Home | History | Annotate | Download | only in ubi
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * Copyright (c) International Business Machines Corp., 2006
      4  * Copyright (c) Nokia Corporation, 2006, 2007
      5  *
      6  * Author: Artem Bityutskiy ( )
      7  */
      8 
      9 /*
     10  * This file includes volume table manipulation code. The volume table is an
     11  * on-flash table containing volume meta-data like name, number of reserved
     12  * physical eraseblocks, type, etc. The volume table is stored in the so-called
     13  * "layout volume".
     14  *
     15  * The layout volume is an internal volume which is organized as follows. It
     16  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
     17  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
     18  * other. This redundancy guarantees robustness to unclean reboots. The volume
     19  * table is basically an array of volume table records. Each record contains
     20  * full information about the volume and protected by a CRC checksum. Note,
     21  * nowadays we use the atomic LEB change operation when updating the volume
     22  * table, so we do not really need 2 LEBs anymore, but we preserve the older
     23  * design for the backward compatibility reasons.
     24  *
     25  * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
     26  * erased, and the updated volume table is written back to LEB 0. Then same for
     27  * LEB 1. This scheme guarantees recoverability from unclean reboots.
     28  *
     29  * In this UBI implementation the on-flash volume table does not contain any
     30  * information about how much data static volumes contain.
     31  *
     32  * But it would still be beneficial to store this information in the volume
     33  * table. For example, suppose we have a static volume X, and all its physical
     34  * eraseblocks became bad for some reasons. Suppose we are attaching the
     35  * corresponding MTD device, for some reason we find no logical eraseblocks
     36  * corresponding to the volume X. According to the volume table volume X does
     37  * exist. So we don't know whether it is just empty or all its physical
     38  * eraseblocks went bad. So we cannot alarm the user properly.
     39  *
     40  * The volume table also stores so-called "update marker", which is used for
     41  * volume updates. Before updating the volume, the update marker is set, and
     42  * after the update operation is finished, the update marker is cleared. So if
     43  * the update operation was interrupted (e.g. by an unclean reboot) - the
     44  * update marker is still there and we know that the volume's contents is
     45  * damaged.
     46  */
     47 
     48 #ifndef __UBOOT__
     49 #include <linux/crc32.h>
     50 #include <linux/err.h>
     51 #include <linux/slab.h>
     52 #include <asm/div64.h>
     53 #else
     54 #include <ubi_uboot.h>
     55 #endif
     56 
     57 #include <linux/err.h>
     58 #include "ubi.h"
     59 
     60 static void self_vtbl_check(const struct ubi_device *ubi);
     61 
     62 /* Empty volume table record */
     63 static struct ubi_vtbl_record empty_vtbl_record;
     64 
     65 /**
     66  * ubi_update_layout_vol - helper for updatting layout volumes on flash
     67  * @ubi: UBI device description object
     68  */
     69 static int ubi_update_layout_vol(struct ubi_device *ubi)
     70 {
     71 	struct ubi_volume *layout_vol;
     72 	int i, err;
     73 
     74 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
     75 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
     76 		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
     77 						ubi->vtbl_size);
     78 		if (err)
     79 			return err;
     80 	}
     81 
     82 	return 0;
     83 }
     84 
     85 /**
     86  * ubi_change_vtbl_record - change volume table record.
     87  * @ubi: UBI device description object
     88  * @idx: table index to change
     89  * @vtbl_rec: new volume table record
     90  *
     91  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
     92  * volume table record is written. The caller does not have to calculate CRC of
     93  * the record as it is done by this function. Returns zero in case of success
     94  * and a negative error code in case of failure.
     95  */
     96 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
     97 			   struct ubi_vtbl_record *vtbl_rec)
     98 {
     99 	int err;
    100 	uint32_t crc;
    101 
    102 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
    103 
    104 	if (!vtbl_rec)
    105 		vtbl_rec = &empty_vtbl_record;
    106 	else {
    107 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
    108 		vtbl_rec->crc = cpu_to_be32(crc);
    109 	}
    110 
    111 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
    112 	err = ubi_update_layout_vol(ubi);
    113 
    114 	self_vtbl_check(ubi);
    115 	return err ? err : 0;
    116 }
    117 
    118 /**
    119  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
    120  * @ubi: UBI device description object
    121  * @rename_list: list of &struct ubi_rename_entry objects
    122  *
    123  * This function re-names multiple volumes specified in @req in the volume
    124  * table. Returns zero in case of success and a negative error code in case of
    125  * failure.
