Home | History | Annotate | Download | only in ubi
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * Copyright (c) International Business Machines Corp., 2006
      4  * Copyright (c) Nokia Corporation, 2006, 2007
      5  *
      6  * Author: Artem Bityutskiy ( )
      7  */
      8 
      9 /*
     10  * UBI input/output sub-system.
     11  *
     12  * This sub-system provides a uniform way to work with all kinds of the
     13  * underlying MTD devices. It also implements handy functions for reading and
     14  * writing UBI headers.
     15  *
     16  * We are trying to have a paranoid mindset and not to trust to what we read
     17  * from the flash media in order to be more secure and robust. So this
     18  * sub-system validates every single header it reads from the flash media.
     19  *
     20  * Some words about how the eraseblock headers are stored.
     21  *
     22  * The erase counter header is always stored at offset zero. By default, the
     23  * VID header is stored after the EC header at the closest aligned offset
     24  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
     25  * header at the closest aligned offset. But this default layout may be
     26  * changed. For example, for different reasons (e.g., optimization) UBI may be
     27  * asked to put the VID header at further offset, and even at an unaligned
     28  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
     29  * proper padding in front of it. Data offset may also be changed but it has to
     30  * be aligned.
     31  *
     32  * About minimal I/O units. In general, UBI assumes flash device model where
     33  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
     34  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
     35  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
     36  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
     37  * to do different optimizations.
     38  *
     39  * This is extremely useful in case of NAND flashes which admit of several
     40  * write operations to one NAND page. In this case UBI can fit EC and VID
     41  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
     42  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
     43  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
     44  * users.
     45  *
     46  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
     47  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
     48  * headers.
     49  *
     50  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
     51  * device, e.g., make @ubi->min_io_size = 512 in the example above?
     52  *
     53  * A: because when writing a sub-page, MTD still writes a full 2K page but the
     54  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
     55  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
     56  * Thus, we prefer to use sub-pages only for EC and VID headers.
     57  *
     58  * As it was noted above, the VID header may start at a non-aligned offset.
     59  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
     60  * the VID header may reside at offset 1984 which is the last 64 bytes of the
     61  * last sub-page (EC header is always at offset zero). This causes some
     62  * difficulties when reading and writing VID headers.
     63  *
     64  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
     65  * the data and want to write this VID header out. As we can only write in
     66  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
     67  * to offset 448 of this buffer.
     68  *
     69  * The I/O sub-system does the following trick in order to avoid this extra
     70  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
     71  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
     72  * When the VID header is being written out, it shifts the VID header pointer
     73  * back and writes the whole sub-page.
     74  */
     75 
     76 #ifndef __UBOOT__
     77 #include <linux/crc32.h>
     78 #include <linux/err.h>
     79 #include <linux/slab.h>
     80 #else
     81 #include <hexdump.h>
     82 #include <ubi_uboot.h>
     83 #endif
     84 
     85 #include "ubi.h"
     86 
     87 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
     88 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
     89 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
     90 			     const struct ubi_ec_hdr *ec_hdr);
     91 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
     92 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
     93 			      const struct ubi_vid_hdr *vid_hdr);
     94 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
     95 			    int offset, int len);
     96 
     97 /**
     98  * ubi_io_read - read data from a physical eraseblock.
     99  * @ubi: UBI device description object
    100  * @buf: buffer where to store the read data
    101  * @pnum: physical eraseblock number to read from
    102  * @offset: offset within the physical eraseblock from where to read
    103  * @len: how many bytes to read
    104  *
    105  * This function reads data from offset @offset of physical eraseblock @pnum
    106  * and stores the read data in the @buf buffer. The following return codes are
    107  * possible:
    108  *
    109  * o %0 if all the requested data were successfully read;
    110  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
    111  *   correctable bit-flips were detected; this is harmless but may indicate
    112  *   that this eraseblock may become bad soon (but do not have to);
    113  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
    114  *   example it can be an ECC error in case of NAND; this most probably means
    115  *   that the data is corrupted;
    116  * o %-EIO if some I/O error occurred;
    117  * o other negative error codes in case of other errors.
