Home | History | Annotate | Download | only in llvmpipe
      1 /**************************************************************************
      2  *
      3  * Copyright 2007 VMware, Inc.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /*
     29  * Binning code for lines
     30  */
     31 
     32 #include "util/u_math.h"
     33 #include "util/u_memory.h"
     34 #include "lp_perf.h"
     35 #include "lp_setup_context.h"
     36 #include "lp_rast.h"
     37 #include "lp_state_fs.h"
     38 #include "lp_state_setup.h"
     39 #include "lp_context.h"
     40 #include "draw/draw_context.h"
     41 
     42 #define NUM_CHANNELS 4
     43 
     44 struct lp_line_info {
     45 
     46    float dx;
     47    float dy;
     48    float oneoverarea;
     49    boolean frontfacing;
     50 
     51    const float (*v1)[4];
     52    const float (*v2)[4];
     53 
     54    float (*a0)[4];
     55    float (*dadx)[4];
     56    float (*dady)[4];
     57 };
     58 
     59 
     60 /**
     61  * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
     62  */
     63 static void constant_coef( struct lp_setup_context *setup,
     64                            struct lp_line_info *info,
     65                            unsigned slot,
     66                            const float value,
     67                            unsigned i )
     68 {
     69    info->a0[slot][i] = value;
     70    info->dadx[slot][i] = 0.0f;
     71    info->dady[slot][i] = 0.0f;
     72 }
     73 
     74 
     75 /**
     76  * Compute a0, dadx and dady for a linearly interpolated coefficient,
     77  * for a triangle.
     78  */
     79 static void linear_coef( struct lp_setup_context *setup,
     80                          struct lp_line_info *info,
     81                          unsigned slot,
     82                          unsigned vert_attr,
     83                          unsigned i)
     84 {
     85    float a1 = info->v1[vert_attr][i];
     86    float a2 = info->v2[vert_attr][i];
     87 
     88    float da21 = a1 - a2;
     89    float dadx = da21 * info->dx * info->oneoverarea;
     90    float dady = da21 * info->dy * info->oneoverarea;
     91 
     92    info->dadx[slot][i] = dadx;
     93    info->dady[slot][i] = dady;
     94 
     95    info->a0[slot][i] = (a1 -
     96                               (dadx * (info->v1[0][0] - setup->pixel_offset) +
     97                                dady * (info->v1[0][1] - setup->pixel_offset)));
     98 }
     99 
    100 
    101 /**
    102  * Compute a0, dadx and dady for a perspective-corrected interpolant,
    103  * for a triangle.
    104  * We basically multiply the vertex value by 1/w before computing
    105  * the plane coefficients (a0, dadx, dady).
    106  * Later, when we compute the value at a particular fragment position we'll
    107  * divide the interpolated value by the interpolated W at that fragment.
    108  */
    109 static void perspective_coef( struct lp_setup_context *setup,
    110                               struct lp_line_info *info,
    111                               unsigned slot,
    112                               unsigned vert_attr,
    113                               unsigned i)
    114 {
    115    /* premultiply by 1/w  (v[0][3] is always 1/w):
    116     */
    117    float a1 = info->v1[vert_attr][i] * info->v1[0][3];
    118    float a2 = info->v2[vert_attr][i] * info->v2[0][3];
    119 
    120    float da21 = a1 - a2;
    121    float dadx = da21 * info->dx * info->oneoverarea;
    122    float dady = da21 * info->dy * info->oneoverarea;
    123 
    124    info->dadx[slot][i] = dadx;
    125    info->dady[slot][i] = dady;
    126 
    127    info->a0[slot][i] = (a1 -
    128                         (dadx * (info->v1[0][0] - setup->pixel_offset) +
    129                          dady * (info->v1[0][1] - setup->pixel_offset)));
    130 }
    131 
    132 static void
    133 setup_fragcoord_coef( struct lp_setup_context *setup,
    134                       struct lp_line_info *info,
    135                       unsigned slot,
    136                       unsigned usage_mask)
    137 {
    138    /*X*/
    139    if (usage_mask & TGSI_WRITEMASK_X) {
    140       info->a0[slot][0] = 0.0;
    141       info->dadx[slot][0] = 1.0;
    142       info->dady[slot][0] = 0.0;
    143    }
    144 
    145    /*Y*/
    146    if (usage_mask & TGSI_WRITEMASK_Y) {
    147       info->a0[slot][1] = 0.0;
    148       info->dadx[slot][1] = 0.0;
    149       info->dady[slot][1] = 1.0;
    150    }
    151 
    152    /*Z*/
    153    if (usage_mask & TGSI_WRITEMASK_Z) {
    154       linear_coef(setup, info, slot, 0, 2);
    155    }
    156 
    157    /*W*/
    158    if (usage_mask & TGSI_WRITEMASK_W) {
    159       linear_coef(setup, info, slot, 0, 3);
    160    }
    161 }
    162 
    163 /**
    164  * Compute the tri->coef[] array dadx, dady, a0 values.
