1 /* 2 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <arch.h> 8 #include <arch_helpers.h> 9 #include <assert.h> 10 #include <bl31.h> 11 #include <bl_common.h> 12 #include <console.h> 13 #include <cortex_a53.h> 14 #include <cortex_a57.h> 15 #include <debug.h> 16 #include <denver.h> 17 #include <errno.h> 18 #include <memctrl.h> 19 #include <mmio.h> 20 #include <platform.h> 21 #include <platform_def.h> 22 #include <stddef.h> 23 #include <string.h> 24 #include <tegra_def.h> 25 #include <tegra_private.h> 26 27 extern void zeromem16(void *mem, unsigned int length); 28 29 /******************************************************************************* 30 * Declarations of linker defined symbols which will help us find the layout 31 * of trusted SRAM 32 ******************************************************************************/ 33 extern unsigned long __TEXT_START__; 34 extern unsigned long __TEXT_END__; 35 extern unsigned long __RW_START__; 36 extern unsigned long __RW_END__; 37 extern unsigned long __RODATA_START__; 38 extern unsigned long __RODATA_END__; 39 extern unsigned long __BL31_END__; 40 41 extern uint64_t tegra_bl31_phys_base; 42 extern uint64_t tegra_console_base; 43 44 /* 45 * The next 3 constants identify the extents of the code, RO data region and the 46 * limit of the BL3-1 image. These addresses are used by the MMU setup code and 47 * therefore they must be page-aligned. It is the responsibility of the linker 48 * script to ensure that __RO_START__, __RO_END__ & __BL31_END__ linker symbols 49 * refer to page-aligned addresses. 50 */ 51 #define BL31_RW_START (unsigned long)(&__RW_START__) 52 #define BL31_RW_END (unsigned long)(&__RW_END__) 53 #define BL31_RODATA_BASE (unsigned long)(&__RODATA_START__) 54 #define BL31_RODATA_END (unsigned long)(&__RODATA_END__) 55 #define BL31_END (unsigned long)(&__BL31_END__) 56 57 static entry_point_info_t bl33_image_ep_info, bl32_image_ep_info; 58 static plat_params_from_bl2_t plat_bl31_params_from_bl2 = { 59 .tzdram_size = (uint64_t)TZDRAM_SIZE 60 }; 61 62 /******************************************************************************* 63 * This variable holds the non-secure image entry address 64 ******************************************************************************/ 65 extern uint64_t ns_image_entrypoint; 66 67 /******************************************************************************* 68 * The following platform setup functions are weakly defined. They 69 * provide typical implementations that will be overridden by a SoC. 70 ******************************************************************************/ 71 #pragma weak plat_early_platform_setup 72 #pragma weak plat_get_bl31_params 73 #pragma weak plat_get_bl31_plat_params 74 75 void plat_early_platform_setup(void) 76 { 77 ; /* do nothing */ 78 } 79 80 bl31_params_t *plat_get_bl31_params(void) 81 { 82 return NULL; 83 } 84 85 plat_params_from_bl2_t *plat_get_bl31_plat_params(void) 86 { 87 return NULL; 88 } 89 90 /******************************************************************************* 91 * Return a pointer to the 'entry_point_info' structure of the next image for 92 * security state specified. BL33 corresponds to the non-secure image type 93 * while BL32 corresponds to the secure image type. 94 ******************************************************************************/ 95 entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type) 96 { 97 if (type == NON_SECURE) 98 return &bl33_image_ep_info; 99 100 /* return BL32 entry point info if it is valid */ 101 if (type == SECURE && bl32_image_ep_info.pc) 102 return &bl32_image_ep_info; 103 104 return NULL; 105 } 106 107 /******************************************************************************* 108 * Return a pointer to the 'plat_params_from_bl2_t' structure. The BL2 image 109 * passes this platform specific information. 