    118  */
    119 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
    120 		int len)
    121 {
    122 	int err, retries = 0;
    123 	size_t read;
    124 	loff_t addr;
    125 
    126 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
    127 
    128 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    129 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
    130 	ubi_assert(len > 0);
    131 
    132 	err = self_check_not_bad(ubi, pnum);
    133 	if (err)
    134 		return err;
    135 
    136 	/*
    137 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
    138 	 * do not do this, the following may happen:
    139 	 * 1. The buffer contains data from previous operation, e.g., read from
    140 	 *    another PEB previously. The data looks like expected, e.g., if we
    141 	 *    just do not read anything and return - the caller would not
    142 	 *    notice this. E.g., if we are reading a VID header, the buffer may
    143 	 *    contain a valid VID header from another PEB.
    144 	 * 2. The driver is buggy and returns us success or -EBADMSG or
    145 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
    146 	 *
    147 	 * This may confuse UBI or upper layers - they may think the buffer
    148 	 * contains valid data while in fact it is just old data. This is
    149 	 * especially possible because UBI (and UBIFS) relies on CRC, and
    150 	 * treats data as correct even in case of ECC errors if the CRC is
    151 	 * correct.
    152 	 *
    153 	 * Try to prevent this situation by changing the first byte of the
    154 	 * buffer.
    155 	 */
    156 	*((uint8_t *)buf) ^= 0xFF;
    157 
    158 	addr = (loff_t)pnum * ubi->peb_size + offset;
    159 retry:
    160 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
    161 	if (err) {
    162 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
    163 
    164 		if (mtd_is_bitflip(err)) {
    165 			/*
    166 			 * -EUCLEAN is reported if there was a bit-flip which
    167 			 * was corrected, so this is harmless.
    168 			 *
    169 			 * We do not report about it here unless debugging is
    170 			 * enabled. A corresponding message will be printed
    171 			 * later, when it is has been scrubbed.
    172 			 */
    173 			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
    174 				pnum);
    175 			ubi_assert(len == read);
    176 			return UBI_IO_BITFLIPS;
    177 		}
    178 
    179 		if (retries++ < UBI_IO_RETRIES) {
    180 			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
    181 				 err, errstr, len, pnum, offset, read);
    182 			yield();
    183 			goto retry;
    184 		}
    185 
    186 		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
    187 			err, errstr, len, pnum, offset, read);
    188 		dump_stack();
    189 
    190 		/*
    191 		 * The driver should never return -EBADMSG if it failed to read
    192 		 * all the requested data. But some buggy drivers might do
    193 		 * this, so we change it to -EIO.
    194 		 */
    195 		if (read != len && mtd_is_eccerr(err)) {
    196 			ubi_assert(0);
    197 			err = -EIO;
    198 		}
    199 	} else {
    200 		ubi_assert(len == read);
    201 
    202 		if (ubi_dbg_is_bitflip(ubi)) {
    203 			dbg_gen("bit-flip (emulated)");
    204 			err = UBI_IO_BITFLIPS;
    205 		}
    206 	}
    207 
    208 	return err;
    209 }
    210 
    211 /**
    212  * ubi_io_write - write data to a physical eraseblock.
    213  * @ubi: UBI device description object
    214  * @buf: buffer with the data to write
    215  * @pnum: physical eraseblock number to write to
    216  * @offset: offset within the physical eraseblock where to write
    217  * @len: how many bytes to write
    218  *
    219  * This function writes @len bytes of data from buffer @buf to offset @offset
    220  * of physical eraseblock @pnum. If all the data were successfully written,
    221  * zero is returned. If an error occurred, this function returns a negative
    222  * error code. If %-EIO is returned, the physical eraseblock most probably went
    223  * bad.
    224  *
    225  * Note, in case of an error, it is possible that something was still written
    226  * to the flash media, but may be some garbage.
    227  */
    228 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
    229 		 int len)
    230 {
    231 	int err;
    232 	size_t written;
    233 	loff_t addr;
    234 
    235 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
    236 
    237 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    238 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
    239 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
    240 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
    241 
    242 	if (ubi->ro_mode) {
    243 		ubi_err(ubi, "read-only mode");
    244 		return -EROFS;
    245 	}
    246 
    247 	err = self_check_not_bad(ubi, pnum);
    248 	if (err)
    249 		return err;
    250 
    251 	/* The area we are writing to has to contain all 0xFF bytes */
    252 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
    253 	if (err)
    254 		return err;
    255 
    256 	if (offset >= ubi->leb_start) {
    257 		/*
    258 		 * We write to the data area of the physical eraseblock. Make
    259 		 * sure it has valid EC and VID headers.