    165  */
    166 static void setup_line_coefficients( struct lp_setup_context *setup,
    167                                      struct lp_line_info *info)
    168 {
    169    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    170    unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
    171    unsigned slot;
    172 
    173    /* setup interpolation for all the remaining attributes:
    174     */
    175    for (slot = 0; slot < key->num_inputs; slot++) {
    176       unsigned vert_attr = key->inputs[slot].src_index;
    177       unsigned usage_mask = key->inputs[slot].usage_mask;
    178       unsigned i;
    179 
    180       switch (key->inputs[slot].interp) {
    181       case LP_INTERP_CONSTANT:
    182          if (key->flatshade_first) {
    183             for (i = 0; i < NUM_CHANNELS; i++)
    184                if (usage_mask & (1 << i))
    185                   constant_coef(setup, info, slot+1, info->v1[vert_attr][i], i);
    186          }
    187          else {
    188             for (i = 0; i < NUM_CHANNELS; i++)
    189                if (usage_mask & (1 << i))
    190                   constant_coef(setup, info, slot+1, info->v2[vert_attr][i], i);
    191          }
    192          break;
    193 
    194       case LP_INTERP_LINEAR:
    195          for (i = 0; i < NUM_CHANNELS; i++)
    196             if (usage_mask & (1 << i))
    197                linear_coef(setup, info, slot+1, vert_attr, i);
    198          break;
    199 
    200       case LP_INTERP_PERSPECTIVE:
    201          for (i = 0; i < NUM_CHANNELS; i++)
    202             if (usage_mask & (1 << i))
    203                perspective_coef(setup, info, slot+1, vert_attr, i);
    204          fragcoord_usage_mask |= TGSI_WRITEMASK_W;
    205          break;
    206 
    207       case LP_INTERP_POSITION:
    208          /*
    209           * The generated pixel interpolators will pick up the coeffs from
    210           * slot 0, so all need to ensure that the usage mask is covers all
    211           * usages.
    212           */
    213          fragcoord_usage_mask |= usage_mask;
    214          break;
    215 
    216       case LP_INTERP_FACING:
    217          for (i = 0; i < NUM_CHANNELS; i++)
    218             if (usage_mask & (1 << i))
    219                constant_coef(setup, info, slot+1,
    220                              info->frontfacing ? 1.0f : -1.0f, i);
    221          break;
    222 
    223       default:
    224          assert(0);
    225       }
    226    }
    227 
    228    /* The internal position input is in slot zero:
    229     */
    230    setup_fragcoord_coef(setup, info, 0,
    231                         fragcoord_usage_mask);
    232 }
    233 
    234 
    235 
    236 static inline int subpixel_snap( float a )
    237 {
    238    return util_iround(FIXED_ONE * a);
    239 }
    240 
    241 
    242 /**
    243  * Print line vertex attribs (for debug).