110 ******************************************************************************/ 111 plat_params_from_bl2_t *bl31_get_plat_params(void) 112 { 113 return &plat_bl31_params_from_bl2; 114 } 115 116 /******************************************************************************* 117 * Perform any BL31 specific platform actions. Populate the BL33 and BL32 image 118 * info. 119 ******************************************************************************/ 120 void bl31_early_platform_setup(bl31_params_t *from_bl2, 121 void *plat_params_from_bl2) 122 { 123 plat_params_from_bl2_t *plat_params = 124 (plat_params_from_bl2_t *)plat_params_from_bl2; 125 #if LOG_LEVEL >= LOG_LEVEL_INFO 126 int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK; 127 #endif 128 image_info_t bl32_img_info = { {0} }; 129 uint64_t tzdram_start, tzdram_end, bl32_start, bl32_end; 130 131 /* 132 * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so 133 * there's no argument to relay from a previous bootloader. Platforms 134 * might use custom ways to get arguments, so provide handlers which 135 * they can override. 136 */ 137 if (from_bl2 == NULL) 138 from_bl2 = plat_get_bl31_params(); 139 if (plat_params == NULL) 140 plat_params = plat_get_bl31_plat_params(); 141 142 /* 143 * Copy BL3-3, BL3-2 entry point information. 144 * They are stored in Secure RAM, in BL2's address space. 145 */ 146 assert(from_bl2); 147 assert(from_bl2->bl33_ep_info); 148 bl33_image_ep_info = *from_bl2->bl33_ep_info; 149 150 if (from_bl2->bl32_ep_info) 151 bl32_image_ep_info = *from_bl2->bl32_ep_info; 152 153 /* 154 * Parse platform specific parameters - TZDRAM aperture base and size 155 */ 156 assert(plat_params); 157 plat_bl31_params_from_bl2.tzdram_base = plat_params->tzdram_base; 158 plat_bl31_params_from_bl2.tzdram_size = plat_params->tzdram_size; 159 plat_bl31_params_from_bl2.uart_id = plat_params->uart_id; 160 161 /* 162 * It is very important that we run either from TZDRAM or TZSRAM base. 163 * Add an explicit check here. 164 */ 165 if ((plat_bl31_params_from_bl2.tzdram_base != BL31_BASE) && 166 (TEGRA_TZRAM_BASE != BL31_BASE)) 167 panic(); 168 169 /* 170 * Get the base address of the UART controller to be used for the 171 * console 172 */ 173 tegra_console_base = plat_get_console_from_id(plat_params->uart_id); 174 175 if (tegra_console_base != (uint64_t)0) { 176 /* 177 * Configure the UART port to be used as the console 178 */ 179 console_init(tegra_console_base, TEGRA_BOOT_UART_CLK_IN_HZ, 180 TEGRA_CONSOLE_BAUDRATE); 181 } 182 183 /* 184 * Initialize delay timer 185 */ 186 tegra_delay_timer_init(); 187 188 /* 189 * Do initial security configuration to allow DRAM/device access. 190 */ 191 tegra_memctrl_tzdram_setup(plat_bl31_params_from_bl2.tzdram_base, 192 plat_bl31_params_from_bl2.tzdram_size); 193 194 /* 195 * The previous bootloader might not have placed the BL32 image 196 * inside the TZDRAM. We check the BL32 image info to find out 197 * the base/PC values and relocate the image if necessary. 198 */ 199 if (from_bl2->bl32_image_info) { 200 201 bl32_img_info = *from_bl2->bl32_image_info; 202 203 /* Relocate BL32 if it resides outside of the TZDRAM */ 204 tzdram_start = plat_bl31_params_from_bl2.tzdram_base; 205 tzdram_end = plat_bl31_params_from_bl2.tzdram_base + 206 plat_bl31_params_from_bl2.tzdram_size; 207 bl32_start = bl32_img_info.image_base; 208 bl32_end = bl32_img_info.image_base + bl32_img_info.image_size; 209 210 assert(tzdram_end > tzdram_start); 211 assert(bl32_end > bl32_start); 212 assert(bl32_image_ep_info.pc > tzdram_start); 213 assert(bl32_image_ep_info.pc < tzdram_end); 214 215 /* relocate BL32 */ 216 if (bl32_start >= tzdram_end || bl32_end <= tzdram_start) { 217 218 INFO("Relocate BL32 to TZDRAM\n"); 219 220 memcpy16((void *)(uintptr_t)bl32_image_ep_info.pc, 221 (void *)(uintptr_t)bl32_start, 222 bl32_img_info.image_size); 223 224 /* clean up non-secure intermediate buffer */ 225 zeromem16((void *)(uintptr_t)bl32_start, 226 bl32_img_info.image_size); 227 } 228 } 229 230 /* Early platform setup for Tegra SoCs */ 231 plat_early_platform_setup(); 232 233 INFO("BL3-1: Boot CPU: %s Processor [%lx]\n", (impl == DENVER_IMPL) ? 234 "Denver" : "ARM", read_mpidr()); 235 } 236 237 /******************************************************************************* 238 * Initialize the gic, configure the SCR. 239 ******************************************************************************/ 240 void bl31_platform_setup(void) 241 { 242 uint32_t tmp_reg; 243 244 /* Initialize the gic cpu and distributor interfaces */ 245 plat_gic_setup(); 246 247 /* 248 * Setup secondary CPU POR infrastructure. 249 */ 250 plat_secondary_setup(); 251 252 /* 253 * Initial Memory Controller configuration. 