Home | History | Annotate | Download | only in benchmarks
      1 /*
      2  * Copyright (c) 2003-2005  Tom Wu
      3  * All Rights Reserved.
      4  *
      5  * Permission is hereby granted, free of charge, to any person obtaining
      6  * a copy of this software and associated documentation files (the
      7  * "Software"), to deal in the Software without restriction, including
      8  * without limitation the rights to use, copy, modify, merge, publish,
      9  * distribute, sublicense, and/or sell copies of the Software, and to
     10  * permit persons to whom the Software is furnished to do so, subject to
     11  * the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be
     14  * included in all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
     17  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
     18  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
     19  *
     20  * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
     21  * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
     22  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
     23  * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
     24  * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     25  *
     26  * In addition, the following condition applies:
     27  *
     28  * All redistributions must retain an intact copy of this copyright notice
     29  * and disclaimer.
     30  */
     31 
     32 
     33 // The code has been adapted for use as a benchmark by Google.
     34 var Crypto = new BenchmarkSuite('Crypto', 266181, [
     35   new Benchmark("Encrypt", encrypt),
     36   new Benchmark("Decrypt", decrypt)
     37 ]);
     38 
     39 
     40 // Basic JavaScript BN library - subset useful for RSA encryption.
     41 
     42 // Bits per digit
     43 var dbits;
     44 var BI_DB;
     45 var BI_DM;
     46 var BI_DV;
     47 
     48 var BI_FP;
     49 var BI_FV;
     50 var BI_F1;
     51 var BI_F2;
     52 
     53 // JavaScript engine analysis
     54 var canary = 0xdeadbeefcafe;
     55 var j_lm = ((canary&0xffffff)==0xefcafe);
     56 
     57 // (public) Constructor
     58 function BigInteger(a,b,c) {
     59   this.array = new Array();
     60   if(a != null)
     61     if("number" == typeof a) this.fromNumber(a,b,c);
     62     else if(b == null && "string" != typeof a) this.fromString(a,256);
     63     else this.fromString(a,b);
     64 }
     65 
     66 // return new, unset BigInteger
     67 function nbi() { return new BigInteger(null); }
     68 
     69 // am: Compute w_j += (x*this_i), propagate carries,
     70 // c is initial carry, returns final carry.
     71 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
     72 // We need to select the fastest one that works in this environment.
     73 
     74 // am1: use a single mult and divide to get the high bits,
     75 // max digit bits should be 26 because
     76 // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
     77 function am1(i,x,w,j,c,n) {
     78   var this_array = this.array;
     79   var w_array    = w.array;
     80   while(--n >= 0) {
     81     var v = x*this_array[i++]+w_array[j]+c;
     82     c = Math.floor(v/0x4000000);
     83     w_array[j++] = v&0x3ffffff;
     84   }
     85   return c;
     86 }
     87 
     88 // am2 avoids a big mult-and-extract completely.
     89 // Max digit bits should be <= 30 because we do bitwise ops
     90 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
     91 function am2(i,x,w,j,c,n) {
     92   var this_array = this.array;
     93   var w_array    = w.array;
     94   var xl = x&0x7fff, xh = x>>15;
     95   while(--n >= 0) {
     96     var l = this_array[i]&0x7fff;
     97     var h = this_array[i++]>>15;
     98     var m = xh*l+h*xl;
     99     l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff);
    100     c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
    101     w_array[j++] = l&0x3fffffff;
    102   }
    103   return c;
    104 }
    105 
    106 // Alternately, set max digit bits to 28 since some
    107 // browsers slow down when dealing with 32-bit numbers.
    108 function am3(i,x,w,j,c,n) {
    109   var this_array = this.array;
    110   var w_array    = w.array;
    111 
    112   var xl = x&0x3fff, xh = x>>14;
    113   while(--n >= 0) {
    114     var l = this_array[i]&0x3fff;
    115     var h = this_array[i++]>>14;
    116     var m = xh*l+h*xl;
    117     l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;
    118     c = (l>>28)+(m>>14)+xh*h;
    119     w_array[j++] = l&0xfffffff;
    120   }
    121   return c;
    122 }
    123 
    124 // This is tailored to VMs with 2-bit tagging. It makes sure
    125 // that all the computations stay within the 29 bits available.
    126 function am4(i,x,w,j,c,n) {
    127   var this_array = this.array;
    128   var w_array    = w.array;
    129 
    130   var xl = x&0x1fff, xh = x>>13;
    131   while(--n >= 0) {
    132     var l = this_array[i]&0x1fff;
    133     var h = this_array[i++]>>13;
    134     var m = xh*l+h*xl;
    135     l = xl*l+((m&0x1fff)<<13)+w_array[j]+c;
    136     c = (l>>26)+(m>>13)+xh*h;
    137     w_array[j++] = l&0x3ffffff;
    138   }
    139   return c;
    140 }
    141 
    142 // am3/28 is best for SM, Rhino, but am4/26 is best for v8.
    143 // Kestrel (Opera 9.5) gets its best result with am4/26.
    144 // IE7 does 9% better with am3/28 than with am4/26.
    145 // Firefox (SM) gets 10% faster with am3/28 than with am4/26.
    146 
    147 setupEngine = function(fn, bits) {
    148   BigInteger.prototype.am = fn;
    149   dbits = bits;
    150 
    151   BI_DB = dbits;
    152   BI_DM = ((1<<dbits)-1);
    153   BI_DV = (1<<dbits);
    154 
    155   BI_FP = 52;
    156   BI_FV = Math.pow(2,BI_FP);
    157   BI_F1 = BI_FP-dbits;
    158   BI_F2 = 2*dbits-BI_FP;
    159 }
    160 
    161 
    162 // Digit conversions
    163 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
    164 var BI_RC = new Array();
    165 var rr,vv;
    166 rr = "0".charCodeAt(0);
    167 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
    168 rr = "a".charCodeAt(0);
    169 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
    170 rr = "A".charCodeAt(0);
    171 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
    172 
    173 function int2char(n) { return BI_RM.charAt(n); }
    174 function intAt(s,i) {
    175   var c = BI_RC[s.charCodeAt(i)];
    176   return (c==null)?-1:c;
    177 }
    178 
    179 // (protected) copy this to r
    180 function bnpCopyTo(r) {
    181   var this_array = this.array;
    182   var r_array    = r.array;
    183 
    184   for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i];
    185   r.t = this.t;
    186   r.s = this.s;
    187 }
    188 
    189 // (protected) set from integer value x, -DV <= x < DV
    190 function bnpFromInt(x) {
    191   var this_array = this.array;
    192   this.t = 1;
    193   this.s = (x<0)?-1:0;
    194   if(x > 0) this_array[0] = x;
    195   else if(x < -1) this_array[0] = x+DV;
    196   else this.t = 0;
    197 }
    198 
    199 // return bigint initialized to value
    200 function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
    201 
    202 // (protected) set from string and radix
    203 function bnpFromString(s,b) {
    204   var this_array = this.array;
    205   var k;
    206   if(b == 16) k = 4;
    207   else if(b == 8) k = 3;
    208   else if(b == 256) k = 8; // byte array
    209   else if(b == 2) k = 1;
    210   else if(b == 32) k = 5;
    211   else if(b == 4) k = 2;
    212   else { this.fromRadix(s,b); return; }
    213   this.t = 0;
    214   this.s = 0;
    215   var i = s.length, mi = false, sh = 0;