    244  */
    245 static void
    246 print_line(struct lp_setup_context *setup,
    247            const float (*v1)[4],
    248            const float (*v2)[4])
    249 {
    250    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    251    uint i;
    252 
    253    debug_printf("llvmpipe line\n");
    254    for (i = 0; i < 1 + key->num_inputs; i++) {
    255       debug_printf("  v1[%d]:  %f %f %f %f\n", i,
    256                    v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
    257    }
    258    for (i = 0; i < 1 + key->num_inputs; i++) {
    259       debug_printf("  v2[%d]:  %f %f %f %f\n", i,
    260                    v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
    261    }
    262 }
    263 
    264 
    265 static inline boolean sign(float x){
    266    return x >= 0;
    267 }
    268 
    269 
    270 /* Used on positive floats only:
    271  */
    272 static inline float fracf(float f)
    273 {
    274    return f - floorf(f);
    275 }
    276 
    277 
    278 
    279 static boolean
    280 try_setup_line( struct lp_setup_context *setup,
    281                const float (*v1)[4],
    282                const float (*v2)[4])
    283 {
    284    struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
    285    struct lp_scene *scene = setup->scene;
    286    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    287    struct lp_rast_triangle *line;
    288    struct lp_rast_plane *plane;
    289    struct lp_line_info info;
    290    float width = MAX2(1.0, setup->line_width);
    291    const struct u_rect *scissor;
    292    struct u_rect bbox, bboxpos;
    293    boolean s_planes[4];
    294    unsigned tri_bytes;
    295    int x[4];
    296    int y[4];
    297    int i;
    298    int nr_planes = 4;
    299    unsigned viewport_index = 0;
    300    unsigned layer = 0;
    301 
    302    /* linewidth should be interpreted as integer */
    303    int fixed_width = util_iround(width) * FIXED_ONE;
    304 
    305    float x_offset=0;
    306    float y_offset=0;
    307    float x_offset_end=0;
    308    float y_offset_end=0;
    309 
    310    float x1diff;
    311    float y1diff;
    312    float x2diff;
    313    float y2diff;
    314    float dx, dy;
    315    float area;
    316    const float (*pv)[4];
    317 
    318    boolean draw_start;
    319    boolean draw_end;
    320    boolean will_draw_start;
    321    boolean will_draw_end;
    322 
    323    if (0)
    324       print_line(setup, v1, v2);
    325 
    326    if (setup->flatshade_first) {
    327       pv = v1;
    328    }
    329    else {
    330       pv = v2;
    331    }
    332    if (setup->viewport_index_slot > 0) {
    333       unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
    334       viewport_index = lp_clamp_viewport_idx(*udata);
    335    }
    336    if (setup->layer_slot > 0) {
    337       layer = *(unsigned*)pv[setup->layer_slot];
    338       layer = MIN2(layer, scene->fb_max_layer);
    339    }
    340 
    341    dx = v1[0][0] - v2[0][0];
    342    dy = v1[0][1] - v2[0][1];
    343    area = (dx * dx  + dy * dy);
    344    if (area == 0) {
    345       LP_COUNT(nr_culled_tris);
    346       return TRUE;
    347    }
    348 
    349    info.oneoverarea = 1.0f / area;
    350    info.dx = dx;
    351    info.dy = dy;
    352    info.v1 = v1;
    353    info.v2 = v2;
    354 
    355 
    356    /* X-MAJOR LINE */
    357    if (fabsf(dx) >= fabsf(dy)) {
    358       float dydx = dy / dx;
    359 
    360       x1diff = v1[0][0] - (float) floor(v1[0][0]) - 0.5;
    361       y1diff = v1[0][1] - (float) floor(v1[0][1]) - 0.5;
    362       x2diff = v2[0][0] - (float) floor(v2[0][0]) - 0.5;
    363       y2diff = v2[0][1] - (float) floor(v2[0][1]) - 0.5;
    364 
    365       if (y2diff==-0.5 && dy<0){