    260 		 */
    261 		err = self_check_peb_ec_hdr(ubi, pnum);
    262 		if (err)
    263 			return err;
    264 		err = self_check_peb_vid_hdr(ubi, pnum);
    265 		if (err)
    266 			return err;
    267 	}
    268 
    269 	if (ubi_dbg_is_write_failure(ubi)) {
    270 		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
    271 			len, pnum, offset);
    272 		dump_stack();
    273 		return -EIO;
    274 	}
    275 
    276 	addr = (loff_t)pnum * ubi->peb_size + offset;
    277 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
    278 	if (err) {
    279 		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
    280 			err, len, pnum, offset, written);
    281 		dump_stack();
    282 		ubi_dump_flash(ubi, pnum, offset, len);
    283 	} else
    284 		ubi_assert(written == len);
    285 
    286 	if (!err) {
    287 		err = self_check_write(ubi, buf, pnum, offset, len);
    288 		if (err)
    289 			return err;
    290 
    291 		/*
    292 		 * Since we always write sequentially, the rest of the PEB has
    293 		 * to contain only 0xFF bytes.
    294 		 */
    295 		offset += len;
    296 		len = ubi->peb_size - offset;
    297 		if (len)
    298 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
    299 	}
    300 
    301 	return err;
    302 }
    303 
    304 /**
    305  * erase_callback - MTD erasure call-back.
    306  * @ei: MTD erase information object.
    307  *
    308  * Note, even though MTD erase interface is asynchronous, all the current
    309  * implementations are synchronous anyway.
    310  */
    311 static void erase_callback(struct erase_info *ei)
    312 {
    313 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
    314 }
    315 
    316 /**
    317  * do_sync_erase - synchronously erase a physical eraseblock.
    318  * @ubi: UBI device description object
    319  * @pnum: the physical eraseblock number to erase
    320  *
    321  * This function synchronously erases physical eraseblock @pnum and returns
    322  * zero in case of success and a negative error code in case of failure. If
    323  * %-EIO is returned, the physical eraseblock most probably went bad.
    324  */
    325 static int do_sync_erase(struct ubi_device *ubi, int pnum)
    326 {
    327 	int err, retries = 0;
    328 	struct erase_info ei;
    329 	wait_queue_head_t wq;
    330 
    331 	dbg_io("erase PEB %d", pnum);
    332 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    333 
    334 	if (ubi->ro_mode) {
    335 		ubi_err(ubi, "read-only mode");
    336 		return -EROFS;
    337 	}
    338 
    339 retry:
    340 	init_waitqueue_head(&wq);
    341 	memset(&ei, 0, sizeof(struct erase_info));
    342 
    343 	ei.mtd      = ubi->mtd;
    344 	ei.addr     = (loff_t)pnum * ubi->peb_size;
    345 	ei.len      = ubi->peb_size;
    346 	ei.callback = erase_callback;
    347 	ei.priv     = (unsigned long)&wq;
    348 
    349 	err = mtd_erase(ubi->mtd, &ei);
    350 	if (err) {
    351 		if (retries++ < UBI_IO_RETRIES) {
    352 			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
    353 				 err, pnum);
    354 			yield();
    355 			goto retry;
    356 		}
    357 		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
    358 		dump_stack();
    359 		return err;
    360 	}
    361 
    362 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
    363 					   ei.state == MTD_ERASE_FAILED);
    364 	if (err) {
    365 		ubi_err(ubi, "interrupted PEB %d erasure", pnum);
    366 		return -EINTR;
    367 	}
    368 
    369 	if (ei.state == MTD_ERASE_FAILED) {
    370 		if (retries++ < UBI_IO_RETRIES) {
    371 			ubi_warn(ubi, "error while erasing PEB %d, retry",
    372 				 pnum);
    373 			yield();
    374 			goto retry;
    375 		}
    376 		ubi_err(ubi, "cannot erase PEB %d", pnum);
    377 		dump_stack();
    378 		return -EIO;
    379 	}
    380 
    381 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
    382 	if (err)
    383 		return err;
    384 
    385 	if (ubi_dbg_is_erase_failure(ubi)) {
    386 		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
    387 		return -EIO;
    388 	}
    389 
    390 	return 0;
    391 }
    392 
    393 /* Patterns to write to a physical eraseblock when torturing it */
    394 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
    395 
    396 /**
    397  * torture_peb - test a supposedly bad physical eraseblock.