    216   while(--i >= 0) {
    217     var x = (k==8)?s[i]&0xff:intAt(s,i);
    218     if(x < 0) {
    219       if(s.charAt(i) == "-") mi = true;
    220       continue;
    221     }
    222     mi = false;
    223     if(sh == 0)
    224       this_array[this.t++] = x;
    225     else if(sh+k > BI_DB) {
    226       this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh;
    227       this_array[this.t++] = (x>>(BI_DB-sh));
    228     }
    229     else
    230       this_array[this.t-1] |= x<<sh;
    231     sh += k;
    232     if(sh >= BI_DB) sh -= BI_DB;
    233   }
    234   if(k == 8 && (s[0]&0x80) != 0) {
    235     this.s = -1;
    236     if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh;
    237   }
    238   this.clamp();
    239   if(mi) BigInteger.ZERO.subTo(this,this);
    240 }
    241 
    242 // (protected) clamp off excess high words
    243 function bnpClamp() {
    244   var this_array = this.array;
    245   var c = this.s&BI_DM;
    246   while(this.t > 0 && this_array[this.t-1] == c) --this.t;
    247 }
    248 
    249 // (public) return string representation in given radix
    250 function bnToString(b) {
    251   var this_array = this.array;
    252   if(this.s < 0) return "-"+this.negate().toString(b);
    253   var k;
    254   if(b == 16) k = 4;
    255   else if(b == 8) k = 3;
    256   else if(b == 2) k = 1;
    257   else if(b == 32) k = 5;
    258   else if(b == 4) k = 2;
    259   else return this.toRadix(b);
    260   var km = (1<<k)-1, d, m = false, r = "", i = this.t;
    261   var p = BI_DB-(i*BI_DB)%k;
    262   if(i-- > 0) {
    263     if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); }
    264     while(i >= 0) {
    265       if(p < k) {
    266         d = (this_array[i]&((1<<p)-1))<<(k-p);
    267         d |= this_array[--i]>>(p+=BI_DB-k);
    268       }
    269       else {
    270         d = (this_array[i]>>(p-=k))&km;
    271         if(p <= 0) { p += BI_DB; --i; }
    272       }
    273       if(d > 0) m = true;
    274       if(m) r += int2char(d);
    275     }
    276   }
    277   return m?r:"0";
    278 }
    279 
    280 // (public) -this
    281 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
    282 
    283 // (public) |this|
    284 function bnAbs() { return (this.s<0)?this.negate():this; }
    285 
    286 // (public) return + if this > a, - if this < a, 0 if equal
    287 function bnCompareTo(a) {
    288   var this_array = this.array;
    289   var a_array = a.array;
    290 
    291   var r = this.s-a.s;
    292   if(r != 0) return r;
    293   var i = this.t;
    294   r = i-a.t;
    295   if(r != 0) return r;
    296   while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r;
    297   return 0;
    298 }
    299 
    300 // returns bit length of the integer x
    301 function nbits(x) {
    302   var r = 1, t;
    303   if((t=x>>>16) != 0) { x = t; r += 16; }
    304   if((t=x>>8) != 0) { x = t; r += 8; }
    305   if((t=x>>4) != 0) { x = t; r += 4; }
    306   if((t=x>>2) != 0) { x = t; r += 2; }
    307   if((t=x>>1) != 0) { x = t; r += 1; }
    308   return r;
    309 }
    310 
    311 // (public) return the number of bits in "this"
    312 function bnBitLength() {
    313   var this_array = this.array;
    314   if(this.t <= 0) return 0;
    315   return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM));
    316 }
    317 
    318 // (protected) r = this << n*DB
    319 function bnpDLShiftTo(n,r) {
    320   var this_array = this.array;
    321   var r_array = r.array;
    322   var i;
    323   for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i];
    324   for(i = n-1; i >= 0; --i) r_array[i] = 0;
    325   r.t = this.t+n;
    326   r.s = this.s;
    327 }
    328 
    329 // (protected) r = this >> n*DB
    330 function bnpDRShiftTo(n,r) {
    331   var this_array = this.array;
    332   var r_array = r.array;
    333   for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i];
    334   r.t = Math.max(this.t-n,0);
    335   r.s = this.s;
    336 }
    337 
    338 // (protected) r = this << n
    339 function bnpLShiftTo(n,r) {
    340   var this_array = this.array;
    341   var r_array = r.array;
    342   var bs = n%BI_DB;
    343   var cbs = BI_DB-bs;
    344   var bm = (1<<cbs)-1;
    345   var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i;
    346   for(i = this.t-1; i >= 0; --i) {
    347     r_array[i+ds+1] = (this_array[i]>>cbs)|c;
    348     c = (this_array[i]&bm)<<bs;
    349   }
    350   for(i = ds-1; i >= 0; --i) r_array[i] = 0;
    351   r_array[ds] = c;
    352   r.t = this.t+ds+1;
    353   r.s = this.s;
    354   r.clamp();
    355 }
    356 
    357 // (protected) r = this >> n
    358 function bnpRShiftTo(n,r) {
    359   var this_array = this.array;
    360   var r_array = r.array;
    361   r.s = this.s;
    362   var ds = Math.floor(n/BI_DB);
    363   if(ds >= this.t) { r.t = 0; return; }
    364   var bs = n%BI_DB;
    365   var cbs = BI_DB-bs;
    366   var bm = (1<<bs)-1;
    367   r_array[0] = this_array[ds]>>bs;
    368   for(var i = ds+1; i < this.t; ++i) {
    369     r_array[i-ds-1] |= (this_array[i]&bm)<<cbs;
    370     r_array[i-ds] = this_array[i]>>bs;
    371   }
    372   if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs;
    373   r.t = this.t-ds;
    374   r.clamp();
    375 }
    376 
    377 // (protected) r = this - a
    378 function bnpSubTo(a,r) {
    379   var this_array = this.array;
    380   var r_array = r.array;
    381   var a_array = a.array;
    382   var i = 0, c = 0, m = Math.min(a.t,this.t);
    383   while(i < m) {
    384     c += this_array[i]-a_array[i];
    385     r_array[i++] = c&BI_DM;
    386     c >>= BI_DB;
    387   }
    388   if(a.t < this.t) {
    389     c -= a.s;
    390     while(i < this.t) {
    391       c += this_array[i];
    392       r_array[i++] = c&BI_DM;
    393       c >>= BI_DB;
    394     }
    395     c += this.s;
    396   }
    397   else {
    398     c += this.s;
    399     while(i < a.t) {
    400       c -= a_array[i];
    401       r_array[i++] = c&BI_DM;
    402       c >>= BI_DB;
    403     }
    404     c -= a.s;
    405   }
    406   r.s = (c<0)?-1:0;
    407   if(c < -1) r_array[i++] = BI_DV+c;
    408   else if(c > 0) r_array[i++] = c;
    409   r.t = i;
    410   r.clamp();
    411 }
    412 
    413 // (protected) r = this * a, r != this,a (HAC 14.12)
    414 // "this" should be the larger one if appropriate.
    415 function bnpMultiplyTo(a,r) {
    416   var this_array = this.array;
    417   var r_array = r.array;
    418   var x = this.abs(), y = a.abs();
    419   var y_array = y.array;
    420 
    421   var i = x.t;
    422   r.t = i+y.t;
    423   while(--i >= 0) r_array[i] = 0;
    424   for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t);
    425   r.s = 0;
    426   r.clamp();
    427   if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
    428 }
    429 
    430 // (protected) r = this^2, r != this (HAC 14.16)
    431 function bnpSquareTo(r) {
    432   var x = this.abs();
    433   var x_array = x.array;
    434   var r_array = r.array;
    435 
    436   var i = r.t = 2*x.t;
    437   while(--i >= 0) r_array[i] = 0;
    438   for(i = 0; i < x.t-1; ++i) {
    439     var c = x.am(i,x_array[i],r,2*i,0,1);
    440     if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) {
    441       r_array[i+x.t] -= BI_DV;
    442       r_array[i+x.t+1] = 1;
    443     }
    444   }
    445   if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1);
    446   r.s = 0;
    447   r.clamp();
    448 }
    449 
    450 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
    451 // r != q, this != m.  q or r may be null.
