Home | History | Annotate | Download | only in gptfdisk
      1 /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
      2    data. */
      3 
      4 /* By Rod Smith, initial coding January to February, 2009 */
      5 
      6 /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
      7   under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
      8 
      9 #define __STDC_LIMIT_MACROS
     10 #ifndef __STDC_CONSTANT_MACROS
     11 #define __STDC_CONSTANT_MACROS
     12 #endif
     13 
     14 #include <stdio.h>
     15 #include <stdlib.h>
     16 #include <stdint.h>
     17 #include <fcntl.h>
     18 #include <string.h>
     19 #include <math.h>
     20 #include <time.h>
     21 #include <sys/stat.h>
     22 #include <errno.h>
     23 #include <iostream>
     24 #include <algorithm>
     25 #include "crc32.h"
     26 #include "gpt.h"
     27 #include "bsd.h"
     28 #include "support.h"
     29 #include "parttypes.h"
     30 #include "attributes.h"
     31 #include "diskio.h"
     32 
     33 using namespace std;
     34 
     35 #ifdef __FreeBSD__
     36 #define log2(x) (log(x) / M_LN2)
     37 #endif // __FreeBSD__
     38 
     39 #ifdef _MSC_VER
     40 #define log2(x) (log((double) x) / log(2.0))
     41 #endif // Microsoft Visual C++
     42 
     43 #ifdef EFI
     44 // in UEFI mode MMX registers are not yet available so using the
     45 // x86_64 ABI to move "double" values around is not an option.
     46 #ifdef log2
     47 #undef log2
     48 #endif
     49 #define log2(x) log2_32( x )
     50 static inline uint32_t log2_32(uint32_t v) {
     51    int r = -1;
     52    while (v >= 1) {
     53       r++;
     54       v >>= 1;
     55    }
     56    return r;
     57 }
     58 #endif
     59 
     60 /****************************************
     61  *                                      *
     62  * GPTData class and related structures *
     63  *                                      *
     64  ****************************************/
     65 
     66 // Default constructor
     67 GPTData::GPTData(void) {
     68    blockSize = SECTOR_SIZE; // set a default
     69    diskSize = 0;
     70    partitions = NULL;
     71    state = gpt_valid;
     72    device = "";
     73    justLooking = 0;
     74    syncing = 1;
     75    mainCrcOk = 0;
     76    secondCrcOk = 0;
     77    mainPartsCrcOk = 0;
     78    secondPartsCrcOk = 0;
     79    apmFound = 0;
     80    bsdFound = 0;
     81    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
     82    beQuiet = 0;
     83    whichWasUsed = use_new;
     84    mainHeader.numParts = 0;
     85    numParts = 0;
     86    SetGPTSize(NUM_GPT_ENTRIES);
     87    // Initialize CRC functions...
     88    chksum_crc32gentab();
     89 } // GPTData default constructor
     90 
     91 // The following constructor loads GPT data from a device file
     92 GPTData::GPTData(string filename) {
     93    blockSize = SECTOR_SIZE; // set a default
     94    diskSize = 0;
     95    partitions = NULL;
     96    state = gpt_invalid;
     97    device = "";
     98    justLooking = 0;
     99    syncing = 1;
    100    mainCrcOk = 0;
    101    secondCrcOk = 0;
    102    mainPartsCrcOk = 0;
    103    secondPartsCrcOk = 0;
    104    apmFound = 0;
    105    bsdFound = 0;
    106    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
    107    beQuiet = 0;
    108    whichWasUsed = use_new;
    109    mainHeader.numParts = 0;
    110    numParts = 0;
    111    // Initialize CRC functions...
    112    chksum_crc32gentab();
    113    if (!LoadPartitions(filename))
    114       exit(2);
    115 } // GPTData(string filename) constructor
    116 
    117 // Destructor
    118 GPTData::~GPTData(void) {
    119    delete[] partitions;
    120 } // GPTData destructor
    121 
    122 // Assignment operator
    123 GPTData & GPTData::operator=(const GPTData & orig) {
    124    uint32_t i;
    125 
    126    mainHeader = orig.mainHeader;
    127    numParts = orig.numParts;
    128    secondHeader = orig.secondHeader;
    129    protectiveMBR = orig.protectiveMBR;
    130    device = orig.device;
    131    blockSize = orig.blockSize;
    132    diskSize = orig.diskSize;
    133    state = orig.state;
    134    justLooking = orig.justLooking;
    135    syncing = orig.syncing;
    136    mainCrcOk = orig.mainCrcOk;
    137    secondCrcOk = orig.secondCrcOk;
    138    mainPartsCrcOk = orig.mainPartsCrcOk;
    139    secondPartsCrcOk = orig.secondPartsCrcOk;
    140    apmFound = orig.apmFound;
    141    bsdFound = orig.bsdFound;
    142    sectorAlignment = orig.sectorAlignment;
    143    beQuiet = orig.beQuiet;
    144    whichWasUsed = orig.whichWasUsed;
    145 
    146    myDisk.OpenForRead(orig.myDisk.GetName());
    147 
    148    delete[] partitions;
    149    partitions = new GPTPart [numParts];
    150    if (partitions == NULL) {
    151       cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
    152            << "Terminating!\n";
    153       exit(1);
    154    } // if
    155    for (i = 0; i < numParts; i++) {
    156       partitions[i] = orig.partitions[i];
    157    } // for
    158 
    159    return *this;
    160 } // GPTData::operator=()
    161 
    162 /*********************************************************************
    163  *                                                                   *
    164  * Begin functions that verify data, or that adjust the verification *
    165  * information (compute CRCs, rebuild headers)                       *
    166  *                                                                   *
    167  *********************************************************************/
    168 
    169 // Perform detailed verification, reporting on any problems found, but
    170 // do *NOT* recover from these problems. Returns the total number of
    171 // problems identified.
    172 int GPTData::Verify(void) {
    173    int problems = 0, alignProbs = 0;
    174    uint32_t i, numSegments;
    175    uint64_t totalFree, largestSegment;
    176 
    177    // First, check for CRC errors in the GPT data....
    178    if (!mainCrcOk) {
    179       problems++;
    180       cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
    181            << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
    182            << "header ('b' on the recovery & transformation menu). This report may be a false\n"
    183            << "alarm if you've already corrected other problems.\n";
    184    } // if
    185    if (!mainPartsCrcOk) {
    186       problems++;
    187       cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
    188            << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
    189            << "transformation menu). This report may be a false alarm if you've already\n"
    190            << "corrected other problems.\n";
    191    } // if
    192    if (!secondCrcOk) {
    193       problems++;
    194       cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
    195            << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
    196            << "header ('d' on the recovery & transformation menu). This report may be a false\n"
    197            << "alarm if you've already corrected other problems.\n";
    198    } // if
    199    if (!secondPartsCrcOk) {
    200       problems++;
    201       cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
    202            << "be corrupt. This program will automatically create a new backup partition\n"
    203            << "table when you save your partitions.\n";
    204    } // if
    205 
    206    // Now check that the main and backup headers both point to themselves....
    207    if (mainHeader.currentLBA != 1) {
    208       problems++;
    209       cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
    210            << "is being automatically corrected, but it may be a symptom of more serious\n"
    211            << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
    212       mainHeader.currentLBA = 1;
    213    } // if
    214    if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
    215       problems++;
    216       cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
    217            << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
    218            << "option on the experts' menu to adjust the secondary header's and partition\n"
    219            << "table's locations.\n";
    220    } // if
    221 
    222    // Now check that critical main and backup GPT entries match each other
    223    if (mainHeader.currentLBA != secondHeader.backupLBA) {
    224       problems++;
    225       cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
    226            << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
    227            << secondHeader.backupLBA << ").\n";
    228    } // if
    229    if (mainHeader.backupLBA != secondHeader.currentLBA) {
    230       problems++;
    231       cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
    232            << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
    233            << secondHeader.currentLBA << ").\n"
    234            << "The 'e' option on the experts' menu may fix this problem.\n";
    235    } // if
    236    if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
    237       problems++;
    238       cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
    239            << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
    240            << secondHeader.firstUsableLBA << ")\n";
    241    } // if
    242    if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
    243       problems++;
    244       cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
    245            << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
    246            << secondHeader.lastUsableLBA << ")\n"
    247            << "The 'e' option on the experts' menu can probably fix this problem.\n";
    248    } // if
    249    if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
    250       problems++;
    251       cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
    252            << ") doesn't\nmatch the backup GPT header's disk GUID ("
    253            << secondHeader.diskGUID << ")\n"
    254            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
    255            << "select one or the other header.\n";
    256    } // if
    257    if (mainHeader.numParts != secondHeader.numParts) {
    258       problems++;
    259       cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
    260            << ") doesn't\nmatch the backup GPT header's number of partitions ("
    261            << secondHeader.numParts << ")\n"
    262            << "Resizing the partition table ('s' on the experts' menu) may help.\n";
    263    } // if
    264    if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
    265       problems++;
    266       cout << "\nProblem: main GPT header's size of partition entries ("
    267            << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
    268            << "match the backup GPT header's size of partition entries ("
    269            << secondHeader.sizeOfPartitionEntries << ")\n"
    270            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
    271            << "select one or the other header.\n";
    272    } // if
    273 
    274    // Now check for a few other miscellaneous problems...
    275    // Check that the disk size will hold the data...
    276    if (mainHeader.backupLBA >= diskSize) {
    277       problems++;
    278       cout << "\nProblem: Disk is too small to hold all the data!\n"
    279            << "(Disk size is " << diskSize << " sectors, needs to be "
    280            << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
    281            << "The 'e' option on the experts' menu may fix this problem.\n";
    282    } // if
    283 
    284    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
    285       problems++;
    286       cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
    287            << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
    288            << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
    289            << "The 'e' option on the experts' menu will probably fix this problem\n";
    290    }
    291 
    292    // Check for overlapping partitions....
    293    problems += FindOverlaps();
    294 
    295    // Check for insane partitions (start after end, hugely big, etc.)
    296    problems += FindInsanePartitions();
    297 
    298    // Check for mismatched MBR and GPT partitions...
    299    problems += FindHybridMismatches();
    300 
    301    // Check for MBR-specific problems....
    302    problems += VerifyMBR();
    303 
    304    // Check for a 0xEE protective partition that's marked as active....
    305    if (protectiveMBR.IsEEActive()) {
    306       cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
    307            << "technically a violation of the GPT specification, and can cause some EFIs to\n"
    308            << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
    309            << "computers. You can clear this flag by creating a fresh protective MBR using\n"
    310            << "the 'n' option on the experts' menu.\n";
    311    }
    312 
    313    // Verify that partitions don't run into GPT data areas....
    314    problems += CheckGPTSize();
    315 
    316    if (!protectiveMBR.DoTheyFit()) {
    317       cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
    318            << "fresh protective or hybrid MBR is recommended.\n";
    319       problems++;
    320    }
    321 
    322    // Check that partitions are aligned on proper boundaries (for WD Advanced
    323    // Format and similar disks)....
    324    for (i = 0; i < numParts; i++) {
    325       if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % sectorAlignment) != 0) {
    326          cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
    327               << sectorAlignment << "-sector boundary. This may\nresult "
    328               << "in degraded performance on some modern (2009 and later) hard disks.\n";
    329          alignProbs++;
    330       } // if
    331    } // for
    332    if (alignProbs > 0)
    333       cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
    334       << "for information on disk alignment.\n";
    335 
    336    // Now compute available space, but only if no problems found, since
    337    // problems could affect the results
    338    if (problems == 0) {
    339       totalFree = FindFreeBlocks(&numSegments, &largestSegment);
    340       cout << "\nNo problems found. " << totalFree << " free sectors ("
    341            << BytesToIeee(totalFree, blockSize) << ") available in "
    342            << numSegments << "\nsegments, the largest of which is "
    343            << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
    344            << ") in size.\n";
    345    } else {
    346       cout << "\nIdentified " << problems << " problems!\n";
    347    } // if/else
    348 
    349    return (problems);
    350 } // GPTData::Verify()
    351 
    352 // Checks to see if the GPT tables overrun existing partitions; if they
    353 // do, issues a warning but takes no action. Returns number of problems
    354 // detected (0 if OK, 1 to 2 if problems).