    366          y2diff = 0.5;
    367       }
    368 
    369       /*
    370        * Diamond exit rule test for starting point
    371        */
    372       if (fabsf(x1diff) + fabsf(y1diff) < 0.5) {
    373          draw_start = TRUE;
    374       }
    375       else if (sign(x1diff) == sign(-dx)) {
    376          draw_start = FALSE;
    377       }
    378       else if (sign(-y1diff) != sign(dy)) {
    379          draw_start = TRUE;
    380       }
    381       else {
    382          /* do intersection test */
    383          float yintersect = fracf(v1[0][1]) + x1diff * dydx;
    384          draw_start = (yintersect < 1.0 && yintersect > 0.0);
    385       }
    386 
    387 
    388       /*
    389        * Diamond exit rule test for ending point
    390        */
    391       if (fabsf(x2diff) + fabsf(y2diff) < 0.5) {
    392          draw_end = FALSE;
    393       }
    394       else if (sign(x2diff) != sign(-dx)) {
    395          draw_end = FALSE;
    396       }
    397       else if (sign(-y2diff) == sign(dy)) {
    398          draw_end = TRUE;
    399       }
    400       else {
    401          /* do intersection test */
    402          float yintersect = fracf(v2[0][1]) + x2diff * dydx;
    403          draw_end = (yintersect < 1.0 && yintersect > 0.0);
    404       }
    405 
    406       /* Are we already drawing start/end?
    407        */
    408       will_draw_start = sign(-x1diff) != sign(dx);
    409       will_draw_end = (sign(x2diff) == sign(-dx)) || x2diff==0;
    410 
    411       if (dx < 0) {
    412          /* if v2 is to the right of v1, swap pointers */
    413          const float (*temp)[4] = v1;
    414          v1 = v2;
    415          v2 = temp;
    416          dx = -dx;
    417          dy = -dy;
    418          /* Otherwise shift planes appropriately */
    419          if (will_draw_start != draw_start) {
    420             x_offset_end = - x1diff - 0.5;
    421             y_offset_end = x_offset_end * dydx;
    422 
    423          }
    424          if (will_draw_end != draw_end) {
    425             x_offset = - x2diff - 0.5;
    426             y_offset = x_offset * dydx;
    427          }
    428 
    429       }
    430       else{
    431          /* Otherwise shift planes appropriately */
    432          if (will_draw_start != draw_start) {
    433             x_offset = - x1diff + 0.5;
    434             y_offset = x_offset * dydx;
    435          }
    436          if (will_draw_end != draw_end) {
    437             x_offset_end = - x2diff + 0.5;
    438             y_offset_end = x_offset_end * dydx;
    439          }
    440       }
    441 
    442       /* x/y positions in fixed point */
    443       x[0] = subpixel_snap(v1[0][0] + x_offset     - setup->pixel_offset);
    444       x[1] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset);
    445       x[2] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset);
    446       x[3] = subpixel_snap(v1[0][0] + x_offset     - setup->pixel_offset);
    447 
    448       y[0] = subpixel_snap(v1[0][1] + y_offset     - setup->pixel_offset) - fixed_width/2;
    449       y[1] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset) - fixed_width/2;
    450       y[2] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset) + fixed_width/2;
    451       y[3] = subpixel_snap(v1[0][1] + y_offset     - setup->pixel_offset) + fixed_width/2;
    452 
    453    }
    454    else {
    455       const float dxdy = dx / dy;
    456 
    457       /* Y-MAJOR LINE */
    458       x1diff = v1[0][0] - (float) floor(v1[0][0]) - 0.5;
    459       y1diff = v1[0][1] - (float) floor(v1[0][1]) - 0.5;
    460       x2diff = v2[0][0] - (float) floor(v2[0][0]) - 0.5;
    461       y2diff = v2[0][1] - (float) floor(v2[0][1]) - 0.5;