    398  * @ubi: UBI device description object
    399  * @pnum: the physical eraseblock number to test
    400  *
    401  * This function returns %-EIO if the physical eraseblock did not pass the
    402  * test, a positive number of erase operations done if the test was
    403  * successfully passed, and other negative error codes in case of other errors.
    404  */
    405 static int torture_peb(struct ubi_device *ubi, int pnum)
    406 {
    407 	int err, i, patt_count;
    408 
    409 	ubi_msg(ubi, "run torture test for PEB %d", pnum);
    410 	patt_count = ARRAY_SIZE(patterns);
    411 	ubi_assert(patt_count > 0);
    412 
    413 	mutex_lock(&ubi->buf_mutex);
    414 	for (i = 0; i < patt_count; i++) {
    415 		err = do_sync_erase(ubi, pnum);
    416 		if (err)
    417 			goto out;
    418 
    419 		/* Make sure the PEB contains only 0xFF bytes */
    420 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
    421 		if (err)
    422 			goto out;
    423 
    424 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
    425 		if (err == 0) {
    426 			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
    427 				pnum);
    428 			err = -EIO;
    429 			goto out;
    430 		}
    431 
    432 		/* Write a pattern and check it */
    433 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
    434 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
    435 		if (err)
    436 			goto out;
    437 
    438 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
    439 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
    440 		if (err)
    441 			goto out;
    442 
    443 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
    444 					ubi->peb_size);
    445 		if (err == 0) {
    446 			ubi_err(ubi, "pattern %x checking failed for PEB %d",
    447 				patterns[i], pnum);
    448 			err = -EIO;
    449 			goto out;
    450 		}
    451 	}
    452 
    453 	err = patt_count;
    454 	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
    455 
    456 out:
    457 	mutex_unlock(&ubi->buf_mutex);
    458 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
    459 		/*
    460 		 * If a bit-flip or data integrity error was detected, the test
    461 		 * has not passed because it happened on a freshly erased
    462 		 * physical eraseblock which means something is wrong with it.
    463 		 */
    464 		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
    465 			pnum);
    466 		err = -EIO;
    467 	}
    468 	return err;
    469 }
    470 
    471 /**
    472  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
    473  * @ubi: UBI device description object
    474  * @pnum: physical eraseblock number to prepare
    475  *
    476  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
    477  * algorithm: the PEB is first filled with zeroes, then it is erased. And
    478  * filling with zeroes starts from the end of the PEB. This was observed with
    479  * Spansion S29GL512N NOR flash.
    480  *
    481  * This means that in case of a power cut we may end up with intact data at the
    482  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
    483  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
    484  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
    485  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
    486  *
    487  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
    488  * magic numbers in order to invalidate them and prevent the failures. Returns
    489  * zero in case of success and a negative error code in case of failure.
    490  */
    491 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
    492 {
    493 	int err;
    494 	size_t written;
    495 	loff_t addr;
    496 	uint32_t data = 0;
    497 	struct ubi_ec_hdr ec_hdr;
    498 
    499 	/*
    500 	 * Note, we cannot generally define VID header buffers on stack,
    501 	 * because of the way we deal with these buffers (see the header
    502 	 * comment in this file). But we know this is a NOR-specific piece of
    503 	 * code, so we can do this. But yes, this is error-prone and we should
    504 	 * (pre-)allocate VID header buffer instead.
    505 	 */
    506 	struct ubi_vid_hdr vid_hdr;
    507 
    508 	/*
    509 	 * If VID or EC is valid, we have to corrupt them before erasing.
    510 	 * It is important to first invalidate the EC header, and then the VID
    511 	 * header. Otherwise a power cut may lead to valid EC header and
    512 	 * invalid VID header, in which case UBI will treat this PEB as
    513 	 * corrupted and will try to preserve it, and print scary warnings.
