 switch (Cand.Reason) { 2500 default: 2501 break; 2502 case RegExcess: 2503 P = Cand.RPDelta.Excess; 2504 break; 2505 case RegCritical: 2506 P = Cand.RPDelta.CriticalMax; 2507 break; 2508 case RegMax: 2509 P = Cand.RPDelta.CurrentMax; 2510 break; 2511 case ResourceReduce: 2512 ResIdx = Cand.Policy.ReduceResIdx; 2513 break; 2514 case ResourceDemand: 2515 ResIdx = Cand.Policy.DemandResIdx; 2516 break; 2517 case TopDepthReduce: 2518 Latency = Cand.SU->getDepth(); 2519 break; 2520 case TopPathReduce: 2521 Latency = Cand.SU->getHeight(); 2522 break; 2523 case BotHeightReduce: 2524 Latency = Cand.SU->getHeight(); 2525 break; 2526 case BotPathReduce: 2527 Latency = Cand.SU->getDepth(); 2528 break; 2529 } 2530 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2531 if (P.isValid()) 2532 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2533 << ":" << P.getUnitInc() << " "; 2534 else 2535 dbgs() << " "; 2536 if (ResIdx) 2537 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2538 else 2539 dbgs() << " "; 2540 if (Latency) 2541 dbgs() << " " << Latency << " cycles "; 2542 else 2543 dbgs() << " "; 2544 dbgs() << '\n'; 2545 } 2546 #endif 2547 2548 namespace llvm { 2549 /// Return true if this heuristic determines order. 2550 bool tryLess(int TryVal, int CandVal, 2551 GenericSchedulerBase::SchedCandidate &TryCand, 2552 GenericSchedulerBase::SchedCandidate &Cand, 2553 GenericSchedulerBase::CandReason Reason) { 2554 if (TryVal < CandVal) { 2555 TryCand.Reason = Reason; 2556 return true; 2557 } 2558 if (TryVal > CandVal) { 2559 if (Cand.Reason > Reason) 2560 Cand.Reason = Reason; 2561 return true; 2562 } 2563 return false; 2564 } 2565 2566 bool tryGreater(int TryVal, int CandVal, 2567 GenericSchedulerBase::SchedCandidate &TryCand, 2568 GenericSchedulerBase::SchedCandidate &Cand, 2569 GenericSchedulerBase::CandReason Reason) { 2570 if (TryVal > CandVal) { 2571 TryCand.Reason = Reason; 2572 return true; 2573 } 2574 if (TryVal < CandVal) { 2575 if (Cand.Reason > Reason) 2576 Cand.Reason = Reason; 2577 return true; 2578 } 2579 return false; 2580 } 2581 2582 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2583 GenericSchedulerBase::SchedCandidate &Cand, 2584 SchedBoundary &Zone) { 2585 if (Zone.isTop()) { 2586 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2587 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2588 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2589 return true; 2590 } 2591 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2592 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2593 return true; 2594 } else { 2595 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2596 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2597 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2598 return true; 2599 } 2600 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2601 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2602 return true; 2603 } 2604 return false; 2605 } 2606 } // end namespace llvm 2607 2608 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2609 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2610 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2611 } 2612 2613 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2614 tracePick(Cand.Reason, Cand.AtTop); 2615 } 2616 2617 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2618 assert(dag->hasVRegLiveness() && 2619 "(PreRA)GenericScheduler needs vreg liveness"); 2620 DAG = static_cast<ScheduleDAGMILive*>(dag); 2621 SchedModel = DAG->getSchedModel(); 2622 TRI = DAG->TRI; 2623 2624 Rem.init(DAG, SchedModel); 2625 Top.init(DAG, SchedModel, &Rem); 2626 Bot.init(DAG, SchedModel, &Rem); 2627 2628 // Initialize resource counts. 2629 2630 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2631 // are disabled, then these HazardRecs will be disabled. 2632 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2633 if (!Top.HazardRec) { 2634 Top.HazardRec = 2635 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2636 Itin, DAG); 2637 } 2638 if (!Bot.HazardRec) { 2639 Bot.HazardRec = 2640 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2641 Itin, DAG); 2642 } 2643 TopCand.SU = nullptr; 2644 BotCand.SU = nullptr; 2645 } 2646 2647 /// Initialize the per-region scheduling policy. 2648 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2649 MachineBasicBlock::iterator End, 2650 unsigned NumRegionInstrs) { 2651 const MachineFunction &MF = *Begin->getMF(); 2652 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2653 2654 // Avoid setting up the register pressure tracker for small regions to save 2655 // compile time. As a rough heuristic, only track pressure when the number of 2656 // schedulable instructions exceeds half the integer register file. 2657 RegionPolicy.ShouldTrackPressure = true; 2658 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2659 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2660 if (TLI->isTypeLegal(LegalIntVT)) { 2661 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2662 TLI->getRegClassFor(LegalIntVT)); 2663 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2664 } 2665 } 2666 2667 // For generic targets, we default to bottom-up, because it's simpler and more 2668 // compile-time optimizations have been implemented in that direction. 