    462 
    463       if (x2diff==-0.5 && dx<0) {
    464          x2diff = 0.5;
    465       }
    466 
    467       /*
    468        * Diamond exit rule test for starting point
    469        */
    470       if (fabsf(x1diff) + fabsf(y1diff) < 0.5) {
    471          draw_start = TRUE;
    472       }
    473       else if (sign(-y1diff) == sign(dy)) {
    474          draw_start = FALSE;
    475       }
    476       else if (sign(x1diff) != sign(-dx)) {
    477          draw_start = TRUE;
    478       }
    479       else {
    480          /* do intersection test */
    481          float xintersect = fracf(v1[0][0]) + y1diff * dxdy;
    482          draw_start = (xintersect < 1.0 && xintersect > 0.0);
    483       }
    484 
    485       /*
    486        * Diamond exit rule test for ending point
    487        */
    488       if (fabsf(x2diff) + fabsf(y2diff) < 0.5) {
    489          draw_end = FALSE;
    490       }
    491       else if (sign(-y2diff) != sign(dy) ) {
    492          draw_end = FALSE;
    493       }
    494       else if (sign(x2diff) == sign(-dx) ) {
    495          draw_end = TRUE;
    496       }
    497       else {
    498          /* do intersection test */
    499          float xintersect = fracf(v2[0][0]) + y2diff * dxdy;
    500          draw_end = (xintersect < 1.0 && xintersect >= 0.0);
    501       }
    502 
    503       /* Are we already drawing start/end?
    504        */
    505       will_draw_start = sign(y1diff) == sign(dy);
    506       will_draw_end = (sign(-y2diff) == sign(dy)) || y2diff==0;
    507 
    508       if (dy > 0) {
    509          /* if v2 is on top of v1, swap pointers */
    510          const float (*temp)[4] = v1;
    511          v1 = v2;
    512          v2 = temp;
    513          dx = -dx;
    514          dy = -dy;
    515 
    516          /* Otherwise shift planes appropriately */
    517          if (will_draw_start != draw_start) {
    518             y_offset_end = - y1diff + 0.5;
    519             x_offset_end = y_offset_end * dxdy;
    520          }
    521          if (will_draw_end != draw_end) {
    522             y_offset = - y2diff + 0.5;
    523             x_offset = y_offset * dxdy;
    524          }
    525       }
    526       else {
    527          /* Otherwise shift planes appropriately */
    528          if (will_draw_start != draw_start) {
    529             y_offset = - y1diff - 0.5;
    530             x_offset = y_offset * dxdy;
    531 
    532          }
    533          if (will_draw_end != draw_end) {
    534             y_offset_end = - y2diff - 0.5;
    535             x_offset_end = y_offset_end * dxdy;
    536          }
    537       }
    538 
    539       /* x/y positions in fixed point */
    540       x[0] = subpixel_snap(v1[0][0] + x_offset     - setup->pixel_offset) - fixed_width/2;
    541       x[1] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset) - fixed_width/2;
    542       x[2] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset) + fixed_width/2;
    543       x[3] = subpixel_snap(v1[0][0] + x_offset     - setup->pixel_offset) + fixed_width/2;
    544 
    545       y[0] = subpixel_snap(v1[0][1] + y_offset     - setup->pixel_offset);
    546       y[1] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset);
    547       y[2] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset);
    548       y[3] = subpixel_snap(v1[0][1] + y_offset     - setup->pixel_offset);
    549    }
    550 
    551    /* Bounding rectangle (in pixels) */
    552    {
    553       /* Yes this is necessary to accurately calculate bounding boxes
    554        * with the two fill-conventions we support.  GL (normally) ends
    555        * up needing a bottom-left fill convention, which requires
    556        * slightly different rounding.