    452 function bnpDivRemTo(m,q,r) {
    453   var pm = m.abs();
    454   if(pm.t <= 0) return;
    455   var pt = this.abs();
    456   if(pt.t < pm.t) {
    457     if(q != null) q.fromInt(0);
    458     if(r != null) this.copyTo(r);
    459     return;
    460   }
    461   if(r == null) r = nbi();
    462   var y = nbi(), ts = this.s, ms = m.s;
    463   var pm_array = pm.array;
    464   var nsh = BI_DB-nbits(pm_array[pm.t-1]);	// normalize modulus
    465   if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
    466   else { pm.copyTo(y); pt.copyTo(r); }
    467   var ys = y.t;
    468 
    469   var y_array = y.array;
    470   var y0 = y_array[ys-1];
    471   if(y0 == 0) return;
    472   var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0);
    473   var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2;
    474   var i = r.t, j = i-ys, t = (q==null)?nbi():q;
    475   y.dlShiftTo(j,t);
    476 
    477   var r_array = r.array;
    478   if(r.compareTo(t) >= 0) {
    479     r_array[r.t++] = 1;
    480     r.subTo(t,r);
    481   }
    482   BigInteger.ONE.dlShiftTo(ys,t);
    483   t.subTo(y,y);	// "negative" y so we can replace sub with am later
    484   while(y.t < ys) y_array[y.t++] = 0;
    485   while(--j >= 0) {
    486     // Estimate quotient digit
    487     var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2);
    488     if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) {	// Try it out
    489       y.dlShiftTo(j,t);
    490       r.subTo(t,r);
    491       while(r_array[i] < --qd) r.subTo(t,r);
    492     }
    493   }
    494   if(q != null) {
    495     r.drShiftTo(ys,q);
    496     if(ts != ms) BigInteger.ZERO.subTo(q,q);
    497   }
    498   r.t = ys;
    499   r.clamp();
    500   if(nsh > 0) r.rShiftTo(nsh,r);	// Denormalize remainder
    501   if(ts < 0) BigInteger.ZERO.subTo(r,r);
    502 }
    503 
    504 // (public) this mod a
    505 function bnMod(a) {
    506   var r = nbi();
    507   this.abs().divRemTo(a,null,r);
    508   if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
    509   return r;
    510 }
    511 
    512 // Modular reduction using "classic" algorithm
    513 function Classic(m) { this.m = m; }
    514 function cConvert(x) {
    515   if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
    516   else return x;
    517 }
    518 function cRevert(x) { return x; }
    519 function cReduce(x) { x.divRemTo(this.m,null,x); }
    520 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
    521 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
    522 
    523 Classic.prototype.convert = cConvert;
    524 Classic.prototype.revert = cRevert;
    525 Classic.prototype.reduce = cReduce;
    526 Classic.prototype.mulTo = cMulTo;
    527 Classic.prototype.sqrTo = cSqrTo;
    528 
    529 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
    530 // justification:
    531 //         xy == 1 (mod m)
    532 //         xy =  1+km
    533 //   xy(2-xy) = (1+km)(1-km)
    534 // x[y(2-xy)] = 1-k^2m^2
    535 // x[y(2-xy)] == 1 (mod m^2)
    536 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
    537 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
    538 // JS multiply "overflows" differently from C/C++, so care is needed here.
    539 function bnpInvDigit() {
    540   var this_array = this.array;
    541   if(this.t < 1) return 0;
    542   var x = this_array[0];
    543   if((x&1) == 0) return 0;
    544   var y = x&3;		// y == 1/x mod 2^2
    545   y = (y*(2-(x&0xf)*y))&0xf;	// y == 1/x mod 2^4
    546   y = (y*(2-(x&0xff)*y))&0xff;	// y == 1/x mod 2^8
    547   y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16
    548   // last step - calculate inverse mod DV directly;
    549   // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
    550   y = (y*(2-x*y%BI_DV))%BI_DV;		// y == 1/x mod 2^dbits
    551   // we really want the negative inverse, and -DV < y < DV
    552   return (y>0)?BI_DV-y:-y;
    553 }
    554 
    555 // Montgomery reduction
    556 function Montgomery(m) {
    557   this.m = m;
    558   this.mp = m.invDigit();
    559   this.mpl = this.mp&0x7fff;
    560   this.mph = this.mp>>15;
    561   this.um = (1<<(BI_DB-15))-1;
    562   this.mt2 = 2*m.t;
    563 }
    564 
    565 // xR mod m
    566 function montConvert(x) {
    567   var r = nbi();
    568   x.abs().dlShiftTo(this.m.t,r);
    569   r.divRemTo(this.m,null,r);
    570   if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
    571   return r;
    572 }
    573 
    574 // x/R mod m
    575 function montRevert(x) {
    576   var r = nbi();
    577   x.copyTo(r);
    578   this.reduce(r);
    579   return r;
    580 }
    581 
    582 // x = x/R mod m (HAC 14.32)
    583 function montReduce(x) {
    584   var x_array = x.array;
    585   while(x.t <= this.mt2)	// pad x so am has enough room later
    586     x_array[x.t++] = 0;
    587   for(var i = 0; i < this.m.t; ++i) {
    588     // faster way of calculating u0 = x[i]*mp mod DV
    589     var j = x_array[i]&0x7fff;
    590     var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM;
    591     // use am to combine the multiply-shift-add into one call
    592     j = i+this.m.t;
    593     x_array[j] += this.m.am(0,u0,x,i,0,this.m.t);
    594     // propagate carry
    595     while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; }
    596   }
    597   x.clamp();
    598   x.drShiftTo(this.m.t,x);
    599   if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
    600 }
    601 
    602 // r = "x^2/R mod m"; x != r
    603 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
    604 
    605 // r = "xy/R mod m"; x,y != r
    606 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
    607 
    608 Montgomery.prototype.convert = montConvert;
    609 Montgomery.prototype.revert = montRevert;
    610 Montgomery.prototype.reduce = montReduce;
    611 Montgomery.prototype.mulTo = montMulTo;
    612 Montgomery.prototype.sqrTo = montSqrTo;
    613 
    614 // (protected) true iff this is even
    615 function bnpIsEven() {
    616   var this_array = this.array;
    617   return ((this.t>0)?(this_array[0]&1):this.s) == 0;
    618 }
    619 
    620 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
    621 function bnpExp(e,z) {
    622   if(e > 0xffffffff || e < 1) return BigInteger.ONE;
    623   var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
    624   g.copyTo(r);
    625   while(--i >= 0) {
    626     z.sqrTo(r,r2);
    627     if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
    628     else { var t = r; r = r2; r2 = t; }
    629   }
    630   return z.revert(r);
    631 }
    632 
    633 // (public) this^e % m, 0 <= e < 2^32
    634 function bnModPowInt(e,m) {
    635   var z;
    636   if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
    637   return this.exp(e,z);
    638 }
    639 
    640 // protected
    641 BigInteger.prototype.copyTo = bnpCopyTo;
    642 BigInteger.prototype.fromInt = bnpFromInt;
    643 BigInteger.prototype.fromString = bnpFromString;
    644 BigInteger.prototype.clamp = bnpClamp;
    645 BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
    646 BigInteger.prototype.drShiftTo = bnpDRShiftTo;
    647 BigInteger.prototype.lShiftTo = bnpLShiftTo;
    648 BigInteger.prototype.rShiftTo = bnpRShiftTo;
    649 BigInteger.prototype.subTo = bnpSubTo;
    650 BigInteger.prototype.multiplyTo = bnpMultiplyTo;
    651 BigInteger.prototype.squareTo = bnpSquareTo;
    652 BigInteger.prototype.divRemTo = bnpDivRemTo;
    653 BigInteger.prototype.invDigit = bnpInvDigit;
    654 BigInteger.prototype.isEven = bnpIsEven;
    655 BigInteger.prototype.exp = bnpExp;
    656 
    657 // public
    658 BigInteger.prototype.toString = bnToString;
    659 BigInteger.prototype.negate = bnNegate;
    660 BigInteger.prototype.abs = bnAbs;
    661 BigInteger.prototype.compareTo = bnCompareTo;
    662 BigInteger.prototype.bitLength = bnBitLength;
    663 BigInteger.prototype.mod = bnMod;
    664 BigInteger.prototype.modPowInt = bnModPowInt;
    665 
    666 // "constants"
    667 BigInteger.ZERO = nbv(0);
    668 BigInteger.ONE = nbv(1);
    669 // Copyright (c) 2005  Tom Wu
    670 // All Rights Reserved.