2669 RegionPolicy.OnlyBottomUp = true; 2670 2671 // Allow the subtarget to override default policy. 2672 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2673 2674 // After subtarget overrides, apply command line options. 2675 if (!EnableRegPressure) 2676 RegionPolicy.ShouldTrackPressure = false; 2677 2678 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2679 // e.g. -misched-bottomup=false allows scheduling in both directions. 2680 assert((!ForceTopDown || !ForceBottomUp) && 2681 "-misched-topdown incompatible with -misched-bottomup"); 2682 if (ForceBottomUp.getNumOccurrences() > 0) { 2683 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2684 if (RegionPolicy.OnlyBottomUp) 2685 RegionPolicy.OnlyTopDown = false; 2686 } 2687 if (ForceTopDown.getNumOccurrences() > 0) { 2688 RegionPolicy.OnlyTopDown = ForceTopDown; 2689 if (RegionPolicy.OnlyTopDown) 2690 RegionPolicy.OnlyBottomUp = false; 2691 } 2692 } 2693 2694 void GenericScheduler::dumpPolicy() const { 2695 // Cannot completely remove virtual function even in release mode. 2696 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2697 dbgs() << "GenericScheduler RegionPolicy: " 2698 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2699 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2700 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2701 << "\n"; 2702 #endif 2703 } 2704 2705 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2706 /// critical path by more cycles than it takes to drain the instruction buffer. 2707 /// We estimate an upper bounds on in-flight instructions as: 2708 /// 2709 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2710 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2711 /// InFlightResources = InFlightIterations * LoopResources 2712 /// 2713 /// TODO: Check execution resources in addition to IssueCount. 2714 void GenericScheduler::checkAcyclicLatency() { 2715 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2716 return; 2717 2718 // Scaled number of cycles per loop iteration. 2719 unsigned IterCount = 2720 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2721 Rem.RemIssueCount); 2722 // Scaled acyclic critical path. 2723 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2724 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2725 unsigned InFlightCount = 2726 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2727 unsigned BufferLimit = 2728 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2729 2730 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2731 2732 LLVM_DEBUG( 2733 dbgs() << "IssueCycles=" 2734 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2735 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2736 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2737 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2738 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2739 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2740 } 2741 2742 void GenericScheduler::registerRoots() { 2743 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2744 2745 // Some roots may not feed into ExitSU. Check all of them in case. 2746 for (const SUnit *SU : Bot.Available) { 2747 if (SU->getDepth() > Rem.CriticalPath) 2748 Rem.CriticalPath = SU->getDepth(); 2749 } 2750 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2751 if (DumpCriticalPathLength) { 2752 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2753 } 2754 2755 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2756 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2757 checkAcyclicLatency(); 2758 } 2759 } 2760 2761 namespace llvm { 2762 bool tryPressure(const PressureChange &TryP, 2763 const PressureChange &CandP, 2764 GenericSchedulerBase::SchedCandidate &TryCand, 2765 GenericSchedulerBase::SchedCandidate &Cand, 2766 GenericSchedulerBase::CandReason Reason, 2767 const TargetRegisterInfo *TRI, 2768 const MachineFunction &MF) { 2769 // If one candidate decreases and the other increases, go with it. 2770 // Invalid candidates have UnitInc==0. 2771 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2772 Reason)) { 2773 return true; 2774 } 2775 // Do not compare the magnitude of pressure changes between top and bottom 2776 // boundary. 2777 if (Cand.AtTop != TryCand.AtTop) 2778 return false; 2779 2780 // If both candidates affect the same set in the same boundary, go with the 2781 // smallest increase. 