    355 int GPTData::CheckGPTSize(void) {
    356    uint64_t overlap, firstUsedBlock, lastUsedBlock;
    357    uint32_t i;
    358    int numProbs = 0;
    359 
    360    // first, locate the first & last used blocks
    361    firstUsedBlock = UINT64_MAX;
    362    lastUsedBlock = 0;
    363    for (i = 0; i < numParts; i++) {
    364       if (partitions[i].IsUsed()) {
    365          if (partitions[i].GetFirstLBA() < firstUsedBlock)
    366             firstUsedBlock = partitions[i].GetFirstLBA();
    367          if (partitions[i].GetLastLBA() > lastUsedBlock) {
    368             lastUsedBlock = partitions[i].GetLastLBA();
    369          } // if
    370       } // if
    371    } // for
    372 
    373    // If the disk size is 0 (the default), then it means that various
    374    // variables aren't yet set, so the below tests will be useless;
    375    // therefore we should skip everything
    376    if (diskSize != 0) {
    377       if (mainHeader.firstUsableLBA > firstUsedBlock) {
    378          overlap = mainHeader.firstUsableLBA - firstUsedBlock;
    379          cout << "Warning! Main partition table overlaps the first partition by "
    380               << overlap << " blocks!\n";
    381          if (firstUsedBlock > 2) {
    382             cout << "Try reducing the partition table size by " << overlap * 4
    383                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
    384          } else {
    385             cout << "You will need to delete this partition or resize it in another utility.\n";
    386          } // if/else
    387          numProbs++;
    388       } // Problem at start of disk
    389       if (mainHeader.lastUsableLBA < lastUsedBlock) {
    390          overlap = lastUsedBlock - mainHeader.lastUsableLBA;
    391          cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
    392               << overlap << " blocks!\n";
    393          if (lastUsedBlock > (diskSize - 2)) {
    394             cout << "You will need to delete this partition or resize it in another utility.\n";
    395          } else {
    396             cout << "Try reducing the partition table size by " << overlap * 4
    397                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
    398          } // if/else
    399          numProbs++;
    400       } // Problem at end of disk
    401    } // if (diskSize != 0)
    402    return numProbs;
    403 } // GPTData::CheckGPTSize()
    404 
    405 // Check the validity of the GPT header. Returns 1 if the main header
    406 // is valid, 2 if the backup header is valid, 3 if both are valid, and
    407 // 0 if neither is valid. Note that this function checks the GPT signature,
    408 // revision value, and CRCs in both headers.
    409 int GPTData::CheckHeaderValidity(void) {
    410    int valid = 3;
    411 
    412    cout.setf(ios::uppercase);
    413    cout.fill('0');
    414 
    415    // Note: failed GPT signature checks produce no error message because
    416    // a message is displayed in the ReversePartitionBytes() function
    417    if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
    418       valid -= 1;
    419    } else if ((mainHeader.revision != 0x00010000) && valid) {
    420       valid -= 1;
    421       cout << "Unsupported GPT version in main header; read 0x";
    422       cout.width(8);
    423       cout << hex << mainHeader.revision << ", should be\n0x";
    424       cout.width(8);
    425       cout << UINT32_C(0x00010000) << dec << "\n";
    426    } // if/else/if
    427 
    428    if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
    429       valid -= 2;
    430    } else if ((secondHeader.revision != 0x00010000) && valid) {
    431       valid -= 2;
    432       cout << "Unsupported GPT version in backup header; read 0x";
    433       cout.width(8);
    434       cout << hex << secondHeader.revision << ", should be\n0x";
    435       cout.width(8);
    436       cout << UINT32_C(0x00010000) << dec << "\n";
    437    } // if/else/if
    438 
    439    // Check for an Apple disk signature
    440    if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
    441         (mainHeader.signature << 32) == APM_SIGNATURE2) {
    442       apmFound = 1; // Will display warning message later
    443    } // if
    444    cout.fill(' ');
    445 
    446    return valid;
    447 } // GPTData::CheckHeaderValidity()
    448 
    449 // Check the header CRC to see if it's OK...
    450 // Note: Must be called with header in platform-ordered byte order.
    451 // Returns 1 if header's computed CRC matches the stored value, 0 if the
    452 // computed and stored values don't match
    453 int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
    454    uint32_t oldCRC, newCRC, hSize;
    455    uint8_t *temp;
    456 
    457    // Back up old header CRC and then blank it, since it must be 0 for
    458    // computation to be valid
    459    oldCRC = header->headerCRC;
    460    header->headerCRC = UINT32_C(0);
    461 
    462    hSize = header->headerSize;
    463 
    464    if (IsLittleEndian() == 0)
    465       ReverseHeaderBytes(header);
    466 
    467    if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
    468       if (warn) {
    469          cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
    470          cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
    471       } // if
    472       hSize = HEADER_SIZE;
    473    } else if ((hSize > sizeof(GPTHeader)) && warn) {
    474       cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
    475       cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
    476            << "which may result in a CRC false alarm.\n";
    477    } // if/elseif
    478    temp = new uint8_t[hSize];
    479    if (temp != NULL) {
    480       memset(temp, 0, hSize);
    481       if (hSize < sizeof(GPTHeader))
    482          memcpy(temp, header, hSize);
    483       else
    484          memcpy(temp, header, sizeof(GPTHeader));
    485 
    486       newCRC = chksum_crc32((unsigned char*) temp, hSize);
    487       delete[] temp;
    488    } else {
    489       cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
    490       exit(1);
    491    }
    492    if (IsLittleEndian() == 0)
    493       ReverseHeaderBytes(header);
    494    header->headerCRC = oldCRC;
    495    return (oldCRC == newCRC);
    496 } // GPTData::CheckHeaderCRC()
    497 
    498 // Recompute all the CRCs. Must be called before saving if any changes have
    499 // been made. Must be called on platform-ordered data (this function reverses
    500 // byte order and then undoes that reversal.)
    501 void GPTData::RecomputeCRCs(void) {
    502    uint32_t crc, hSize;
    503    int littleEndian = 1;
    504 
    505    // If the header size is bigger than the GPT header data structure, reset it;
    506    // otherwise, set both header sizes to whatever the main one is....
    507    if (mainHeader.headerSize > sizeof(GPTHeader))
    508       hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
    509    else
    510       hSize = secondHeader.headerSize = mainHeader.headerSize;
    511 
    512    if ((littleEndian = IsLittleEndian()) == 0) {
    513       ReversePartitionBytes();
    514       ReverseHeaderBytes(&mainHeader);
    515       ReverseHeaderBytes(&secondHeader);
    516    } // if
    517 
    518    // Compute CRC of partition tables & store in main and secondary headers
    519    crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
    520    mainHeader.partitionEntriesCRC = crc;
    521    secondHeader.partitionEntriesCRC = crc;
    522    if (littleEndian == 0) {
    523       ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
    524       ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
    525    } // if
    526 
    527    // Zero out GPT headers' own CRCs (required for correct computation)
    528    mainHeader.headerCRC = 0;
    529    secondHeader.headerCRC = 0;
    530 
    531    crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
    532    if (littleEndian == 0)
    533       ReverseBytes(&crc, 4);
    534    mainHeader.headerCRC = crc;
    535    crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
    536    if (littleEndian == 0)
    537       ReverseBytes(&crc, 4);
    538    secondHeader.headerCRC = crc;
    539 
    540    if (littleEndian == 0) {
    541       ReverseHeaderBytes(&mainHeader);
    542       ReverseHeaderBytes(&secondHeader);
    543       ReversePartitionBytes();
    544    } // if
    545 } // GPTData::RecomputeCRCs()
    546 
    547 // Rebuild the main GPT header, using the secondary header as a model.
    548 // Typically called when the main header has been found to be corrupt.
    549 void GPTData::RebuildMainHeader(void) {
    550    mainHeader.signature = GPT_SIGNATURE;
    551    mainHeader.revision = secondHeader.revision;
    552    mainHeader.headerSize = secondHeader.headerSize;
    553    mainHeader.headerCRC = UINT32_C(0);
    554    mainHeader.reserved = secondHeader.reserved;
    555    mainHeader.currentLBA = secondHeader.backupLBA;
    556    mainHeader.backupLBA = secondHeader.currentLBA;
    557    mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
    558    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
    559    mainHeader.diskGUID = secondHeader.diskGUID;
    560    mainHeader.partitionEntriesLBA = UINT64_C(2);
    561    mainHeader.numParts = secondHeader.numParts;
    562    mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
    563    mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
    564    memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
    565    mainCrcOk = secondCrcOk;
    566    SetGPTSize(mainHeader.numParts, 0);
    567 } // GPTData::RebuildMainHeader()
    568 
    569 // Rebuild the secondary GPT header, using the main header as a model.
    570 void GPTData::RebuildSecondHeader(void) {
    571    secondHeader.signature = GPT_SIGNATURE;
    572    secondHeader.revision = mainHeader.revision;
    573    secondHeader.headerSize = mainHeader.headerSize;
    574    secondHeader.headerCRC = UINT32_C(0);
    575    secondHeader.reserved = mainHeader.reserved;
    576    secondHeader.currentLBA = mainHeader.backupLBA;
    577    secondHeader.backupLBA = mainHeader.currentLBA;
    578    secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
    579    secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
    580    secondHeader.diskGUID = mainHeader.diskGUID;
    581    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
    582    secondHeader.numParts = mainHeader.numParts;
    583    secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
    584    secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
    585    memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
    586    secondCrcOk = mainCrcOk;
    587    SetGPTSize(secondHeader.numParts, 0);
    588 } // GPTData::RebuildSecondHeader()
    589 
    590 // Search for hybrid MBR entries that have no corresponding GPT partition.
    591 // Returns number of such mismatches found
    592 int GPTData::FindHybridMismatches(void) {
    593    int i, found, numFound = 0;
    594    uint32_t j;
    595    uint64_t mbrFirst, mbrLast;
    596 
    597    for (i = 0; i < 4; i++) {
    598       if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
    599          j = 0;
    600          found = 0;
    601          mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
    602          mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
    603          do {
    604             if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
    605                 (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
    606                found = 1;
    607             j++;
    608          } while ((!found) && (j < numParts));
    609          if (!found) {
    610             numFound++;
    611             cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
    612                  << i + 1 << ", of type 0x";
    613             cout.fill('0');
    614             cout.setf(ios::uppercase);
    615             cout.width(2);
    616             cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
    617                  << "has no corresponding GPT partition! You may continue, but this condition\n"
    618                  << "might cause data loss in the future!\a\n" << dec;
    619             cout.fill(' ');
    620          } // if
    621       } // if
    622    } // for
    623    return numFound;
    624 } // GPTData::FindHybridMismatches
    625 
    626 // Find overlapping partitions and warn user about them. Returns number of
    627 // overlapping partitions.
    628 // Returns number of overlapping segments found.
    629 int GPTData::FindOverlaps(void) {
    630    int problems = 0;
    631    uint32_t i, j;
    632 
    633    for (i = 1; i < numParts; i++) {
    634       for (j = 0; j < i; j++) {
    635          if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
    636              (partitions[i].DoTheyOverlap(partitions[j]))) {
    637             problems++;
    638             cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
    639             cout << "  Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
    640                  << " to " << partitions[i].GetLastLBA() << "\n";
    641             cout << "  Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
    642                  << " to " << partitions[j].GetLastLBA() << "\n";
    643          } // if
    644       } // for j...
    645    } // for i...