    671 // See "LICENSE" for details.
    672 
    673 // Extended JavaScript BN functions, required for RSA private ops.
    674 
    675 // (public)
    676 function bnClone() { var r = nbi(); this.copyTo(r); return r; }
    677 
    678 // (public) return value as integer
    679 function bnIntValue() {
    680   var this_array = this.array;
    681   if(this.s < 0) {
    682     if(this.t == 1) return this_array[0]-BI_DV;
    683     else if(this.t == 0) return -1;
    684   }
    685   else if(this.t == 1) return this_array[0];
    686   else if(this.t == 0) return 0;
    687   // assumes 16 < DB < 32
    688   return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0];
    689 }
    690 
    691 // (public) return value as byte
    692 function bnByteValue() {
    693   var this_array = this.array;
    694   return (this.t==0)?this.s:(this_array[0]<<24)>>24;
    695 }
    696 
    697 // (public) return value as short (assumes DB>=16)
    698 function bnShortValue() {
    699   var this_array = this.array;
    700   return (this.t==0)?this.s:(this_array[0]<<16)>>16;
    701 }
    702 
    703 // (protected) return x s.t. r^x < DV
    704 function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); }
    705 
    706 // (public) 0 if this == 0, 1 if this > 0
    707 function bnSigNum() {
    708   var this_array = this.array;
    709   if(this.s < 0) return -1;
    710   else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0;
    711   else return 1;
    712 }
    713 
    714 // (protected) convert to radix string
    715 function bnpToRadix(b) {
    716   if(b == null) b = 10;
    717   if(this.signum() == 0 || b < 2 || b > 36) return "0";
    718   var cs = this.chunkSize(b);
    719   var a = Math.pow(b,cs);
    720   var d = nbv(a), y = nbi(), z = nbi(), r = "";
    721   this.divRemTo(d,y,z);
    722   while(y.signum() > 0) {
    723     r = (a+z.intValue()).toString(b).substr(1) + r;
    724     y.divRemTo(d,y,z);
    725   }
    726   return z.intValue().toString(b) + r;
    727 }
    728 
    729 // (protected) convert from radix string
    730 function bnpFromRadix(s,b) {
    731   this.fromInt(0);
    732   if(b == null) b = 10;
    733   var cs = this.chunkSize(b);
    734   var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
    735   for(var i = 0; i < s.length; ++i) {
    736     var x = intAt(s,i);
    737     if(x < 0) {
    738       if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
    739       continue;
    740     }
    741     w = b*w+x;
    742     if(++j >= cs) {
    743       this.dMultiply(d);
    744       this.dAddOffset(w,0);
    745       j = 0;
    746       w = 0;
    747     }
    748   }
    749   if(j > 0) {
    750     this.dMultiply(Math.pow(b,j));
    751     this.dAddOffset(w,0);
    752   }
    753   if(mi) BigInteger.ZERO.subTo(this,this);
    754 }
    755 
    756 // (protected) alternate constructor
    757 function bnpFromNumber(a,b,c) {
    758   if("number" == typeof b) {
    759     // new BigInteger(int,int,RNG)
    760     if(a < 2) this.fromInt(1);
    761     else {
    762       this.fromNumber(a,c);
    763       if(!this.testBit(a-1))	// force MSB set
    764         this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
    765       if(this.isEven()) this.dAddOffset(1,0); // force odd
    766       while(!this.isProbablePrime(b)) {
    767         this.dAddOffset(2,0);
    768         if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
    769       }
    770     }
    771   }
    772   else {
    773     // new BigInteger(int,RNG)
    774     var x = new Array(), t = a&7;
    775     x.length = (a>>3)+1;
    776     b.nextBytes(x);
    777     if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
    778     this.fromString(x,256);
    779   }
    780 }
    781 
    782 // (public) convert to bigendian byte array
    783 function bnToByteArray() {
    784   var this_array = this.array;
    785   var i = this.t, r = new Array();
    786   r[0] = this.s;
    787   var p = BI_DB-(i*BI_DB)%8, d, k = 0;
    788   if(i-- > 0) {
    789     if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p)
    790       r[k++] = d|(this.s<<(BI_DB-p));
    791     while(i >= 0) {
    792       if(p < 8) {
    793         d = (this_array[i]&((1<<p)-1))<<(8-p);
    794         d |= this_array[--i]>>(p+=BI_DB-8);
    795       }
    796       else {
    797         d = (this_array[i]>>(p-=8))&0xff;
    798         if(p <= 0) { p += BI_DB; --i; }
    799       }
    800       if((d&0x80) != 0) d |= -256;
    801       if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
    802       if(k > 0 || d != this.s) r[k++] = d;
    803     }
    804   }
    805   return r;
    806 }
    807 
    808 function bnEquals(a) { return(this.compareTo(a)==0); }
    809 function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
    810 function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
    811 
    812 // (protected) r = this op a (bitwise)
    813 function bnpBitwiseTo(a,op,r) {
    814   var this_array = this.array;
    815   var a_array    = a.array;
    816   var r_array    = r.array;
    817   var i, f, m = Math.min(a.t,this.t);
    818   for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]);
    819   if(a.t < this.t) {
    820     f = a.s&BI_DM;
    821     for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f);
    822     r.t = this.t;
    823   }
    824   else {
    825     f = this.s&BI_DM;
    826     for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]);
    827     r.t = a.t;
    828   }
    829   r.s = op(this.s,a.s);
    830   r.clamp();
    831 }
    832 
    833 // (public) this & a
    834 function op_and(x,y) { return x&y; }
    835 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
    836 
    837 // (public) this | a
    838 function op_or(x,y) { return x|y; }
    839 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
    840 
    841 // (public) this ^ a
    842 function op_xor(x,y) { return x^y; }
    843 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
    844 
    845 // (public) this & ~a
    846 function op_andnot(x,y) { return x&~y; }
    847 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