2782 unsigned TryPSet = TryP.getPSetOrMax(); 2783 unsigned CandPSet = CandP.getPSetOrMax(); 2784 if (TryPSet == CandPSet) { 2785 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2786 Reason); 2787 } 2788 2789 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2790 std::numeric_limits<int>::max(); 2791 2792 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2793 std::numeric_limits<int>::max(); 2794 2795 // If the candidates are decreasing pressure, reverse priority. 2796 if (TryP.getUnitInc() < 0) 2797 std::swap(TryRank, CandRank); 2798 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2799 } 2800 2801 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2802 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2803 } 2804 2805 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2806 /// their physreg def/use. 2807 /// 2808 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2809 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2810 /// with the operation that produces or consumes the physreg. We'll do this when 2811 /// regalloc has support for parallel copies. 2812 int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2813 const MachineInstr *MI = SU->getInstr(); 2814 if (!MI->isCopy()) 2815 return 0; 2816 2817 unsigned ScheduledOper = isTop ? 1 : 0; 2818 unsigned UnscheduledOper = isTop ? 0 : 1; 2819 // If we have already scheduled the physreg produce/consumer, immediately 2820 // schedule the copy. 2821 if (TargetRegisterInfo::isPhysicalRegister( 2822 MI->getOperand(ScheduledOper).getReg())) 2823 return 1; 2824 // If the physreg is at the boundary, defer it. Otherwise schedule it 2825 // immediately to free the dependent. We can hoist the copy later. 2826 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2827 if (TargetRegisterInfo::isPhysicalRegister( 2828 MI->getOperand(UnscheduledOper).getReg())) 2829 return AtBoundary ? -1 : 1; 2830 return 0; 2831 } 2832 } // end namespace llvm 2833 2834 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2835 bool AtTop, 2836 const RegPressureTracker &RPTracker, 2837 RegPressureTracker &TempTracker) { 2838 Cand.SU = SU; 2839 Cand.AtTop = AtTop; 2840 if (DAG->isTrackingPressure()) { 2841 if (AtTop) { 2842 TempTracker.getMaxDownwardPressureDelta( 2843 Cand.SU->getInstr(), 2844 Cand.RPDelta, 2845 DAG->getRegionCriticalPSets(), 2846 DAG->getRegPressure().MaxSetPressure); 2847 } else { 2848 if (VerifyScheduling) { 2849 TempTracker.getMaxUpwardPressureDelta( 2850 Cand.SU->getInstr(), 2851 &DAG->getPressureDiff(Cand.SU), 2852 Cand.RPDelta, 2853 DAG->getRegionCriticalPSets(), 2854 DAG->getRegPressure().MaxSetPressure); 2855 } else { 2856 RPTracker.getUpwardPressureDelta( 2857 Cand.SU->getInstr(), 2858 DAG->getPressureDiff(Cand.SU), 2859 Cand.RPDelta, 2860 DAG->getRegionCriticalPSets(), 2861 DAG->getRegPressure().MaxSetPressure); 2862 } 2863 } 2864 } 2865 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 2866 << " Try SU(" << Cand.SU->NodeNum << ") " 2867 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 2868 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2869 } 2870 2871 /// Apply a set of heuristics to a new candidate. Heuristics are currently 2872 /// hierarchical. This may be more efficient than a graduated cost model because 2873 /// we don't need to evaluate all aspects of the model for each node in the 2874 /// queue. But it's really done to make the heuristics easier to debug and 2875 /// statistically analyze. 2876 /// 2877 /// \param Cand provides the policy and current best candidate. 2878 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2879 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2880 // if Cand is from a different zone than TryCand. 2881 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2882 SchedCandidate &TryCand, 2883 SchedBoundary *Zone) const { 2884 // Initialize the candidate if needed. 2885 if (!Cand.isValid()) { 2886 TryCand.Reason = NodeOrder; 2887 return; 2888 } 2889 2890 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2891 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2892 TryCand, Cand, PhysRegCopy)) 2893 return; 2894 2895 // Avoid exceeding the target's limit. 2896 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2897 Cand.RPDelta.Excess, 2898 TryCand, Cand, RegExcess, TRI, 2899 DAG->MF)) 2900 return; 2901 2902 // Avoid increasing the max critical pressure in the scheduled region. 2903 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2904 Cand.RPDelta.CriticalMax, 2905 TryCand, Cand, RegCritical, TRI, 2906 DAG->MF)) 2907 return; 2908 2909 // We only compare a subset of features when comparing nodes between 2910 // Top and Bottom boundary. Some properties are simply incomparable, in many 2911 // other instances we should only override the other boundary if something 2912 // is a clear good pick on one boundary. Skip heuristics that are more 2913 // "tie-breaking" in nature. 2914 bool SameBoundary = Zone != nullptr; 2915 if (SameBoundary) { 2916 // For loops that are acyclic path limited, aggressively schedule for 2917 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2918 // heuristics to take precedence. 