1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com) 2 * All rights reserved. 3 * 4 * This package is an SSL implementation written 5 * by Eric Young (eay (at) cryptsoft.com). 6 * The implementation was written so as to conform with Netscapes SSL. 7 * 8 * This library is free for commercial and non-commercial use as long as 9 * the following conditions are aheared to. The following conditions 10 * apply to all code found in this distribution, be it the RC4, RSA, 11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 12 * included with this distribution is covered by the same copyright terms 13 * except that the holder is Tim Hudson (tjh (at) cryptsoft.com). 14 * 15 * Copyright remains Eric Young's, and as such any Copyright notices in 16 * the code are not to be removed. 17 * If this package is used in a product, Eric Young should be given attribution 18 * as the author of the parts of the library used. 19 * This can be in the form of a textual message at program startup or 20 * in documentation (online or textual) provided with the package. 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 1. Redistributions of source code must retain the copyright 26 * notice, this list of conditions and the following disclaimer. 27 * 2. Redistributions in binary form must reproduce the above copyright 28 * notice, this list of conditions and the following disclaimer in the 29 * documentation and/or other materials provided with the distribution. 30 * 3. All advertising materials mentioning features or use of this software 31 * must display the following acknowledgement: 32 * "This product includes cryptographic software written by 33 * Eric Young (eay (at) cryptsoft.com)" 34 * The word 'cryptographic' can be left out if the rouines from the library 35 * being used are not cryptographic related :-). 36 * 4. If you include any Windows specific code (or a derivative thereof) from 37 * the apps directory (application code) you must include an acknowledgement: 38 * "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)" 39 * 40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 50 * SUCH DAMAGE. 51 * 52 * The licence and distribution terms for any publically available version or 53 * derivative of this code cannot be changed. i.e. this code cannot simply be 54 * copied and put under another distribution licence 55 * [including the GNU Public Licence.] 56 */ 57 /* ==================================================================== 58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. 59 * 60 * Redistribution and use in source and binary forms, with or without 61 * modification, are permitted provided that the following conditions 62 * are met: 63 * 64 * 1. Redistributions of source code must retain the above copyright 65 * notice, this list of conditions and the following disclaimer. 66 * 67 * 2. Redistributions in binary form must reproduce the above copyright 68 * notice, this list of conditions and the following disclaimer in 69 * the documentation and/or other materials provided with the 70 * distribution. 71 * 72 * 3. All advertising materials mentioning features or use of this 73 * software must display the following acknowledgment: 74 * "This product includes software developed by the OpenSSL Project 75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 76 * 77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 78 * endorse or promote products derived from this software without 79 * prior written permission. For written permission, please contact 80 * openssl-core (at) openssl.org. 81 * 82 * 5. Products derived from this software may not be called "OpenSSL" 83 * nor may "OpenSSL" appear in their names without prior written 84 * permission of the OpenSSL Project. 85 * 86 * 6. Redistributions of any form whatsoever must retain the following 87 * acknowledgment: 88 * "This product includes software developed by the OpenSSL Project 89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 102 * OF THE POSSIBILITY OF SUCH DAMAGE. 103 * ==================================================================== 104 * 105 * This product includes cryptographic software written by Eric Young 106 * (eay (at) cryptsoft.com). This product includes software written by Tim 107 * Hudson (tjh (at) cryptsoft.com). 108 * 109 */ 110 /* ==================================================================== 111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 112 * 113 * Portions of the attached software ("Contribution") are developed by 114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. 115 * 116 * The Contribution is licensed pursuant to the OpenSSL open source 117 * license provided above. 118 * 119 * ECC cipher suite support in OpenSSL originally written by 120 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. 121 * 122 */ 123 /* ==================================================================== 124 * Copyright 2005 Nokia. All rights reserved. 125 * 126 * The portions of the attached software ("Contribution") is developed by 127 * Nokia Corporation and is licensed pursuant to the OpenSSL open source 128 * license. 129 * 130 * The Contribution, originally written by Mika Kousa and Pasi Eronen of 131 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites 132 * support (see RFC 4279) to OpenSSL. 133 * 134 * No patent licenses or other rights except those expressly stated in 135 * the OpenSSL open source license shall be deemed granted or received 136 * expressly, by implication, estoppel, or otherwise. 137 * 138 * No assurances are provided by Nokia that the Contribution does not 139 * infringe the patent or other intellectual property rights of any third 140 * party or that the license provides you with all the necessary rights 141 * to make use of the Contribution. 142 * 143 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN 144 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA 145 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY 146 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR 147 * OTHERWISE. 148 */ 149 150 #include <openssl/ssl.h> 151 152 #include <assert.h> 153 #include <limits.h> 154 #include <string.h> 155 156 #include <utility> 157 158 #include <openssl/aead.h> 159 #include <openssl/bn.h> 160 #include <openssl/buf.h> 161 #include <openssl/bytestring.h> 162 #include <openssl/ec_key.h> 163 #include <openssl/ecdsa.h> 164 #include <openssl/err.h> 165 #include <openssl/evp.h> 166 #include <openssl/md5.h> 167 #include <openssl/mem.h> 168 #include <openssl/rand.h> 169 #include <openssl/sha.h> 170 171 #include "../crypto/internal.h" 172 #include "internal.h" 173 174 175 BSSL_NAMESPACE_BEGIN 176 177 enum ssl_client_hs_state_t { 178 state_start_connect = 0, 179 state_enter_early_data, 180 state_early_reverify_server_certificate, 181 state_read_hello_verify_request, 182 state_read_server_hello, 183 state_tls13, 184 state_read_server_certificate, 185 state_read_certificate_status, 186 state_verify_server_certificate, 187 state_reverify_server_certificate, 188 state_read_server_key_exchange, 189 state_read_certificate_request, 190 state_read_server_hello_done, 191 state_send_client_certificate, 192 state_send_client_key_exchange, 193 state_send_client_certificate_verify, 194 state_send_client_finished, 195 state_finish_flight, 196 state_read_session_ticket, 197 state_process_change_cipher_spec, 198 state_read_server_finished, 199 state_finish_client_handshake, 200 state_done, 201 }; 202 203 // ssl_get_client_disabled sets |*out_mask_a| and |*out_mask_k| to masks of 204 // disabled algorithms. 205 static void ssl_get_client_disabled(SSL_HANDSHAKE *hs, uint32_t *out_mask_a, 206 uint32_t *out_mask_k) { 207 *out_mask_a = 0; 208 *out_mask_k = 0; 209 210 // PSK requires a client callback. 