1 /*********************************************************************** 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. 3 Redistribution and use in source and binary forms, with or without 4 modification, are permitted provided that the following conditions 5 are met: 6 - Redistributions of source code must retain the above copyright notice, 7 this list of conditions and the following disclaimer. 8 - Redistributions in binary form must reproduce the above copyright 9 notice, this list of conditions and the following disclaimer in the 10 documentation and/or other materials provided with the distribution. 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the 12 names of specific contributors, may be used to endorse or promote 13 products derived from this software without specific prior written 14 permission. 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 POSSIBILITY OF SUCH DAMAGE. 26 ***********************************************************************/ 27 28 #ifdef HAVE_CONFIG_H 29 #include "config.h" 30 #endif 31 32 #include "main.h" 33 #include "stack_alloc.h" 34 35 /*********************************************/ 36 /* Encode quantization indices of excitation */ 37 /*********************************************/ 38 39 static OPUS_INLINE opus_int combine_and_check( /* return ok */ 40 opus_int *pulses_comb, /* O */ 41 const opus_int *pulses_in, /* I */ 42 opus_int max_pulses, /* I max value for sum of pulses */ 43 opus_int len /* I number of output values */ 44 ) 45 { 46 opus_int k, sum; 47 48 for( k = 0; k < len; k++ ) { 49 sum = pulses_in[ 2 * k ] + pulses_in[ 2 * k + 1 ]; 50 if( sum > max_pulses ) { 51 return 1; 52 } 53 pulses_comb[ k ] = sum; 54 } 55 56 return 0; 57 } 58 59 /* Encode quantization indices of excitation */ 60 void silk_encode_pulses( 61 ec_enc *psRangeEnc, /* I/O compressor data structure */ 62 const opus_int signalType, /* I Signal type */ 63 const opus_int quantOffsetType, /* I quantOffsetType */ 64 opus_int8 pulses[], /* I quantization indices */ 65 const opus_int frame_length /* I Frame length */ 66 ) 67 { 68 opus_int i, k, j, iter, bit, nLS, scale_down, RateLevelIndex = 0; 69 opus_int32 abs_q, minSumBits_Q5, sumBits_Q5; 70 VARDECL( opus_int, abs_pulses ); 71 VARDECL( opus_int, sum_pulses ); 72 VARDECL( opus_int, nRshifts ); 73 opus_int pulses_comb[ 8 ]; 74 opus_int *abs_pulses_ptr; 75 const opus_int8 *pulses_ptr; 76 const opus_uint8 *cdf_ptr; 77 const opus_uint8 *nBits_ptr; 78 SAVE_STACK; 79 80 silk_memset( pulses_comb, 0, 8 * sizeof( opus_int ) ); /* Fixing Valgrind reported problem*/ 81 82 /****************************/ 83 /* Prepare for shell coding */ 84 /****************************/ 85 /* Calculate number of shell blocks */ 86 silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH ); 87 iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH ); 88 if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) { 89 celt_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */ 90 iter++; 91 silk_memset( &pulses[ frame_length ], 0, SHELL_CODEC_FRAME_LENGTH * sizeof(opus_int8)); 92 } 93 94 /* Take the absolute value of the pulses */ 95 ALLOC( abs_pulses, iter * SHELL_CODEC_FRAME_LENGTH, opus_int ); 96 silk_assert( !