    848 
    849 // (public) ~this
    850 function bnNot() {
    851   var this_array = this.array;
    852   var r = nbi();
    853   var r_array = r.array;
    854 
    855   for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i];
    856   r.t = this.t;
    857   r.s = ~this.s;
    858   return r;
    859 }
    860 
    861 // (public) this << n
    862 function bnShiftLeft(n) {
    863   var r = nbi();
    864   if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
    865   return r;
    866 }
    867 
    868 // (public) this >> n
    869 function bnShiftRight(n) {
    870   var r = nbi();
    871   if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
    872   return r;
    873 }
    874 
    875 // return index of lowest 1-bit in x, x < 2^31
    876 function lbit(x) {
    877   if(x == 0) return -1;
    878   var r = 0;
    879   if((x&0xffff) == 0) { x >>= 16; r += 16; }
    880   if((x&0xff) == 0) { x >>= 8; r += 8; }
    881   if((x&0xf) == 0) { x >>= 4; r += 4; }
    882   if((x&3) == 0) { x >>= 2; r += 2; }
    883   if((x&1) == 0) ++r;
    884   return r;
    885 }
    886 
    887 // (public) returns index of lowest 1-bit (or -1 if none)
    888 function bnGetLowestSetBit() {
    889   var this_array = this.array;
    890   for(var i = 0; i < this.t; ++i)
    891     if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]);
    892   if(this.s < 0) return this.t*BI_DB;
    893   return -1;
    894 }
    895 
    896 // return number of 1 bits in x
    897 function cbit(x) {
    898   var r = 0;
    899   while(x != 0) { x &= x-1; ++r; }
    900   return r;
    901 }
    902 
    903 // (public) return number of set bits
    904 function bnBitCount() {
    905   var r = 0, x = this.s&BI_DM;
    906   for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x);
    907   return r;
    908 }
    909 
    910 // (public) true iff nth bit is set
    911 function bnTestBit(n) {
    912   var this_array = this.array;
    913   var j = Math.floor(n/BI_DB);
    914   if(j >= this.t) return(this.s!=0);
    915   return((this_array[j]&(1<<(n%BI_DB)))!=0);
    916 }
    917 
    918 // (protected) this op (1<<n)
    919 function bnpChangeBit(n,op) {
    920   var r = BigInteger.ONE.shiftLeft(n);
    921   this.bitwiseTo(r,op,r);
    922   return r;
    923 }
    924 
    925 // (public) this | (1<<n)
    926 function bnSetBit(n) { return this.changeBit(n,op_or); }
    927 
    928 // (public) this & ~(1<<n)
    929 function bnClearBit(n) { return this.changeBit(n,op_andnot); }
    930 
    931 // (public) this ^ (1<<n)
    932 function bnFlipBit(n) { return this.changeBit(n,op_xor); }
    933 
    934 // (protected) r = this + a
    935 function bnpAddTo(a,r) {
    936   var this_array = this.array;
    937   var a_array = a.array;
    938   var r_array = r.array;
    939   var i = 0, c = 0, m = Math.min(a.t,this.t);
    940   while(i < m) {
    941     c += this_array[i]+a_array[i];
    942     r_array[i++] = c&BI_DM;
    943     c >>= BI_DB;
    944   }
    945   if(a.t < this.t) {
    946     c += a.s;
    947     while(i < this.t) {
    948       c += this_array[i];
    949       r_array[i++] = c&BI_DM;
    950       c >>= BI_DB;
    951     }
    952     c += this.s;
    953   }
    954   else {
    955     c += this.s;
    956     while(i < a.t) {
    957       c += a_array[i];
    958       r_array[i++] = c&BI_DM;
    959       c >>= BI_DB;
    960     }
    961     c += a.s;
    962   }
    963   r.s = (c<0)?-1:0;
    964   if(c > 0) r_array[i++] = c;
    965   else if(c < -1) r_array[i++] = BI_DV+c;
    966   r.t = i;
    967   r.clamp();
    968 }
    969 
    970 // (public) this + a
    971 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
    972 
    973 // (public) this - a
    974 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
    975 
    976 // (public) this * a
    977 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
    978 
    979 // (public) this / a
    980 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
    981 
    982 // (public) this % a
    983 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
    984 
    985 // (public) [this/a,this%a]
    986 function bnDivideAndRemainder(a) {
    987   var q = nbi(), r = nbi();
    988   this.divRemTo(a,q,r);
    989   return new Array(q,r);
    990 }
    991 
    992 // (protected) this *= n, this >= 0, 1 < n < DV
    993 function bnpDMultiply(n) {
    994   var this_array = this.array;
    995   this_array[this.t] = this.am(0,n-1,this,0,0,this.t);
    996   ++this.t;
    997   this.clamp();
    998 }
    999 
   1000 // (protected) this += n << w words, this >= 0
   1001 function bnpDAddOffset(n,w) {
   1002   var this_array = this.array;
   1003   while(this.t <= w) this_array[this.t++] = 0;
   1004   this_array[w] += n;
   1005   while(this_array[w] >= BI_DV) {
   1006     this_array[w] -= BI_DV;
   1007     if(++w >= this.t) this_array[this.t++] = 0;
   1008     ++this_array[w];
   1009   }
   1010 }
   1011 
   1012 // A "null" reducer
   1013 function NullExp() {}
   1014 function nNop(x) { return x; }
   1015 function nMulTo(x,y,r) { x.multiplyTo(y,r); }
   1016 function nSqrTo(x,r) { x.squareTo(r); }
   1017 
   1018 NullExp.prototype.convert = nNop;
   1019 NullExp.prototype.revert = nNop;
   1020 NullExp.prototype.mulTo = nMulTo;
   1021 NullExp.prototype.sqrTo = nSqrTo;
   1022 
   1023 // (public) this^e
   1024 function bnPow(e) { return this.exp(e,new NullExp()); }
   1025 
   1026 // (protected) r = lower n words of "this * a", a.t <= n
   1027 // "this" should be the larger one if appropriate.
   1028 function bnpMultiplyLowerTo(a,n,r) {
   1029   var r_array = r.array;
   1030   var a_array = a.array;
   1031   var i = Math.min(this.t+a.t,n);
   1032   r.s = 0; // assumes a,this >= 0
   1033   r.t = i;
   1034   while(i > 0) r_array[--i] = 0;
   1035   var j;
   1036   for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t);
   1037   for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i);
   1038   r.clamp();
   1039 }
   1040 
   1041 // (protected) r = "this * a" without lower n words, n > 0
   1042 // "this" should be the larger one if appropriate.