211 if (hs->config->psk_client_callback == NULL) { 212 *out_mask_a |= SSL_aPSK; 213 *out_mask_k |= SSL_kPSK; 214 } 215 } 216 217 static bool ssl_write_client_cipher_list(SSL_HANDSHAKE *hs, CBB *out) { 218 SSL *const ssl = hs->ssl; 219 uint32_t mask_a, mask_k; 220 ssl_get_client_disabled(hs, &mask_a, &mask_k); 221 222 CBB child; 223 if (!CBB_add_u16_length_prefixed(out, &child)) { 224 return false; 225 } 226 227 // Add a fake cipher suite. See draft-davidben-tls-grease-01. 228 if (ssl->ctx->grease_enabled && 229 !CBB_add_u16(&child, ssl_get_grease_value(hs, ssl_grease_cipher))) { 230 return false; 231 } 232 233 // Add TLS 1.3 ciphers. Order ChaCha20-Poly1305 relative to AES-GCM based on 234 // hardware support. 235 if (hs->max_version >= TLS1_3_VERSION) { 236 if (!EVP_has_aes_hardware() && 237 !CBB_add_u16(&child, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) { 238 return false; 239 } 240 if (!CBB_add_u16(&child, TLS1_CK_AES_128_GCM_SHA256 & 0xffff) || 241 !CBB_add_u16(&child, TLS1_CK_AES_256_GCM_SHA384 & 0xffff)) { 242 return false; 243 } 244 if (EVP_has_aes_hardware() && 245 !CBB_add_u16(&child, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) { 246 return false; 247 } 248 } 249 250 if (hs->min_version < TLS1_3_VERSION) { 251 bool any_enabled = false; 252 for (const SSL_CIPHER *cipher : SSL_get_ciphers(ssl)) { 253 // Skip disabled ciphers 254 if ((cipher->algorithm_mkey & mask_k) || 255 (cipher->algorithm_auth & mask_a)) { 256 continue; 257 } 258 if (SSL_CIPHER_get_min_version(cipher) > hs->max_version || 259 SSL_CIPHER_get_max_version(cipher) < hs->min_version) { 260 continue; 261 } 262 any_enabled = true; 263 if (!CBB_add_u16(&child, ssl_cipher_get_value(cipher))) { 264 return false; 265 } 266 } 267 268 // If all ciphers were disabled, return the error to the caller. 269 if (!any_enabled && hs->max_version < TLS1_3_VERSION) { 270 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE); 271 return false; 272 } 273 } 274 275 if (ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) { 276 if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) { 277 return false; 278 } 279 } 280 281 return CBB_flush(out); 282 } 283 284 bool ssl_write_client_hello(SSL_HANDSHAKE *hs) { 285 SSL *const ssl = hs->ssl; 286 ScopedCBB cbb; 287 CBB body; 288 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CLIENT_HELLO)) { 289 return false; 290 } 291 292 CBB child; 293 if (!CBB_add_u16(&body, hs->client_version) || 294 !CBB_add_bytes(&body, ssl->s3->client_random, SSL3_RANDOM_SIZE) || 295 !CBB_add_u8_length_prefixed(&body, &child)) { 296 return false; 297 } 298 299 // Do not send a session ID on renegotiation. 300 if (!ssl->s3->initial_handshake_complete && 301 !CBB_add_bytes(&child, hs->session_id, hs->session_id_len)) { 302 return false; 303 } 304 305 if (SSL_is_dtls(ssl)) { 306 if (!CBB_add_u8_length_prefixed(&body, &child) || 307 !CBB_add_bytes(&child, ssl->d1->cookie, ssl->d1->cookie_len)) { 308 return false; 309 } 310 } 311 312 size_t header_len = 313 SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH; 314 if (!ssl_write_client_cipher_list(hs, &body) || 315 !CBB_add_u8(&body, 1 /* one compression method */) || 316 !CBB_add_u8(&body, 0 /* null compression */) || 317 !ssl_add_clienthello_tlsext(hs, &body, header_len + CBB_len(&body))) { 318 return false; 319 } 320 321 Array<uint8_t> msg; 322 if (!ssl->method->finish_message(ssl, cbb.get(), &msg)) { 323 return false; 324 } 325 326 // Now that the length prefixes have been computed, fill in the placeholder 327 // PSK binder. 328 if (hs->needs_psk_binder && 329 !tls13_write_psk_binder(hs, msg.data(), msg.size())) { 330 return false; 331 } 332 333 return ssl->method->add_message(ssl, std::move(msg)); 334 } 335 336 static bool parse_supported_versions(SSL_HANDSHAKE *hs, uint16_t *version, 337 const CBS *in) { 338 // If the outer version is not TLS 1.2, or there is no extensions block, use 339 // the outer version. 340 if (*version != TLS1_2_VERSION || CBS_len(in) == 0) { 341 return true; 342 } 343 344 SSL *const ssl = hs->ssl; 345 CBS copy = *in, extensions; 346 if (!CBS_get_u16_length_prefixed(©, &extensions) || 347 CBS_len(©) != 0) { 348 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 349 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 350 return false; 351 } 352 353 bool have_supported_versions; 354 CBS supported_versions; 355 const SSL_EXTENSION_TYPE ext_types[] = { 356 {TLSEXT_TYPE_supported_versions, &have_supported_versions, 357 &supported_versions}, 358 }; 359 360 uint8_t alert = SSL_AD_DECODE_ERROR; 361 if (!ssl_parse_extensions(&extensions, &alert, ext_types, 362 OPENSSL_ARRAY_SIZE(ext_types), 363 1 /* ignore unknown */)) { 364 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 365 return false; 366 } 367 368 // Override the outer version with the extension, if present. 369 if (have_supported_versions && 370 (!CBS_get_u16(&supported_versions, version) || 371 CBS_len(&supported_versions) != 0)) { 372 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 373 return false; 374 } 375 376 return true; 377 } 378 379 static enum ssl_hs_wait_t do_start_connect(SSL_HANDSHAKE *hs) { 380 SSL *const ssl = hs->ssl; 381 382 ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1); 383 // |session_reused| must be reset in case this is a renegotiation. 384 ssl->s3->session_reused = false; 385 386 // Freeze the version range. 387 if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) { 388 return ssl_hs_error; 389 } 390 391 // Always advertise the ClientHello version from the original maximum version, 392 // even on renegotiation. The static RSA key exchange uses this field, and 393 // some servers fail when it changes across handshakes. 394 if (SSL_is_dtls(hs->ssl)) { 395 hs->client_version = 396 hs->max_version >= TLS1_2_VERSION ? DTLS1_2_VERSION : DTLS1_VERSION; 397 } else { 398 hs->client_version = 399 hs->max_version >= TLS1_2_VERSION ? TLS1_2_VERSION : hs->max_version; 400 } 401 402 // If the configured session has expired or was created at a disabled 403 // version, drop it. 404 if (ssl->session != NULL) { 405 if (ssl->session->is_server || 406 !ssl_supports_version(hs, ssl->session->ssl_version) || 407 (ssl->session->session_id_length == 0 && 408 ssl->session->ticket.empty()) || 409 ssl->session->not_resumable || 410 !ssl_session_is_time_valid(ssl, ssl->session.get())) { 411 ssl_set_session(ssl, NULL); 412 } 413 } 414 415 if (!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) { 416 return ssl_hs_error; 417 } 418 419 if (ssl->session != nullptr && 420 !ssl->s3->initial_handshake_complete && 421 ssl->session->session_id_length > 0) { 422 hs->session_id_len = ssl->session->session_id_length; 423 OPENSSL_memcpy(hs->session_id, ssl->session->session_id, 424 hs->session_id_len); 425 } else if (hs->max_version >= TLS1_3_VERSION) { 426 // Initialize a random session ID. 427 hs->session_id_len = sizeof(hs->session_id); 428 if (!RAND_bytes(hs->session_id, hs->session_id_len)) { 429 return ssl_hs_error; 430 } 431 } 432 433 if (!ssl_write_client_hello(hs)) { 434 return ssl_hs_error; 435 } 436 437 hs->state = state_enter_early_data; 438 return ssl_hs_flush; 439 } 440 441 static enum ssl_hs_wait_t do_enter_early_data(SSL_HANDSHAKE *hs) { 442 SSL *const ssl = hs->ssl; 443 444 if (SSL_is_dtls(ssl)) { 445 hs->state = state_read_hello_verify_request; 446 return ssl_hs_ok; 447 } 448 449 if (!hs->early_data_offered) { 450 hs->state = state_read_server_hello; 451 return ssl_hs_ok; 452 } 453 454 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->session->ssl_version); 455 if (!ssl->method->add_change_cipher_spec(ssl)) { 456 return ssl_hs_error; 457 } 458 459 if (!tls13_init_early_key_schedule(hs, ssl->session->master_key, 460 ssl->session->master_key_length) || 461 !tls13_derive_early_secrets(hs) || 462 !tls13_set_traffic_key(ssl, ssl_encryption_early_data, evp_aead_seal, 463 hs->early_traffic_secret, hs->hash_len)) { 464 return ssl_hs_error; 465 } 466 467 // Stash the early data session, so connection properties may be queried out 468 // of it. 469 hs->early_session = UpRef(ssl->session); 470 hs->state = state_early_reverify_server_certificate; 471 return ssl_hs_ok; 472 } 473 474 static enum