    126  */
    127 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
    128 			    struct list_head *rename_list)
    129 {
    130 	struct ubi_rename_entry *re;
    131 
    132 	list_for_each_entry(re, rename_list, list) {
    133 		uint32_t crc;
    134 		struct ubi_volume *vol = re->desc->vol;
    135 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
    136 
    137 		if (re->remove) {
    138 			memcpy(vtbl_rec, &empty_vtbl_record,
    139 			       sizeof(struct ubi_vtbl_record));
    140 			continue;
    141 		}
    142 
    143 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
    144 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
    145 		memset(vtbl_rec->name + re->new_name_len, 0,
    146 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
    147 		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
    148 			    UBI_VTBL_RECORD_SIZE_CRC);
    149 		vtbl_rec->crc = cpu_to_be32(crc);
    150 	}
    151 
    152 	return ubi_update_layout_vol(ubi);
    153 }
    154 
    155 /**
    156  * vtbl_check - check if volume table is not corrupted and sensible.
    157  * @ubi: UBI device description object
    158  * @vtbl: volume table
    159  *
    160  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
    161  * and %-EINVAL if it contains inconsistent data.
    162  */
    163 static int vtbl_check(const struct ubi_device *ubi,
    164 		      const struct ubi_vtbl_record *vtbl)
    165 {
    166 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
    167 	int upd_marker, err;
    168 	uint32_t crc;
    169 	const char *name;
    170 
    171 	for (i = 0; i < ubi->vtbl_slots; i++) {
    172 		cond_resched();
    173 
    174 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
    175 		alignment = be32_to_cpu(vtbl[i].alignment);
    176 		data_pad = be32_to_cpu(vtbl[i].data_pad);
    177 		upd_marker = vtbl[i].upd_marker;
    178 		vol_type = vtbl[i].vol_type;
    179 		name_len = be16_to_cpu(vtbl[i].name_len);
    180 		name = &vtbl[i].name[0];
    181 
    182 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
    183 		if (be32_to_cpu(vtbl[i].crc) != crc) {
    184 			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
    185 				 i, crc, be32_to_cpu(vtbl[i].crc));
    186 			ubi_dump_vtbl_record(&vtbl[i], i);
    187 			return 1;
    188 		}
    189 
    190 		if (reserved_pebs == 0) {
    191 			if (memcmp(&vtbl[i], &empty_vtbl_record,
    192 						UBI_VTBL_RECORD_SIZE)) {
    193 				err = 2;
    194 				goto bad;
    195 			}
    196 			continue;
    197 		}
    198 
    199 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
    200 		    name_len < 0) {
    201 			err = 3;
    202 			goto bad;
    203 		}
    204 
    205 		if (alignment > ubi->leb_size || alignment == 0) {
    206 			err = 4;
    207 			goto bad;
    208 		}
    209 
    210 		n = alignment & (ubi->min_io_size - 1);
    211 		if (alignment != 1 && n) {
    212 			err = 5;
    213 			goto bad;
    214 		}
    215 
    216 		n = ubi->leb_size % alignment;
    217 		if (data_pad != n) {
    218 			ubi_err(ubi, "bad data_pad, has to be %d", n);
    219 			err = 6;
    220 			goto bad;
    221 		}
    222 
    223 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
    224 			err = 7;
    225 			goto bad;
    226 		}
    227 
    228 		if (upd_marker != 0 && upd_marker != 1) {
    229 			err = 8;
    230 			goto bad;
    231 		}
    232 
    233 		if (reserved_pebs > ubi->good_peb_count) {
    234 			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
    235 				reserved_pebs, ubi->good_peb_count);
    236 			err = 9;
    237 			goto bad;
    238 		}
    239 
    240 		if (name_len > UBI_VOL_NAME_MAX) {
    241 			err = 10;
    242 			goto bad;
    243 		}
    244 
    245 		if (name[0] == '\0') {
    246 			err = 11;
    247 			goto bad;
    248 		}
    249 
    250 		if (name_len != strnlen(name, name_len + 1)) {
    251 			err = 12;
    252 			goto bad;
    253 		}
    254 	}