2919 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2920 tryLatency(TryCand, Cand, *Zone)) 2921 return; 2922 2923 // Prioritize instructions that read unbuffered resources by stall cycles. 2924 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2925 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2926 return; 2927 } 2928 2929 // Keep clustered nodes together to encourage downstream peephole 2930 // optimizations which may reduce resource requirements. 2931 // 2932 // This is a best effort to set things up for a post-RA pass. Optimizations 2933 // like generating loads of multiple registers should ideally be done within 2934 // the scheduler pass by combining the loads during DAG postprocessing. 2935 const SUnit *CandNextClusterSU = 2936 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2937 const SUnit *TryCandNextClusterSU = 2938 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2939 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2940 Cand.SU == CandNextClusterSU, 2941 TryCand, Cand, Cluster)) 2942 return; 2943 2944 if (SameBoundary) { 2945 // Weak edges are for clustering and other constraints. 2946 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2947 getWeakLeft(Cand.SU, Cand.AtTop), 2948 TryCand, Cand, Weak)) 2949 return; 2950 } 2951 2952 // Avoid increasing the max pressure of the entire region. 2953 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2954 Cand.RPDelta.CurrentMax, 2955 TryCand, Cand, RegMax, TRI, 2956 DAG->MF)) 2957 return; 2958 2959 if (SameBoundary) { 2960 // Avoid critical resource consumption and balance the schedule. 2961 TryCand.initResourceDelta(DAG, SchedModel); 2962 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2963 TryCand, Cand, ResourceReduce)) 2964 return; 2965 if (tryGreater(TryCand.ResDelta.DemandedResources, 2966 Cand.ResDelta.DemandedResources, 2967 TryCand, Cand, ResourceDemand)) 2968 return; 2969 2970 // Avoid serializing long latency dependence chains. 2971 // For acyclic path limited loops, latency was already checked above. 2972 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2973 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2974 return; 2975 2976 // Fall through to original instruction order. 2977 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2978 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2979 TryCand.Reason = NodeOrder; 2980 } 2981 } 2982 } 2983 2984 /// Pick the best candidate from the queue. 2985 /// 2986 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2987 /// DAG building. To adjust for the current scheduling location we need to 2988 /// maintain the number of vreg uses remaining to be top-scheduled. 2989 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2990 const CandPolicy &ZonePolicy, 2991 const RegPressureTracker &RPTracker, 2992 SchedCandidate &Cand) { 2993 // getMaxPressureDelta temporarily modifies the tracker. 2994 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2995 2996 ReadyQueue &Q = Zone.Available; 2997 for (SUnit *SU : Q) { 2998 2999 SchedCandidate TryCand(ZonePolicy); 3000 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3001 // Pass SchedBoundary only when comparing nodes from the same boundary. 3002 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3003 tryCandidate(Cand, TryCand, ZoneArg); 3004 if (TryCand.Reason != NoCand) { 3005 // Initialize resource delta if needed in case future heuristics query it. 3006 if (TryCand.ResDelta == SchedResourceDelta()) 3007 TryCand.initResourceDelta(DAG, SchedModel); 3008 Cand.setBest(TryCand); 3009 LLVM_DEBUG(traceCandidate(Cand)); 3010 } 3011 } 3012 } 3013 3014 /// Pick the best candidate node from either the top or bottom queue. 3015 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3016 // Schedule as far as possible in the direction of no choice. This is most 3017 // efficient, but also provides the best heuristics for CriticalPSets. 3018 if (SUnit *SU = Bot.pickOnlyChoice()) { 3019 IsTopNode = false; 3020 tracePick(Only1, false); 3021 return SU; 3022 } 3023 if (SUnit *SU = Top.pickOnlyChoice()) { 3024 IsTopNode = true; 3025 tracePick(Only1, true); 3026 return SU; 3027 } 3028 // Set the bottom-up policy based on the state of the current bottom zone and 3029 // the instructions outside the zone, including the top zone. 3030 CandPolicy BotPolicy; 3031 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3032 // Set the top-down policy based on the state of the current top zone and 3033 // the instructions outside the zone, including the bottom zone. 3034 CandPolicy TopPolicy; 3035 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3036 3037 // See if BotCand is still valid (because we previously scheduled from Top). 