    646    return problems;
    647 } // GPTData::FindOverlaps()
    648 
    649 // Find partitions that are insane -- they start after they end or are too
    650 // big for the disk. (The latter should duplicate detection of overlaps
    651 // with GPT backup data structures, but better to err on the side of
    652 // redundant tests than to miss something....)
    653 // Returns number of problems found.
    654 int GPTData::FindInsanePartitions(void) {
    655    uint32_t i;
    656    int problems = 0;
    657 
    658    for (i = 0; i < numParts; i++) {
    659       if (partitions[i].IsUsed()) {
    660          if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
    661             problems++;
    662             cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
    663          } // if
    664          if (partitions[i].GetLastLBA() >= diskSize) {
    665             problems++;
    666          cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
    667          } // if
    668       } // if
    669    } // for
    670    return problems;
    671 } // GPTData::FindInsanePartitions(void)
    672 
    673 
    674 /******************************************************************
    675  *                                                                *
    676  * Begin functions that load data from disk or save data to disk. *
    677  *                                                                *
    678  ******************************************************************/
    679 
    680 // Change the filename associated with the GPT. Used for duplicating
    681 // the partition table to a new disk and saving backups.
    682 // Returns 1 on success, 0 on failure.
    683 int GPTData::SetDisk(const string & deviceFilename) {
    684    int err, allOK = 1;
    685 
    686    device = deviceFilename;
    687    if (allOK && myDisk.OpenForRead(deviceFilename)) {
    688       // store disk information....
    689       diskSize = myDisk.DiskSize(&err);
    690       blockSize = (uint32_t) myDisk.GetBlockSize();
    691    } // if
    692    protectiveMBR.SetDisk(&myDisk);
    693    protectiveMBR.SetDiskSize(diskSize);
    694    protectiveMBR.SetBlockSize(blockSize);
    695    return allOK;
    696 } // GPTData::SetDisk()
    697 
    698 // Scan for partition data. This function loads the MBR data (regular MBR or
    699 // protective MBR) and loads BSD disklabel data (which is probably invalid).
    700 // It also looks for APM data, forces a load of GPT data, and summarizes
    701 // the results.
    702 void GPTData::PartitionScan(void) {
    703    BSDData bsdDisklabel;
    704 
    705    // Read the MBR & check for BSD disklabel
    706    protectiveMBR.ReadMBRData(&myDisk);
    707    bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
    708 
    709    // Load the GPT data, whether or not it's valid
    710    ForceLoadGPTData();
    711 
    712    // Some tools create a 0xEE partition that's too big. If this is detected,
    713    // normalize it....
    714    if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
    715       if (!beQuiet) {
    716          cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
    717       } // if
    718       protectiveMBR.MakeProtectiveMBR();
    719    } // if
    720 
    721    if (!beQuiet) {
    722       cout << "Partition table scan:\n";
    723       protectiveMBR.ShowState();
    724       bsdDisklabel.ShowState();
    725       ShowAPMState(); // Show whether there's an Apple Partition Map present
    726       ShowGPTState(); // Show GPT status
    727       cout << "\n";
    728    } // if
    729 
    730    if (apmFound) {
    731       cout << "\n*******************************************************************\n"
    732            << "This disk appears to contain an Apple-format (APM) partition table!\n";
    733       if (!justLooking) {
    734          cout << "It will be destroyed if you continue!\n";
    735       } // if
    736       cout << "*******************************************************************\n\n\a";
    737    } // if
    738 } // GPTData::PartitionScan()
    739 
    740 // Read GPT data from a disk.
    741 int GPTData::LoadPartitions(const string & deviceFilename) {
    742    BSDData bsdDisklabel;
    743    int err, allOK = 1;
    744    MBRValidity mbrState;
    745 
    746    if (myDisk.OpenForRead(deviceFilename)) {
    747       err = myDisk.OpenForWrite(deviceFilename);
    748       if ((err == 0) && (!justLooking)) {
    749          cout << "\aNOTE: Write test failed with error number " << errno
    750               << ". It will be impossible to save\nchanges to this disk's partition table!\n";
    751 #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
    752          cout << "You may be able to enable writes by exiting this program, typing\n"
    753               << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
    754               << "program.\n";
    755 #endif
    756          cout << "\n";
    757       } // if
    758       myDisk.Close(); // Close and re-open read-only in case of bugs
    759    } else allOK = 0; // if
    760 
    761    if (allOK && myDisk.OpenForRead(deviceFilename)) {
    762       // store disk information....
    763       diskSize = myDisk.DiskSize(&err);
    764       blockSize = (uint32_t) myDisk.GetBlockSize();
    765       device = deviceFilename;
    766       PartitionScan(); // Check for partition types, load GPT, & print summary
    767 
    768       whichWasUsed = UseWhichPartitions();
    769       switch (whichWasUsed) {
    770          case use_mbr:
    771             XFormPartitions();
    772             break;
    773          case use_bsd:
    774             bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
    775 //            bsdDisklabel.DisplayBSDData();
    776             ClearGPTData();
    777             protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
    778             XFormDisklabel(&bsdDisklabel);
    779             break;
    780          case use_gpt:
    781             mbrState = protectiveMBR.GetValidity();
    782             if ((mbrState == invalid) || (mbrState == mbr))
    783                protectiveMBR.MakeProtectiveMBR();
    784             break;
    785          case use_new:
    786             ClearGPTData();
    787             protectiveMBR.MakeProtectiveMBR();
    788             break;
    789          case use_abort:
    790             allOK = 0;
    791             cerr << "Invalid partition data!\n";
    792             break;
    793       } // switch
    794 
    795       if (allOK)
    796          CheckGPTSize();
    797       myDisk.Close();
    798       ComputeAlignment();
    799    } else {
    800       allOK = 0;
    801    } // if/else
    802    return (allOK);
    803 } // GPTData::LoadPartitions()
    804 
    805 // Loads the GPT, as much as possible. Returns 1 if this seems to have
    806 // succeeded, 0 if there are obvious problems....
    807 int GPTData::ForceLoadGPTData(void) {
    808    int allOK, validHeaders, loadedTable = 1;
    809 
    810    allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
    811 
    812    if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
    813       allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
    814    } else {
    815       allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
    816       if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
    817          cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
    818               << "secondary header from the last sector of the disk! You should use 'v' to\n"
    819               << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
    820               << "the disk.\n";
    821    } // if/else
    822    if (!allOK)
    823       state = gpt_invalid;
    824 
    825    // Return valid headers code: 0 = both headers bad; 1 = main header
    826    // good, backup bad; 2 = backup header good, main header bad;
    827    // 3 = both headers good. Note these codes refer to valid GPT
    828    // signatures, version numbers, and CRCs.
    829    validHeaders = CheckHeaderValidity();
    830 
    831    // Read partitions (from primary array)
    832    if (validHeaders > 0) { // if at least one header is OK....
    833       // GPT appears to be valid....
    834       state = gpt_valid;
    835 
    836       // We're calling the GPT valid, but there's a possibility that one
    837       // of the two headers is corrupt. If so, use the one that seems to
    838       // be in better shape to regenerate the bad one
    839       if (validHeaders == 1) { // valid main header, invalid backup header
    840          cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
    841               << "backup header from main header.\n\n";
    842          RebuildSecondHeader();
    843          state = gpt_corrupt;
    844          secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
    845       } else if (validHeaders == 2) { // valid backup header, invalid main header
    846          cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
    847               << "from backup!\n\n";
    848          RebuildMainHeader();
    849          state = gpt_corrupt;
    850          mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
    851       } // if/else/if
    852 
    853       // Figure out which partition table to load....
    854       // Load the main partition table, since either its header's CRC is OK or the
    855       // backup header's CRC is not OK....
    856       if (mainCrcOk || !secondCrcOk) {
    857          if (LoadMainTable() == 0)
    858             allOK = 0;
    859       } else { // bad main header CRC and backup header CRC is OK
    860          state = gpt_corrupt;
    861          if (LoadSecondTableAsMain()) {
    862             loadedTable = 2;
    863             cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
    864          } else { // backup table bad, bad main header CRC, but try main table in desperation....
    865             if (LoadMainTable() == 0) {
    866                allOK = 0;
    867                loadedTable = 0;
    868                cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
    869             } // if
    870          } // if/else (LoadSecondTableAsMain())
    871       } // if/else (load partition table)
    872 
    873       if (loadedTable == 1)
    874          secondPartsCrcOk = CheckTable(&secondHeader);
    875       else if (loadedTable == 2)
    876          mainPartsCrcOk = CheckTable(&mainHeader);
    877       else
    878          mainPartsCrcOk = secondPartsCrcOk = 0;
    879 
    880       // Problem with main partition table; if backup is OK, use it instead....
    881       if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
    882          state = gpt_corrupt;
    883          allOK = allOK && LoadSecondTableAsMain();
    884          mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
    885          cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
    886               << "partition table\ninstead of main partition table!\n\n";
    887       } // if */
    888 
    889       // Check for valid CRCs and warn if there are problems
    890       if ((mainCrcOk == 0) || (secondCrcOk == 0) || (mainPartsCrcOk == 0) ||
    891            (secondPartsCrcOk == 0)) {
    892          cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n\n";
    893          state = gpt_corrupt;
    894       } // if
    895    } else {
    896       state = gpt_invalid;
    897    } // if/else
    898    return allOK;
    899 } // GPTData::ForceLoadGPTData()
    900 
    901 // Loads the partition table pointed to by the main GPT header. The
    902 // main GPT header in memory MUST be valid for this call to do anything
    903 // sensible!
    904 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
    905 int GPTData::LoadMainTable(void) {
    906    return LoadPartitionTable(mainHeader, myDisk);
    907 } // GPTData::LoadMainTable()
    908 
    909 // Load the second (backup) partition table as the primary partition
    910 // table. Used in repair functions, and when starting up if the main
    911 // partition table is damaged.
    912 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
    913 int GPTData::LoadSecondTableAsMain(void) {
    914    return LoadPartitionTable(secondHeader, myDisk);
    915 } // GPTData::LoadSecondTableAsMain()
    916 
    917 // Load a single GPT header (main or backup) from the specified disk device and
    918 // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
    919 // value appropriately.
    920 // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
    921 // failure.
    922 int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
    923    int allOK = 1;
    924    GPTHeader tempHeader;
    925 
    926    disk.Seek(sector);
    927    if (disk.Read(&tempHeader, 512) != 512) {
    928       cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
    929       allOK = 0;
    930    } // if
    931 
    932    // Reverse byte order, if necessary
    933    if (IsLittleEndian() == 0) {
    934       ReverseHeaderBytes(&tempHeader);
    935    } // if
    936    *crcOk = CheckHeaderCRC(&tempHeader);
    937 
    938    if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
    939       allOK = SetGPTSize(tempHeader.numParts, 0);
    940    }
    941 
    942    *header = tempHeader;
    943    return allOK;
    944 } // GPTData::LoadHeader
    945 
    946 // Load a partition table (either main or secondary) from the specified disk,
    947 // using header as a reference for what to load. If sector != 0 (the default
    948 // is 0), loads from the specified sector; otherwise loads from the sector
    949 // indicated in header.
    950 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
    951 int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
    952    uint32_t sizeOfParts, newCRC;
    953    int retval;
    954 
    955    if (disk.OpenForRead()) {
    956       if (sector == 0) {
    957          retval = disk.Seek(header.partitionEntriesLBA);
    958       } else {
    959          retval = disk.Seek(sector);
    960       } // if/else
    961       if (retval == 1)
    962          retval = SetGPTSize(header.numParts, 0);
    963       if (retval == 1) {
    964          sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
    965          if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
    966             cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
    967             retval = 0;
    968          } // if
    969          newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
    970          mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
    971          if (IsLittleEndian() == 0)
    972             ReversePartitionBytes();
    973          if (!mainPartsCrcOk) {
    974             cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
    975          } // if
    976       } else {
    977          cerr << "Error! Couldn't seek to partition table!\n";
    978       } // if/else
    979    } else {
    980       cerr << "Error! Couldn't open device " << device
    981            << " when reading partition table!\n";
    982       retval = 0;
    983    } // if/else
    984    return retval;
    985 } // GPTData::LoadPartitionsTable()
    986 
    987 // Check the partition table pointed to by header, but don't keep it
    988 // around.