ssl_hs_wait_t do_early_reverify_server_certificate(SSL_HANDSHAKE *hs) { 475 if (hs->ssl->ctx->reverify_on_resume) { 476 switch (ssl_reverify_peer_cert(hs)) { 477 case ssl_verify_ok: 478 break; 479 case ssl_verify_invalid: 480 return ssl_hs_error; 481 case ssl_verify_retry: 482 hs->state = state_early_reverify_server_certificate; 483 return ssl_hs_certificate_verify; 484 } 485 } 486 487 hs->in_early_data = true; 488 hs->can_early_write = true; 489 hs->state = state_read_server_hello; 490 return ssl_hs_early_return; 491 } 492 493 static enum ssl_hs_wait_t do_read_hello_verify_request(SSL_HANDSHAKE *hs) { 494 SSL *const ssl = hs->ssl; 495 496 assert(SSL_is_dtls(ssl)); 497 498 SSLMessage msg; 499 if (!ssl->method->get_message(ssl, &msg)) { 500 return ssl_hs_read_message; 501 } 502 503 if (msg.type != DTLS1_MT_HELLO_VERIFY_REQUEST) { 504 hs->state = state_read_server_hello; 505 return ssl_hs_ok; 506 } 507 508 CBS hello_verify_request = msg.body, cookie; 509 uint16_t server_version; 510 if (!CBS_get_u16(&hello_verify_request, &server_version) || 511 !CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) || 512 CBS_len(&cookie) > sizeof(ssl->d1->cookie) || 513 CBS_len(&hello_verify_request) != 0) { 514 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 515 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 516 return ssl_hs_error; 517 } 518 519 OPENSSL_memcpy(ssl->d1->cookie, CBS_data(&cookie), CBS_len(&cookie)); 520 ssl->d1->cookie_len = CBS_len(&cookie); 521 522 ssl->method->next_message(ssl); 523 524 // DTLS resets the handshake buffer after HelloVerifyRequest. 525 if (!hs->transcript.Init()) { 526 return ssl_hs_error; 527 } 528 529 if (!ssl_write_client_hello(hs)) { 530 return ssl_hs_error; 531 } 532 533 hs->state = state_read_server_hello; 534 return ssl_hs_flush; 535 } 536 537 static enum ssl_hs_wait_t do_read_server_hello(SSL_HANDSHAKE *hs) { 538 SSL *const ssl = hs->ssl; 539 SSLMessage msg; 540 if (!ssl->method->get_message(ssl, &msg)) { 541 return ssl_hs_read_server_hello; 542 } 543 544 if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO)) { 545 return ssl_hs_error; 546 } 547 548 CBS server_hello = msg.body, server_random, session_id; 549 uint16_t server_version, cipher_suite; 550 uint8_t compression_method; 551 if (!CBS_get_u16(&server_hello, &server_version) || 552 !CBS_get_bytes(&server_hello, &server_random, SSL3_RANDOM_SIZE) || 553 !CBS_get_u8_length_prefixed(&server_hello, &session_id) || 554 CBS_len(&session_id) > SSL3_SESSION_ID_SIZE || 555 !CBS_get_u16(&server_hello, &cipher_suite) || 556 !CBS_get_u8(&server_hello, &compression_method)) { 557 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 558 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 559 return ssl_hs_error; 560 } 561 562 // Use the supported_versions extension if applicable. 563 if (!parse_supported_versions(hs, &server_version, &server_hello)) { 564 return ssl_hs_error; 565 } 566 567 if (!ssl_supports_version(hs, server_version)) { 568 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL); 569 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); 570 return ssl_hs_error; 571 } 572 573 assert(ssl->s3->have_version == ssl->s3->initial_handshake_complete); 574 if (!ssl->s3->have_version) { 575 ssl->version = server_version; 576 // At this point, the connection's version is known and ssl->version is 577 // fixed. Begin enforcing the record-layer version. 578 ssl->s3->have_version = true; 579 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version); 580 } else if (server_version != ssl->version) { 581 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); 582 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); 583 return ssl_hs_error; 584 } 585 586 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { 587 hs->state = state_tls13; 588 return ssl_hs_ok; 589 } 590 591 // Clear some TLS 1.3 state that no longer needs to be retained. 592 hs->key_shares[0].reset(); 593 hs->key_shares[1].reset(); 594 hs->key_share_bytes.Reset(); 595 596 // A TLS 1.2 server would not know to skip the early data we offered. Report 597 // an error code sooner. The caller may use this error code to implement the 598 // fallback described in RFC 8446 appendix D.3. 599 if (hs->early_data_offered) { 600 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_ON_EARLY_DATA); 601 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION); 602 return ssl_hs_error; 603 } 604 605 // Copy over the server random. 606 OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_random), 607 SSL3_RANDOM_SIZE); 608 609 // Enforce the TLS 1.3 anti-downgrade feature. 610 if (!ssl->s3->initial_handshake_complete && 611 ssl_supports_version(hs, TLS1_3_VERSION)) { 612 static_assert( 613 sizeof(kTLS12DowngradeRandom) == sizeof(kTLS13DowngradeRandom), 614 "downgrade signals have different size"); 615 static_assert( 616 sizeof(kJDK11DowngradeRandom) == sizeof(kTLS13DowngradeRandom), 617 "downgrade signals have different size"); 618 auto suffix = 619 MakeConstSpan(ssl->s3->server_random, sizeof(ssl->s3->server_random)) 620 .subspan(SSL3_RANDOM_SIZE - sizeof(kTLS13DowngradeRandom)); 621 if (suffix == kTLS12DowngradeRandom || suffix == kTLS13DowngradeRandom || 622 suffix == kJDK11DowngradeRandom) { 623 ssl->s3->tls13_downgrade = true; 624 if (!hs->config->ignore_tls13_downgrade) { 625 OPENSSL_PUT_ERROR(SSL, SSL_R_TLS13_DOWNGRADE); 626 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 627 return ssl_hs_error; 628 } 629 } 630 } 631 632 if (!ssl->s3->initial_handshake_complete && ssl->session != nullptr && 633 ssl->session->session_id_length != 0 && 634 CBS_mem_equal(&session_id, ssl->session->session_id, 635 ssl->session->session_id_length)) { 636 ssl->s3->session_reused = true; 637 } else { 638 // The server may also have echoed back the TLS 1.3 compatibility mode 639 // session ID. As we know this is not a session the server knows about, any 640 // server resuming it is in error. Reject the first connection 641 // deterministicly, rather than installing an invalid session into the 642 // session cache. https://crbug.com/796910 643 if (hs->session_id_len != 0 && 644 CBS_mem_equal(&session_id, hs->session_id, hs->session_id_len)) { 645 OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_ECHOED_INVALID_SESSION_ID); 646 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 647 return ssl_hs_error; 648 } 649 650 // The session wasn't resumed. Create a fresh SSL_SESSION to 651 // fill out. 652 ssl_set_session(ssl, NULL); 653 if (!ssl_get_new_session(hs, 0 /* client */)) { 654 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 655 return ssl_hs_error; 656 } 657 // Note: session_id could be empty. 658 hs->new_session->session_id_length = CBS_len(&session_id); 659 OPENSSL_memcpy(hs->new_session->session_id, CBS_data(&session_id), 660 CBS_len(&session_id)); 661 } 662 663 const SSL_CIPHER *cipher = SSL_get_cipher_by_value(cipher_suite); 664 if (cipher == NULL) { 665 // unknown cipher 666 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CIPHER_RETURNED); 667 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 668 return ssl_hs_error; 669 } 670 671 // The cipher must be allowed in the selected version and enabled. 672 uint32_t mask_a, mask_k; 673 ssl_get_client_disabled(hs, &mask_a, &mask_k); 674 if ((cipher->algorithm_mkey & mask_k) || (cipher->algorithm_auth & mask_a) || 675 SSL_CIPHER_get_min_version(cipher) > ssl_protocol_version(ssl) || 676 SSL_CIPHER_get_max_version(cipher) < ssl_protocol_version(ssl) || 677 !sk_SSL_CIPHER_find(SSL_get_ciphers(ssl), NULL, cipher)) { 678 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED); 679 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 680 return ssl_hs_error; 681 } 682 683 if (ssl->session != NULL) { 684 if (ssl->session->ssl_version != ssl->version) { 685 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED); 686 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 687 return ssl_hs_error; 688 } 689 if (ssl->session->cipher != cipher) { 690 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED); 691 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 692 return ssl_hs_error; 693 } 694 if (!ssl_session_is_context_valid(hs, ssl->session.get())) { 695 // This is actually a client application bug. 696 OPENSSL_PUT_ERROR(SSL, 697 SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT); 698 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 699 return ssl_hs_error; 700 } 701 } else { 702 hs->new_session->cipher = cipher; 703 } 704 hs->new_cipher = cipher; 705 706 // Now that the cipher is known, initialize the handshake hash and hash the 707 // ServerHello. 