    255 
    256 	/* Checks that all names are unique */
    257 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
    258 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
    259 			int len1 = be16_to_cpu(vtbl[i].name_len);
    260 			int len2 = be16_to_cpu(vtbl[n].name_len);
    261 
    262 			if (len1 > 0 && len1 == len2 &&
    263 #ifndef __UBOOT__
    264 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
    265 #else
    266 			    !strncmp((char *)vtbl[i].name, vtbl[n].name, len1)) {
    267 #endif
    268 				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
    269 					i, n, vtbl[i].name);
    270 				ubi_dump_vtbl_record(&vtbl[i], i);
    271 				ubi_dump_vtbl_record(&vtbl[n], n);
    272 				return -EINVAL;
    273 			}
    274 		}
    275 	}
    276 
    277 	return 0;
    278 
    279 bad:
    280 	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
    281 	ubi_dump_vtbl_record(&vtbl[i], i);
    282 	return -EINVAL;
    283 }
    284 
    285 /**
    286  * create_vtbl - create a copy of volume table.
    287  * @ubi: UBI device description object
    288  * @ai: attaching information
    289  * @copy: number of the volume table copy
    290  * @vtbl: contents of the volume table
    291  *
    292  * This function returns zero in case of success and a negative error code in
    293  * case of failure.
    294  */
    295 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
    296 		       int copy, void *vtbl)
    297 {
    298 	int err, tries = 0;
    299 	struct ubi_vid_hdr *vid_hdr;
    300 	struct ubi_ainf_peb *new_aeb;
    301 
    302 	dbg_gen("create volume table (copy #%d)", copy + 1);
    303 
    304 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
    305 	if (!vid_hdr)
    306 		return -ENOMEM;
    307 
    308 retry:
    309 	new_aeb = ubi_early_get_peb(ubi, ai);
    310 	if (IS_ERR(new_aeb)) {
    311 		err = PTR_ERR(new_aeb);
    312 		goto out_free;
    313 	}
    314 
    315 	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
    316 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
    317 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
    318 	vid_hdr->data_size = vid_hdr->used_ebs =
    319 			     vid_hdr->data_pad = cpu_to_be32(0);
    320 	vid_hdr->lnum = cpu_to_be32(copy);
    321 	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
    322 
    323 	/* The EC header is already there, write the VID header */
    324 	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
    325 	if (err)
    326 		goto write_error;
    327 
    328 	/* Write the layout volume contents */
    329 	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
    330 	if (err)
    331 		goto write_error;
    332 
    333 	/*
    334 	 * And add it to the attaching information. Don't delete the old version
    335 	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
    336 	 */
    337 	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
    338 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
    339 	ubi_free_vid_hdr(ubi, vid_hdr);
    340 	return err;
    341 
    342 write_error:
    343 	if (err == -EIO && ++tries <= 5) {
    344 		/*
    345 		 * Probably this physical eraseblock went bad, try to pick
    346 		 * another one.
    347 		 */
    348 		list_add(&new_aeb->u.list, &ai->erase);
    349 		goto retry;
    350 	}
    351 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
    352 out_free:
    353 	ubi_free_vid_hdr(ubi, vid_hdr);
    354 	return err;
    355 
    356 }
    357 
    358 /**
    359  * process_lvol - process the layout volume.
    360  * @ubi: UBI device description object
    361  * @ai: attaching information
    362  * @av: layout volume attaching information
    363  *
    364  * This function is responsible for reading the layout volume, ensuring it is
    365  * not corrupted, and recovering from corruptions if needed. Returns volume
    366  * table in case of success and a negative error code in case of failure.
