1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 // work around "uninitialized" warnings and give that option some testing 12 #define EIGEN_INITIALIZE_MATRICES_BY_ZERO 13 14 #ifndef EIGEN_NO_STATIC_ASSERT 15 #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them 16 #endif 17 18 #if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3) 19 20 #ifndef EIGEN_DONT_VECTORIZE 21 #define EIGEN_DONT_VECTORIZE 22 #endif 23 24 #endif 25 26 static bool g_called; 27 #define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); } 28 29 #include "main.h" 30 31 using namespace std; 32 33 #define VERIFY_MIX_SCALAR(XPR,REF) \ 34 g_called = false; \ 35 VERIFY_IS_APPROX(XPR,REF); \ 36 VERIFY( g_called && #XPR" not properly optimized"); 37 38 template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType) 39 { 40 typedef std::complex<float> CF; 41 typedef std::complex<double> CD; 42 typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f; 43 typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d; 44 typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf; 45 typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd; 46 typedef Matrix<float, SizeAtCompileType, 1> Vec_f; 47 typedef Matrix<double, SizeAtCompileType, 1> Vec_d; 48 typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf; 49 typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd; 50 51 Mat_f mf = Mat_f::Random(size,size); 52 Mat_d md = mf.template cast<double>(); 53 //Mat_d rd = md; 54 Mat_cf mcf = Mat_cf::Random(size,size); 55 Mat_cd mcd = mcf.template cast<complex<double> >(); 56 Mat_cd rcd = mcd; 57 Vec_f vf = Vec_f::Random(size,1); 58 Vec_d vd = vf.template cast<double>(); 59 Vec_cf vcf = Vec_cf::Random(size,1); 60 Vec_cd vcd = vcf.template cast<complex<double> >(); 61 float sf = internal::random<float>(); 62 double sd = internal::random<double>(); 63 complex<float> scf = internal::random<complex<float> >(); 64 complex<double> scd = internal::random<complex<double> >(); 65 66 mf+mf; 67 68 float epsf = std::sqrt(std::numeric_limits<float> ::min EIGEN_EMPTY ()); 69 double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY ()); 70 71 while(std::abs(sf )<epsf) sf = internal::random<float>(); 72 while(std::abs(sd )<epsd) sf = internal::random<double>(); 73 while(std::abs(scf)<epsf) scf = internal::random<CF>(); 74 while(std::abs(scd)<epsd) scd = internal::random<CD>(); 75 76 // VERIFY_RAISES_ASSERT(mf+md); // does not even compile 77 78 #ifdef EIGEN_DONT_VECTORIZE 79 VERIFY_RAISES_ASSERT(vf=vd); 80 VERIFY_RAISES_ASSERT(vf+=vd); 81 #endif 82 83 // check scalar products 84 VERIFY_MIX_SCALAR(vcf * sf , vcf * complex<float>(sf)); 85 VERIFY_MIX_SCALAR(sd * vcd , complex<double>(sd) * vcd); 86 VERIFY_MIX_SCALAR(vf * scf , vf.template cast<complex<float> >() * scf); 87 VERIFY_MIX_SCALAR(scd * vd , scd * vd.template cast<complex<double> >()); 88 89 VERIFY_MIX_SCALAR(vcf * 2 , vcf * complex<float>(2)); 90 VERIFY_MIX_SCALAR(vcf * 2.1 , vcf * complex<float>(2.1)); 91 VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2)); 92 VERIFY_MIX_SCALAR(2.1 * vcf , vcf * complex<float>(2.1)); 93 94 // check scalar quotients 95 VERIFY_MIX_SCALAR(vcf / sf , vcf / complex<float>(sf)); 96 VERIFY_MIX_SCALAR(vf / scf , vf.template cast<complex<float> >() / scf); 97 VERIFY_MIX_SCALAR(vf.array() / scf, vf.template cast<complex<float> >().array() / scf); 98 VERIFY_MIX_SCALAR(scd / vd.array() , scd / vd.template cast<complex<double> >().array()); 99 100 // check scalar increment 101 VERIFY_MIX_SCALAR(vcf.array() + sf , vcf.array() + complex<float>(sf)); 102 VERIFY_MIX_SCALAR(sd + vcd.array(), complex<double>(sd) + vcd.array()); 103 VERIFY_MIX_SCALAR(vf.array() + scf, vf.template cast<complex<float> >().array() + scf); 104 VERIFY_MIX_SCALAR(scd + vd.array() , scd + vd.template cast<complex<double> >().array()); 105 106 // check scalar subtractions 107 VERIFY_MIX_SCALAR(vcf.array() - sf , vcf.array() - complex<float>(sf)); 108 VERIFY_MIX_SCALAR(sd - vcd.array(), complex<double>(sd) - vcd.array()); 109 VERIFY_MIX_SCALAR(vf.array() - scf, vf.template cast<complex<float> >().array() - scf); 110 VERIFY_MIX_SCALAR(scd - vd.array() , scd - vd.template cast<complex<double> >().array()); 111 112 // check scalar powers 113 VERIFY_MIX_SCALAR( pow(vcf.array(), sf), Eigen::pow(vcf.array(), complex<float>(sf)) ); 114 VERIFY_MIX_SCALAR( vcf.array().pow(sf) , Eigen::pow(vcf.array(), complex<float>(sf)) ); 115 VERIFY_MIX_SCALAR( pow(sd, vcd.array()), Eigen::pow(complex<double>(sd), vcd.array()) ); 