708 if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) || 709 !ssl_hash_message(hs, msg)) { 710 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 711 return ssl_hs_error; 712 } 713 714 // If doing a full handshake, the server may request a client certificate 715 // which requires hashing the handshake transcript. Otherwise, the handshake 716 // buffer may be released. 717 if (ssl->session != NULL || 718 !ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 719 hs->transcript.FreeBuffer(); 720 } 721 722 // Only the NULL compression algorithm is supported. 723 if (compression_method != 0) { 724 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM); 725 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 726 return ssl_hs_error; 727 } 728 729 // TLS extensions 730 if (!ssl_parse_serverhello_tlsext(hs, &server_hello)) { 731 OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); 732 return ssl_hs_error; 733 } 734 735 // There should be nothing left over in the record. 736 if (CBS_len(&server_hello) != 0) { 737 // wrong packet length 738 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 739 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 740 return ssl_hs_error; 741 } 742 743 if (ssl->session != NULL && 744 hs->extended_master_secret != ssl->session->extended_master_secret) { 745 if (ssl->session->extended_master_secret) { 746 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); 747 } else { 748 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION); 749 } 750 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 751 return ssl_hs_error; 752 } 753 754 if (ssl->s3->token_binding_negotiated && 755 (!hs->extended_master_secret || !ssl->s3->send_connection_binding)) { 756 OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_TB_WITHOUT_EMS_OR_RI); 757 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_EXTENSION); 758 return ssl_hs_error; 759 } 760 761 ssl->method->next_message(ssl); 762 763 if (ssl->session != NULL) { 764 if (ssl->ctx->reverify_on_resume && 765 ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 766 hs->state = state_reverify_server_certificate; 767 } else { 768 hs->state = state_read_session_ticket; 769 } 770 return ssl_hs_ok; 771 } 772 773 hs->state = state_read_server_certificate; 774 return ssl_hs_ok; 775 } 776 777 static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) { 778 enum ssl_hs_wait_t wait = tls13_client_handshake(hs); 779 if (wait == ssl_hs_ok) { 780 hs->state = state_finish_client_handshake; 781 return ssl_hs_ok; 782 } 783 784 return wait; 785 } 786 787 static enum ssl_hs_wait_t do_read_server_certificate(SSL_HANDSHAKE *hs) { 788 SSL *const ssl = hs->ssl; 789 790 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 791 hs->state = state_read_certificate_status; 792 return ssl_hs_ok; 793 } 794 795 SSLMessage msg; 796 if (!ssl->method->get_message(ssl, &msg)) { 797 return ssl_hs_read_message; 798 } 799 800 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE) || 801 !ssl_hash_message(hs, msg)) { 802 return ssl_hs_error; 803 } 804 805 CBS body = msg.body; 806 uint8_t alert = SSL_AD_DECODE_ERROR; 807 if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey, 808 NULL, &body, ssl->ctx->pool)) { 809 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 810 return ssl_hs_error; 811 } 812 813 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0 || 814 CBS_len(&body) != 0 || 815 !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) { 816 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 817 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 818 return ssl_hs_error; 819 } 820 821 if (!ssl_check_leaf_certificate( 822 hs, hs->peer_pubkey.get(), 823 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0))) { 824 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 825 return ssl_hs_error; 826 } 827 828 ssl->method->next_message(ssl); 829 830 hs->state = state_read_certificate_status; 831 return ssl_hs_ok; 832 } 833 834 static enum ssl_hs_wait_t do_read_certificate_status(SSL_HANDSHAKE *hs) { 835 SSL *const ssl = hs->ssl; 836 837 if (!hs->certificate_status_expected) { 838 hs->state = state_verify_server_certificate; 839 return ssl_hs_ok; 840 } 841 842 SSLMessage msg; 843 if (!ssl->method->get_message(ssl, &msg)) { 844 return ssl_hs_read_message; 845 } 846 847 if (msg.type != SSL3_MT_CERTIFICATE_STATUS) { 848 // A server may send status_request in ServerHello and then change its mind 849 // about sending CertificateStatus. 850 hs->state = state_verify_server_certificate; 851 return ssl_hs_ok; 852 } 853 854 if (!ssl_hash_message(hs, msg)) { 855 return ssl_hs_error; 856 } 857 858 CBS certificate_status = msg.body, ocsp_response; 859 uint8_t status_type; 860 if (!CBS_get_u8(&certificate_status, &status_type) || 861 status_type != TLSEXT_STATUSTYPE_ocsp || 862 !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) || 863 CBS_len(&ocsp_response) == 0 || 864 CBS_len(&certificate_status) != 0) { 865 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 866 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 867 return ssl_hs_error; 868 } 869 870 hs->new_session->ocsp_response.reset( 871 CRYPTO_BUFFER_new_from_CBS(&ocsp_response, ssl->ctx->pool)); 872 if (hs->new_session->ocsp_response == nullptr) { 873 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 874 return ssl_hs_error; 875 } 876 877 ssl->method->next_message(ssl); 878 879 hs->state = state_verify_server_certificate; 880 return ssl_hs_ok; 881 } 882 883 static enum ssl_hs_wait_t do_verify_server_certificate(SSL_HANDSHAKE *hs) { 884 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 885 hs->state = state_read_server_key_exchange; 886 return ssl_hs_ok; 887 } 888 889 switch (ssl_verify_peer_cert(hs)) { 890 case ssl_verify_ok: 891 break; 892 case ssl_verify_invalid: 893 return ssl_hs_error; 894 case ssl_verify_retry: 895 hs->state = state_verify_server_certificate; 896 return ssl_hs_certificate_verify; 897 } 898 899 hs->state = state_read_server_key_exchange; 900 return ssl_hs_ok; 901 } 902 903 static enum ssl_hs_wait_t do_reverify_server_certificate(SSL_HANDSHAKE *hs) { 904 assert(hs->ssl->ctx->reverify_on_resume); 905 906 switch (ssl_reverify_peer_cert(hs)) { 907 case ssl_verify_ok: 908 break; 909 case ssl_verify_invalid: 910 return ssl_hs_error; 911 case ssl_verify_retry: 912 hs->state = state_reverify_server_certificate; 913 return ssl_hs_certificate_verify; 914 } 915 916 hs->state = state_read_session_ticket; 917 return ssl_hs_ok; 918 } 919 920 static enum ssl_hs_wait_t do_read_server_key_exchange(SSL_HANDSHAKE *hs) { 921 SSL *const ssl = hs->ssl; 922 SSLMessage msg; 923 if (!ssl->method->get_message(ssl, &msg)) { 924 return ssl_hs_read_message; 925 } 926 927 if (msg.type != SSL3_MT_SERVER_KEY_EXCHANGE) { 928 // Some ciphers (pure PSK) have an optional ServerKeyExchange message. 