    989 // Returns 1 if the CRC is OK & this table matches the one already in memory,
    990 // 0 if not or if there was a read error.
    991 int GPTData::CheckTable(struct GPTHeader *header) {
    992    uint32_t sizeOfParts, newCRC;
    993    GPTPart *partsToCheck;
    994    GPTHeader *otherHeader;
    995    int allOK = 0;
    996 
    997    // Load partition table into temporary storage to check
    998    // its CRC and store the results, then discard this temporary
    999    // storage, since we don't use it in any but recovery operations
   1000    if (myDisk.Seek(header->partitionEntriesLBA)) {
   1001       partsToCheck = new GPTPart[header->numParts];
   1002       sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
   1003       if (partsToCheck == NULL) {
   1004          cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
   1005          exit(1);
   1006       } // if
   1007       if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
   1008          cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
   1009       } else {
   1010          newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
   1011          allOK = (newCRC == header->partitionEntriesCRC);
   1012          if (header == &mainHeader)
   1013             otherHeader = &secondHeader;
   1014          else
   1015             otherHeader = &mainHeader;
   1016          if (newCRC != otherHeader->partitionEntriesCRC) {
   1017             cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
   1018                  << "on the recovery & transformation menu to examine the two tables.\n\n";
   1019             allOK = 0;
   1020          } // if
   1021       } // if/else
   1022       delete[] partsToCheck;
   1023    } // if
   1024    return allOK;
   1025 } // GPTData::CheckTable()
   1026 
   1027 // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
   1028 // header later on the disk without asking for permission, if necessary, and
   1029 // doesn't confirm the operation before writing. If quiet==0, asks permission
   1030 // before moving the second header and asks for final confirmation of any
   1031 // write.
   1032 // Returns 1 on successful write, 0 if there was a problem.
   1033 int GPTData::SaveGPTData(int quiet) {
   1034    int allOK = 1, syncIt = 1;
   1035    char answer;
   1036 
   1037    // First do some final sanity checks....
   1038 
   1039    // This test should only fail on read-only disks....
   1040    if (justLooking) {
   1041       cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
   1042       allOK = 0;
   1043    } // if
   1044 
   1045    // Check that disk is really big enough to handle the second header...
   1046    if (mainHeader.backupLBA >= diskSize) {
   1047       cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
   1048            << "header, but other problems may occur!\n";
   1049       MoveSecondHeaderToEnd();
   1050    } // if
   1051 
   1052    // Is there enough space to hold the GPT headers and partition tables,
   1053    // given the partition sizes?
   1054    if (CheckGPTSize() > 0) {
   1055       allOK = 0;
   1056    } // if
   1057 
   1058    // Check that second header is properly placed. Warn and ask if this should
   1059    // be corrected if the test fails....
   1060    if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
   1061       if (quiet == 0) {
   1062          cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
   1063               << "correct this problem? ";
   1064          if (GetYN() == 'Y') {
   1065             MoveSecondHeaderToEnd();
   1066             cout << "Have moved second header and partition table to correct location.\n";
   1067          } else {
   1068             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
   1069          } // if correction requested
   1070       } else { // Go ahead and do correction automatically
   1071          MoveSecondHeaderToEnd();
   1072       } // if/else quiet
   1073    } // if
   1074 
   1075    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
   1076       if (quiet == 0) {
   1077          cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
   1078               << "this problem? ";
   1079          if (GetYN() == 'Y') {
   1080             MoveSecondHeaderToEnd();
   1081             cout << "Have adjusted the second header and last usable sector value.\n";
   1082          } else {
   1083             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
   1084          } // if correction requested
   1085       } else { // go ahead and do correction automatically
   1086          MoveSecondHeaderToEnd();
   1087       } // if/else quiet
   1088    } // if
   1089 
   1090    // Check for overlapping or insane partitions....
   1091    if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
   1092       allOK = 0;
   1093       cerr << "Aborting write operation!\n";
   1094    } // if
   1095 
   1096    // Check that protective MBR fits, and warn if it doesn't....
   1097    if (!protectiveMBR.DoTheyFit()) {
   1098       cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
   1099            << "fresh protective or hybrid MBR is recommended.\n";
   1100    }
   1101 
   1102    // Check for mismatched MBR and GPT data, but let it pass if found
   1103    // (function displays warning message)
   1104    FindHybridMismatches();
   1105 
   1106    RecomputeCRCs();
   1107 
   1108    if ((allOK) && (!quiet)) {
   1109       cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
   1110            << "PARTITIONS!!\n\nDo you want to proceed? ";
   1111       answer = GetYN();
   1112       if (answer == 'Y') {
   1113          cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
   1114       } else {
   1115          allOK = 0;
   1116       } // if/else
   1117    } // if
   1118 
   1119    // Do it!
   1120    if (allOK) {
   1121       if (myDisk.OpenForWrite()) {
   1122          // As per UEFI specs, write the secondary table and GPT first....
   1123          allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
   1124          if (!allOK) {
   1125             cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
   1126                  << "menu will resolve this problem.\n";
   1127             syncIt = 0;
   1128          } // if
   1129 
   1130          // Now write the secondary GPT header...
   1131          allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
   1132 
   1133          // Now write the main partition tables...
   1134          allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
   1135 
   1136          // Now write the main GPT header...
   1137          allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
   1138 
   1139          // To top it off, write the protective MBR...
   1140          allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
   1141 
   1142          // re-read the partition table
   1143          // Note: Done even if some write operations failed, but not if all of them failed.
   1144          // Done this way because I've received one problem report from a user one whose
   1145          // system the MBR write failed but everything else was OK (on a GPT disk under
   1146          // Windows), and the failure to sync therefore caused Windows to restore the
   1147          // original partition table from its cache. OTOH, such restoration might be
   1148          // desirable if the error occurs later; but that seems unlikely unless the initial
   1149          // write fails....
   1150          if (syncIt && syncing)
   1151             myDisk.DiskSync();
   1152 
   1153          if (allOK) { // writes completed OK
   1154             cout << "The operation has completed successfully.\n";
   1155          } else {
   1156             cerr << "Warning! An error was reported when writing the partition table! This error\n"
   1157                  << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
   1158          } // if/else
   1159 
   1160          myDisk.Close();
   1161       } else {
   1162          cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
   1163               << errno << "! Aborting write!\n";
   1164          allOK = 0;
   1165       } // if/else
   1166    } else {
   1167       cout << "Aborting write of new partition table.\n";
   1168    } // if
   1169 
   1170    return (allOK);
   1171 } // GPTData::SaveGPTData()
   1172 
   1173 // Save GPT data to a backup file. This function does much less error
   1174 // checking than SaveGPTData(). It can therefore preserve many types of
   1175 // corruption for later analysis; however, it preserves only the MBR,
   1176 // the main GPT header, the backup GPT header, and the main partition
   1177 // table; it discards the backup partition table, since it should be
   1178 // identical to the main partition table on healthy disks.
   1179 int GPTData::SaveGPTBackup(const string & filename) {
   1180    int allOK = 1;
   1181    DiskIO backupFile;
   1182 
   1183    if (backupFile.OpenForWrite(filename)) {
   1184       // Recomputing the CRCs is likely to alter them, which could be bad
   1185       // if the intent is to save a potentially bad GPT for later analysis;
   1186       // but if we don't do this, we get bogus errors when we load the
   1187       // backup. I'm favoring misses over false alarms....
   1188       RecomputeCRCs();
   1189 
   1190       protectiveMBR.WriteMBRData(&backupFile);
   1191       protectiveMBR.SetDisk(&myDisk);
   1192 
   1193       if (allOK) {
   1194          // MBR write closed disk, so re-open and seek to end....
   1195          backupFile.OpenForWrite();
   1196          allOK = SaveHeader(&mainHeader, backupFile, 1);
   1197       } // if (allOK)
   1198 
   1199       if (allOK)
   1200          allOK = SaveHeader(&secondHeader, backupFile, 2);
   1201 
   1202       if (allOK)
   1203          allOK = SavePartitionTable(backupFile, 3);
   1204 
   1205       if (allOK) { // writes completed OK
   1206          cout << "The operation has completed successfully.\n";
   1207       } else {
   1208          cerr << "Warning! An error was reported when writing the backup file.\n"
   1209               << "It may not be usable!\n";
   1210       } // if/else
   1211       backupFile.Close();
   1212    } else {
   1213       cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
   1214       allOK = 0;
   1215    } // if/else
   1216    return allOK;
   1217 } // GPTData::SaveGPTBackup()
   1218 
   1219 // Write a GPT header (main or backup) to the specified sector. Used by both
   1220 // the SaveGPTData() and SaveGPTBackup() functions.
   1221 // Should be passed an architecture-appropriate header (DO NOT call
   1222 // ReverseHeaderBytes() on the header before calling this function)
   1223 // Returns 1 on success, 0 on failure
   1224 int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
   1225    int littleEndian, allOK = 1;
   1226 
   1227    littleEndian = IsLittleEndian();
   1228    if (!littleEndian)
   1229       ReverseHeaderBytes(header);
   1230    if (disk.Seek(sector)) {
   1231       if (disk.Write(header, 512) == -1)
   1232          allOK = 0;
   1233    } else allOK = 0; // if (disk.Seek()...)
   1234    if (!littleEndian)
   1235       ReverseHeaderBytes(header);
   1236    return allOK;
   1237 } // GPTData::SaveHeader()
   1238 
   1239 // Save the partitions to the specified sector. Used by both the SaveGPTData()
   1240 // and SaveGPTBackup() functions.
   1241 // Should be passed an architecture-appropriate header (DO NOT call
   1242 // ReverseHeaderBytes() on the header before calling this function)
   1243 // Returns 1 on success, 0 on failure
   1244 int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
   1245    int littleEndian, allOK = 1;
   1246 
   1247    littleEndian = IsLittleEndian();
   1248    if (disk.Seek(sector)) {
   1249       if (!littleEndian)
   1250          ReversePartitionBytes();
   1251       if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
   1252          allOK = 0;
   1253       if (!littleEndian)
   1254          ReversePartitionBytes();
   1255    } else allOK = 0; // if (myDisk.Seek()...)
   1256    return allOK;
   1257 } // GPTData::SavePartitionTable()
   1258 
   1259 // Load GPT data from a backup file created by SaveGPTBackup(). This function
   1260 // does minimal error checking. It returns 1 if it completed successfully,
   1261 // 0 if there was a problem. In the latter case, it creates a new empty
   1262 // set of partitions.
   1263 int GPTData::LoadGPTBackup(const string & filename) {
   1264    int allOK = 1, val, err;
   1265    int shortBackup = 0;
   1266    DiskIO backupFile;
   1267 
   1268    if (backupFile.OpenForRead(filename)) {
   1269       // Let the MBRData class load the saved MBR...
   1270       protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
   1271       protectiveMBR.SetDisk(&myDisk);
   1272 
   1273       LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
   1274 
   1275       // Check backup file size and rebuild second header if file is right
   1276       // size to be direct dd copy of MBR, main header, and main partition
   1277       // table; if other size, treat it like a GPT fdisk-generated backup
   1278       // file
   1279       shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
   1280                      (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
   1281       if (shortBackup) {
   1282          RebuildSecondHeader();
   1283          secondCrcOk = mainCrcOk;
   1284       } else {
   1285          LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
   1286       } // if/else
   1287 
   1288       // Return valid headers code: 0 = both headers bad; 1 = main header
   1289       // good, backup bad; 2 = backup header good, main header bad;
   1290       // 3 = both headers good. Note these codes refer to valid GPT
   1291       // signatures and version numbers; more subtle problems will elude
   1292       // this check!