    367  */
    368 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
    369 					    struct ubi_attach_info *ai,
    370 					    struct ubi_ainf_volume *av)
    371 {
    372 	int err;
    373 	struct rb_node *rb;
    374 	struct ubi_ainf_peb *aeb;
    375 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
    376 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
    377 
    378 	/*
    379 	 * UBI goes through the following steps when it changes the layout
    380 	 * volume:
    381 	 * a. erase LEB 0;
    382 	 * b. write new data to LEB 0;
    383 	 * c. erase LEB 1;
    384 	 * d. write new data to LEB 1.
    385 	 *
    386 	 * Before the change, both LEBs contain the same data.
    387 	 *
    388 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
    389 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
    390 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
    391 	 * finally, unclean reboots may result in a situation when neither LEB
    392 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
    393 	 * 0 contains more recent information.
    394 	 *
    395 	 * So the plan is to first check LEB 0. Then
    396 	 * a. if LEB 0 is OK, it must be containing the most recent data; then
    397 	 *    we compare it with LEB 1, and if they are different, we copy LEB
    398 	 *    0 to LEB 1;
    399 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
    400 	 *    to LEB 0.
    401 	 */
    402 
    403 	dbg_gen("check layout volume");
    404 
    405 	/* Read both LEB 0 and LEB 1 into memory */
    406 	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
    407 		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
    408 		if (!leb[aeb->lnum]) {
    409 			err = -ENOMEM;
    410 			goto out_free;
    411 		}
    412 
    413 		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
    414 				       ubi->vtbl_size);
    415 		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
    416 			/*
    417 			 * Scrub the PEB later. Note, -EBADMSG indicates an
    418 			 * uncorrectable ECC error, but we have our own CRC and
    419 			 * the data will be checked later. If the data is OK,
    420 			 * the PEB will be scrubbed (because we set
    421 			 * aeb->scrub). If the data is not OK, the contents of
    422 			 * the PEB will be recovered from the second copy, and
    423 			 * aeb->scrub will be cleared in
    424 			 * 'ubi_add_to_av()'.
    425 			 */
    426 			aeb->scrub = 1;
    427 		else if (err)
    428 			goto out_free;
    429 	}
    430 
    431 	err = -EINVAL;
    432 	if (leb[0]) {
    433 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
    434 		if (leb_corrupted[0] < 0)
    435 			goto out_free;
    436 	}
    437 
    438 	if (!leb_corrupted[0]) {
    439 		/* LEB 0 is OK */
    440 		if (leb[1])
    441 			leb_corrupted[1] = memcmp(leb[0], leb[1],
    442 						  ubi->vtbl_size);
    443 		if (leb_corrupted[1]) {
    444 			ubi_warn(ubi, "volume table copy #2 is corrupted");
    445 			err = create_vtbl(ubi, ai, 1, leb[0]);
    446 			if (err)
    447 				goto out_free;
    448 			ubi_msg(ubi, "volume table was restored");
    449 		}
    450 
    451 		/* Both LEB 1 and LEB 2 are OK and consistent */
    452 		vfree(leb[1]);
    453 		return leb[0];
    454 	} else {
    455 		/* LEB 0 is corrupted or does not exist */
    456 		if (leb[1]) {
    457 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
    458 			if (leb_corrupted[1] < 0)
    459 				goto out_free;
    460 		}
    461 		if (leb_corrupted[1]) {
    462 			/* Both LEB 0 and LEB 1 are corrupted */
    463 			ubi_err(ubi, "both volume tables are corrupted");
    464 			goto out_free;
    465 		}
    466 
    467 		ubi_warn(ubi, "volume table copy #1 is corrupted");
    468 		err = create_vtbl(ubi, ai, 0, leb[1]);
    469 		if (err)
    470 			goto out_free;
    471 		ubi_msg(ubi, "volume table was restored");
    472 
    473 		vfree(leb[0]);
    474 		return leb[1];
    475 	}
    476 
    477 out_free:
    478 	vfree(leb[0]);
    479 	vfree(leb[1]);
    480 	return ERR_PTR(err);
    481 }
    482 
    483 /**
    484  * create_empty_lvol - create empty layout volume.
