Home | History | Annotate | Download | only in ec
      1 /* Originally written by Bodo Moeller for the OpenSSL project.
      2  * ====================================================================
      3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 /* ====================================================================
     56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     57  *
     58  * Portions of the attached software ("Contribution") are developed by
     59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
     60  *
     61  * The Contribution is licensed pursuant to the OpenSSL open source
     62  * license provided above.
     63  *
     64  * The elliptic curve binary polynomial software is originally written by
     65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
     66  * Laboratories. */
     67 
     68 #include <openssl/ec.h>
     69 
     70 #include <string.h>
     71 
     72 #include <openssl/bn.h>
     73 #include <openssl/err.h>
     74 #include <openssl/mem.h>
     75 
     76 #include "internal.h"
     77 #include "../../internal.h"
     78 
     79 
     80 // Most method functions in this file are designed to work with non-trivial
     81 // representations of field elements if necessary (see ecp_mont.c): while
     82 // standard modular addition and subtraction are used, the field_mul and
     83 // field_sqr methods will be used for multiplication, and field_encode and
     84 // field_decode (if defined) will be used for converting between
     85 // representations.
     86 //
     87 // Functions here specifically assume that if a non-trivial representation is
     88 // used, it is a Montgomery representation (i.e. 'encoding' means multiplying
     89 // by some factor R).
     90 
     91 int ec_GFp_simple_group_init(EC_GROUP *group) {
     92   BN_init(&group->field);
     93   group->a_is_minus3 = 0;
     94   return 1;
     95 }
     96 
     97 void ec_GFp_simple_group_finish(EC_GROUP *group) {
     98   BN_free(&group->field);
     99 }
    100 
    101 int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
    102                                   const BIGNUM *a, const BIGNUM *b,
    103                                   BN_CTX *ctx) {
    104   int ret = 0;
    105   BN_CTX *new_ctx = NULL;
    106 
    107   // p must be a prime > 3
    108   if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
    109     OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
    110     return 0;
    111   }
    112 
    113   if (ctx == NULL) {
    114     ctx = new_ctx = BN_CTX_new();
    115     if (ctx == NULL) {
    116       return 0;
    117     }
    118   }
    119 
    120   BN_CTX_start(ctx);
    121   BIGNUM *tmp = BN_CTX_get(ctx);
    122   if (tmp == NULL) {
    123     goto err;
    124   }
    125 
    126   // group->field
    127   if (!BN_copy(&group->field, p)) {
    128     goto err;
    129   }
    130   BN_set_negative(&group->field, 0);
    131   // Store the field in minimal form, so it can be used with |BN_ULONG| arrays.
    132   bn_set_minimal_width(&group->field);
    133 
    134   // group->a
    135   if (!BN_nnmod(tmp, a, &group->field, ctx) ||
    136       !ec_bignum_to_felem(group, &group->a, tmp)) {
    137     goto err;
    138   }
    139 
    140   // group->a_is_minus3
    141   if (!BN_add_word(tmp, 3)) {
    142     goto err;
    143   }
    144   group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field));
    145 
    146   // group->b
    147   if (!BN_nnmod(tmp, b, &group->field, ctx) ||
    148       !ec_bignum_to_felem(group, &group->b, tmp)) {
    149     goto err;
    150   }
    151 
    152   if (!ec_bignum_to_felem(group, &group->one, BN_value_one())) {
    153     goto err;
    154   }
    155 
    156   ret = 1;
    157 
    158 err:
    159   BN_CTX_end(ctx);
    160   BN_CTX_free(new_ctx);
    161   return ret;
    162 }
    163 
    164 int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
    165                                   BIGNUM *b) {
    166   if ((p != NULL && !BN_copy(p, &group->field)) ||
    167       (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) ||
    168       (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) {
    169     return 0;
    170   }
    171   return 1;
    172 }
    173 
    174 void ec_GFp_simple_point_init(EC_RAW_POINT *point) {
    175   OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM));
    176   OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM));
    177   OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM));
    178 }
    179 
    180 void ec_GFp_simple_point_copy(EC_RAW_POINT *dest, const EC_RAW_POINT *src) {
    181   OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM));
    182   OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM));
    183   OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM));
    184 }
    185 
    186 void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
    187                                          EC_RAW_POINT *point) {
    188   // Although it is strictly only necessary to zero Z, we zero the entire point
    189   // in case |point| was stack-allocated and yet to be initialized.