   1293       if ((val = CheckHeaderValidity()) > 0) {
   1294          if (val == 2) { // only backup header seems to be good
   1295             SetGPTSize(secondHeader.numParts, 0);
   1296          } else { // main header is OK
   1297             SetGPTSize(mainHeader.numParts, 0);
   1298          } // if/else
   1299 
   1300          if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
   1301             cout << "Warning! Current disk size doesn't match that of the backup!\n"
   1302                  << "Adjusting sizes to match, but subsequent problems are possible!\n";
   1303             MoveSecondHeaderToEnd();
   1304          } // if
   1305 
   1306          if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
   1307             cerr << "Warning! Read error " << errno
   1308                  << " loading partition table; strange behavior now likely!\n";
   1309       } else {
   1310          allOK = 0;
   1311       } // if/else
   1312       // Something went badly wrong, so blank out partitions
   1313       if (allOK == 0) {
   1314          cerr << "Improper backup file! Clearing all partition data!\n";
   1315          ClearGPTData();
   1316          protectiveMBR.MakeProtectiveMBR();
   1317       } // if
   1318    } else {
   1319       allOK = 0;
   1320       cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
   1321    } // if/else
   1322 
   1323    return allOK;
   1324 } // GPTData::LoadGPTBackup()
   1325 
   1326 int GPTData::SaveMBR(void) {
   1327    return protectiveMBR.WriteMBRData(&myDisk);
   1328 } // GPTData::SaveMBR()
   1329 
   1330 // This function destroys the on-disk GPT structures, but NOT the on-disk
   1331 // MBR.
   1332 // Returns 1 if the operation succeeds, 0 if not.
   1333 int GPTData::DestroyGPT(void) {
   1334    int sum, tableSize, allOK = 1;
   1335    uint8_t blankSector[512];
   1336    uint8_t* emptyTable;
   1337 
   1338    memset(blankSector, 0, sizeof(blankSector));
   1339    ClearGPTData();
   1340 
   1341    if (myDisk.OpenForWrite()) {
   1342       if (!myDisk.Seek(mainHeader.currentLBA))
   1343          allOK = 0;
   1344       if (myDisk.Write(blankSector, 512) != 512) { // blank it out
   1345          cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
   1346          allOK = 0;
   1347       } // if
   1348       if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
   1349          allOK = 0;
   1350       tableSize = numParts * mainHeader.sizeOfPartitionEntries;
   1351       emptyTable = new uint8_t[tableSize];
   1352       if (emptyTable == NULL) {
   1353          cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
   1354          exit(1);
   1355       } // if
   1356       memset(emptyTable, 0, tableSize);
   1357       if (allOK) {
   1358          sum = myDisk.Write(emptyTable, tableSize);
   1359          if (sum != tableSize) {
   1360             cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
   1361             allOK = 0;
   1362          } // if write failed
   1363       } // if
   1364       if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
   1365          allOK = 0;
   1366       if (allOK) {
   1367          sum = myDisk.Write(emptyTable, tableSize);
   1368          if (sum != tableSize) {
   1369             cerr << "Warning! GPT backup partition table not overwritten! Error is "
   1370                  << errno << "\n";
   1371             allOK = 0;
   1372          } // if wrong size written
   1373       } // if
   1374       if (!myDisk.Seek(secondHeader.currentLBA))
   1375          allOK = 0;
   1376       if (allOK) {
   1377          if (myDisk.Write(blankSector, 512) != 512) { // blank it out
   1378             cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
   1379             allOK = 0;
   1380          } // if
   1381       } // if
   1382       if (syncing) {
   1383          myDisk.DiskSync();
   1384       }
   1385       myDisk.Close();
   1386       cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
   1387            << "other utilities.\n";
   1388       delete[] emptyTable;
   1389    } else {
   1390       cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
   1391    } // if/else (fd != -1)
   1392    return (allOK);
   1393 } // GPTDataTextUI::DestroyGPT()
   1394 
   1395 // Wipe MBR data from the disk (zero it out completely)
   1396 // Returns 1 on success, 0 on failure.
   1397 int GPTData::DestroyMBR(void) {
   1398    int allOK;
   1399    uint8_t blankSector[512];
   1400 
   1401    memset(blankSector, 0, sizeof(blankSector));
   1402 
   1403    allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
   1404 
   1405    if (!allOK)
   1406       cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
   1407    return allOK;
   1408 } // GPTData::DestroyMBR(void)
   1409 
   1410 // Tell user whether Apple Partition Map (APM) was discovered....
   1411 void GPTData::ShowAPMState(void) {
   1412    if (apmFound)
   1413       cout << "  APM: present\n";
   1414    else
   1415       cout << "  APM: not present\n";
   1416 } // GPTData::ShowAPMState()
   1417 
   1418 // Tell user about the state of the GPT data....
   1419 void GPTData::ShowGPTState(void) {
   1420    switch (state) {
   1421       case gpt_invalid:
   1422          cout << "  GPT: not present\n";
   1423          break;
   1424       case gpt_valid:
   1425          cout << "  GPT: present\n";
   1426          break;
   1427       case gpt_corrupt:
   1428          cout << "  GPT: damaged\n";
   1429          break;
   1430       default:
   1431          cout << "\a  GPT: unknown -- bug!\n";
   1432          break;
   1433    } // switch
   1434 } // GPTData::ShowGPTState()
   1435 
   1436 // Display the basic GPT data
   1437 void GPTData::DisplayGPTData(void) {
   1438    uint32_t i;
   1439    uint64_t temp, totalFree;
   1440 
   1441    cout << "Disk " << device << ": " << diskSize << " sectors, "
   1442         << BytesToIeee(diskSize, blockSize) << "\n";
   1443    cout << "Logical sector size: " << blockSize << " bytes\n";
   1444    cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
   1445    cout << "Partition table holds up to " << numParts << " entries\n";
   1446    cout << "First usable sector is " << mainHeader.firstUsableLBA
   1447         << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
   1448    totalFree = FindFreeBlocks(&i, &temp);
   1449    cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
   1450    cout << "Total free space is " << totalFree << " sectors ("
   1451         << BytesToIeee(totalFree, blockSize) << ")\n";
   1452    cout << "\nNumber  Start (sector)    End (sector)  Size       Code  Name\n";
   1453    for (i = 0; i < numParts; i++) {
   1454       partitions[i].ShowSummary(i, blockSize);
   1455    } // for
   1456 } // GPTData::DisplayGPTData()
   1457 
   1458 // Show detailed information on the specified partition
   1459 void GPTData::ShowPartDetails(uint32_t partNum) {
   1460    if ((partNum < numParts) && !IsFreePartNum(partNum)) {
   1461       partitions[partNum].ShowDetails(blockSize);
   1462    } else {
   1463       cout << "Partition #" << partNum + 1 << " does not exist.\n";
   1464    } // if
   1465 } // GPTData::ShowPartDetails()
   1466 
   1467 /**************************************************************************
   1468  *                                                                        *
   1469  * Partition table transformation functions (MBR or BSD disklabel to GPT) *
   1470  * (some of these functions may require user interaction)                 *
   1471  *                                                                        *
   1472  **************************************************************************/
   1473 
   1474 // Examines the MBR & GPT data to determine which set of data to use: the
   1475 // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
   1476 // a new set of partitions (use_new). A return value of use_abort indicates
   1477 // that this function couldn't determine what to do. Overriding functions
   1478 // in derived classes may ask users questions in such cases.
   1479 WhichToUse GPTData::UseWhichPartitions(void) {
   1480    WhichToUse which = use_new;
   1481    MBRValidity mbrState;
   1482 
   1483    mbrState = protectiveMBR.GetValidity();
   1484 
   1485    if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
   1486       cout << "\n***************************************************************\n"
   1487            << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
   1488            << "in memory. ";
   1489       if (!justLooking) {
   1490          cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
   1491               << "typing 'q' if you don't want to convert your MBR partitions\n"
   1492               << "to GPT format!";
   1493       } // if
   1494       cout << "\n***************************************************************\n\n";
   1495       which = use_mbr;
   1496    } // if
   1497 
   1498    if ((state == gpt_invalid) && bsdFound) {
   1499       cout << "\n**********************************************************************\n"
   1500            << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
   1501            << "to GPT format.";
   1502       if ((!justLooking) && (!beQuiet)) {
   1503       cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
   1504            << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
   1505            << "want to convert your BSD partitions to GPT format!";
   1506       } // if
   1507       cout << "\n**********************************************************************\n\n";
   1508       which = use_bsd;
   1509    } // if
   1510 
   1511    if ((state == gpt_valid) && (mbrState == gpt)) {
   1512       which = use_gpt;
   1513       if (!beQuiet)
   1514          cout << "Found valid GPT with protective MBR; using GPT.\n";
   1515    } // if
   1516    if ((state == gpt_valid) && (mbrState == hybrid)) {
   1517       which = use_gpt;
   1518       if (!beQuiet)
   1519          cout << "Found valid GPT with hybrid MBR; using GPT.\n";
   1520    } // if
   1521    if ((state == gpt_valid) && (mbrState == invalid)) {
   1522       cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
   1523            << "protective MBR on save.\n";
   1524       which = use_gpt;
   1525    } // if
   1526    if ((state == gpt_valid) && (mbrState == mbr)) {
   1527       which = use_abort;
   1528    } // if
   1529 
   1530    if (state == gpt_corrupt) {
   1531       if (mbrState == gpt) {
   1532          cout << "\a\a****************************************************************************\n"
   1533               << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
   1534               << "verification and recovery are STRONGLY recommended.\n"
   1535               << "****************************************************************************\n";
   1536          which = use_gpt;
   1537       } else {
   1538          which = use_abort;
   1539       } // if/else MBR says disk is GPT
   1540    } // if GPT corrupt
   1541 
   1542    if (which == use_new)
   1543       cout << "Creating new GPT entries.\n";
   1544 
   1545    return which;
   1546 } // UseWhichPartitions()
   1547 
   1548 // Convert MBR partition table into GPT form.
   1549 void GPTData::XFormPartitions(void) {
   1550    int i, numToConvert;
   1551    uint8_t origType;
   1552 
   1553    // Clear out old data & prepare basics....
   1554    ClearGPTData();
   1555 
   1556    // Convert the smaller of the # of GPT or MBR partitions
   1557    if (numParts > MAX_MBR_PARTS)
   1558       numToConvert = MAX_MBR_PARTS;
   1559    else
   1560       numToConvert = numParts;
   1561 
   1562    for (i = 0; i < numToConvert; i++) {
   1563       origType = protectiveMBR.GetType(i);
   1564       // don't waste CPU time trying to convert extended, hybrid protective, or
   1565       // null (non-existent) partitions
   1566       if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
   1567           (origType != 0x00) && (origType != 0xEE))
   1568          partitions[i] = protectiveMBR.AsGPT(i);
   1569    } // for
   1570 
   1571    // Convert MBR into protective MBR
   1572    protectiveMBR.MakeProtectiveMBR();
   1573 
   1574    // Record that all original CRCs were OK so as not to raise flags
   1575    // when doing a disk verification
   1576    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
   1577 } // GPTData::XFormPartitions()
   1578 
   1579 // Transforms BSD disklabel on the specified partition (numbered from 0).
   1580 // If an invalid partition number is given, the program does nothing.
   1581 // Returns the number of new partitions created.
   1582 int GPTData::XFormDisklabel(uint32_t partNum) {
   1583    uint32_t low, high;
   1584    int goOn = 1, numDone = 0;
   1585    BSDData disklabel;
   1586 
   1587    if (GetPartRange(&low, &high) == 0) {
   1588       goOn = 0;
   1589       cout << "No partitions!\n";
   1590    } // if
   1591    if (partNum > high) {
   1592       goOn = 0;
   1593       cout << "Specified partition is invalid!\n";
   1594    } // if
   1595 
   1596    // If all is OK, read the disklabel and convert it.