929 if (ssl_cipher_requires_server_key_exchange(hs->new_cipher)) { 930 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); 931 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); 932 return ssl_hs_error; 933 } 934 935 hs->state = state_read_certificate_request; 936 return ssl_hs_ok; 937 } 938 939 if (!ssl_hash_message(hs, msg)) { 940 return ssl_hs_error; 941 } 942 943 uint32_t alg_k = hs->new_cipher->algorithm_mkey; 944 uint32_t alg_a = hs->new_cipher->algorithm_auth; 945 CBS server_key_exchange = msg.body; 946 if (alg_a & SSL_aPSK) { 947 CBS psk_identity_hint; 948 949 // Each of the PSK key exchanges begins with a psk_identity_hint. 950 if (!CBS_get_u16_length_prefixed(&server_key_exchange, 951 &psk_identity_hint)) { 952 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 953 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 954 return ssl_hs_error; 955 } 956 957 // Store the PSK identity hint for the ClientKeyExchange. Assume that the 958 // maximum length of a PSK identity hint can be as long as the maximum 959 // length of a PSK identity. Also do not allow NULL characters; identities 960 // are saved as C strings. 961 // 962 // TODO(davidben): Should invalid hints be ignored? It's a hint rather than 963 // a specific identity. 964 if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN || 965 CBS_contains_zero_byte(&psk_identity_hint)) { 966 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); 967 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 968 return ssl_hs_error; 969 } 970 971 // Save non-empty identity hints as a C string. Empty identity hints we 972 // treat as missing. Plain PSK makes it possible to send either no hint 973 // (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell 974 // empty hint. Having different capabilities is odd, so we interpret empty 975 // and missing as identical. 976 char *raw = nullptr; 977 if (CBS_len(&psk_identity_hint) != 0 && 978 !CBS_strdup(&psk_identity_hint, &raw)) { 979 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 980 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 981 return ssl_hs_error; 982 } 983 hs->peer_psk_identity_hint.reset(raw); 984 } 985 986 if (alg_k & SSL_kECDHE) { 987 // Parse the server parameters. 988 uint8_t group_type; 989 uint16_t group_id; 990 CBS point; 991 if (!CBS_get_u8(&server_key_exchange, &group_type) || 992 group_type != NAMED_CURVE_TYPE || 993 !CBS_get_u16(&server_key_exchange, &group_id) || 994 !CBS_get_u8_length_prefixed(&server_key_exchange, &point)) { 995 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 996 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 997 return ssl_hs_error; 998 } 999 hs->new_session->group_id = group_id; 1000 1001 // Ensure the group is consistent with preferences. 1002 if (!tls1_check_group_id(hs, group_id)) { 1003 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE); 1004 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 1005 return ssl_hs_error; 1006 } 1007 1008 // Initialize ECDH and save the peer public key for later. 1009 hs->key_shares[0] = SSLKeyShare::Create(group_id); 1010 if (!hs->key_shares[0] || 1011 !hs->peer_key.CopyFrom(point)) { 1012 return ssl_hs_error; 1013 } 1014 } else if (!(alg_k & SSL_kPSK)) { 1015 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); 1016 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); 1017 return ssl_hs_error; 1018 } 1019 1020 // At this point, |server_key_exchange| contains the signature, if any, while 1021 // |msg.body| contains the entire message. From that, derive a CBS containing 1022 // just the parameter. 1023 CBS parameter; 1024 CBS_init(¶meter, CBS_data(&msg.body), 1025 CBS_len(&msg.body) - CBS_len(&server_key_exchange)); 1026 1027 // ServerKeyExchange should be signed by the server's public key. 1028 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 1029 uint16_t signature_algorithm = 0; 1030 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { 1031 if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) { 1032 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1033 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1034 return ssl_hs_error; 1035 } 1036 uint8_t alert = SSL_AD_DECODE_ERROR; 1037 if (!tls12_check_peer_sigalg(ssl, &alert, signature_algorithm)) { 1038 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 1039 return ssl_hs_error; 1040 } 1041 hs->new_session->peer_signature_algorithm = signature_algorithm; 1042 } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm, 1043 hs->peer_pubkey.get())) { 1044 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE); 1045 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE); 1046 return ssl_hs_error; 1047 } 1048 1049 // The last field in |server_key_exchange| is the signature. 1050 CBS signature; 1051 if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) || 1052 CBS_len(&server_key_exchange) != 0) { 1053 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1054 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1055 return ssl_hs_error; 1056 } 1057 1058 ScopedCBB transcript; 1059 Array<uint8_t> transcript_data; 1060 if (!CBB_init(transcript.get(), 1061 2 * SSL3_RANDOM_SIZE + CBS_len(¶meter)) || 1062 !CBB_add_bytes(transcript.get(), ssl->s3->client_random, 1063 SSL3_RANDOM_SIZE) || 1064 !CBB_add_bytes(transcript.get(), ssl->s3->server_random, 1065 SSL3_RANDOM_SIZE) || 1066 !CBB_add_bytes(transcript.get(), CBS_data(¶meter), 1067 CBS_len(¶meter)) || 1068 !CBBFinishArray(transcript.get(), &transcript_data)) { 1069 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1070 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 1071 return ssl_hs_error; 1072 } 1073 1074 bool sig_ok = ssl_public_key_verify(ssl, signature, signature_algorithm, 1075 hs->peer_pubkey.get(), transcript_data); 1076 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) 1077 sig_ok = true; 1078 ERR_clear_error(); 1079 #endif 1080 if (!sig_ok) { 1081 // bad signature 1082 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); 1083 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); 1084 return ssl_hs_error; 1085 } 1086 } else { 1087 // PSK ciphers are the only supported certificate-less ciphers. 1088 assert(alg_a == SSL_aPSK); 1089 1090 if (CBS_len(&server_key_exchange) > 0) { 1091 OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE); 1092 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1093 return ssl_hs_error; 1094 } 1095 } 1096 1097 ssl->method->next_message(ssl); 1098 hs->state = state_read_certificate_request; 1099 return ssl_hs_ok; 1100 } 1101 1102 static enum ssl_hs_wait_t do_read_certificate_request(SSL_HANDSHAKE *hs) { 1103 SSL *const ssl = hs->ssl; 1104 1105 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 1106 hs->state = state_read_server_hello_done; 1107 return ssl_hs_ok; 1108 } 1109 1110 SSLMessage msg; 1111 if (!ssl->method->get_message(ssl, &msg)) { 1112 return ssl_hs_read_message; 1113 } 1114 1115 if (msg.type == SSL3_MT_SERVER_HELLO_DONE) { 1116 // If we get here we don't need the handshake buffer as we won't be doing 1117 // client auth. 1118 hs->transcript.FreeBuffer(); 1119 hs->state = state_read_server_hello_done; 1120 return ssl_hs_ok; 1121 } 1122 1123 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_REQUEST) || 1124 !ssl_hash_message(hs, msg)) { 1125 return ssl_hs_error; 1126 } 1127 1128 // Get the certificate types. 1129 CBS body = msg.body, certificate_types; 1130 if (!CBS_get_u8_length_prefixed(&body, &certificate_types)) { 1131 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1132 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1133 return ssl_hs_error; 1134 } 1135 1136 if (!hs->certificate_types.CopyFrom(certificate_types)) { 1137 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 1138 return ssl_hs_error; 1139 } 1140 1141 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { 1142 CBS supported_signature_algorithms; 1143 if (!CBS_get_u16_length_prefixed(&body, &supported_signature_algorithms) || 1144 !