    190   ec_GFp_simple_point_init(point);
    191 }
    192 
    193 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
    194                                                EC_RAW_POINT *point,
    195                                                const BIGNUM *x,
    196                                                const BIGNUM *y) {
    197   if (x == NULL || y == NULL) {
    198     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
    199     return 0;
    200   }
    201 
    202   if (!ec_bignum_to_felem(group, &point->X, x) ||
    203       !ec_bignum_to_felem(group, &point->Y, y)) {
    204     return 0;
    205   }
    206   OPENSSL_memcpy(&point->Z, &group->one, sizeof(EC_FELEM));
    207 
    208   return 1;
    209 }
    210 
    211 void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) {
    212   ec_felem_neg(group, &point->Y, &point->Y);
    213 }
    214 
    215 int ec_GFp_simple_is_at_infinity(const EC_GROUP *group,
    216                                  const EC_RAW_POINT *point) {
    217   return ec_felem_non_zero_mask(group, &point->Z) == 0;
    218 }
    219 
    220 int ec_GFp_simple_is_on_curve(const EC_GROUP *group,
    221                               const EC_RAW_POINT *point) {
    222   if (ec_GFp_simple_is_at_infinity(group, point)) {
    223     return 1;
    224   }
    225 
    226   // We have a curve defined by a Weierstrass equation
    227   //      y^2 = x^3 + a*x + b.
    228   // The point to consider is given in Jacobian projective coordinates
    229   // where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
    230   // Substituting this and multiplying by  Z^6  transforms the above equation
    231   // into
    232   //      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
    233   // To test this, we add up the right-hand side in 'rh'.
    234 
    235   void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
    236                           const EC_FELEM *b) = group->meth->felem_mul;
    237   void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
    238       group->meth->felem_sqr;
    239 
    240   // rh := X^2
    241   EC_FELEM rh;
    242   felem_sqr(group, &rh, &point->X);
    243 
    244   EC_FELEM tmp, Z4, Z6;
    245   if (!ec_felem_equal(group, &point->Z, &group->one)) {
    246     felem_sqr(group, &tmp, &point->Z);
    247     felem_sqr(group, &Z4, &tmp);
    248     felem_mul(group, &Z6, &Z4, &tmp);
    249 
    250     // rh := (rh + a*Z^4)*X
    251     if (group->a_is_minus3) {
    252       ec_felem_add(group, &tmp, &Z4, &Z4);
    253       ec_felem_add(group, &tmp, &tmp, &Z4);
    254       ec_felem_sub(group, &rh, &rh, &tmp);
    255       felem_mul(group, &rh, &rh, &point->X);
    256     } else {
    257       felem_mul(group, &tmp, &Z4, &group->a);
    258       ec_felem_add(group, &rh, &rh, &tmp);
    259       felem_mul(group, &rh, &rh, &point->X);
    260     }
    261 
    262     // rh := rh + b*Z^6
    263     felem_mul(group, &tmp, &group->b, &Z6);
    264     ec_felem_add(group, &rh, &rh, &tmp);
    265   } else {
    266     // rh := (rh + a)*X
    267     ec_felem_add(group, &rh, &rh, &group->a);
    268     felem_mul(group, &rh, &rh, &point->X);
    269     // rh := rh + b
    270     ec_felem_add(group, &rh, &rh, &group->b);
    271   }
    272 
    273   // 'lh' := Y^2
    274   felem_sqr(group, &tmp, &point->Y);
    275   return ec_felem_equal(group, &tmp, &rh);
    276 }
    277 
    278 int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_RAW_POINT *a,
    279                       const EC_RAW_POINT *b) {
    280   // Note this function returns zero if |a| and |b| are equal and 1 if they are
    281   // not equal.