    485  * @ubi: UBI device description object
    486  * @ai: attaching information
    487  *
    488  * This function returns volume table contents in case of success and a
    489  * negative error code in case of failure.
    490  */
    491 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
    492 						 struct ubi_attach_info *ai)
    493 {
    494 	int i;
    495 	struct ubi_vtbl_record *vtbl;
    496 
    497 	vtbl = vzalloc(ubi->vtbl_size);
    498 	if (!vtbl)
    499 		return ERR_PTR(-ENOMEM);
    500 
    501 	for (i = 0; i < ubi->vtbl_slots; i++)
    502 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
    503 
    504 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
    505 		int err;
    506 
    507 		err = create_vtbl(ubi, ai, i, vtbl);
    508 		if (err) {
    509 			vfree(vtbl);
    510 			return ERR_PTR(err);
    511 		}
    512 	}
    513 
    514 	return vtbl;
    515 }
    516 
    517 /**
    518  * init_volumes - initialize volume information for existing volumes.
    519  * @ubi: UBI device description object
    520  * @ai: scanning information
    521  * @vtbl: volume table
    522  *
    523  * This function allocates volume description objects for existing volumes.
    524  * Returns zero in case of success and a negative error code in case of
    525  * failure.
    526  */
    527 static int init_volumes(struct ubi_device *ubi,
    528 			const struct ubi_attach_info *ai,
    529 			const struct ubi_vtbl_record *vtbl)
    530 {
    531 	int i, reserved_pebs = 0;
    532 	struct ubi_ainf_volume *av;
    533 	struct ubi_volume *vol;
    534 
    535 	for (i = 0; i < ubi->vtbl_slots; i++) {
    536 		cond_resched();
    537 
    538 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
    539 			continue; /* Empty record */
    540 
    541 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
    542 		if (!vol)
    543 			return -ENOMEM;
    544 
    545 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
    546 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
    547 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
    548 		vol->upd_marker = vtbl[i].upd_marker;
    549 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
    550 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
    551 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
    552 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
    553 		memcpy(vol->name, vtbl[i].name, vol->name_len);
    554 		vol->name[vol->name_len] = '\0';
    555 		vol->vol_id = i;
    556 
    557 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
    558 			/* Auto re-size flag may be set only for one volume */
    559 			if (ubi->autoresize_vol_id != -1) {
    560 				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
    561 					ubi->autoresize_vol_id, i);
    562 				kfree(vol);
    563 				return -EINVAL;
    564 			}
    565 
    566 			ubi->autoresize_vol_id = i;
    567 		}
    568 
    569 		ubi_assert(!ubi->volumes[i]);
    570 		ubi->volumes[i] = vol;
    571 		ubi->vol_count += 1;
    572 		vol->ubi = ubi;
    573 		reserved_pebs += vol->reserved_pebs;
    574 
    575 		/*
    576 		 * In case of dynamic volume UBI knows nothing about how many
    577 		 * data is stored there. So assume the whole volume is used.
    578 		 */
    579 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
    580 			vol->used_ebs = vol->reserved_pebs;
    581 			vol->last_eb_bytes = vol->usable_leb_size;
    582 			vol->used_bytes =
    583 				(long long)vol->used_ebs * vol->usable_leb_size;
    584 			continue;
    585 		}
    586 
    587 		/* Static volumes only */
    588 		av = ubi_find_av(ai, i);
    589 		if (!av || !av->leb_count) {
    590 			/*
    591 			 * No eraseblocks belonging to this volume found. We
    592 			 * don't actually know whether this static volume is
    593 			 * completely corrupted or just contains no data. And
    594 			 * we cannot know this as long as data size is not
    595 			 * stored on flash. So we just assume the volume is
    596 			 * empty. FIXME: this should be handled.
    597 			 */
    598 			continue;
    599 		}
    600 
    601 		if (av->leb_count != av->used_ebs) {
    602 			/*
    603 			 * We found a static volume which misses several
    604 			 * eraseblocks. Treat it as corrupted.