    514 	 */
    515 	addr = (loff_t)pnum * ubi->peb_size;
    516 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
    517 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
    518 	    err != UBI_IO_FF){
    519 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
    520 		if(err)
    521 			goto error;
    522 	}
    523 
    524 	err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
    525 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
    526 	    err != UBI_IO_FF){
    527 		addr += ubi->vid_hdr_aloffset;
    528 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
    529 		if (err)
    530 			goto error;
    531 	}
    532 	return 0;
    533 
    534 error:
    535 	/*
    536 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
    537 	 * it. Supposedly the flash media or the driver is screwed up, so
    538 	 * return an error.
    539 	 */
    540 	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
    541 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
    542 	return -EIO;
    543 }
    544 
    545 /**
    546  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
    547  * @ubi: UBI device description object
    548  * @pnum: physical eraseblock number to erase
    549  * @torture: if this physical eraseblock has to be tortured
    550  *
    551  * This function synchronously erases physical eraseblock @pnum. If @torture
    552  * flag is not zero, the physical eraseblock is checked by means of writing
    553  * different patterns to it and reading them back. If the torturing is enabled,
    554  * the physical eraseblock is erased more than once.
    555  *
    556  * This function returns the number of erasures made in case of success, %-EIO
    557  * if the erasure failed or the torturing test failed, and other negative error
    558  * codes in case of other errors. Note, %-EIO means that the physical
    559  * eraseblock is bad.
    560  */
    561 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
    562 {
    563 	int err, ret = 0;
    564 
    565 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    566 
    567 	err = self_check_not_bad(ubi, pnum);
    568 	if (err != 0)
    569 		return err;
    570 
    571 	if (ubi->ro_mode) {
    572 		ubi_err(ubi, "read-only mode");
    573 		return -EROFS;
    574 	}
    575 
    576 	if (ubi->nor_flash) {
    577 		err = nor_erase_prepare(ubi, pnum);
    578 		if (err)
    579 			return err;
    580 	}
    581 
    582 	if (torture) {
    583 		ret = torture_peb(ubi, pnum);
    584 		if (ret < 0)
    585 			return ret;
    586 	}
    587 
    588 	err = do_sync_erase(ubi, pnum);
    589 	if (err)
    590 		return err;
    591 
    592 	return ret + 1;
    593 }
    594 
    595 /**
    596  * ubi_io_is_bad - check if a physical eraseblock is bad.
    597  * @ubi: UBI device description object
    598  * @pnum: the physical eraseblock number to check
    599  *
    600  * This function returns a positive number if the physical eraseblock is bad,
    601  * zero if not, and a negative error code if an error occurred.
    602  */
    603 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
    604 {
    605 	struct mtd_info *mtd = ubi->mtd;
    606 
    607 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    608 
    609 	if (ubi->bad_allowed) {
    610 		int ret;
    611 
    612 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
    613 		if (ret < 0)
    614 			ubi_err(ubi, "error %d while checking if PEB %d is bad",
    615 				ret, pnum);
    616 		else if (ret)
    617 			dbg_io("PEB %d is bad", pnum);
    618 		return ret;
    619 	}
    620 
    621 	return 0;
    622 }
    623 
    624 /**
    625  * ubi_io_mark_bad - mark a physical eraseblock as bad.
    626  * @ubi: UBI device description object
    627  * @pnum: the physical eraseblock number to mark
    628  *
    629  * This function returns zero in case of success and a negative error code in
    630  * case of failure.
    631  */
    632 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
    633 {
    634 	int err;
    635 	struct mtd_info *mtd = ubi->mtd;
    636 
    637 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    638 
    639 	if (ubi->ro_mode) {
    640 		ubi_err(ubi, "read-only mode");
    641 		return -EROFS;
    642 	}
    643 
    644 	if (!ubi->bad_allowed)
    645 		return 0;
    646 
    647 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
    648 	if (err)
    649 		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
    650 	return err;
    651 }
    652 
    653 /**
    654  * validate_ec_hdr - validate an erase counter header.
    655  * @ubi: UBI device description object
    656  * @ec_hdr: the erase counter header to check
    657  *
    658  * This function returns zero if the erase counter header is OK, and %1 if
    659  * not.