   1597    if (goOn) {
   1598       goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
   1599                                    partitions[partNum].GetLastLBA());
   1600       if ((goOn) && (disklabel.IsDisklabel())) {
   1601          numDone = XFormDisklabel(&disklabel);
   1602          if (numDone == 1)
   1603             cout << "Converted 1 BSD partition.\n";
   1604          else
   1605             cout << "Converted " << numDone << " BSD partitions.\n";
   1606       } else {
   1607          cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
   1608       } // if/else
   1609    } // if
   1610    if (numDone > 0) { // converted partitions; delete carrier
   1611       partitions[partNum].BlankPartition();
   1612    } // if
   1613    return numDone;
   1614 } // GPTData::XFormDisklabel(uint32_t i)
   1615 
   1616 // Transform the partitions on an already-loaded BSD disklabel...
   1617 int GPTData::XFormDisklabel(BSDData* disklabel) {
   1618    int i, partNum = 0, numDone = 0;
   1619 
   1620    if (disklabel->IsDisklabel()) {
   1621       for (i = 0; i < disklabel->GetNumParts(); i++) {
   1622          partNum = FindFirstFreePart();
   1623          if (partNum >= 0) {
   1624             partitions[partNum] = disklabel->AsGPT(i);
   1625             if (partitions[partNum].IsUsed())
   1626                numDone++;
   1627          } // if
   1628       } // for
   1629       if (partNum == -1)
   1630          cerr << "Warning! Too many partitions to convert!\n";
   1631    } // if
   1632 
   1633    // Record that all original CRCs were OK so as not to raise flags
   1634    // when doing a disk verification
   1635    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
   1636 
   1637    return numDone;
   1638 } // GPTData::XFormDisklabel(BSDData* disklabel)
   1639 
   1640 // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
   1641 // partition has the active/bootable flag UNset and uses the GPT fdisk
   1642 // type code divided by 0x0100 as the MBR type code.
   1643 // Returns 1 if operation was 100% successful, 0 if there were ANY
   1644 // problems.
   1645 int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
   1646    int allOK = 1;
   1647 
   1648    if ((mbrPart < 0) || (mbrPart > 3)) {
   1649       cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
   1650       allOK = 0;
   1651    } // if
   1652    if (gptPart >= numParts) {
   1653       cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
   1654       allOK = 0;
   1655    } // if
   1656    if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
   1657       cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
   1658       allOK = 0;
   1659    } // if
   1660    if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
   1661        (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
   1662       if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
   1663          cout << "Caution: Partition end point past 32-bit pointer boundary;"
   1664               << " some OSes may\nreact strangely.\n";
   1665       } // if
   1666       protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
   1667                              (uint32_t) partitions[gptPart].GetLengthLBA(),
   1668                              partitions[gptPart].GetHexType() / 256, 0);
   1669    } else { // partition out of range
   1670       if (allOK) // Display only if "else" triggered by out-of-bounds condition
   1671          cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
   1672               << "partitions, or is\n too big; omitting it.\n";
   1673       allOK = 0;
   1674    } // if/else
   1675    return allOK;
   1676 } // GPTData::OnePartToMBR()
   1677 
   1678 
   1679 /**********************************************************************
   1680  *                                                                    *
   1681  * Functions that adjust GPT data structures WITHOUT user interaction *
   1682  * (they may display information for the user's benefit, though)      *
   1683  *                                                                    *
   1684  **********************************************************************/
   1685 
   1686 // Resizes GPT to specified number of entries. Creates a new table if
   1687 // necessary, copies data if it already exists. If fillGPTSectors is 1
   1688 // (the default), rounds numEntries to fill all the sectors necessary to
   1689 // hold the GPT.
   1690 // Returns 1 if all goes well, 0 if an error is encountered.
   1691 int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
   1692    GPTPart* newParts;
   1693    uint32_t i, high, copyNum, entriesPerSector;
   1694    int allOK = 1;
   1695 
   1696    // First, adjust numEntries upward, if necessary, to get a number
   1697    // that fills the allocated sectors
   1698    entriesPerSector = blockSize / GPT_SIZE;
   1699    if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
   1700       cout << "Adjusting GPT size from " << numEntries << " to ";
   1701       numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
   1702       cout << numEntries << " to fill the sector\n";
   1703    } // if
   1704 
   1705    // Do the work only if the # of partitions is changing. Along with being
   1706    // efficient, this prevents mucking with the location of the secondary
   1707    // partition table, which causes problems when loading data from a RAID
   1708    // array that's been expanded because this function is called when loading
   1709    // data.
   1710    if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
   1711       newParts = new GPTPart [numEntries];
   1712       if (newParts != NULL) {
   1713          if (partitions != NULL) { // existing partitions; copy them over
   1714             GetPartRange(&i, &high);
   1715             if (numEntries < (high + 1)) { // Highest entry too high for new #
   1716                cout << "The highest-numbered partition is " << high + 1
   1717                     << ", which is greater than the requested\n"
   1718                     << "partition table size of " << numEntries
   1719                     << "; cannot resize. Perhaps sorting will help.\n";
   1720                allOK = 0;
   1721                delete[] newParts;
   1722             } else { // go ahead with copy
   1723                if (numEntries < numParts)
   1724                   copyNum = numEntries;
   1725                else
   1726                   copyNum = numParts;
   1727                for (i = 0; i < copyNum; i++) {
   1728                   newParts[i] = partitions[i];
   1729                } // for
   1730                delete[] partitions;
   1731                partitions = newParts;
   1732             } // if
   1733          } else { // No existing partition table; just create it
   1734             partitions = newParts;
   1735          } // if/else existing partitions
   1736          numParts = numEntries;
   1737          mainHeader.firstUsableLBA = ((numEntries * GPT_SIZE) / blockSize) + (((numEntries * GPT_SIZE) % blockSize) != 0) + 2 ;
   1738          secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
   1739          MoveSecondHeaderToEnd();
   1740          if (diskSize > 0)
   1741             CheckGPTSize();
   1742       } else { // Bad memory allocation
   1743          cerr << "Error allocating memory for partition table! Size is unchanged!\n";
   1744          allOK = 0;
   1745       } // if/else
   1746    } // if/else
   1747    mainHeader.numParts = numParts;
   1748    secondHeader.numParts = numParts;
   1749    return (allOK);
   1750 } // GPTData::SetGPTSize()
   1751 
   1752 // Blank the partition array
   1753 void GPTData::BlankPartitions(void) {
   1754    uint32_t i;
   1755 
   1756    for (i = 0; i < numParts; i++) {
   1757       partitions[i].BlankPartition();
   1758    } // for
   1759 } // GPTData::BlankPartitions()
   1760 
   1761 // Delete a partition by number. Returns 1 if successful,
   1762 // 0 if there was a problem. Returns 1 if partition was in
   1763 // range, 0 if it was out of range.
   1764 int GPTData::DeletePartition(uint32_t partNum) {
   1765    uint64_t startSector, length;
   1766    uint32_t low, high, numUsedParts, retval = 1;;
   1767 
   1768    numUsedParts = GetPartRange(&low, &high);
   1769    if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
   1770       // In case there's a protective MBR, look for & delete matching
   1771       // MBR partition....
   1772       startSector = partitions[partNum].GetFirstLBA();
   1773       length = partitions[partNum].GetLengthLBA();
   1774       protectiveMBR.DeleteByLocation(startSector, length);
   1775 
   1776       // Now delete the GPT partition
   1777       partitions[partNum].BlankPartition();
   1778    } else {
   1779       cerr << "Partition number " << partNum + 1 << " out of range!\n";
   1780       retval = 0;
   1781    } // if/else
   1782    return retval;
   1783 } // GPTData::DeletePartition(uint32_t partNum)
   1784 
   1785 // Non-interactively create a partition.
   1786 // Returns 1 if the operation was successful, 0 if a problem was discovered.
   1787 uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
   1788    int retval = 1; // assume there'll be no problems
   1789    uint64_t origSector = startSector;
   1790 
   1791    if (IsFreePartNum(partNum)) {
   1792       if (Align(&startSector)) {
   1793          cout << "Information: Moved requested sector from " << origSector << " to "
   1794               << startSector << " in\norder to align on " << sectorAlignment
   1795               << "-sector boundaries.\n";
   1796       } // if
   1797       if (IsFree(startSector) && (startSector <= endSector)) {
   1798          if (FindLastInFree(startSector) >= endSector) {
   1799             partitions[partNum].SetFirstLBA(startSector);
   1800             partitions[partNum].SetLastLBA(endSector);
   1801             partitions[partNum].SetType(DEFAULT_GPT_TYPE);
   1802             partitions[partNum].RandomizeUniqueGUID();
   1803          } else retval = 0; // if free space until endSector
   1804       } else retval = 0; // if startSector is free
   1805    } else retval = 0; // if legal partition number
   1806    return retval;
   1807 } // GPTData::CreatePartition(partNum, startSector, endSector)
   1808 
   1809 // Sort the GPT entries, eliminating gaps and making for a logical
   1810 // ordering.
   1811 void GPTData::SortGPT(void) {
   1812    if (numParts > 0)
   1813       sort(partitions, partitions + numParts);
   1814 } // GPTData::SortGPT()
   1815 
   1816 // Swap the contents of two partitions.
   1817 // Returns 1 if successful, 0 if either partition is out of range
   1818 // (that is, not a legal number; either or both can be empty).
   1819 // Note that if partNum1 = partNum2 and this number is in range,
   1820 // it will be considered successful.
   1821 int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
   1822    GPTPart temp;
   1823    int allOK = 1;
   1824 
   1825    if ((partNum1 < numParts) && (partNum2 < numParts)) {
   1826       if (partNum1 != partNum2) {
   1827          temp = partitions[partNum1];
   1828          partitions[partNum1] = partitions[partNum2];
   1829          partitions[partNum2] = temp;
   1830       } // if
   1831    } else allOK = 0; // partition numbers are valid
   1832    return allOK;
   1833 } // GPTData::SwapPartitions()
   1834 
   1835 // Set up data structures for entirely new set of partitions on the
   1836 // specified device. Returns 1 if OK, 0 if there were problems.
   1837 // Note that this function does NOT clear the protectiveMBR data
   1838 // structure, since it may hold the original MBR partitions if the
   1839 // program was launched on an MBR disk, and those may need to be
   1840 // converted to GPT format.
   1841 int GPTData::ClearGPTData(void) {
   1842    int goOn = 1, i;
   1843 
   1844    // Set up the partition table....
   1845    delete[] partitions;
   1846    partitions = NULL;
   1847    SetGPTSize(NUM_GPT_ENTRIES);
   1848 
   1849    // Now initialize a bunch of stuff that's static....
   1850    mainHeader.signature = GPT_SIGNATURE;
   1851    mainHeader.revision = 0x00010000;
   1852    mainHeader.headerSize = HEADER_SIZE;
   1853    mainHeader.reserved = 0;
   1854    mainHeader.currentLBA = UINT64_C(1);
   1855    mainHeader.partitionEntriesLBA = (uint64_t) 2;
   1856    mainHeader.sizeOfPartitionEntries = GPT_SIZE;
   1857    for (i = 0; i < GPT_RESERVED; i++) {
   1858       mainHeader.reserved2[i] = '\0';
   1859    } // for
   1860    if (blockSize > 0)
   1861       sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
   1862    else
   1863       sectorAlignment = DEFAULT_ALIGNMENT;
   1864 
   1865    // Now some semi-static items (computed based on end of disk)
   1866    mainHeader.backupLBA = diskSize - UINT64_C(1);
   1867    mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
   1868 
   1869    // Set a unique GUID for the disk, based on random numbers
   1870    mainHeader.diskGUID.Randomize();
   1871 
   1872    // Copy main header to backup header
   1873    RebuildSecondHeader();
   1874 
   1875    // Blank out the partitions array....