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) { 1145 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1146 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1147 return ssl_hs_error; 1148 } 1149 } 1150 1151 uint8_t alert = SSL_AD_DECODE_ERROR; 1152 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names = 1153 ssl_parse_client_CA_list(ssl, &alert, &body); 1154 if (!ca_names) { 1155 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 1156 return ssl_hs_error; 1157 } 1158 1159 if (CBS_len(&body) != 0) { 1160 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1161 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1162 return ssl_hs_error; 1163 } 1164 1165 hs->cert_request = true; 1166 hs->ca_names = std::move(ca_names); 1167 ssl->ctx->x509_method->hs_flush_cached_ca_names(hs); 1168 1169 ssl->method->next_message(ssl); 1170 hs->state = state_read_server_hello_done; 1171 return ssl_hs_ok; 1172 } 1173 1174 static enum ssl_hs_wait_t do_read_server_hello_done(SSL_HANDSHAKE *hs) { 1175 SSL *const ssl = hs->ssl; 1176 SSLMessage msg; 1177 if (!ssl->method->get_message(ssl, &msg)) { 1178 return ssl_hs_read_message; 1179 } 1180 1181 if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO_DONE) || 1182 !ssl_hash_message(hs, msg)) { 1183 return ssl_hs_error; 1184 } 1185 1186 // ServerHelloDone is empty. 1187 if (CBS_len(&msg.body) != 0) { 1188 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1189 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1190 return ssl_hs_error; 1191 } 1192 1193 ssl->method->next_message(ssl); 1194 hs->state = state_send_client_certificate; 1195 return ssl_hs_ok; 1196 } 1197 1198 static enum ssl_hs_wait_t do_send_client_certificate(SSL_HANDSHAKE *hs) { 1199 SSL *const ssl = hs->ssl; 1200 1201 // The peer didn't request a certificate. 1202 if (!hs->cert_request) { 1203 hs->state = state_send_client_key_exchange; 1204 return ssl_hs_ok; 1205 } 1206 1207 // Call cert_cb to update the certificate. 1208 if (hs->config->cert->cert_cb != NULL) { 1209 int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg); 1210 if (rv == 0) { 1211 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 1212 OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR); 1213 return ssl_hs_error; 1214 } 1215 if (rv < 0) { 1216 hs->state = state_send_client_certificate; 1217 return ssl_hs_x509_lookup; 1218 } 1219 } 1220 1221 if (!ssl_has_certificate(hs)) { 1222 // Without a client certificate, the handshake buffer may be released. 1223 hs->transcript.FreeBuffer(); 1224 } 1225 1226 if (!ssl_on_certificate_selected(hs) || 1227 !ssl_output_cert_chain(hs)) { 1228 return ssl_hs_error; 1229 } 1230 1231 1232 hs->state = state_send_client_key_exchange; 1233 return ssl_hs_ok; 1234 } 1235 1236 static_assert(sizeof(size_t) >= sizeof(unsigned), 1237 "size_t is smaller than unsigned"); 1238 1239 static enum ssl_hs_wait_t do_send_client_key_exchange(SSL_HANDSHAKE *hs) { 1240 SSL *const ssl = hs->ssl; 1241 ScopedCBB cbb; 1242 CBB body; 1243 if (!ssl->method->init_message(ssl, cbb.get(), &body, 1244 SSL3_MT_CLIENT_KEY_EXCHANGE)) { 1245 return ssl_hs_error; 1246 } 1247 1248 Array<uint8_t> pms; 1249 uint32_t alg_k = hs->new_cipher->algorithm_mkey; 1250 uint32_t alg_a = hs->new_cipher->algorithm_auth; 1251 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 1252 CRYPTO_BUFFER *leaf = 1253 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0); 1254 CBS leaf_cbs; 1255 CBS_init(&leaf_cbs, CRYPTO_BUFFER_data(leaf), CRYPTO_BUFFER_len(leaf)); 1256 1257 // Check the key usage matches the cipher suite. We do this unconditionally 1258 // for non-RSA certificates. In particular, it's needed to distinguish ECDH 1259 // certificates, which we do not support, from ECDSA certificates. 1260 // Historically, we have not checked RSA key usages, so it is controlled by 1261 // a flag for now. See https://crbug.com/795089. 1262 ssl_key_usage_t intended_use = (alg_k & SSL_kRSA) 1263 ? key_usage_encipherment 1264 : key_usage_digital_signature; 1265 if (ssl->config->enforce_rsa_key_usage || 1266 EVP_PKEY_id(hs->peer_pubkey.get()) != EVP_PKEY_RSA) { 1267 if (!ssl_cert_check_key_usage(&leaf_cbs, intended_use)) { 1268 return ssl_hs_error; 1269 } 1270 } 1271 } 1272 1273 // If using a PSK key exchange, prepare the pre-shared key. 1274 unsigned psk_len = 0; 1275 uint8_t psk[PSK_MAX_PSK_LEN]; 1276 if (alg_a & SSL_aPSK) { 1277 if (hs->config->psk_client_callback == NULL) { 1278 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB); 1279 return ssl_hs_error; 1280 } 1281 1282 char identity[PSK_MAX_IDENTITY_LEN + 1]; 1283 OPENSSL_memset(identity, 0, sizeof(identity)); 1284 psk_len = hs->config->psk_client_callback( 1285 ssl, hs->peer_psk_identity_hint.get(), identity, sizeof(identity), psk, 1286 sizeof(psk)); 1287 if (psk_len == 0) { 1288 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); 1289 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 1290 return ssl_hs_error; 1291 } 1292 assert(psk_len <= PSK_MAX_PSK_LEN); 1293 1294 hs->new_session->psk_identity.reset(BUF_strdup(identity)); 1295 if (hs->new_session->psk_identity == nullptr) { 1296 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 1297 return ssl_hs_error; 1298 } 1299 1300 // Write out psk_identity. 1301 CBB child; 1302 if (!CBB_add_u16_length_prefixed(&body, &child) || 1303 !CBB_add_bytes(&child, (const uint8_t *)identity, 1304 OPENSSL_strnlen(identity, sizeof(identity))) || 1305 !CBB_flush(&body)) { 1306 return ssl_hs_error; 1307 } 1308 } 1309 1310 // Depending on the key exchange method, compute |pms|. 1311 if (alg_k & SSL_kRSA) { 1312 if (!pms.Init(SSL_MAX_MASTER_KEY_LENGTH)) { 1313 return ssl_hs_error; 1314 } 1315 1316 RSA *rsa = EVP_PKEY_get0_RSA(hs->peer_pubkey.get()); 1317 if (rsa == NULL) { 1318 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1319 return ssl_hs_error; 1320 } 1321 1322 pms[0] = hs->client_version >> 8; 1323 pms[1] = hs->client_version & 0xff; 1324 if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) { 1325 return ssl_hs_error; 1326 } 1327 1328 CBB enc_pms; 1329 uint8_t *ptr; 1330 size_t enc_pms_len; 1331 if (!CBB_add_u16_length_prefixed(&body, &enc_pms) || 1332 !CBB_reserve(&enc_pms, &ptr, RSA_size(rsa)) || 1333 !RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms.data(), 1334 pms.size(), RSA_PKCS1_PADDING) || 1335 !CBB_did_write(&enc_pms, enc_pms_len) || 1336 !CBB_flush(&body)) { 1337 return ssl_hs_error; 1338 } 1339 } else if (alg_k & SSL_kECDHE) { 1340 // Generate a keypair and serialize the public half. 1341 CBB child; 1342 if (!CBB_add_u8_length_prefixed(&body, &child)) { 1343 return ssl_hs_error; 1344 } 1345 1346 // Compute the premaster. 1347 uint8_t alert = SSL_AD_DECODE_ERROR; 1348 if (!hs->key_shares[0]->Accept(&child, &pms, &alert, hs->peer_key)) { 1349 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 1350 return ssl_hs_error; 1351 } 1352 if (!CBB_flush(&body)) { 1353 return ssl_hs_error; 1354 } 1355 1356 // The key exchange state may now be discarded. 1357 hs->key_shares[0].reset(); 1358 hs->key_shares[1].reset(); 1359 hs->peer_key.Reset(); 1360 } else if (alg_k & SSL_kPSK) { 1361 // For plain PSK, other_secret is a block of 0s with the same length as 1362 // the pre-shared key. 1363 if (!pms.Init(psk_len)) { 1364 return ssl_hs_error; 1365 } 1366 OPENSSL_memset(pms.data(), 0, pms.size()); 1367 } else { 1368 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 1369 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1370 return ssl_hs_error; 1371 } 1372 1373 // For a PSK cipher suite, other_secret is combined with the pre-shared 1374 // key. 1375 if (alg_a & SSL_aPSK) { 1376 ScopedCBB pms_cbb; 1377 CBB child; 1378 if (!CBB_init(pms_cbb.get(), 2 + psk_len + 2 + pms.size()) || 1379 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) || 1380 !CBB_add_bytes(&child, pms.data(), pms.size()) || 1381 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) || 1382 !CBB_add_bytes(&child, psk, psk_len) || 1383 !CBBFinishArray(pms_cbb.get(), &pms)) { 1384 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 1385 return ssl_hs_error; 1386 } 1387 } 1388 1389 // The message must be added to the finished hash before calculating the 1390 // master secret. 