   1043 function bnpMultiplyUpperTo(a,n,r) {
   1044   var r_array = r.array;
   1045   var a_array = a.array;
   1046   --n;
   1047   var i = r.t = this.t+a.t-n;
   1048   r.s = 0; // assumes a,this >= 0
   1049   while(--i >= 0) r_array[i] = 0;
   1050   for(i = Math.max(n-this.t,0); i < a.t; ++i)
   1051     r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n);
   1052   r.clamp();
   1053   r.drShiftTo(1,r);
   1054 }
   1055 
   1056 // Barrett modular reduction
   1057 function Barrett(m) {
   1058   // setup Barrett
   1059   this.r2 = nbi();
   1060   this.q3 = nbi();
   1061   BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
   1062   this.mu = this.r2.divide(m);
   1063   this.m = m;
   1064 }
   1065 
   1066 function barrettConvert(x) {
   1067   if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
   1068   else if(x.compareTo(this.m) < 0) return x;
   1069   else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
   1070 }
   1071 
   1072 function barrettRevert(x) { return x; }
   1073 
   1074 // x = x mod m (HAC 14.42)
   1075 function barrettReduce(x) {
   1076   x.drShiftTo(this.m.t-1,this.r2);
   1077   if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
   1078   this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
   1079   this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
   1080   while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
   1081   x.subTo(this.r2,x);
   1082   while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
   1083 }
   1084 
   1085 // r = x^2 mod m; x != r
   1086 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
   1087 
   1088 // r = x*y mod m; x,y != r
   1089 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
   1090 
   1091 Barrett.prototype.convert = barrettConvert;
   1092 Barrett.prototype.revert = barrettRevert;
   1093 Barrett.prototype.reduce = barrettReduce;
   1094 Barrett.prototype.mulTo = barrettMulTo;
   1095 Barrett.prototype.sqrTo = barrettSqrTo;
   1096 
   1097 // (public) this^e % m (HAC 14.85)
   1098 function bnModPow(e,m) {
   1099   var e_array = e.array;
   1100   var i = e.bitLength(), k, r = nbv(1), z;
   1101   if(i <= 0) return r;
   1102   else if(i < 18) k = 1;
   1103   else if(i < 48) k = 3;
   1104   else if(i < 144) k = 4;
   1105   else if(i < 768) k = 5;
   1106   else k = 6;
   1107   if(i < 8)
   1108     z = new Classic(m);
   1109   else if(m.isEven())
   1110     z = new Barrett(m);
   1111   else
   1112     z = new Montgomery(m);
   1113 
   1114   // precomputation
   1115   var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
   1116   g[1] = z.convert(this);
   1117   if(k > 1) {
   1118     var g2 = nbi();
   1119     z.sqrTo(g[1],g2);
   1120     while(n <= km) {
   1121       g[n] = nbi();
   1122       z.mulTo(g2,g[n-2],g[n]);
   1123       n += 2;
   1124     }
   1125   }
   1126 
   1127   var j = e.t-1, w, is1 = true, r2 = nbi(), t;
   1128   i = nbits(e_array[j])-1;
   1129   while(j >= 0) {
   1130     if(i >= k1) w = (e_array[j]>>(i-k1))&km;
   1131     else {
   1132       w = (e_array[j]&((1<<(i+1))-1))<<(k1-i);
   1133       if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1);
   1134     }
   1135 
   1136     n = k;
   1137     while((w&1) == 0) { w >>= 1; --n; }
   1138     if((i -= n) < 0) { i += BI_DB; --j; }
   1139     if(is1) {	// ret == 1, don't bother squaring or multiplying it
   1140       g[w].copyTo(r);
   1141       is1 = false;
   1142     }
   1143     else {
   1144       while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
   1145       if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
   1146       z.mulTo(r2,g[w],r);
   1147     }
   1148 
   1149     while(j >= 0 && (e_array[j]&(1<<i)) == 0) {
   1150       z.sqrTo(r,r2); t = r; r = r2; r2 = t;
   1151       if(--i < 0) { i = BI_DB-1; --j; }
   1152     }
   1153   }
   1154   return z.revert(r);
   1155 }
   1156 
   1157 // (public) gcd(this,a) (HAC 14.54)
   1158 function bnGCD(a) {
   1159   var x = (this.s<0)?this.negate():this.clone();
   1160   var y = (a.s<0)?a.negate():a.clone();
   1161   if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
   1162   var i = x.getLowestSetBit(), g = y.getLowestSetBit();
   1163   if(g < 0) return x;
   1164   if(i < g) g = i;
   1165   if(g > 0) {
   1166     x.rShiftTo(g,x);
   1167     y.rShiftTo(g,y);
   1168   }
   1169   while(x.signum() > 0) {
   1170     if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
   1171     if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
   1172     if(x.compareTo(y) >= 0) {
   1173       x.subTo(y,x);
   1174       x.rShiftTo(1,x);
   1175     }
   1176     else {
   1177       y.subTo(x,y);
   1178       y.rShiftTo(1,y);
   1179     }
   1180   }
   1181   if(g > 0) y.lShiftTo(g,y);
   1182   return y;
   1183 }
   1184 
   1185 // (protected) this % n, n < 2^26
   1186 function bnpModInt(n) {
   1187   var this_array = this.array;
   1188   if(n <= 0) return 0;
   1189   var d = BI_DV%n, r = (this.s<0)?n-1:0;
   1190   if(this.t > 0)
   1191     if(d == 0) r = this_array[0]%n;
   1192     else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n;
   1193   return r;
   1194 }
   1195 
   1196 // (public) 1/this % m (HAC 14.61)
   1197 function bnModInverse(m) {
   1198   var ac = m.isEven();
   1199   if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
   1200   var u = m.clone(), v = this.clone();
   1201   var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
   1202   while(u.signum() != 0) {
   1203     while(u.isEven()) {
   1204       u.rShiftTo(1,u);
   1205       if(ac) {
   1206         if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
   1207         a.rShiftTo(1,a);
   1208       }
   1209       else if(!b.isEven()) b.subTo(m,b);
   1210       b.rShiftTo(1,b);
   1211     }
   1212     while(v.isEven()) {
   1213       v.rShiftTo(1,v);
   1214       if(ac) {
   1215         if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
   1216         c.rShiftTo(1,c);
   1217       }
   1218       else if(!d.isEven()) d.subTo(m,d);
   1219       d.rShiftTo(1,d);
   1220     }
   1221     if(u.compareTo(v) >= 0) {
   1222       u.subTo(v,u);
   1223       if(ac) a.subTo(c,a);
   1224       b.subTo(d,b);
   1225     }
   1226     else {
   1227       v.subTo(u,v);
   1228       if(ac) c.subTo(a,c);
   1229       d.subTo(b,d);
   1230     }
   1231   }
   1232   if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
   1233   if(d.compareTo(m) >= 0) return d.subtract(m);
   1234   if(d.signum() < 0) d.addTo(m,d); else return d;
   1235   if(d.signum() < 0) return d.add(m); else return d;
   1236 }
   1237 
   1238 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
   1239 var lplim = (1<<26)/lowprimes[lowprimes.length-1];
   1240 
   1241 // (public) test primality with certainty >= 1-.5^t
   1242 function bnIsProbablePrime(t) {
   1243   var i, x = this.abs();
   1244   var x_array = x.array;
   1245   if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) {
   1246     for(i = 0; i < lowprimes.length; ++i)
   1247       if(x_array[0] == lowprimes[i]) return true;
   1248     return false;
   1249   }
   1250   if(x.isEven()) return false;
   1251   i = 1;
   1252   while(i < lowprimes.length) {
   1253     var m = lowprimes[i], j = i+1;
   1254     while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
   1255     m = x.modInt(m);
   1256     while(i < j) if(m%lowprimes[i++] == 0) return false;
   1257   }
   1258   return x.millerRabin(t);
   1259 }
   1260 
   1261 // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
   1262 function bnpMillerRabin(t) {
   1263   var n1 = this.subtract(BigInteger.ONE);
   1264   var k = n1.getLowestSetBit();
   1265   if(k <= 0) return false;
   1266   var r = n1.shiftRight(k);