254 */ 255 tegra_memctrl_setup(); 256 257 /* 258 * Set up the TZRAM memory aperture to allow only secure world 259 * access 260 */ 261 tegra_memctrl_tzram_setup(TEGRA_TZRAM_BASE, TEGRA_TZRAM_SIZE); 262 263 /* Set the next EL to be AArch64 */ 264 tmp_reg = SCR_RES1_BITS | SCR_RW_BIT; 265 write_scr(tmp_reg); 266 267 INFO("BL3-1: Tegra platform setup complete\n"); 268 } 269 270 /******************************************************************************* 271 * Perform any BL3-1 platform runtime setup prior to BL3-1 cold boot exit 272 ******************************************************************************/ 273 void bl31_plat_runtime_setup(void) 274 { 275 /* 276 * During boot, USB3 and flash media (SDMMC/SATA) devices need 277 * access to IRAM. Because these clients connect to the MC and 278 * do not have a direct path to the IRAM, the MC implements AHB 279 * redirection during boot to allow path to IRAM. In this mode 280 * accesses to a programmed memory address aperture are directed 281 * to the AHB bus, allowing access to the IRAM. This mode must be 282 * disabled before we jump to the non-secure world. 283 */ 284 tegra_memctrl_disable_ahb_redirection(); 285 } 286 287 /******************************************************************************* 288 * Perform the very early platform specific architectural setup here. At the 289 * moment this only intializes the mmu in a quick and dirty way. 290 ******************************************************************************/ 291 void bl31_plat_arch_setup(void) 292 { 293 unsigned long rw_start = BL31_RW_START; 294 unsigned long rw_size = BL31_RW_END - BL31_RW_START; 295 unsigned long rodata_start = BL31_RODATA_BASE; 296 unsigned long rodata_size = BL31_RODATA_END - BL31_RODATA_BASE; 297 unsigned long code_base = (unsigned long)(&__TEXT_START__); 298 unsigned long code_size = (unsigned long)(&__TEXT_END__) - code_base; 299 const mmap_region_t *plat_mmio_map = NULL; 300 #if USE_COHERENT_MEM 301 unsigned long coh_start, coh_size; 302 #endif 303 plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); 304 305 /* add memory regions */ 306 mmap_add_region(rw_start, rw_start, 307 rw_size, 308 MT_MEMORY | MT_RW | MT_SECURE); 309 mmap_add_region(rodata_start, rodata_start, 310 rodata_size, 311 MT_RO_DATA | MT_SECURE); 312 mmap_add_region(code_base, code_base, 313 code_size, 314 MT_CODE | MT_SECURE); 315 316 /* map TZDRAM used by BL31 as coherent memory */ 317 if (TEGRA_TZRAM_BASE == tegra_bl31_phys_base) { 318 mmap_add_region(params_from_bl2->tzdram_base, 319 params_from_bl2->tzdram_base, 320 BL31_SIZE, 321 MT_DEVICE | MT_RW | MT_SECURE); 322 } 323 324 #if USE_COHERENT_MEM 325 coh_start = total_base + (BL_COHERENT_RAM_BASE - BL31_RO_BASE); 326 coh_size = BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE; 327 328 mmap_add_region(coh_start, coh_start, 329 coh_size, 330 MT_DEVICE | MT_RW | MT_SECURE); 331 #endif 332 333 /* map on-chip free running uS timer */ 334 mmap_add_region(page_align((uint64_t)TEGRA_TMRUS_BASE, 0), 335 page_align((uint64_t)TEGRA_TMRUS_BASE, 0), 336 (uint64_t)TEGRA_TMRUS_SIZE, 337 MT_DEVICE | MT_RO | MT_SECURE); 338 339 /* add MMIO space */ 340 plat_mmio_map = plat_get_mmio_map(); 341 if (plat_mmio_map) 342 mmap_add(plat_mmio_map); 343 else 344 WARN("MMIO map not available\n"); 345 346 /* set up translation tables */ 347 init_xlat_tables(); 348 349 /* enable the MMU */ 350 enable_mmu_el3(0); 351 352 INFO("BL3-1: Tegra: MMU enabled\n"); 353 } 354 355 /******************************************************************************* 356 * Check if the given NS DRAM range is valid 357 ******************************************************************************/ 358 int bl31_check_ns_address(uint64_t base, uint64_t size_in_bytes) 359 { 360 uint64_t end = base + size_in_bytes; 361 362 /* 363 * Check if the NS DRAM address is valid 364 */ 365 if ((base < TEGRA_DRAM_BASE) || (end > TEGRA_DRAM_END)) { 366 ERROR("NS address is out-of-bounds!\n"); 367 return -EFAULT; 368 } 369 370 /* 371 * TZDRAM aperture contains the BL31 and BL32 images, so we need 372 * to check if the NS DRAM range overlaps the TZDRAM aperture. 373 */ 374 if ((base < TZDRAM_END) && (end > tegra_bl31_phys_base)) { 375 ERROR("NS address overlaps TZDRAM!\n"); 376 return -ENOTSUP; 377 } 378 379 /* valid NS address */ 380 return 0; 381 } 382