1391 if (!ssl_add_message_cbb(ssl, cbb.get())) { 1392 return ssl_hs_error; 1393 } 1394 1395 hs->new_session->master_key_length = 1396 tls1_generate_master_secret(hs, hs->new_session->master_key, pms); 1397 if (hs->new_session->master_key_length == 0) { 1398 return ssl_hs_error; 1399 } 1400 hs->new_session->extended_master_secret = hs->extended_master_secret; 1401 1402 hs->state = state_send_client_certificate_verify; 1403 return ssl_hs_ok; 1404 } 1405 1406 static enum ssl_hs_wait_t do_send_client_certificate_verify(SSL_HANDSHAKE *hs) { 1407 SSL *const ssl = hs->ssl; 1408 1409 if (!hs->cert_request || !ssl_has_certificate(hs)) { 1410 hs->state = state_send_client_finished; 1411 return ssl_hs_ok; 1412 } 1413 1414 assert(ssl_has_private_key(hs)); 1415 ScopedCBB cbb; 1416 CBB body, child; 1417 if (!ssl->method->init_message(ssl, cbb.get(), &body, 1418 SSL3_MT_CERTIFICATE_VERIFY)) { 1419 return ssl_hs_error; 1420 } 1421 1422 uint16_t signature_algorithm; 1423 if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) { 1424 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 1425 return ssl_hs_error; 1426 } 1427 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { 1428 // Write out the digest type in TLS 1.2. 1429 if (!CBB_add_u16(&body, signature_algorithm)) { 1430 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1431 return ssl_hs_error; 1432 } 1433 } 1434 1435 // Set aside space for the signature. 1436 const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey.get()); 1437 uint8_t *ptr; 1438 if (!CBB_add_u16_length_prefixed(&body, &child) || 1439 !CBB_reserve(&child, &ptr, max_sig_len)) { 1440 return ssl_hs_error; 1441 } 1442 1443 size_t sig_len = max_sig_len; 1444 switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len, 1445 signature_algorithm, 1446 hs->transcript.buffer())) { 1447 case ssl_private_key_success: 1448 break; 1449 case ssl_private_key_failure: 1450 return ssl_hs_error; 1451 case ssl_private_key_retry: 1452 hs->state = state_send_client_certificate_verify; 1453 return ssl_hs_private_key_operation; 1454 } 1455 1456 if (!CBB_did_write(&child, sig_len) || 1457 !ssl_add_message_cbb(ssl, cbb.get())) { 1458 return ssl_hs_error; 1459 } 1460 1461 // The handshake buffer is no longer necessary. 1462 hs->transcript.FreeBuffer(); 1463 1464 hs->state = state_send_client_finished; 1465 return ssl_hs_ok; 1466 } 1467 1468 static enum ssl_hs_wait_t do_send_client_finished(SSL_HANDSHAKE *hs) { 1469 SSL *const ssl = hs->ssl; 1470 // Resolve Channel ID first, before any non-idempotent operations. 1471 if (ssl->s3->channel_id_valid) { 1472 if (!ssl_do_channel_id_callback(hs)) { 1473 return ssl_hs_error; 1474 } 1475 1476 if (hs->config->channel_id_private == NULL) { 1477 hs->state = state_send_client_finished; 1478 return ssl_hs_channel_id_lookup; 1479 } 1480 } 1481 1482 if (!ssl->method->add_change_cipher_spec(ssl) || 1483 !tls1_change_cipher_state(hs, evp_aead_seal)) { 1484 return ssl_hs_error; 1485 } 1486 1487 if (hs->next_proto_neg_seen) { 1488 static const uint8_t kZero[32] = {0}; 1489 size_t padding_len = 1490 32 - ((ssl->s3->next_proto_negotiated.size() + 2) % 32); 1491 1492 ScopedCBB cbb; 1493 CBB body, child; 1494 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_NEXT_PROTO) || 1495 !CBB_add_u8_length_prefixed(&body, &child) || 1496 !CBB_add_bytes(&child, ssl->s3->next_proto_negotiated.data(), 1497 ssl->s3->next_proto_negotiated.size()) || 1498 !CBB_add_u8_length_prefixed(&body, &child) || 1499 !CBB_add_bytes(&child, kZero, padding_len) || 1500 !ssl_add_message_cbb(ssl, cbb.get())) { 1501 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1502 return ssl_hs_error; 1503 } 1504 } 1505 1506 if (ssl->s3->channel_id_valid) { 1507 ScopedCBB cbb; 1508 CBB body; 1509 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CHANNEL_ID) || 1510 !tls1_write_channel_id(hs, &body) || 1511 !ssl_add_message_cbb(ssl, cbb.get())) { 1512 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1513 return ssl_hs_error; 1514 } 1515 } 1516 1517 if (!ssl_send_finished(hs)) { 1518 return ssl_hs_error; 1519 } 1520 1521 hs->state = state_finish_flight; 1522 return ssl_hs_flush; 1523 } 1524 1525 static bool can_false_start(const SSL_HANDSHAKE *hs) { 1526 SSL *const ssl = hs->ssl; 1527 1528 // False Start bypasses the Finished check's downgrade protection. This can 1529 // enable attacks where we send data under weaker settings than supported 1530 // (e.g. the Logjam attack). Thus we require TLS 1.2 with an ECDHE+AEAD 1531 // cipher, our strongest settings before TLS 1.3. 1532 // 1533 // Now that TLS 1.3 exists, we would like to avoid similar attacks between 1534 // TLS 1.2 and TLS 1.3, but there are too many TLS 1.2 deployments to 1535 // sacrifice False Start on them. TLS 1.3's downgrade signal fixes this, but 1536 // |SSL_CTX_set_ignore_tls13_downgrade| can disable it due to compatibility 1537 // issues. 1538 // 1539 // |SSL_CTX_set_ignore_tls13_downgrade| normally still retains Finished-based 1540 // downgrade protection, but False Start bypasses that. Thus, we disable False 1541 // Start based on the TLS 1.3 downgrade signal, even if otherwise unenforced. 1542 if (SSL_is_dtls(ssl) || 1543 SSL_version(ssl) != TLS1_2_VERSION || 1544 hs->new_cipher->algorithm_mkey != SSL_kECDHE || 1545 hs->new_cipher->algorithm_mac != SSL_AEAD || 1546 ssl->s3->tls13_downgrade) { 1547 return false; 1548 } 1549 1550 // Additionally require ALPN or NPN by default. 1551 // 1552 // TODO(davidben): Can this constraint be relaxed globally now that cipher 1553 // suite requirements have been tightened? 1554 if (!ssl->ctx->false_start_allowed_without_alpn && 1555 ssl->s3->alpn_selected.empty() && 1556 ssl->s3->next_proto_negotiated.empty()) { 1557 return false; 1558 } 1559 1560 return true; 1561 } 1562 1563 static enum ssl_hs_wait_t do_finish_flight(SSL_HANDSHAKE *hs) { 1564 SSL *const ssl = hs->ssl; 1565 if (ssl->session != NULL) { 1566 hs->state = state_finish_client_handshake; 1567 return ssl_hs_ok; 1568 } 1569 1570 // This is a full handshake. If it involves ChannelID, then record the 1571 // handshake hashes at this point in the session so that any resumption of 1572 // this session with ChannelID can sign those hashes. 1573 if (!tls1_record_handshake_hashes_for_channel_id(hs)) { 1574 return ssl_hs_error; 1575 } 1576 1577 hs->state = state_read_session_ticket; 1578 1579 if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) && 1580 can_false_start(hs) && 1581 // No False Start on renegotiation (would complicate the state machine). 1582 !ssl->s3->initial_handshake_complete) { 1583 hs->in_false_start = true; 1584 hs->can_early_write = true; 1585 return ssl_hs_early_return; 1586 } 1587 1588 return ssl_hs_ok; 1589 } 1590 1591 static enum ssl_hs_wait_t do_read_session_ticket(SSL_HANDSHAKE *hs) { 1592 SSL *const ssl = hs->ssl; 1593 1594 if (!hs->ticket_expected) { 1595 hs->state = state_process_change_cipher_spec; 1596 return ssl_hs_read_change_cipher_spec; 1597 } 1598 1599 SSLMessage msg; 1600 if (!ssl->method->get_message(ssl, &msg)) { 1601 return ssl_hs_read_message; 1602 } 1603 1604 if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEW_SESSION_TICKET) || 1605 !ssl_hash_message(hs, msg)) { 1606 return ssl_hs_error; 1607 } 1608 1609 CBS new_session_ticket = msg.body, ticket; 1610 uint32_t ticket_lifetime_hint; 1611 if (!CBS_get_u32(&new_session_ticket, &ticket_lifetime_hint) || 1612 !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) || 1613 CBS_len(&new_session_ticket) != 0) { 1614 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1615 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1616 return ssl_hs_error; 1617 } 1618 1619 if (CBS_len(&ticket) == 0) { 1620 // RFC 5077 allows a server to change its mind and send no ticket after 1621 // negotiating the extension. The value of |ticket_expected| is checked in 1622 // |ssl_update_cache| so is cleared here to avoid an unnecessary update. 1623 hs->ticket_expected = false; 1624 ssl->method->next_message(ssl); 1625 hs->state = state_process_change_cipher_spec; 1626 return ssl_hs_read_change_cipher_spec; 1627 } 1628 1629 SSL_SESSION *session = hs->new_session.get(); 1630 UniquePtr<SSL_SESSION> renewed_session; 1631 if (ssl->session != NULL) { 1632 // The server is sending a new ticket for an existing session. Sessions are 1633 // immutable once established, so duplicate all but the ticket of the 1634 // existing session. 