3038 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3039 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3040 BotCand.Policy != BotPolicy) { 3041 BotCand.reset(CandPolicy()); 3042 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3043 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3044 } else { 3045 LLVM_DEBUG(traceCandidate(BotCand)); 3046 #ifndef NDEBUG 3047 if (VerifyScheduling) { 3048 SchedCandidate TCand; 3049 TCand.reset(CandPolicy()); 3050 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3051 assert(TCand.SU == BotCand.SU && 3052 "Last pick result should correspond to re-picking right now"); 3053 } 3054 #endif 3055 } 3056 3057 // Check if the top Q has a better candidate. 3058 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3059 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3060 TopCand.Policy != TopPolicy) { 3061 TopCand.reset(CandPolicy()); 3062 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3063 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3064 } else { 3065 LLVM_DEBUG(traceCandidate(TopCand)); 3066 #ifndef NDEBUG 3067 if (VerifyScheduling) { 3068 SchedCandidate TCand; 3069 TCand.reset(CandPolicy()); 3070 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3071 assert(TCand.SU == TopCand.SU && 3072 "Last pick result should correspond to re-picking right now"); 3073 } 3074 #endif 3075 } 3076 3077 // Pick best from BotCand and TopCand. 3078 assert(BotCand.isValid()); 3079 assert(TopCand.isValid()); 3080 SchedCandidate Cand = BotCand; 3081 TopCand.Reason = NoCand; 3082 tryCandidate(Cand, TopCand, nullptr); 3083 if (TopCand.Reason != NoCand) { 3084 Cand.setBest(TopCand); 3085 LLVM_DEBUG(traceCandidate(Cand)); 3086 } 3087 3088 IsTopNode = Cand.AtTop; 3089 tracePick(Cand); 3090 return Cand.SU; 3091 } 3092 3093 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3094 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3095 if (DAG->top() == DAG->bottom()) { 3096 assert(Top.Available.empty() && Top.Pending.empty() && 3097 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3098 return nullptr; 3099 } 3100 SUnit *SU; 3101 do { 3102 if (RegionPolicy.OnlyTopDown) { 3103 SU = Top.pickOnlyChoice(); 3104 if (!SU) { 3105 CandPolicy NoPolicy; 3106 TopCand.reset(NoPolicy); 3107 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3108 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3109 tracePick(TopCand); 3110 SU = TopCand.SU; 3111 } 3112 IsTopNode = true; 3113 } else if (RegionPolicy.OnlyBottomUp) { 3114 SU = Bot.pickOnlyChoice(); 3115 if (!SU) { 3116 CandPolicy NoPolicy; 3117 BotCand.reset(NoPolicy); 3118 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3119 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3120 tracePick(BotCand); 3121 SU = BotCand.SU; 3122 } 3123 IsTopNode = false; 3124 } else { 3125 SU = pickNodeBidirectional(IsTopNode); 3126 } 3127 } while (SU->isScheduled); 3128 3129 if (SU->isTopReady()) 3130 Top.removeReady(SU); 3131 if (SU->isBottomReady()) 3132 Bot.removeReady(SU); 3133 3134 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3135 << *SU->getInstr()); 3136 return SU; 3137 } 3138 3139 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3140 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3141 if (!isTop) 3142 ++InsertPos; 3143 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3144 3145 // Find already scheduled copies with a single physreg dependence and move 3146 // them just above the scheduled instruction. 3147 for (SDep &Dep : Deps) { 3148 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3149 continue; 3150 SUnit *DepSU = Dep.getSUnit(); 3151 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3152 continue; 3153 MachineInstr *Copy = DepSU->getInstr(); 3154 if (!Copy->isCopy()) 3155 continue; 3156 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3157 Dep.getSUnit()->dump(DAG)); 3158 DAG->moveInstruction(Copy, InsertPos); 3159 } 3160 } 3161 3162 /// Update the scheduler's state after scheduling a node. This is the same node 3163 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3164 /// update it's state based on the current cycle before MachineSchedStrategy 3165 /// does. 3166 /// 3167 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3168 /// them here. See comments in biasPhysRegCopy. 3169 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3170 if (IsTopNode) { 3171 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3172 Top.bumpNode(SU); 3173 if (SU->hasPhysRegUses) 3174 reschedulePhysRegCopies(SU, true); 3175 } else { 3176 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3177 Bot.bumpNode(SU); 3178 if (SU->hasPhysRegDefs) 3179 reschedulePhysRegCopies(SU, false); 3180 } 3181 } 3182 3183 /// Create the standard converging machine scheduler. This will be used as the 3184 /// default scheduler if the target does not set a default. 3185 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3186 ScheduleDAGMILive *DAG = 3187 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3188 // Register DAG post-processors. 