   1267   t = (t+1)>>1;
   1268   if(t > lowprimes.length) t = lowprimes.length;
   1269   var a = nbi();
   1270   for(var i = 0; i < t; ++i) {
   1271     a.fromInt(lowprimes[i]);
   1272     var y = a.modPow(r,this);
   1273     if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
   1274       var j = 1;
   1275       while(j++ < k && y.compareTo(n1) != 0) {
   1276         y = y.modPowInt(2,this);
   1277         if(y.compareTo(BigInteger.ONE) == 0) return false;
   1278       }
   1279       if(y.compareTo(n1) != 0) return false;
   1280     }
   1281   }
   1282   return true;
   1283 }
   1284 
   1285 // protected
   1286 BigInteger.prototype.chunkSize = bnpChunkSize;
   1287 BigInteger.prototype.toRadix = bnpToRadix;
   1288 BigInteger.prototype.fromRadix = bnpFromRadix;
   1289 BigInteger.prototype.fromNumber = bnpFromNumber;
   1290 BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
   1291 BigInteger.prototype.changeBit = bnpChangeBit;
   1292 BigInteger.prototype.addTo = bnpAddTo;
   1293 BigInteger.prototype.dMultiply = bnpDMultiply;
   1294 BigInteger.prototype.dAddOffset = bnpDAddOffset;
   1295 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
   1296 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
   1297 BigInteger.prototype.modInt = bnpModInt;
   1298 BigInteger.prototype.millerRabin = bnpMillerRabin;
   1299 
   1300 // public
   1301 BigInteger.prototype.clone = bnClone;
   1302 BigInteger.prototype.intValue = bnIntValue;
   1303 BigInteger.prototype.byteValue = bnByteValue;
   1304 BigInteger.prototype.shortValue = bnShortValue;
   1305 BigInteger.prototype.signum = bnSigNum;
   1306 BigInteger.prototype.toByteArray = bnToByteArray;
   1307 BigInteger.prototype.equals = bnEquals;
   1308 BigInteger.prototype.min = bnMin;
   1309 BigInteger.prototype.max = bnMax;
   1310 BigInteger.prototype.and = bnAnd;
   1311 BigInteger.prototype.or = bnOr;
   1312 BigInteger.prototype.xor = bnXor;
   1313 BigInteger.prototype.andNot = bnAndNot;
   1314 BigInteger.prototype.not = bnNot;
   1315 BigInteger.prototype.shiftLeft = bnShiftLeft;
   1316 BigInteger.prototype.shiftRight = bnShiftRight;
   1317 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
   1318 BigInteger.prototype.bitCount = bnBitCount;
   1319 BigInteger.prototype.testBit = bnTestBit;
   1320 BigInteger.prototype.setBit = bnSetBit;
   1321 BigInteger.prototype.clearBit = bnClearBit;
   1322 BigInteger.prototype.flipBit = bnFlipBit;
   1323 BigInteger.prototype.add = bnAdd;
   1324 BigInteger.prototype.subtract = bnSubtract;
   1325 BigInteger.prototype.multiply = bnMultiply;
   1326 BigInteger.prototype.divide = bnDivide;
   1327 BigInteger.prototype.remainder = bnRemainder;
   1328 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
   1329 BigInteger.prototype.modPow = bnModPow;
   1330 BigInteger.prototype.modInverse = bnModInverse;
   1331 BigInteger.prototype.pow = bnPow;
   1332 BigInteger.prototype.gcd = bnGCD;
   1333 BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
   1334 
   1335 // BigInteger interfaces not implemented in jsbn:
   1336 
   1337 // BigInteger(int signum, byte[] magnitude)
   1338 // double doubleValue()
   1339 // float floatValue()
   1340 // int hashCode()
   1341 // long longValue()
   1342 // static BigInteger valueOf(long val)
   1343 // prng4.js - uses Arcfour as a PRNG
   1344 
   1345 function Arcfour() {
   1346   this.i = 0;
   1347   this.j = 0;
   1348   this.S = new Array();
   1349 }
   1350 
   1351 // Initialize arcfour context from key, an array of ints, each from [0..255]
   1352 function ARC4init(key) {
   1353   var i, j, t;
   1354   for(i = 0; i < 256; ++i)
   1355     this.S[i] = i;
   1356   j = 0;
   1357   for(i = 0; i < 256; ++i) {
   1358     j = (j + this.S[i] + key[i % key.length]) & 255;
   1359     t = this.S[i];
   1360     this.S[i] = this.S[j];
   1361     this.S[j] = t;
   1362   }
   1363   this.i = 0;
   1364   this.j = 0;
   1365 }
   1366 
   1367 function ARC4next() {
   1368   var t;
   1369   this.i = (this.i + 1) & 255;
   1370   this.j = (this.j + this.S[this.i]) & 255;
   1371   t = this.S[this.i];
   1372   this.S[this.i] = this.S[this.j];
   1373   this.S[this.j] = t;
   1374   return this.S[(t + this.S[this.i]) & 255];
   1375 }
   1376 
   1377 Arcfour.prototype.init = ARC4init;
   1378 Arcfour.prototype.next = ARC4next;
   1379 
   1380 // Plug in your RNG constructor here
   1381 function prng_newstate() {
   1382   return new Arcfour();
   1383 }
   1384 
   1385 // Pool size must be a multiple of 4 and greater than 32.
   1386 // An array of bytes the size of the pool will be passed to init()
   1387 var rng_psize = 256;
   1388 // Random number generator - requires a PRNG backend, e.g. prng4.js
   1389 
   1390 // For best results, put code like
   1391 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
   1392 // in your main HTML document.
   1393 
   1394 var rng_state;
   1395 var rng_pool;
   1396 var rng_pptr;
   1397 
   1398 // Mix in a 32-bit integer into the pool
   1399 function rng_seed_int(x) {
   1400   rng_pool[rng_pptr++] ^= x & 255;
   1401   rng_pool[rng_pptr++] ^= (x >> 8) & 255;
   1402   rng_pool[rng_pptr++] ^= (x >> 16) & 255;
   1403   rng_pool[rng_pptr++] ^= (x >> 24) & 255;
   1404   if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
   1405 }
   1406 
   1407 // Mix in the current time (w/milliseconds) into the pool
   1408 function rng_seed_time() {
   1409   // Use pre-computed date to avoid making the benchmark
   1410   // results dependent on the current date.
   1411   rng_seed_int(1122926989487);
   1412 }
   1413 
   1414 // Initialize the pool with junk if needed.
   1415 if(rng_pool == null) {
   1416   rng_pool = new Array();
   1417   rng_pptr = 0;
   1418   var t;
   1419   while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
   1420     t = Math.floor(65536 * Math.random());
   1421     rng_pool[rng_pptr++] = t >>> 8;
   1422     rng_pool[rng_pptr++] = t & 255;
   1423   }
   1424   rng_pptr = 0;
   1425   rng_seed_time();
   1426   //rng_seed_int(window.screenX);
   1427   //rng_seed_int(window.screenY);
   1428 }
   1429 
   1430 function rng_get_byte() {
   1431   if(rng_state == null) {
   1432     rng_seed_time();
   1433     rng_state = prng_newstate();
   1434     rng_state.init(rng_pool);
   1435     for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
   1436       rng_pool[rng_pptr] = 0;
   1437     rng_pptr = 0;
   1438     //rng_pool = null;
   1439   }
   1440   // TODO: allow reseeding after first request
   1441   return rng_state.next();
   1442 }
   1443 
   1444 function rng_get_bytes(ba) {
   1445   var i;
   1446   for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
   1447 }
   1448 
   1449 function SecureRandom() {}
   1450 
   1451 SecureRandom.prototype.nextBytes = rng_get_bytes;
   1452 // Depends on jsbn.js and rng.js
   1453 
   1454 // convert a (hex) string to a bignum object
   1455 function parseBigInt(str,r) {
   1456   return new BigInteger(str,r);
   1457 }
   1458 
   1459 function linebrk(s,n) {
   1460   var ret = "";
   1461   var i = 0;
   1462   while(i + n < s.length) {
   1463     ret += s.substring(i,i+n) + "\n";
   1464     i += n;
   1465   }
   1466   return ret + s.substring(i,s.length);
   1467 }
   1468 
   1469 function byte2Hex(b) {
   1470   if(b < 0x10)
   1471     return "0" + b.toString(16);
   1472   else
   1473     return b.toString(16);
   1474 }
   1475 
   1476 // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
   1477 function pkcs1pad2(s,n) {
   1478   if(n < s.length + 11) {
   1479     alert("Message too long for RSA");
   1480     return null;
   1481   }
   1482   var ba = new Array();
   1483   var i = s.length - 1;