    557        */
    558       int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
    559 
    560       bbox.x0 = (MIN4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
    561       bbox.x1 = (MAX4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
    562       bbox.y0 = (MIN4(y[0], y[1], y[2], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
    563       bbox.y1 = (MAX4(y[0], y[1], y[2], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
    564 
    565       /* Inclusive coordinates:
    566        */
    567       bbox.x1--;
    568       bbox.y1--;
    569    }
    570 
    571    if (bbox.x1 < bbox.x0 ||
    572        bbox.y1 < bbox.y0) {
    573       if (0) debug_printf("empty bounding box\n");
    574       LP_COUNT(nr_culled_tris);
    575       return TRUE;
    576    }
    577 
    578    if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
    579       if (0) debug_printf("offscreen\n");
    580       LP_COUNT(nr_culled_tris);
    581       return TRUE;
    582    }
    583 
    584    bboxpos = bbox;
    585 
    586    /* Can safely discard negative regions:
    587     */
    588    bboxpos.x0 = MAX2(bboxpos.x0, 0);
    589    bboxpos.y0 = MAX2(bboxpos.y0, 0);
    590 
    591    nr_planes = 4;
    592    /*
    593     * Determine how many scissor planes we need, that is drop scissor
    594     * edges if the bounding box of the tri is fully inside that edge.
    595     */
    596    if (setup->scissor_test) {
    597       /* why not just use draw_regions */
    598       scissor = &setup->scissors[viewport_index];
    599       scissor_planes_needed(s_planes, &bboxpos, scissor);
    600       nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
    601    }
    602 
    603    line = lp_setup_alloc_triangle(scene,
    604                                   key->num_inputs,
    605                                   nr_planes,
    606                                   &tri_bytes);
    607    if (!line)
    608       return FALSE;
    609 
    610 #ifdef DEBUG
    611    line->v[0][0] = v1[0][0];
    612    line->v[1][0] = v2[0][0];
    613    line->v[0][1] = v1[0][1];
    614    line->v[1][1] = v2[0][1];
    615 #endif
    616 
    617    LP_COUNT(nr_tris);
    618 
    619    if (lp_context->active_statistics_queries &&
    620        !llvmpipe_rasterization_disabled(lp_context)) {
    621       lp_context->pipeline_statistics.c_primitives++;
    622    }
    623 
    624    /* calculate the deltas */
    625    plane = GET_PLANES(line);
    626    plane[0].dcdy = x[0] - x[1];
    627    plane[1].dcdy = x[1] - x[2];
    628    plane[2].dcdy = x[2] - x[3];
    629    plane[3].dcdy = x[3] - x[0];
    630 
    631    plane[0].dcdx = y[0] - y[1];
    632    plane[1].dcdx = y[1] - y[2];
    633    plane[2].dcdx = y[2] - y[3];
    634    plane[3].dcdx = y[3] - y[0];
    635 
    636    if (draw_will_inject_frontface(lp_context->draw) &&
    637        setup->face_slot > 0) {
    638       line->inputs.frontfacing = v1[setup->face_slot][0];
    639    } else {
    640       line->inputs.frontfacing = TRUE;
    641    }
    642 
    643    /* Setup parameter interpolants:
    644     */
    645    info.a0 = GET_A0(&line->inputs);
    646    info.dadx = GET_DADX(&line->inputs);
    647    info.dady = GET_DADY(&line->inputs);
    648    info.frontfacing = line->inputs.frontfacing;
    649    setup_line_coefficients(setup, &info);
    650 
    651    line->inputs.disable = FALSE;
    652    line->inputs.opaque = FALSE;
    653    line->inputs.layer = layer;
    654    line->inputs.viewport_index = viewport_index;
    655 
    656    /*
    657     * XXX: this code is mostly identical to the one in lp_setup_tri, except it
    658     * uses 4 planes instead of 3. Could share the code (including the sse
    659     * assembly, in fact we'd get the 4th plane for free).
    660     * The only difference apart from storing the 4th plane would be some
    661     * different shuffle for calculating dcdx/dcdy.
    662     */
    663    for (i = 0; i < 4; i++) {
    664 
    665       /* half-edge constants, will be iterated over the whole render
    666        * target.
    667        */
    668       plane[i].c = IMUL64(plane[i].dcdx, x[i]) - IMUL64(plane[i].dcdy, y[i]);
    669 
    670       /* correct for top-left vs. bottom-left fill convention.