3189 // 3190 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3191 // data and pass it to later mutations. Have a single mutation that gathers 3192 // the interesting nodes in one pass. 3193 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3194 return DAG; 3195 } 3196 3197 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3198 return createGenericSchedLive(C); 3199 } 3200 3201 static MachineSchedRegistry 3202 GenericSchedRegistry("converge", "Standard converging scheduler.", 3203 createConveringSched); 3204 3205 //===----------------------------------------------------------------------===// 3206 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3207 //===----------------------------------------------------------------------===// 3208 3209 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3210 DAG = Dag; 3211 SchedModel = DAG->getSchedModel(); 3212 TRI = DAG->TRI; 3213 3214 Rem.init(DAG, SchedModel); 3215 Top.init(DAG, SchedModel, &Rem); 3216 BotRoots.clear(); 3217 3218 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3219 // or are disabled, then these HazardRecs will be disabled. 3220 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3221 if (!Top.HazardRec) { 3222 Top.HazardRec = 3223 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3224 Itin, DAG); 3225 } 3226 } 3227 3228 void PostGenericScheduler::registerRoots() { 3229 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3230 3231 // Some roots may not feed into ExitSU. Check all of them in case. 3232 for (const SUnit *SU : BotRoots) { 3233 if (SU->getDepth() > Rem.CriticalPath) 3234 Rem.CriticalPath = SU->getDepth(); 3235 } 3236 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3237 if (DumpCriticalPathLength) { 3238 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3239 } 3240 } 3241 3242 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3243 /// 3244 /// \param Cand provides the policy and current best candidate. 3245 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3246 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3247 SchedCandidate &TryCand) { 3248 // Initialize the candidate if needed. 3249 if (!Cand.isValid()) { 3250 TryCand.Reason = NodeOrder; 3251 return; 3252 } 3253 3254 // Prioritize instructions that read unbuffered resources by stall cycles. 3255 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3256 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3257 return; 3258 3259 // Keep clustered nodes together. 3260 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3261 Cand.SU == DAG->getNextClusterSucc(), 3262 TryCand, Cand, Cluster)) 3263 return; 3264 3265 // Avoid critical resource consumption and balance the schedule. 3266 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3267 TryCand, Cand, ResourceReduce)) 3268 return; 3269 if (tryGreater(TryCand.ResDelta.DemandedResources, 3270 Cand.ResDelta.DemandedResources, 3271 TryCand, Cand, ResourceDemand)) 3272 return; 3273 3274 // Avoid serializing long latency dependence chains. 3275 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3276 return; 3277 } 3278 3279 // Fall through to original instruction order. 3280 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3281 TryCand.Reason = NodeOrder; 3282 } 3283 3284 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3285 ReadyQueue &Q = Top.Available; 3286 for (SUnit *SU : Q) { 3287 SchedCandidate TryCand(Cand.Policy); 3288 TryCand.SU = SU; 3289 TryCand.AtTop = true; 3290 TryCand.initResourceDelta(DAG, SchedModel); 3291 tryCandidate(Cand, TryCand); 3292 if (TryCand.Reason != NoCand) { 3293 Cand.setBest(TryCand); 3294 LLVM_DEBUG(traceCandidate(Cand)); 3295 } 3296 } 3297 } 3298 3299 /// Pick the next node to schedule. 3300 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3301 if (DAG->top() == DAG->bottom()) { 3302 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3303 return nullptr; 3304 } 3305 SUnit *SU; 3306 do { 3307 SU = Top.pickOnlyChoice(); 3308 if (SU) { 3309 tracePick(Only1, true); 3310 } else { 3311 CandPolicy NoPolicy; 3312 SchedCandidate TopCand(NoPolicy); 3313 // Set the top-down policy based on the state of the current top zone and 3314 // the instructions outside the zone, including the bottom zone. 3315 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3316 pickNodeFromQueue(TopCand); 3317 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3318 tracePick(TopCand); 3319 SU = TopCand.SU; 3320 } 3321 } while (SU->isScheduled); 3322 3323 IsTopNode = true; 3324 Top.removeReady(SU); 3325 3326 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3327 << *SU->getInstr()); 3328 return SU; 3329 } 3330 3331 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3332 /// scheduled/remaining flags in the DAG nodes. 3333 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3334 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3335 Top.bumpNode(SU); 3336 } 3337 3338 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3339 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3340 /*RemoveKillFlags=*/true); 3341 } 3342 3343 //===----------------------------------------------------------------------===// 3344 // ILP Scheduler. Currently for experimental analysis of heuristics. 