1635 renewed_session = 1636 SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH); 1637 if (!renewed_session) { 1638 // This should never happen. 1639 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1640 return ssl_hs_error; 1641 } 1642 session = renewed_session.get(); 1643 } 1644 1645 // |ticket_lifetime_hint| is measured from when the ticket was issued. 1646 ssl_session_rebase_time(ssl, session); 1647 1648 if (!session->ticket.CopyFrom(ticket)) { 1649 return ssl_hs_error; 1650 } 1651 session->ticket_lifetime_hint = ticket_lifetime_hint; 1652 1653 // Generate a session ID for this session. Some callers expect all sessions to 1654 // have a session ID. Additionally, it acts as the session ID to signal 1655 // resumption. 1656 SHA256(CBS_data(&ticket), CBS_len(&ticket), session->session_id); 1657 session->session_id_length = SHA256_DIGEST_LENGTH; 1658 1659 if (renewed_session) { 1660 session->not_resumable = false; 1661 ssl->session = std::move(renewed_session); 1662 } 1663 1664 ssl->method->next_message(ssl); 1665 hs->state = state_process_change_cipher_spec; 1666 return ssl_hs_read_change_cipher_spec; 1667 } 1668 1669 static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) { 1670 if (!tls1_change_cipher_state(hs, evp_aead_open)) { 1671 return ssl_hs_error; 1672 } 1673 1674 hs->state = state_read_server_finished; 1675 return ssl_hs_ok; 1676 } 1677 1678 static enum ssl_hs_wait_t do_read_server_finished(SSL_HANDSHAKE *hs) { 1679 SSL *const ssl = hs->ssl; 1680 enum ssl_hs_wait_t wait = ssl_get_finished(hs); 1681 if (wait != ssl_hs_ok) { 1682 return wait; 1683 } 1684 1685 if (ssl->session != NULL) { 1686 hs->state = state_send_client_finished; 1687 return ssl_hs_ok; 1688 } 1689 1690 hs->state = state_finish_client_handshake; 1691 return ssl_hs_ok; 1692 } 1693 1694 static enum ssl_hs_wait_t do_finish_client_handshake(SSL_HANDSHAKE *hs) { 1695 SSL *const ssl = hs->ssl; 1696 1697 ssl->method->on_handshake_complete(ssl); 1698 1699 if (ssl->session != NULL) { 1700 ssl->s3->established_session = UpRef(ssl->session); 1701 } else { 1702 // We make a copy of the session in order to maintain the immutability 1703 // of the new established_session due to False Start. The caller may 1704 // have taken a reference to the temporary session. 1705 ssl->s3->established_session = 1706 SSL_SESSION_dup(hs->new_session.get(), SSL_SESSION_DUP_ALL); 1707 if (!ssl->s3->established_session) { 1708 return ssl_hs_error; 1709 } 1710 // Renegotiations do not participate in session resumption. 1711 if (!ssl->s3->initial_handshake_complete) { 1712 ssl->s3->established_session->not_resumable = false; 1713 } 1714 1715 hs->new_session.reset(); 1716 } 1717 1718 hs->handshake_finalized = true; 1719 ssl->s3->initial_handshake_complete = true; 1720 ssl_update_cache(hs, SSL_SESS_CACHE_CLIENT); 1721 1722 hs->state = state_done; 1723 return ssl_hs_ok; 1724 } 1725 1726 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs) { 1727 while (hs->state != state_done) { 1728 enum ssl_hs_wait_t ret = ssl_hs_error; 1729 enum ssl_client_hs_state_t state = 1730 static_cast<enum ssl_client_hs_state_t>(hs->state); 1731 switch (state) { 1732 case state_start_connect: 1733 ret = do_start_connect(hs); 1734 break; 1735 case state_enter_early_data: 1736 ret = do_enter_early_data(hs); 1737 break; 1738 case state_early_reverify_server_certificate: 1739 ret = do_early_reverify_server_certificate(hs); 1740 break; 1741 case state_read_hello_verify_request: 1742 ret = do_read_hello_verify_request(hs); 1743 break; 1744 case state_read_server_hello: 1745 ret = do_read_server_hello(hs); 1746 break; 1747 case state_tls13: 1748 ret = do_tls13(hs); 1749 break; 1750 case state_read_server_certificate: 1751 ret = do_read_server_certificate(hs); 1752 break; 1753 case state_read_certificate_status: 1754 ret = do_read_certificate_status(hs); 1755 break; 1756 case state_verify_server_certificate: 1757 ret = do_verify_server_certificate(hs); 1758 break; 1759 case state_reverify_server_certificate: 1760 ret = do_reverify_server_certificate(hs); 1761 break; 1762 case state_read_server_key_exchange: 1763 ret = do_read_server_key_exchange(hs); 1764 break; 1765 case state_read_certificate_request: 1766 ret = do_read_certificate_request(hs); 1767 break; 1768 case state_read_server_hello_done: 1769 ret = do_read_server_hello_done(hs); 1770 break; 1771 case state_send_client_certificate: 1772 ret = do_send_client_certificate(hs); 1773 break; 1774 case state_send_client_key_exchange: 1775 ret = do_send_client_key_exchange(hs); 1776 break; 1777 case state_send_client_certificate_verify: 1778 ret = do_send_client_certificate_verify(hs); 1779 break; 1780 case state_send_client_finished: 1781 ret = do_send_client_finished(hs); 1782 break; 1783 case state_finish_flight: 1784 ret = do_finish_flight(hs); 1785 break; 1786 case state_read_session_ticket: 1787 ret = do_read_session_ticket(hs); 1788 break; 1789 case state_process_change_cipher_spec: 1790 ret = do_process_change_cipher_spec(hs); 1791 break; 1792 case state_read_server_finished: 1793 ret = do_read_server_finished(hs); 1794 break; 1795 case state_finish_client_handshake: 1796 ret = do_finish_client_handshake(hs); 1797 break; 1798 case state_done: 1799 ret = ssl_hs_ok; 1800 break; 1801 } 1802 1803 if (hs->state != state) { 1804 ssl_do_info_callback(hs->ssl, SSL_CB_CONNECT_LOOP, 1); 1805 } 1806 1807 if (ret != ssl_hs_ok) { 1808 return ret; 1809 } 1810 } 1811 1812 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1); 1813 return ssl_hs_ok; 1814 } 1815 1816 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs) { 1817 enum ssl_client_hs_state_t state = 1818 static_cast<enum ssl_client_hs_state_t>(hs->state); 1819 switch (state) { 1820 case state_start_connect: 1821 return "TLS client start_connect"; 1822 case state_enter_early_data: 1823 return "TLS client enter_early_data"; 1824 case state_early_reverify_server_certificate: 1825 return "TLS client early_reverify_server_certificate"; 1826 case state_read_hello_verify_request: 1827 return "TLS client read_hello_verify_request"; 1828 case state_read_server_hello: 1829 return "TLS client read_server_hello"; 1830 case state_tls13: 1831 return tls13_client_handshake_state(hs); 1832 case state_read_server_certificate: 1833 return "TLS client read_server_certificate"; 1834 case state_read_certificate_status: 1835 return "TLS client read_certificate_status"; 1836 case state_verify_server_certificate: 1837 return "TLS client verify_server_certificate"; 1838 case state_reverify_server_certificate: 1839 return "TLS client reverify_server_certificate"; 1840 case state_read_server_key_exchange: 1841 return "TLS client read_server_key_exchange"; 1842 case state_read_certificate_request: 1843 return "TLS client read_certificate_request"; 1844 case state_read_server_hello_done: 1845 return "TLS client read_server_hello_done"; 1846 case state_send_client_certificate: 1847 return "TLS client send_client_certificate"; 1848 case state_send_client_key_exchange: 1849 return "TLS client send_client_key_exchange"; 1850 case state_send_client_certificate_verify: 1851 return "TLS client send_client_certificate_verify"; 1852 case state_send_client_finished: 1853 return "TLS client send_client_finished"; 1854 case state_finish_flight: 1855 return "TLS client finish_flight"; 1856 case state_read_session_ticket: 1857 return "TLS client read_session_ticket"; 1858 case state_process_change_cipher_spec: 1859 return "TLS client process_change_cipher_spec"; 1860 case state_read_server_finished: 1861 return "TLS client read_server_finished"; 1862 case state_finish_client_handshake: 1863 return "TLS client finish_client_handshake"; 1864 case state_done: 1865 return "TLS client done"; 1866 } 1867 1868 return "TLS client unknown"; 1869 } 1870 1871 BSSL_NAMESPACE_END 1872