   1484   while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--);
   1485   ba[--n] = 0;
   1486   var rng = new SecureRandom();
   1487   var x = new Array();
   1488   while(n > 2) { // random non-zero pad
   1489     x[0] = 0;
   1490     while(x[0] == 0) rng.nextBytes(x);
   1491     ba[--n] = x[0];
   1492   }
   1493   ba[--n] = 2;
   1494   ba[--n] = 0;
   1495   return new BigInteger(ba);
   1496 }
   1497 
   1498 // "empty" RSA key constructor
   1499 function RSAKey() {
   1500   this.n = null;
   1501   this.e = 0;
   1502   this.d = null;
   1503   this.p = null;
   1504   this.q = null;
   1505   this.dmp1 = null;
   1506   this.dmq1 = null;
   1507   this.coeff = null;
   1508 }
   1509 
   1510 // Set the public key fields N and e from hex strings
   1511 function RSASetPublic(N,E) {
   1512   if(N != null && E != null && N.length > 0 && E.length > 0) {
   1513     this.n = parseBigInt(N,16);
   1514     this.e = parseInt(E,16);
   1515   }
   1516   else
   1517     alert("Invalid RSA public key");
   1518 }
   1519 
   1520 // Perform raw public operation on "x": return x^e (mod n)
   1521 function RSADoPublic(x) {
   1522   return x.modPowInt(this.e, this.n);
   1523 }
   1524 
   1525 // Return the PKCS#1 RSA encryption of "text" as an even-length hex string
   1526 function RSAEncrypt(text) {
   1527   var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
   1528   if(m == null) return null;
   1529   var c = this.doPublic(m);
   1530   if(c == null) return null;
   1531   var h = c.toString(16);
   1532   if((h.length & 1) == 0) return h; else return "0" + h;
   1533 }
   1534 
   1535 // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
   1536 //function RSAEncryptB64(text) {
   1537 //  var h = this.encrypt(text);
   1538 //  if(h) return hex2b64(h); else return null;
   1539 //}
   1540 
   1541 // protected
   1542 RSAKey.prototype.doPublic = RSADoPublic;
   1543 
   1544 // public
   1545 RSAKey.prototype.setPublic = RSASetPublic;
   1546 RSAKey.prototype.encrypt = RSAEncrypt;
   1547 //RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
   1548 // Depends on rsa.js and jsbn2.js
   1549 
   1550 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
   1551 function pkcs1unpad2(d,n) {
   1552   var b = d.toByteArray();
   1553   var i = 0;
   1554   while(i < b.length && b[i] == 0) ++i;
   1555   if(b.length-i != n-1 || b[i] != 2)
   1556     return null;
   1557   ++i;
   1558   while(b[i] != 0)
   1559     if(++i >= b.length) return null;
   1560   var ret = "";
   1561   while(++i < b.length)
   1562     ret += String.fromCharCode(b[i]);
   1563   return ret;
   1564 }
   1565 
   1566 // Set the private key fields N, e, and d from hex strings
   1567 function RSASetPrivate(N,E,D) {
   1568   if(N != null && E != null && N.length > 0 && E.length > 0) {
   1569     this.n = parseBigInt(N,16);
   1570     this.e = parseInt(E,16);
   1571     this.d = parseBigInt(D,16);
   1572   }
   1573   else
   1574     alert("Invalid RSA private key");
   1575 }
   1576 
   1577 // Set the private key fields N, e, d and CRT params from hex strings
   1578 function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) {
   1579   if(N != null && E != null && N.length > 0 && E.length > 0) {
   1580     this.n = parseBigInt(N,16);
   1581     this.e = parseInt(E,16);
   1582     this.d = parseBigInt(D,16);
   1583     this.p = parseBigInt(P,16);
   1584     this.q = parseBigInt(Q,16);
   1585     this.dmp1 = parseBigInt(DP,16);
   1586     this.dmq1 = parseBigInt(DQ,16);
   1587     this.coeff = parseBigInt(C,16);
   1588   }
   1589   else
   1590     alert("Invalid RSA private key");
   1591 }
   1592 
   1593 // Generate a new random private key B bits long, using public expt E
   1594 function RSAGenerate(B,E) {
   1595   var rng = new SecureRandom();
   1596   var qs = B>>1;
   1597   this.e = parseInt(E,16);
   1598   var ee = new BigInteger(E,16);
   1599   for(;;) {
   1600     for(;;) {
   1601       this.p = new BigInteger(B-qs,1,rng);
   1602       if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break;
   1603     }
   1604     for(;;) {
   1605       this.q = new BigInteger(qs,1,rng);
   1606       if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break;
   1607     }
   1608     if(this.p.compareTo(this.q) <= 0) {
   1609       var t = this.p;
   1610       this.p = this.q;
   1611       this.q = t;
   1612     }
   1613     var p1 = this.p.subtract(BigInteger.ONE);
   1614     var q1 = this.q.subtract(BigInteger.ONE);
   1615     var phi = p1.multiply(q1);
   1616     if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
   1617       this.n = this.p.multiply(this.q);
   1618       this.d = ee.modInverse(phi);
   1619       this.dmp1 = this.d.mod(p1);
   1620       this.dmq1 = this.d.mod(q1);
   1621       this.coeff = this.q.modInverse(this.p);
   1622       break;
   1623     }
   1624   }
   1625 }
   1626 
   1627 // Perform raw private operation on "x": return x^d (mod n)
   1628 function RSADoPrivate(x) {
   1629   if(this.p == null || this.q == null)
   1630     return x.modPow(this.d, this.n);
   1631 
   1632   // TODO: re-calculate any missing CRT params
   1633   var xp = x.mod(this.p).modPow(this.dmp1, this.p);
   1634   var xq = x.mod(this.q).modPow(this.dmq1, this.q);
   1635 
   1636   while(xp.compareTo(xq) < 0)
   1637     xp = xp.add(this.p);
   1638   return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq);
   1639 }
   1640 
   1641 // Return the PKCS#1 RSA decryption of "ctext".
   1642 // "ctext" is an even-length hex string and the output is a plain string.
   1643 function RSADecrypt(ctext) {
   1644   var c = parseBigInt(ctext, 16);
   1645   var m = this.doPrivate(c);
   1646   if(m == null) return null;
   1647   return pkcs1unpad2(m, (this.n.bitLength()+7)>>3);
   1648 }
   1649 
   1650 // Return the PKCS#1 RSA decryption of "ctext".
   1651 // "ctext" is a Base64-encoded string and the output is a plain string.
   1652 //function RSAB64Decrypt(ctext) {
   1653 //  var h = b64tohex(ctext);
   1654 //  if(h) return this.decrypt(h); else return null;
   1655 //}
   1656 
   1657 // protected
   1658 RSAKey.prototype.doPrivate = RSADoPrivate;
   1659 
   1660 // public
   1661 RSAKey.prototype.setPrivate = RSASetPrivate;
   1662 RSAKey.prototype.setPrivateEx = RSASetPrivateEx;
   1663 RSAKey.prototype.generate = RSAGenerate;
   1664 RSAKey.prototype.decrypt = RSADecrypt;
   1665 //RSAKey.prototype.b64_decrypt = RSAB64Decrypt;
   1666 
   1667 
   1668 nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3";
   1669 eValue="10001";
   1670 dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161";
   1671 pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d";
   1672 qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f";
   1673 dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25";
   1674 dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd";
   1675 coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250";
   1676 
   1677 setupEngine(am3, 28);
   1678 
   1679 var TEXT = "The quick brown fox jumped over the extremely lazy frog! " +
   1680     "Now is the time for all good men to come to the party.";
   1681 var encrypted;
   1682 
   1683 function encrypt() {
   1684   var RSA = new RSAKey();
   1685   RSA.setPublic(nValue, eValue);
   1686   RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue);
   1687   encrypted = RSA.encrypt(TEXT);
   1688 }
   1689 
   1690 function decrypt() {
   1691   var RSA = new RSAKey();
   1692   RSA.setPublic(nValue, eValue);
   1693   RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue);
   1694   var decrypted = RSA.decrypt(encrypted);
   1695   if (decrypted != TEXT) {
   1696     throw new Error("Crypto operation failed");
   1697   }
   1698 }
   1699