3345 //===----------------------------------------------------------------------===// 3346 3347 namespace { 3348 3349 /// Order nodes by the ILP metric. 3350 struct ILPOrder { 3351 const SchedDFSResult *DFSResult = nullptr; 3352 const BitVector *ScheduledTrees = nullptr; 3353 bool MaximizeILP; 3354 3355 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3356 3357 /// Apply a less-than relation on node priority. 3358 /// 3359 /// (Return true if A comes after B in the Q.) 3360 bool operator()(const SUnit *A, const SUnit *B) const { 3361 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3362 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3363 if (SchedTreeA != SchedTreeB) { 3364 // Unscheduled trees have lower priority. 3365 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3366 return ScheduledTrees->test(SchedTreeB); 3367 3368 // Trees with shallower connections have have lower priority. 3369 if (DFSResult->getSubtreeLevel(SchedTreeA) 3370 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3371 return DFSResult->getSubtreeLevel(SchedTreeA) 3372 < DFSResult->getSubtreeLevel(SchedTreeB); 3373 } 3374 } 3375 if (MaximizeILP) 3376 return DFSResult->getILP(A) < DFSResult->getILP(B); 3377 else 3378 return DFSResult->getILP(A) > DFSResult->getILP(B); 3379 } 3380 }; 3381 3382 /// Schedule based on the ILP metric. 3383 class ILPScheduler : public MachineSchedStrategy { 3384 ScheduleDAGMILive *DAG = nullptr; 3385 ILPOrder Cmp; 3386 3387 std::vector<SUnit*> ReadyQ; 3388 3389 public: 3390 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3391 3392 void initialize(ScheduleDAGMI *dag) override { 3393 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3394 DAG = static_cast<ScheduleDAGMILive*>(dag); 3395 DAG->computeDFSResult(); 3396 Cmp.DFSResult = DAG->getDFSResult(); 3397 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3398 ReadyQ.clear(); 3399 } 3400 3401 void registerRoots() override { 3402 // Restore the heap in ReadyQ with the updated DFS results. 3403 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3404 } 3405 3406 /// Implement MachineSchedStrategy interface. 3407 /// ----------------------------------------- 3408 3409 /// Callback to select the highest priority node from the ready Q. 3410 SUnit *pickNode(bool &IsTopNode) override { 3411 if (ReadyQ.empty()) return nullptr; 3412 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3413 SUnit *SU = ReadyQ.back(); 3414 ReadyQ.pop_back(); 3415 IsTopNode = false; 3416 LLVM_DEBUG(dbgs() << "Pick node " 3417 << "SU(" << SU->NodeNum << ") " 3418 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3419 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3420 << " @" 3421 << DAG->getDFSResult()->getSubtreeLevel( 3422 DAG->getDFSResult()->getSubtreeID(SU)) 3423 << '\n' 3424 << "Scheduling " << *SU->getInstr()); 3425 return SU; 3426 } 3427 3428 /// Scheduler callback to notify that a new subtree is scheduled. 3429 void scheduleTree(unsigned SubtreeID) override { 3430 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3431 } 3432 3433 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3434 /// DFSResults, and resort the priority Q. 3435 void schedNode(SUnit *SU, bool IsTopNode) override { 3436 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3437 } 3438 3439 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3440 3441 void releaseBottomNode(SUnit *SU) override { 3442 ReadyQ.push_back(SU); 3443 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3444 } 3445 }; 3446 3447 } // end anonymous namespace 3448 3449 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3450 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3451 } 3452 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3453 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3454 } 3455 3456 static MachineSchedRegistry ILPMaxRegistry( 3457 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3458 static MachineSchedRegistry ILPMinRegistry( 3459 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3460 3461 //===----------------------------------------------------------------------===// 3462 // Machine Instruction Shuffler for Correctness Testing 3463 //===----------------------------------------------------------------------===// 3464 3465 #ifndef NDEBUG 3466 namespace { 3467 3468 /// Apply a less-than relation on the node order, which corresponds to the 3469 /// instruction order prior to scheduling. IsReverse implements greater-than. 3470 template<bool IsReverse> 3471 struct SUnitOrder { 3472 bool operator()(SUnit *A, SUnit *B) const { 3473 if (IsReverse) 3474 return A->NodeNum > B->NodeNum; 3475 else 3476 return A->NodeNum < B->NodeNum; 3477 } 3478 }; 3479 3480 /// Reorder instructions as much as possible. 