    671        */
    672       if (plane[i].dcdx < 0) {
    673          /* both fill conventions want this - adjust for left edges */
    674          plane[i].c++;
    675       }
    676       else if (plane[i].dcdx == 0) {
    677          if (setup->pixel_offset == 0) {
    678             /* correct for top-left fill convention:
    679              */
    680             if (plane[i].dcdy > 0) plane[i].c++;
    681          }
    682          else {
    683             /* correct for bottom-left fill convention:
    684              */
    685             if (plane[i].dcdy < 0) plane[i].c++;
    686          }
    687       }
    688 
    689       plane[i].dcdx *= FIXED_ONE;
    690       plane[i].dcdy *= FIXED_ONE;
    691 
    692       /* find trivial reject offsets for each edge for a single-pixel
    693        * sized block.  These will be scaled up at each recursive level to
    694        * match the active blocksize.  Scaling in this way works best if
    695        * the blocks are square.
    696        */
    697       plane[i].eo = 0;
    698       if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
    699       if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
    700    }
    701 
    702 
    703    /*
    704     * When rasterizing scissored tris, use the intersection of the
    705     * triangle bounding box and the scissor rect to generate the
    706     * scissor planes.
    707     *
    708     * This permits us to cut off the triangle "tails" that are present
    709     * in the intermediate recursive levels caused when two of the
    710     * triangles edges don't diverge quickly enough to trivially reject
    711     * exterior blocks from the triangle.
    712     *
    713     * It's not really clear if it's worth worrying about these tails,
    714     * but since we generate the planes for each scissored tri, it's
    715     * free to trim them in this case.
    716     *
    717     * Note that otherwise, the scissor planes only vary in 'C' value,
    718     * and even then only on state-changes.  Could alternatively store
    719     * these planes elsewhere.
    720     * (Or only store the c value together with a bit indicating which
    721     * scissor edge this is, so rasterization would treat them differently
    722     * (easier to evaluate) to ordinary planes.)
    723     */
    724    if (nr_planes > 4) {
    725       struct lp_rast_plane *plane_s = &plane[4];
    726 
    727       if (s_planes[0]) {
    728          plane_s->dcdx = -1 << 8;
    729          plane_s->dcdy = 0;
    730          plane_s->c = (1-scissor->x0) << 8;
    731          plane_s->eo = 1 << 8;
    732          plane_s++;
    733       }
    734       if (s_planes[1]) {
    735          plane_s->dcdx = 1 << 8;
    736          plane_s->dcdy = 0;
    737          plane_s->c = (scissor->x1+1) << 8;
    738          plane_s->eo = 0 << 8;
    739          plane_s++;
    740       }
    741       if (s_planes[2]) {
    742          plane_s->dcdx = 0;
    743          plane_s->dcdy = 1 << 8;
    744          plane_s->c = (1-scissor->y0) << 8;
    745          plane_s->eo = 1 << 8;
    746          plane_s++;
    747       }
    748       if (s_planes[3]) {
    749          plane_s->dcdx = 0;
    750          plane_s->dcdy = -1 << 8;
    751          plane_s->c = (scissor->y1+1) << 8;
    752          plane_s->eo = 0;
    753          plane_s++;
    754       }
    755       assert(plane_s == &plane[nr_planes]);
    756    }
    757 
    758    return lp_setup_bin_triangle(setup, line, &bbox, &bboxpos, nr_planes, viewport_index);
    759 }
    760 
    761 
    762 static void lp_setup_line( struct lp_setup_context *setup,
    763                            const float (*v0)[4],
    764                            const float (*v1)[4] )
    765 {
    766    if (!try_setup_line( setup, v0, v1 ))
    767    {
    768       if (!lp_setup_flush_and_restart(setup))
    769          return;
    770 
    771       if (!try_setup_line( setup, v0, v1 ))
    772          return;
    773    }
    774 }
    775 
    776 
    777 void lp_setup_choose_line( struct lp_setup_context *setup )
    778 {
    779    setup->line = lp_setup_line;
    780 }
    781 
    782 
    783