    660  */
    661 static int validate_ec_hdr(const struct ubi_device *ubi,
    662 			   const struct ubi_ec_hdr *ec_hdr)
    663 {
    664 	long long ec;
    665 	int vid_hdr_offset, leb_start;
    666 
    667 	ec = be64_to_cpu(ec_hdr->ec);
    668 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
    669 	leb_start = be32_to_cpu(ec_hdr->data_offset);
    670 
    671 	if (ec_hdr->version != UBI_VERSION) {
    672 		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
    673 			UBI_VERSION, (int)ec_hdr->version);
    674 		goto bad;
    675 	}
    676 
    677 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
    678 		ubi_err(ubi, "bad VID header offset %d, expected %d",
    679 			vid_hdr_offset, ubi->vid_hdr_offset);
    680 		goto bad;
    681 	}
    682 
    683 	if (leb_start != ubi->leb_start) {
    684 		ubi_err(ubi, "bad data offset %d, expected %d",
    685 			leb_start, ubi->leb_start);
    686 		goto bad;
    687 	}
    688 
    689 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
    690 		ubi_err(ubi, "bad erase counter %lld", ec);
    691 		goto bad;
    692 	}
    693 
    694 	return 0;
    695 
    696 bad:
    697 	ubi_err(ubi, "bad EC header");
    698 	ubi_dump_ec_hdr(ec_hdr);
    699 	dump_stack();
    700 	return 1;
    701 }
    702 
    703 /**
    704  * ubi_io_read_ec_hdr - read and check an erase counter header.
    705  * @ubi: UBI device description object
    706  * @pnum: physical eraseblock to read from
    707  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
    708  * header
    709  * @verbose: be verbose if the header is corrupted or was not found
    710  *
    711  * This function reads erase counter header from physical eraseblock @pnum and
    712  * stores it in @ec_hdr. This function also checks CRC checksum of the read
    713  * erase counter header. The following codes may be returned:
    714  *
    715  * o %0 if the CRC checksum is correct and the header was successfully read;
    716  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
    717  *   and corrected by the flash driver; this is harmless but may indicate that
    718  *   this eraseblock may become bad soon (but may be not);
    719  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
    720  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
    721  *   a data integrity error (uncorrectable ECC error in case of NAND);
    722  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
    723  * o a negative error code in case of failure.
    724  */
    725 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
    726 		       struct ubi_ec_hdr *ec_hdr, int verbose)
    727 {
    728 	int err, read_err;
    729 	uint32_t crc, magic, hdr_crc;
    730 
    731 	dbg_io("read EC header from PEB %d", pnum);
    732 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
    733 
    734 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
    735 	if (read_err) {
    736 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
    737 			return read_err;
    738 
    739 		/*
    740 		 * We read all the data, but either a correctable bit-flip
    741 		 * occurred, or MTD reported a data integrity error
    742 		 * (uncorrectable ECC error in case of NAND). The former is
    743 		 * harmless, the later may mean that the read data is
    744 		 * corrupted. But we have a CRC check-sum and we will detect
    745 		 * this. If the EC header is still OK, we just report this as
    746 		 * there was a bit-flip, to force scrubbing.
    747 		 */
    748 	}
    749 
    750 	magic = be32_to_cpu(ec_hdr->magic);
    751 	if (magic != UBI_EC_HDR_MAGIC) {
    752 		if (mtd_is_eccerr(read_err))
    753 			return UBI_IO_BAD_HDR_EBADMSG;
    754 
    755 		/*
    756 		 * The magic field is wrong. Let's check if we have read all
    757 		 * 0xFF. If yes, this physical eraseblock is assumed to be
    758 		 * empty.
    759 		 */
    760 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
    761 			/* The physical eraseblock is supposedly empty */
    762 			if (verbose)
    763 				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
    764 					 pnum);
    765 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
    766 				pnum);
    767 			if (!read_err)
    768 				return UBI_IO_FF;
    769 			else
    770 				return UBI_IO_FF_BITFLIPS;
    771 		}
    772 
    773 		/*
    774 		 * This is not a valid erase counter header, and these are not
    775 		 * 0xFF bytes. Report that the header is corrupted.