116 VERIFY_MIX_SCALAR( Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf) ); 117 VERIFY_MIX_SCALAR( vf.array().pow(scf) , Eigen::pow(vf.template cast<complex<float> >().array(), scf) ); 118 VERIFY_MIX_SCALAR( Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array()) ); 119 120 // check dot product 121 vf.dot(vf); 122 #if 0 // we get other compilation errors here than just static asserts 123 VERIFY_RAISES_ASSERT(vd.dot(vf)); 124 #endif 125 VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >())); 126 127 // check diagonal product 128 VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf); 129 VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >()); 130 VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal()); 131 VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal()); 132 133 // vd.asDiagonal() * mf; // does not even compile 134 // vcd.asDiagonal() * mf; // does not even compile 135 136 // check inner product 137 VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value()); 138 139 // check outer product 140 VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval()); 141 142 // coeff wise product 143 144 VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval()); 145 146 Mat_cd mcd2 = mcd; 147 VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >()); 148 149 // check matrix-matrix products 150 VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd); 151 VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>()); 152 VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd); 153 VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>()); 154 155 VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf); 156 VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>()); 157 VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf); 158 VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>()); 159 160 VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd); 161 VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>()); 162 VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint()); 163 VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint()); 164 VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint()); 165 VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint()); 166 167 VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf); 168 VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>()); 169 VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint()); 170 VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint()); 171 VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint()); 172 VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint()); 173 174 VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf); 175 VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf); 176 VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>()); 177 VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>()); 178 179 VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval()); 180 VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval()); 181 VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf); 182 VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf); 183 184 VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd); 185 VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd); 186 VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval()); 187 VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval()); 188 189 VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval()); 190 VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval()); 191 VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd); 192 VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd); 193 194 VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>()); 195 VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>()); 196 VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(), sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>()); 197 VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>()); 198 VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>()); 199 VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>()); 200 VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>()); 201 VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>()); 202 203 // Not supported yet: trmm 204 // VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(), sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>()); 205 // VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template