   1876    BlankPartitions();
   1877 
   1878    // Flag all CRCs as being OK....
   1879    mainCrcOk = 1;
   1880    secondCrcOk = 1;
   1881    mainPartsCrcOk = 1;
   1882    secondPartsCrcOk = 1;
   1883 
   1884    return (goOn);
   1885 } // GPTData::ClearGPTData()
   1886 
   1887 // Set the location of the second GPT header data to the end of the disk.
   1888 // If the disk size has actually changed, this also adjusts the protective
   1889 // entry in the MBR, since it's probably no longer correct.
   1890 // Used internally and called by the 'e' option on the recovery &
   1891 // transformation menu, to help users of RAID arrays who add disk space
   1892 // to their arrays or to adjust data structures in restore operations
   1893 // involving unequal-sized disks.
   1894 void GPTData::MoveSecondHeaderToEnd() {
   1895    mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
   1896    if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
   1897       if (protectiveMBR.GetValidity() == hybrid) {
   1898          protectiveMBR.OptimizeEESize();
   1899          RecomputeCHS();
   1900       } // if
   1901       if (protectiveMBR.GetValidity() == gpt)
   1902          MakeProtectiveMBR();
   1903    } // if
   1904    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
   1905    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
   1906 } // GPTData::FixSecondHeaderLocation()
   1907 
   1908 // Sets the partition's name to the specified UnicodeString without
   1909 // user interaction.
   1910 // Returns 1 on success, 0 on failure (invalid partition number).
   1911 int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
   1912    int retval = 1;
   1913 
   1914    if (IsUsedPartNum(partNum))
   1915       partitions[partNum].SetName(theName);
   1916    else
   1917       retval = 0;
   1918 
   1919    return retval;
   1920 } // GPTData::SetName
   1921 
   1922 // Set the disk GUID to the specified value. Note that the header CRCs must
   1923 // be recomputed after calling this function.
   1924 void GPTData::SetDiskGUID(GUIDData newGUID) {
   1925    mainHeader.diskGUID = newGUID;
   1926    secondHeader.diskGUID = newGUID;
   1927 } // SetDiskGUID()
   1928 
   1929 // Set the unique GUID of the specified partition. Returns 1 on
   1930 // successful completion, 0 if there were problems (invalid
   1931 // partition number).
   1932 int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
   1933    int retval = 0;
   1934 
   1935    if (pn < numParts) {
   1936       if (partitions[pn].IsUsed()) {
   1937          partitions[pn].SetUniqueGUID(theGUID);
   1938          retval = 1;
   1939       } // if
   1940    } // if
   1941    return retval;
   1942 } // GPTData::SetPartitionGUID()
   1943 
   1944 // Set new random GUIDs for the disk and all partitions. Intended to be used
   1945 // after disk cloning or similar operations that don't randomize the GUIDs.
   1946 void GPTData::RandomizeGUIDs(void) {
   1947    uint32_t i;
   1948 
   1949    mainHeader.diskGUID.Randomize();
   1950    secondHeader.diskGUID = mainHeader.diskGUID;
   1951    for (i = 0; i < numParts; i++)
   1952       if (partitions[i].IsUsed())
   1953          partitions[i].RandomizeUniqueGUID();
   1954 } // GPTData::RandomizeGUIDs()
   1955 
   1956 // Change partition type code non-interactively. Returns 1 if
   1957 // successful, 0 if not....
   1958 int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
   1959    int retval = 1;
   1960 
   1961    if (!IsFreePartNum(partNum)) {
   1962       partitions[partNum].SetType(theGUID);
   1963    } else retval = 0;
   1964    return retval;
   1965 } // GPTData::ChangePartType()
   1966 
   1967 // Recompute the CHS values of all the MBR partitions. Used to reset
   1968 // CHS values that some BIOSes require, despite the fact that the
   1969 // resulting CHS values violate the GPT standard.
   1970 void GPTData::RecomputeCHS(void) {
   1971    int i;
   1972 
   1973    for (i = 0; i < 4; i++)
   1974       protectiveMBR.RecomputeCHS(i);
   1975 } // GPTData::RecomputeCHS()
   1976 
   1977 // Adjust sector number so that it falls on a sector boundary that's a
   1978 // multiple of sectorAlignment. This is done to improve the performance
   1979 // of Western Digital Advanced Format disks and disks with similar
   1980 // technology from other companies, which use 4096-byte sectors
   1981 // internally although they translate to 512-byte sectors for the
   1982 // benefit of the OS. If partitions aren't properly aligned on these
   1983 // disks, some filesystem data structures can span multiple physical
   1984 // sectors, degrading performance. This function should be called
   1985 // only on the FIRST sector of the partition, not the last!
   1986 // This function returns 1 if the alignment was altered, 0 if it
   1987 // was unchanged.
   1988 int GPTData::Align(uint64_t* sector) {
   1989    int retval = 0, sectorOK = 0;
   1990    uint64_t earlier, later, testSector;
   1991 
   1992    if ((*sector % sectorAlignment) != 0) {
   1993       earlier = (*sector / sectorAlignment) * sectorAlignment;
   1994       later = earlier + (uint64_t) sectorAlignment;
   1995 
   1996       // Check to see that every sector between the earlier one and the
   1997       // requested one is clear, and that it's not too early....
   1998       if (earlier >= mainHeader.firstUsableLBA) {
   1999          sectorOK = 1;
   2000          testSector = earlier;
   2001          do {
   2002             sectorOK = IsFree(testSector++);
   2003          } while ((sectorOK == 1) && (testSector < *sector));
   2004          if (sectorOK == 1) {
   2005             *sector = earlier;
   2006             retval = 1;
   2007          } // if
   2008       } // if firstUsableLBA check
   2009 
   2010       // If couldn't move the sector earlier, try to move it later instead....
   2011       if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
   2012          sectorOK = 1;
   2013          testSector = later;
   2014          do {
   2015             sectorOK = IsFree(testSector--);
   2016          } while ((sectorOK == 1) && (testSector > *sector));
   2017          if (sectorOK == 1) {
   2018             *sector = later;
   2019             retval = 1;
   2020          } // if
   2021       } // if
   2022    } // if
   2023    return retval;
   2024 } // GPTData::Align()
   2025 
   2026 /********************************************************
   2027  *                                                      *
   2028  * Functions that return data about GPT data structures *
   2029  * (most of these are inline in gpt.h)                  *
   2030  *                                                      *
   2031  ********************************************************/
   2032 
   2033 // Find the low and high used partition numbers (numbered from 0).
   2034 // Return value is the number of partitions found. Note that the
   2035 // *low and *high values are both set to 0 when no partitions
   2036 // are found, as well as when a single partition in the first
   2037 // position exists. Thus, the return value is the only way to
   2038 // tell when no partitions exist.
   2039 int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
   2040    uint32_t i;
   2041    int numFound = 0;
   2042 
   2043    *low = numParts + 1; // code for "not found"
   2044    *high = 0;
   2045    for (i = 0; i < numParts; i++) {
   2046       if (partitions[i].IsUsed()) { // it exists
   2047          *high = i; // since we're counting up, set the high value
   2048          // Set the low value only if it's not yet found...
   2049          if (*low == (numParts + 1)) *low = i;
   2050             numFound++;
   2051       } // if
   2052    } // for
   2053 
   2054    // Above will leave *low pointing to its "not found" value if no partitions
   2055    // are defined, so reset to 0 if this is the case....
   2056    if (*low == (numParts + 1))
   2057       *low = 0;
   2058    return numFound;
   2059 } // GPTData::GetPartRange()
   2060 
   2061 // Returns the value of the first free partition, or -1 if none is
   2062 // unused.
   2063 int GPTData::FindFirstFreePart(void) {
   2064    int i = 0;
   2065 
   2066    if (partitions != NULL) {
   2067       while ((i < (int) numParts) && (partitions[i].IsUsed()))
   2068          i++;
   2069       if (i >= (int) numParts)
   2070          i = -1;
   2071    } else i = -1;
   2072    return i;
   2073 } // GPTData::FindFirstFreePart()
   2074 
   2075 // Returns the number of defined partitions.
   2076 uint32_t GPTData::CountParts(void) {
   2077    uint32_t i, counted = 0;
   2078 
   2079    for (i = 0; i < numParts; i++) {
   2080       if (partitions[i].IsUsed())
   2081          counted++;
   2082    } // for
   2083    return counted;
   2084 } // GPTData::CountParts()
   2085 
   2086 /****************************************************
   2087  *                                                  *
   2088  * Functions that return data about disk free space *
   2089  *                                                  *
   2090  ****************************************************/
   2091 
   2092 // Find the first available block after the starting point; returns 0 if
   2093 // there are no available blocks left
   2094 uint64_t GPTData::FindFirstAvailable(uint64_t start) {
   2095    uint64_t first;
   2096    uint32_t i;
   2097    int firstMoved = 0;
   2098 
   2099    // Begin from the specified starting point or from the first usable
   2100    // LBA, whichever is greater...
   2101    if (start < mainHeader.firstUsableLBA)
   2102       first = mainHeader.firstUsableLBA;
   2103    else
   2104       first = start;
   2105 
   2106    // ...now search through all partitions; if first is within an
   2107    // existing partition, move it to the next sector after that
   2108    // partition and repeat. If first was moved, set firstMoved
   2109    // flag; repeat until firstMoved is not set, so as to catch
   2110    // cases where partitions are out of sequential order....
   2111    do {
   2112       firstMoved = 0;
   2113       for (i = 0; i < numParts; i++) {
   2114          if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
   2115              (first <= partitions[i].GetLastLBA())) { // in existing part.
   2116             first = partitions[i].GetLastLBA() + 1;
   2117             firstMoved = 1;
   2118          } // if
   2119       } // for
   2120    } while (firstMoved == 1);
   2121    if (first > mainHeader.lastUsableLBA)
   2122       first = 0;
   2123    return (first);
   2124 } // GPTData::FindFirstAvailable()
   2125 
   2126 // Finds the first available sector in the largest block of unallocated
   2127 // space on the disk. Returns 0 if there are no available blocks left
   2128 uint64_t GPTData::FindFirstInLargest(void) {
   2129    uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
   2130 
   2131    start = 0;
   2132    do {
   2133       firstBlock = FindFirstAvailable(start);
   2134       if (firstBlock != UINT32_C(0)) { // something's free...
   2135          lastBlock = FindLastInFree(firstBlock);
   2136          segmentSize = lastBlock - firstBlock + UINT32_C(1);
   2137          if (segmentSize > selectedSize) {
   2138             selectedSize = segmentSize;
   2139             selectedSegment = firstBlock;
   2140          } // if
   2141          start = lastBlock + 1;
   2142       } // if
   2143    } while (firstBlock != 0);
   2144    return selectedSegment;
   2145 } // GPTData::FindFirstInLargest()
   2146 
   2147 // Find the last available block on the disk.
   2148 // Returns 0 if there are no available sectors
   2149 uint64_t GPTData::FindLastAvailable(void) {
   2150    uint64_t last;
   2151    uint32_t i;
   2152    int lastMoved = 0;
   2153 
   2154    // Start by assuming the last usable LBA is available....
   2155    last = mainHeader.lastUsableLBA;
   2156 
   2157    // ...now, similar to algorithm in FindFirstAvailable(), search
   2158    // through all partitions, moving last when it's in an existing
   2159    // partition. Set the lastMoved flag so we repeat to catch cases
   2160    // where partitions are out of logical order.
   2161    do {
   2162       lastMoved = 0;
   2163       for (i = 0; i < numParts; i++) {
   2164          if ((last >= partitions[i].GetFirstLBA()) &&
   2165              (last <= partitions[i].GetLastLBA())) { // in existing part.
   2166             last = partitions[i].GetFirstLBA() - 1;
   2167             lastMoved = 1;
   2168          } // if
   2169       } // for
   2170    } while (lastMoved == 1);
   2171    if (last < mainHeader.firstUsableLBA)
   2172       last = 0;
   2173    return (last);
   2174 } // GPTData::FindLastAvailable()
   2175 
   2176 // Find the last available block in the free space pointed to by start.