    605 			 */
    606 			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
    607 				 av->vol_id, av->used_ebs - av->leb_count);
    608 			vol->corrupted = 1;
    609 			continue;
    610 		}
    611 
    612 		vol->used_ebs = av->used_ebs;
    613 		vol->used_bytes =
    614 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
    615 		vol->used_bytes += av->last_data_size;
    616 		vol->last_eb_bytes = av->last_data_size;
    617 	}
    618 
    619 	/* And add the layout volume */
    620 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
    621 	if (!vol)
    622 		return -ENOMEM;
    623 
    624 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
    625 	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
    626 	vol->vol_type = UBI_DYNAMIC_VOLUME;
    627 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
    628 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
    629 	vol->usable_leb_size = ubi->leb_size;
    630 	vol->used_ebs = vol->reserved_pebs;
    631 	vol->last_eb_bytes = vol->reserved_pebs;
    632 	vol->used_bytes =
    633 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
    634 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
    635 	vol->ref_count = 1;
    636 
    637 	ubi_assert(!ubi->volumes[i]);
    638 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
    639 	reserved_pebs += vol->reserved_pebs;
    640 	ubi->vol_count += 1;
    641 	vol->ubi = ubi;
    642 
    643 	if (reserved_pebs > ubi->avail_pebs) {
    644 		ubi_err(ubi, "not enough PEBs, required %d, available %d",
    645 			reserved_pebs, ubi->avail_pebs);
    646 		if (ubi->corr_peb_count)
    647 			ubi_err(ubi, "%d PEBs are corrupted and not used",
    648 				ubi->corr_peb_count);
    649 	}
    650 	ubi->rsvd_pebs += reserved_pebs;
    651 	ubi->avail_pebs -= reserved_pebs;
    652 
    653 	return 0;
    654 }
    655 
    656 /**
    657  * check_av - check volume attaching information.
    658  * @vol: UBI volume description object
    659  * @av: volume attaching information
    660  *
    661  * This function returns zero if the volume attaching information is consistent
    662  * to the data read from the volume tabla, and %-EINVAL if not.
    663  */
    664 static int check_av(const struct ubi_volume *vol,
    665 		    const struct ubi_ainf_volume *av)
    666 {
    667 	int err;
    668 
    669 	if (av->highest_lnum >= vol->reserved_pebs) {
    670 		err = 1;
    671 		goto bad;
    672 	}
    673 	if (av->leb_count > vol->reserved_pebs) {
    674 		err = 2;
    675 		goto bad;
    676 	}
    677 	if (av->vol_type != vol->vol_type) {
    678 		err = 3;
    679 		goto bad;
    680 	}
    681 	if (av->used_ebs > vol->reserved_pebs) {
    682 		err = 4;
    683 		goto bad;
    684 	}
    685 	if (av->data_pad != vol->data_pad) {
    686 		err = 5;
    687 		goto bad;
    688 	}
    689 	return 0;
    690 
    691 bad:
    692 	ubi_err(vol->ubi, "bad attaching information, error %d", err);
    693 	ubi_dump_av(av);
    694 	ubi_dump_vol_info(vol);
    695 	return -EINVAL;
    696 }
    697 
    698 /**
    699  * check_attaching_info - check that attaching information.
    700  * @ubi: UBI device description object
    701  * @ai: attaching information
    702  *
    703  * Even though we protect on-flash data by CRC checksums, we still don't trust
    704  * the media. This function ensures that attaching information is consistent to
    705  * the information read from the volume table. Returns zero if the attaching
    706  * information is OK and %-EINVAL if it is not.
    707  */
    708 static int check_attaching_info(const struct ubi_device *ubi,
    709 			       struct ubi_attach_info *ai)
    710 {
    711 	int err, i;
    712 	struct ubi_ainf_volume *av;
    713 	struct ubi_volume *vol;
    714 
    715 	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
    716 		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
    717 			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
    718 		return -EINVAL;
    719 	}
    720 
    721 	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
    722 	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
    723 		ubi_err(ubi, "too large volume ID %d found",
    724 			ai->highest_vol_id);
    725 		return -EINVAL;
    726 	}
    727 
    728 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
    729 		cond_resched();
    730 
    731 		av = ubi_find_av(ai, i);
    732 		vol = ubi->volumes[i];
    733 		if (!vol) {
    734 			if (av)
    735 				ubi_remove_av(ai, av);
    736 			continue;
    737 		}
    738 
    739 		if (vol->reserved_pebs == 0) {
    740 			ubi_assert(i < ubi->vtbl_slots);
    741 
    742 			if (!av)
    743 				continue;
    744 
    745 			/*
    746 			 * During attaching we found a volume which does not
    747 			 * exist according to the information in the volume
    748 			 * table. This must have happened due to an unclean
    749 			 * reboot while the volume was being removed. Discard
    750 			 * these eraseblocks.