cast<CD>().eval().template triangularView<Upper>()); 206 // VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(), sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>()); 207 // VERIFY_IS_APPROX(scd*md*mcd.template triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>()); 208 209 // Not supported yet: symv 210 // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>()); 211 // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>()); 212 // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Lower>()); 213 // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>()); 214 215 // Not supported yet: symm 216 // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>()); 217 // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>()); 218 // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>()); 219 // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>()); 220 221 rcd.setZero(); 222 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md), 223 Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>())); 224 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd), 225 Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>())); 226 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md), 227 Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>())); 228 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd), 229 Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>())); 230 231 232 VERIFY_IS_APPROX( md.array() * mcd.array(), md.template cast<CD>().eval().array() * mcd.array() ); 233 VERIFY_IS_APPROX( mcd.array() * md.array(), mcd.array() * md.template cast<CD>().eval().array() ); 234 235 VERIFY_IS_APPROX( md.array() + mcd.array(), md.template cast<CD>().eval().array() + mcd.array() ); 236 VERIFY_IS_APPROX( mcd.array() + md.array(), mcd.array() + md.template cast<CD>().eval().array() ); 237 238 VERIFY_IS_APPROX( md.array() - mcd.array(), md.template cast<CD>().eval().array() - mcd.array() ); 239 VERIFY_IS_APPROX( mcd.array() - md.array(), mcd.array() - md.template cast<CD>().eval().array() ); 240 241 if(mcd.array().abs().minCoeff()>epsd) 242 { 243 VERIFY_IS_APPROX( md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array() ); 244 } 245 if(md.array().abs().minCoeff()>epsd) 246 { 247 VERIFY_IS_APPROX( mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array() ); 248 } 249 250 if(md.array().abs().minCoeff()>epsd || mcd.array().abs().minCoeff()>epsd) 251 { 252 VERIFY_IS_APPROX( md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) ); 253 VERIFY_IS_APPROX( mcd.array().pow(md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) ); 254 255 VERIFY_IS_APPROX( pow(md.array(),mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) ); 256 VERIFY_IS_APPROX( pow(mcd.array(),md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) ); 257 } 258 259 rcd = mcd; 260 VERIFY_IS_APPROX( rcd = md, md.template cast<CD>().eval() ); 261 rcd = mcd; 262 VERIFY_IS_APPROX( rcd += md, mcd + md.template cast<CD>().eval() ); 263 rcd = mcd; 264 VERIFY_IS_APPROX( rcd -= md, mcd - md.template cast<CD>().eval() ); 265 rcd = mcd; 266 VERIFY_IS_APPROX( rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array() ); 267 rcd = mcd; 268 if(md.array().abs().minCoeff()>epsd) 269 { 270 VERIFY_IS_APPROX( rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array() ); 271 } 272 273 rcd = mcd; 274 VERIFY_IS_APPROX( rcd.noalias() += md + mcd*md, mcd + (md.template cast<CD>().eval()) + mcd*(md.template cast<CD>().eval())); 275 276 VERIFY_IS_APPROX( rcd.noalias() = md*md, ((md*md).eval().template cast<CD>()) ); 277 rcd = mcd; 278 VERIFY_IS_APPROX( rcd.noalias() += md*md, mcd + ((md*md).eval().template cast<CD>()) ); 279 rcd = mcd; 280 VERIFY_IS_APPROX( rcd.noalias() -= md*md, mcd - ((md*md).eval().template cast<CD>()) ); 281 282 VERIFY_IS_APPROX( rcd.noalias() = mcd + md*md, mcd + ((md*md).eval().template cast<CD>()) ); 283 rcd = mcd; 284 VERIFY_IS_APPROX( rcd.noalias() += mcd + md*md, mcd + mcd + ((md*md).eval().template cast<CD>()) ); 285 rcd = mcd; 286 VERIFY_IS_APPROX( rcd.noalias() -= mcd + md*md, - ((md*md).eval().template cast<CD>()) ); 287 } 288 289 void test_mixingtypes() 290 { 291 for(int i = 0; i < g_repeat; i++) { 292 CALL_SUBTEST_1(mixingtypes<3>()); 293 CALL_SUBTEST_2(mixingtypes<4>()); 294 CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))); 295 296 CALL_SUBTEST_4(mixingtypes<3>()); 297 CALL_SUBTEST_5(mixingtypes<4>()); 298 CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))); 299 } 300 } 301