   2177 uint64_t GPTData::FindLastInFree(uint64_t start) {
   2178    uint64_t nearestStart;
   2179    uint32_t i;
   2180 
   2181    nearestStart = mainHeader.lastUsableLBA;
   2182    for (i = 0; i < numParts; i++) {
   2183       if ((nearestStart > partitions[i].GetFirstLBA()) &&
   2184           (partitions[i].GetFirstLBA() > start)) {
   2185          nearestStart = partitions[i].GetFirstLBA() - 1;
   2186       } // if
   2187    } // for
   2188    return (nearestStart);
   2189 } // GPTData::FindLastInFree()
   2190 
   2191 // Finds the total number of free blocks, the number of segments in which
   2192 // they reside, and the size of the largest of those segments
   2193 uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
   2194    uint64_t start = UINT64_C(0); // starting point for each search
   2195    uint64_t totalFound = UINT64_C(0); // running total
   2196    uint64_t firstBlock; // first block in a segment
   2197    uint64_t lastBlock; // last block in a segment
   2198    uint64_t segmentSize; // size of segment in blocks
   2199    uint32_t num = 0;
   2200 
   2201    *largestSegment = UINT64_C(0);
   2202    if (diskSize > 0) {
   2203       do {
   2204          firstBlock = FindFirstAvailable(start);
   2205          if (firstBlock != UINT64_C(0)) { // something's free...
   2206             lastBlock = FindLastInFree(firstBlock);
   2207             segmentSize = lastBlock - firstBlock + UINT64_C(1);
   2208             if (segmentSize > *largestSegment) {
   2209                *largestSegment = segmentSize;
   2210             } // if
   2211             totalFound += segmentSize;
   2212             num++;
   2213             start = lastBlock + 1;
   2214          } // if
   2215       } while (firstBlock != 0);
   2216    } // if
   2217    *numSegments = num;
   2218    return totalFound;
   2219 } // GPTData::FindFreeBlocks()
   2220 
   2221 // Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
   2222 // If it's allocated, return the partition number to which it's allocated
   2223 // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
   2224 // returned in partNum if the sector is in use by basic GPT data structures.)
   2225 int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
   2226    int isFree = 1;
   2227    uint32_t i;
   2228 
   2229    for (i = 0; i < numParts; i++) {
   2230       if ((sector >= partitions[i].GetFirstLBA()) &&
   2231            (sector <= partitions[i].GetLastLBA())) {
   2232          isFree = 0;
   2233          if (partNum != NULL)
   2234             *partNum = i;
   2235       } // if
   2236    } // for
   2237    if ((sector < mainHeader.firstUsableLBA) ||
   2238         (sector > mainHeader.lastUsableLBA)) {
   2239       isFree = 0;
   2240       if (partNum != NULL)
   2241          *partNum = UINT32_MAX;
   2242    } // if
   2243    return (isFree);
   2244 } // GPTData::IsFree()
   2245 
   2246 // Returns 1 if partNum is unused AND if it's a legal value.
   2247 int GPTData::IsFreePartNum(uint32_t partNum) {
   2248    return ((partNum < numParts) && (partitions != NULL) &&
   2249            (!partitions[partNum].IsUsed()));
   2250 } // GPTData::IsFreePartNum()
   2251 
   2252 // Returns 1 if partNum is in use.
   2253 int GPTData::IsUsedPartNum(uint32_t partNum) {
   2254    return ((partNum < numParts) && (partitions != NULL) &&
   2255            (partitions[partNum].IsUsed()));
   2256 } // GPTData::IsUsedPartNum()
   2257 
   2258 /***********************************************************
   2259  *                                                         *
   2260  * Change how functions work or return information on them *
   2261  *                                                         *
   2262  ***********************************************************/
   2263 
   2264 // Set partition alignment value; partitions will begin on multiples of
   2265 // the specified value
   2266 void GPTData::SetAlignment(uint32_t n) {
   2267    if (n > 0)
   2268       sectorAlignment = n;
   2269    else
   2270       cerr << "Attempt to set partition alignment to 0!\n";
   2271 } // GPTData::SetAlignment()
   2272 
   2273 // Compute sector alignment based on the current partitions (if any). Each
   2274 // partition's starting LBA is examined, and if it's divisible by a power-of-2
   2275 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
   2276 // sector size), but not by the previously-located alignment value, then the
   2277 // alignment value is adjusted down. If the computed alignment is less than 8
   2278 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
   2279 // is a safety measure for Advanced Format drives. If no partitions are
   2280 // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
   2281 // adjustment of that based on the current sector size). The result is that new
   2282 // drives are aligned to 2048-sector multiples but the program won't complain
   2283 // about other alignments on existing disks unless a smaller-than-8 alignment
   2284 // is used on big disks (as safety for Advanced Format drives).
   2285 // Returns the computed alignment value.
   2286 uint32_t GPTData::ComputeAlignment(void) {
   2287    uint32_t i = 0, found, exponent = 31;
   2288    uint32_t align = DEFAULT_ALIGNMENT;
   2289 
   2290    if (blockSize > 0)
   2291       align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
   2292    exponent = (uint32_t) log2(align);
   2293    for (i = 0; i < numParts; i++) {
   2294       if (partitions[i].IsUsed()) {
   2295          found = 0;
   2296          while (!found) {
   2297             align = UINT64_C(1) << exponent;
   2298             if ((partitions[i].GetFirstLBA() % align) == 0) {
   2299                found = 1;
   2300             } else {
   2301                exponent--;
   2302             } // if/else
   2303          } // while
   2304       } // if
   2305    } // for
   2306    if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
   2307       align = MIN_AF_ALIGNMENT;
   2308    sectorAlignment = align;
   2309    return align;
   2310 } // GPTData::ComputeAlignment()
   2311 
   2312 /********************************
   2313  *                              *
   2314  * Endianness support functions *
   2315  *                              *
   2316  ********************************/
   2317 
   2318 void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
   2319    ReverseBytes(&header->signature, 8);
   2320    ReverseBytes(&header->revision, 4);
   2321    ReverseBytes(&header->headerSize, 4);
   2322    ReverseBytes(&header->headerCRC, 4);
   2323    ReverseBytes(&header->reserved, 4);
   2324    ReverseBytes(&header->currentLBA, 8);
   2325    ReverseBytes(&header->backupLBA, 8);
   2326    ReverseBytes(&header->firstUsableLBA, 8);
   2327    ReverseBytes(&header->lastUsableLBA, 8);
   2328    ReverseBytes(&header->partitionEntriesLBA, 8);
   2329    ReverseBytes(&header->numParts, 4);
   2330    ReverseBytes(&header->sizeOfPartitionEntries, 4);
   2331    ReverseBytes(&header->partitionEntriesCRC, 4);
   2332    ReverseBytes(header->reserved2, GPT_RESERVED);
   2333 } // GPTData::ReverseHeaderBytes()
   2334 
   2335 // Reverse byte order for all partitions.
   2336 void GPTData::ReversePartitionBytes() {
   2337    uint32_t i;
   2338 
   2339    for (i = 0; i < numParts; i++) {
   2340       partitions[i].ReversePartBytes();
   2341    } // for
   2342 } // GPTData::ReversePartitionBytes()
   2343 
   2344 // Validate partition number
   2345 bool GPTData::ValidPartNum (const uint32_t partNum) {
   2346    if (partNum >= numParts) {
   2347       cerr << "Partition number out of range: " << partNum << "\n";
   2348       return false;
   2349    } // if
   2350    return true;
   2351 } // GPTData::ValidPartNum
   2352 
   2353 // Return a single partition for inspection (not modification!) by other
   2354 // functions.
   2355 const GPTPart & GPTData::operator[](uint32_t partNum) const {
   2356    if (partNum >= numParts) {
   2357       cerr << "Partition number out of range (" << partNum << " requested, but only "
   2358            << numParts << " available)\n";
   2359       exit(1);
   2360    } // if
   2361    if (partitions == NULL) {
   2362       cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
   2363       exit(1);
   2364    } // if
   2365    return partitions[partNum];
   2366 } // operator[]
   2367 
   2368 // Return (not for modification!) the disk's GUID value
   2369 const GUIDData & GPTData::GetDiskGUID(void) const {
   2370    return mainHeader.diskGUID;
   2371 } // GPTData::GetDiskGUID()
   2372 
   2373 // Manage attributes for a partition, based on commands passed to this function.
   2374 // (Function is non-interactive.)
   2375 // Returns 1 if a modification command succeeded, 0 if the command should not have
   2376 // modified data, and -1 if a modification command failed.
   2377 int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
   2378    int retval = 0;
   2379    Attributes theAttr;
   2380 
   2381    if (partNum >= (int) numParts) {
   2382       cerr << "Invalid partition number (" << partNum + 1 << ")\n";
   2383       retval = -1;
   2384    } else {
   2385       if (command == "show") {
   2386          ShowAttributes(partNum);
   2387       } else if (command == "get") {
   2388          GetAttribute(partNum, bits);
   2389       } else {
   2390          theAttr = partitions[partNum].GetAttributes();
   2391          if (theAttr.OperateOnAttributes(partNum, command, bits)) {
   2392             partitions[partNum].SetAttributes(theAttr.GetAttributes());
   2393             retval = 1;
   2394          } else {
   2395             retval = -1;
   2396          } // if/else
   2397       } // if/elseif/else
   2398    } // if/else invalid partition #
   2399 
   2400    return retval;
   2401 } // GPTData::ManageAttributes()
   2402 
   2403 // Show all attributes for a specified partition....
   2404 void GPTData::ShowAttributes(const uint32_t partNum) {
   2405    if ((partNum < numParts) && partitions[partNum].IsUsed())
   2406       partitions[partNum].ShowAttributes(partNum);
   2407 } // GPTData::ShowAttributes
   2408 
   2409 // Show whether a single attribute bit is set (terse output)...
   2410 void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
   2411    if (partNum < numParts)
   2412       partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
   2413 } // GPTData::GetAttribute
   2414 
   2415 
   2416 /******************************************
   2417  *                                        *
   2418  * Additional non-class support functions *
   2419  *                                        *
   2420  ******************************************/
   2421 
   2422 // Check to be sure that data type sizes are correct. The basic types (uint*_t) should
   2423 // never fail these tests, but the struct types may fail depending on compile options.
   2424 // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
   2425 // sizes.
   2426 int SizesOK(void) {
   2427    int allOK = 1;
   2428 
   2429    if (sizeof(uint8_t) != 1) {
   2430       cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
   2431       allOK = 0;
   2432    } // if
   2433    if (sizeof(uint16_t) != 2) {
   2434       cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
   2435       allOK = 0;
   2436    } // if
   2437    if (sizeof(uint32_t) != 4) {
   2438       cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
   2439       allOK = 0;
   2440    } // if
   2441    if (sizeof(uint64_t) != 8) {
   2442       cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
   2443       allOK = 0;
   2444    } // if
   2445    if (sizeof(struct MBRRecord) != 16) {
   2446       cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
   2447       allOK = 0;
   2448    } // if
   2449    if (sizeof(struct TempMBR) != 512) {
   2450       cerr << "TempMBR is " <<  sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
   2451       allOK = 0;
   2452    } // if
   2453    if (sizeof(struct GPTHeader) != 512) {
   2454       cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
   2455       allOK = 0;
   2456    } // if
   2457    if (sizeof(GPTPart) != 128) {
   2458       cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
   2459       allOK = 0;
   2460    } // if
   2461    if (sizeof(GUIDData) != 16) {
   2462       cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
   2463       allOK = 0;
   2464    } // if
   2465    if (sizeof(PartType) != 16) {
   2466       cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
   2467       allOK = 0;
   2468    } // if
   2469    return (allOK);
   2470 } // SizesOK()
   2471 
   2472