    751 			 */
    752 			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
    753 			ubi_remove_av(ai, av);
    754 		} else if (av) {
    755 			err = check_av(vol, av);
    756 			if (err)
    757 				return err;
    758 		}
    759 	}
    760 
    761 	return 0;
    762 }
    763 
    764 /**
    765  * ubi_read_volume_table - read the volume table.
    766  * @ubi: UBI device description object
    767  * @ai: attaching information
    768  *
    769  * This function reads volume table, checks it, recover from errors if needed,
    770  * or creates it if needed. Returns zero in case of success and a negative
    771  * error code in case of failure.
    772  */
    773 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
    774 {
    775 	int i, err;
    776 	struct ubi_ainf_volume *av;
    777 
    778 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
    779 
    780 	/*
    781 	 * The number of supported volumes is limited by the eraseblock size
    782 	 * and by the UBI_MAX_VOLUMES constant.
    783 	 */
    784 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
    785 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
    786 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
    787 
    788 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
    789 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
    790 
    791 	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
    792 	if (!av) {
    793 		/*
    794 		 * No logical eraseblocks belonging to the layout volume were
    795 		 * found. This could mean that the flash is just empty. In
    796 		 * this case we create empty layout volume.
    797 		 *
    798 		 * But if flash is not empty this must be a corruption or the
    799 		 * MTD device just contains garbage.
    800 		 */
    801 		if (ai->is_empty) {
    802 			ubi->vtbl = create_empty_lvol(ubi, ai);
    803 			if (IS_ERR(ubi->vtbl))
    804 				return PTR_ERR(ubi->vtbl);
    805 		} else {
    806 			ubi_err(ubi, "the layout volume was not found");
    807 			return -EINVAL;
    808 		}
    809 	} else {
    810 		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
    811 			/* This must not happen with proper UBI images */
    812 			ubi_err(ubi, "too many LEBs (%d) in layout volume",
    813 				av->leb_count);
    814 			return -EINVAL;
    815 		}
    816 
    817 		ubi->vtbl = process_lvol(ubi, ai, av);
    818 		if (IS_ERR(ubi->vtbl))
    819 			return PTR_ERR(ubi->vtbl);
    820 	}
    821 
    822 	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
    823 
    824 	/*
    825 	 * The layout volume is OK, initialize the corresponding in-RAM data
    826 	 * structures.
    827 	 */
    828 	err = init_volumes(ubi, ai, ubi->vtbl);
    829 	if (err)
    830 		goto out_free;
    831 
    832 	/*
    833 	 * Make sure that the attaching information is consistent to the
    834 	 * information stored in the volume table.
    835 	 */
    836 	err = check_attaching_info(ubi, ai);
    837 	if (err)
    838 		goto out_free;
    839 
    840 	return 0;
    841 
    842 out_free:
    843 	vfree(ubi->vtbl);
    844 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
    845 		kfree(ubi->volumes[i]);
    846 		ubi->volumes[i] = NULL;
    847 	}
    848 	return err;
    849 }
    850 
    851 /**
    852  * self_vtbl_check - check volume table.
    853  * @ubi: UBI device description object
    854  */
    855 static void self_vtbl_check(const struct ubi_device *ubi)
    856 {
    857 	if (!ubi_dbg_chk_gen(ubi))
    858 		return;
    859 
    860 	if (vtbl_check(ubi, ubi->vtbl)) {
    861 		ubi_err(ubi, "self-check failed");
    862 		BUG();
    863 	}
    864 }
    865