3481 class InstructionShuffler : public MachineSchedStrategy { 3482 bool IsAlternating; 3483 bool IsTopDown; 3484 3485 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3486 // gives nodes with a higher number higher priority causing the latest 3487 // instructions to be scheduled first. 3488 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3489 TopQ; 3490 3491 // When scheduling bottom-up, use greater-than as the queue priority. 3492 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3493 BottomQ; 3494 3495 public: 3496 InstructionShuffler(bool alternate, bool topdown) 3497 : IsAlternating(alternate), IsTopDown(topdown) {} 3498 3499 void initialize(ScheduleDAGMI*) override { 3500 TopQ.clear(); 3501 BottomQ.clear(); 3502 } 3503 3504 /// Implement MachineSchedStrategy interface. 3505 /// ----------------------------------------- 3506 3507 SUnit *pickNode(bool &IsTopNode) override { 3508 SUnit *SU; 3509 if (IsTopDown) { 3510 do { 3511 if (TopQ.empty()) return nullptr; 3512 SU = TopQ.top(); 3513 TopQ.pop(); 3514 } while (SU->isScheduled); 3515 IsTopNode = true; 3516 } else { 3517 do { 3518 if (BottomQ.empty()) return nullptr; 3519 SU = BottomQ.top(); 3520 BottomQ.pop(); 3521 } while (SU->isScheduled); 3522 IsTopNode = false; 3523 } 3524 if (IsAlternating) 3525 IsTopDown = !IsTopDown; 3526 return SU; 3527 } 3528 3529 void schedNode(SUnit *SU, bool IsTopNode) override {} 3530 3531 void releaseTopNode(SUnit *SU) override { 3532 TopQ.push(SU); 3533 } 3534 void releaseBottomNode(SUnit *SU) override { 3535 BottomQ.push(SU); 3536 } 3537 }; 3538 3539 } // end anonymous namespace 3540 3541 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3542 bool Alternate = !ForceTopDown && !ForceBottomUp; 3543 bool TopDown = !ForceBottomUp; 3544 assert((TopDown || !ForceTopDown) && 3545 "-misched-topdown incompatible with -misched-bottomup"); 3546 return new ScheduleDAGMILive( 3547 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3548 } 3549 3550 static MachineSchedRegistry ShufflerRegistry( 3551 "shuffle", "Shuffle machine instructions alternating directions", 3552 createInstructionShuffler); 3553 #endif // !NDEBUG 3554 3555 //===----------------------------------------------------------------------===// 3556 // GraphWriter support for ScheduleDAGMILive. 3557 //===----------------------------------------------------------------------===// 3558 3559 #ifndef NDEBUG 3560 namespace llvm { 3561 3562 template<> struct GraphTraits< 3563 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3564 3565 template<> 3566 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3567 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3568 3569 static std::string getGraphName(const ScheduleDAG *G) { 3570 return G->MF.getName(); 3571 } 3572 3573 static bool renderGraphFromBottomUp() { 3574 return true; 3575 } 3576 3577 static bool isNodeHidden(const SUnit *Node) { 3578 if (ViewMISchedCutoff == 0) 3579 return false; 3580 return (Node->Preds.size() > ViewMISchedCutoff 3581 || Node->Succs.size() > ViewMISchedCutoff); 3582 } 3583 3584 /// If you want to override the dot attributes printed for a particular 3585 /// edge, override this method. 3586 static std::string getEdgeAttributes(const SUnit *Node, 3587 SUnitIterator EI, 3588 const ScheduleDAG *Graph) { 3589 if (EI.isArtificialDep()) 3590 return "color=cyan,style=dashed"; 3591 if (EI.isCtrlDep()) 3592 return "color=blue,style=dashed"; 3593 return ""; 3594 } 3595 3596 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3597 std::string Str; 3598 raw_string_ostream SS(Str); 3599 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3600 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3601 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3602 SS << "SU:" << SU->NodeNum; 3603 if (DFS) 3604 SS << " I:" << DFS->getNumInstrs(SU); 3605 return SS.str(); 3606 } 3607 3608 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3609 return G->getGraphNodeLabel(SU); 3610 } 3611 3612 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3613 std::string Str("shape=Mrecord"); 3614 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3615 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3616 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3617 if (DFS) { 3618 Str += ",style=filled,fillcolor=\"#"; 3619 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3620 Str += '"'; 3621 } 3622 return Str; 3623 } 3624 }; 3625 3626 } // end namespace llvm 3627 #endif // NDEBUG 3628 3629 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3630 /// rendered using 'dot'. 3631 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3632 #ifndef NDEBUG 3633 ViewGraph(this, Name, false, Title); 3634 #else 3635 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3636 << "systems with Graphviz or gv!\n"; 3637 #endif // NDEBUG 3638 } 3639 3640 /// Out-of-line implementation with no arguments is handy for gdb. 3641 void ScheduleDAGMI::viewGraph() { 3642 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3643 } 3644