( SHELL_CODEC_FRAME_LENGTH & 3 ) ); 97 for( i = 0; i < iter * SHELL_CODEC_FRAME_LENGTH; i+=4 ) { 98 abs_pulses[i+0] = ( opus_int )silk_abs( pulses[ i + 0 ] ); 99 abs_pulses[i+1] = ( opus_int )silk_abs( pulses[ i + 1 ] ); 100 abs_pulses[i+2] = ( opus_int )silk_abs( pulses[ i + 2 ] ); 101 abs_pulses[i+3] = ( opus_int )silk_abs( pulses[ i + 3 ] ); 102 } 103 104 /* Calc sum pulses per shell code frame */ 105 ALLOC( sum_pulses, iter, opus_int ); 106 ALLOC( nRshifts, iter, opus_int ); 107 abs_pulses_ptr = abs_pulses; 108 for( i = 0; i < iter; i++ ) { 109 nRshifts[ i ] = 0; 110 111 while( 1 ) { 112 /* 1+1 -> 2 */ 113 scale_down = combine_and_check( pulses_comb, abs_pulses_ptr, silk_max_pulses_table[ 0 ], 8 ); 114 /* 2+2 -> 4 */ 115 scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 1 ], 4 ); 116 /* 4+4 -> 8 */ 117 scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 2 ], 2 ); 118 /* 8+8 -> 16 */ 119 scale_down += combine_and_check( &sum_pulses[ i ], pulses_comb, silk_max_pulses_table[ 3 ], 1 ); 120 121 if( scale_down ) { 122 /* We need to downscale the quantization signal */ 123 nRshifts[ i ]++; 124 for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) { 125 abs_pulses_ptr[ k ] = silk_RSHIFT( abs_pulses_ptr[ k ], 1 ); 126 } 127 } else { 128 /* Jump out of while(1) loop and go to next shell coding frame */ 129 break; 130 } 131 } 132 abs_pulses_ptr += SHELL_CODEC_FRAME_LENGTH; 133 } 134 135 /**************/ 136 /* Rate level */ 137 /**************/ 138 /* find rate level that leads to fewest bits for coding of pulses per block info */ 139 minSumBits_Q5 = silk_int32_MAX; 140 for( k = 0; k < N_RATE_LEVELS - 1; k++ ) { 141 nBits_ptr = silk_pulses_per_block_BITS_Q5[ k ]; 142 sumBits_Q5 = silk_rate_levels_BITS_Q5[ signalType >> 1 ][ k ]; 143 for( i = 0; i < iter; i++ ) { 144 if( nRshifts[ i ] > 0 ) { 145 sumBits_Q5 += nBits_ptr[ SILK_MAX_PULSES + 1 ]; 146 } else { 147 sumBits_Q5 += nBits_ptr[ sum_pulses[ i ] ]; 148 } 149 } 150 if( sumBits_Q5 < minSumBits_Q5 ) { 151 minSumBits_Q5 = sumBits_Q5; 152 RateLevelIndex = k; 153 } 154 } 155 ec_enc_icdf( psRangeEnc, RateLevelIndex, silk_rate_levels_iCDF[ signalType >> 1 ], 8 ); 156 157 /***************************************************/ 158 /* Sum-Weighted-Pulses Encoding */ 159 /***************************************************/ 160 cdf_ptr = silk_pulses_per_block_iCDF[ RateLevelIndex ]; 161 for( i = 0; i < iter; i++ ) { 162 if( nRshifts[ i ] == 0 ) { 163 ec_enc_icdf( psRangeEnc, sum_pulses[ i ], cdf_ptr, 8 ); 164 } else { 165 ec_enc_icdf( psRangeEnc, SILK_MAX_PULSES + 1, cdf_ptr, 8 ); 166 for( k = 0; k < nRshifts[ i ] - 1; k++ ) { 167 ec_enc_icdf( psRangeEnc, SILK_MAX_PULSES + 1, silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 ); 168 } 169 ec_enc_icdf( psRangeEnc, sum_pulses[ i ], silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 ); 170 } 171 } 172 173 /******************/ 174 /* Shell Encoding */ 175 /******************/ 176 for( i = 0; i < iter; i++ ) { 177 if( sum_pulses[ i ] > 0 ) { 178 silk_shell_encoder( psRangeEnc, &abs_pulses[ i * SHELL_CODEC_FRAME_LENGTH ] ); 179 } 180 } 181 182 /****************/ 183 /* LSB Encoding */ 184 /****************/ 185 for( i = 0; i < iter; i++ ) { 186 if( nRshifts[ i ] > 0 ) { 187 pulses_ptr = &pulses[ i * SHELL_CODEC_FRAME_LENGTH ]; 188 nLS = nRshifts[ i ] - 1; 189 for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) { 190 abs_q = (opus_int8)silk_abs( pulses_ptr[ k ] ); 191 for( j = nLS; j > 0; j-- ) { 192 bit = silk_RSHIFT( abs_q, j ) & 1; 193 ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 ); 194 } 195 bit = abs_q & 1; 196 ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 ); 197 } 198 } 199 } 200 201 /****************/ 202 /* Encode signs */ 203 /****************/ 204 silk_encode_signs( psRangeEnc, pulses, frame_length, signalType, quantOffsetType, sum_pulses ); 205 RESTORE_STACK; 206 } 207