    282   if (ec_GFp_simple_is_at_infinity(group, a)) {
    283     return ec_GFp_simple_is_at_infinity(group, b) ? 0 : 1;
    284   }
    285 
    286   if (ec_GFp_simple_is_at_infinity(group, b)) {
    287     return 1;
    288   }
    289 
    290   int a_Z_is_one = ec_felem_equal(group, &a->Z, &group->one);
    291   int b_Z_is_one = ec_felem_equal(group, &b->Z, &group->one);
    292 
    293   if (a_Z_is_one && b_Z_is_one) {
    294     return !ec_felem_equal(group, &a->X, &b->X) ||
    295            !ec_felem_equal(group, &a->Y, &b->Y);
    296   }
    297 
    298   void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
    299                           const EC_FELEM *b) = group->meth->felem_mul;
    300   void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
    301       group->meth->felem_sqr;
    302 
    303   // We have to decide whether
    304   //     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
    305   // or equivalently, whether
    306   //     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
    307 
    308   EC_FELEM tmp1, tmp2, Za23, Zb23;
    309   const EC_FELEM *tmp1_, *tmp2_;
    310   if (!b_Z_is_one) {
    311     felem_sqr(group, &Zb23, &b->Z);
    312     felem_mul(group, &tmp1, &a->X, &Zb23);
    313     tmp1_ = &tmp1;
    314   } else {
    315     tmp1_ = &a->X;
    316   }
    317   if (!a_Z_is_one) {
    318     felem_sqr(group, &Za23, &a->Z);
    319     felem_mul(group, &tmp2, &b->X, &Za23);
    320     tmp2_ = &tmp2;
    321   } else {
    322     tmp2_ = &b->X;
    323   }
    324 
    325   // Compare  X_a*Z_b^2  with  X_b*Z_a^2.
    326   if (!ec_felem_equal(group, tmp1_, tmp2_)) {
    327     return 1;  // The points differ.
    328   }
    329 
    330   if (!b_Z_is_one) {
    331     felem_mul(group, &Zb23, &Zb23, &b->Z);
    332     felem_mul(group, &tmp1, &a->Y, &Zb23);
    333     // tmp1_ = &tmp1
    334   } else {
    335     tmp1_ = &a->Y;
    336   }
    337   if (!a_Z_is_one) {
    338     felem_mul(group, &Za23, &Za23, &a->Z);
    339     felem_mul(group, &tmp2, &b->Y, &Za23);
    340     // tmp2_ = &tmp2
    341   } else {
    342     tmp2_ = &b->Y;
    343   }
    344 
    345   // Compare  Y_a*Z_b^3  with  Y_b*Z_a^3.
    346   if (!ec_felem_equal(group, tmp1_, tmp2_)) {
    347     return 1;  // The points differ.
    348   }
    349 
    350   // The points are equal.
    351   return 0;
    352 }
    353 
    354 int ec_GFp_simple_mont_inv_mod_ord_vartime(const EC_GROUP *group,
    355                                            EC_SCALAR *out,
    356                                            const EC_SCALAR *in) {
    357   // This implementation (in fact) runs in constant time,
    358   // even though for this interface it is not mandatory.
    359 
    360   // out = in^-1 in the Montgomery domain. This is
    361   // |ec_scalar_to_montgomery| followed by |ec_scalar_inv_montgomery|, but
    362   // |ec_scalar_inv_montgomery| followed by |ec_scalar_from_montgomery| is
    363   // equivalent and slightly more efficient.
    364   ec_scalar_inv_montgomery(group, out, in);
    365   ec_scalar_from_montgomery(group, out, out);
    366   return 1;
    367 }
    368 
    369 int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
    370                                    const EC_SCALAR *r) {
    371   if (ec_GFp_simple_is_at_infinity(group, p)) {
    372     // |ec_get_x_coordinate_as_scalar| will check this internally, but this way
    373     // we do not push to the error queue.
    374     return 0;
    375   }
    376 
    377   EC_SCALAR x;
    378   return ec_get_x_coordinate_as_scalar(group, &x, p) &&
    379          ec_scalar_equal_vartime(group, &x, r);
    380 }
    381