    776 		 */
    777 		if (verbose) {
    778 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
    779 				 pnum, magic, UBI_EC_HDR_MAGIC);
    780 			ubi_dump_ec_hdr(ec_hdr);
    781 		}
    782 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
    783 			pnum, magic, UBI_EC_HDR_MAGIC);
    784 		return UBI_IO_BAD_HDR;
    785 	}
    786 
    787 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
    788 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
    789 
    790 	if (hdr_crc != crc) {
    791 		if (verbose) {
    792 			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
    793 				 pnum, crc, hdr_crc);
    794 			ubi_dump_ec_hdr(ec_hdr);
    795 		}
    796 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
    797 			pnum, crc, hdr_crc);
    798 
    799 		if (!read_err)
    800 			return UBI_IO_BAD_HDR;
    801 		else
    802 			return UBI_IO_BAD_HDR_EBADMSG;
    803 	}
    804 
    805 	/* And of course validate what has just been read from the media */
    806 	err = validate_ec_hdr(ubi, ec_hdr);
    807 	if (err) {
    808 		ubi_err(ubi, "validation failed for PEB %d", pnum);
    809 		return -EINVAL;
    810 	}
    811 
    812 	/*
    813 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
    814 	 * a bit-flip to force scrubbing on this PEB.
    815 	 */
    816 	return read_err ? UBI_IO_BITFLIPS : 0;
    817 }
    818 
    819 /**
    820  * ubi_io_write_ec_hdr - write an erase counter header.
    821  * @ubi: UBI device description object
    822  * @pnum: physical eraseblock to write to
    823  * @ec_hdr: the erase counter header to write
    824  *
    825  * This function writes erase counter header described by @ec_hdr to physical
    826  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
    827  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
    828  * field.
    829  *
    830  * This function returns zero in case of success and a negative error code in
    831  * case of failure. If %-EIO is returned, the physical eraseblock most probably
    832  * went bad.
    833  */
    834 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
    835 			struct ubi_ec_hdr *ec_hdr)
    836 {
    837 	int err;
    838 	uint32_t crc;
    839 
    840 	dbg_io("write EC header to PEB %d", pnum);
    841 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
    842 
    843 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
    844 	ec_hdr->version = UBI_VERSION;
    845 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
    846 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
    847 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
    848 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
    849 	ec_hdr->hdr_crc = cpu_to_be32(crc);
    850 
    851 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
    852 	if (err)
    853 		return err;
    854 
    855 	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
    856 		return -EROFS;
    857 
    858 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
    859 	return err;
    860 }
    861 
    862 /**
    863  * validate_vid_hdr - validate a volume identifier header.
    864  * @ubi: UBI device description object
    865  * @vid_hdr: the volume identifier header to check
    866  *
    867  * This function checks that data stored in the volume identifier header
    868  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
    869  */
    870 static int validate_vid_hdr(const struct ubi_device *ubi,
    871 			    const struct ubi_vid_hdr *vid_hdr)
    872 {
    873 	int vol_type = vid_hdr->vol_type;
    874 	int copy_flag = vid_hdr->copy_flag;
    875 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
    876 	int lnum = be32_to_cpu(vid_hdr->lnum);
    877 	int compat = vid_hdr->compat;
    878 	int data_size = be32_to_cpu(vid_hdr->data_size);
    879 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
    880 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
    881 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
    882 	int usable_leb_size = ubi->leb_size - data_pad;
    883 
    884 	if (copy_flag != 0 && copy_flag != 1) {
    885 		ubi_err(ubi, "bad copy_flag");
    886 		goto bad;
    887 	}
    888 
    889 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
    890 	    data_pad < 0) {
    891 		ubi_err(ubi, "negative values");
    892 		goto bad;
    893 	}
    894 
    895 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
    896 		ubi_err(ubi, "bad vol_id");
    897 		goto bad;
    898 	}
    899 
    900 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
    901 		ubi_err(ubi, "bad compat");
    902 		goto bad;
    903 	}
    904 
    905 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
    906 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
    907 	    compat != UBI_COMPAT_REJECT) {
    908 		ubi_err(ubi, "bad compat");
    909 		goto bad;
    910 	}
    911 
    912 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
    913 		ubi_err(ubi, "bad vol_type");
    914 		goto bad;
    915 	}
    916 
    917 	if (data_pad >= ubi->leb_size / 2) {
    918 		ubi_err(ubi, "bad data_pad");
    919 		goto bad;
    920 	}
    921 
    922 	if (vol_type == UBI_VID_STATIC) {
    923 		/*
    924 		 * Although from high-level point of view static volumes may
    925 		 * contain zero bytes of data, but no VID headers can contain
    926 		 * zero at these fields, because they empty volumes do not have
    927 		 * mapped logical eraseblocks.
    928 		 */
    929 		if (used_ebs == 0) {
    930 			ubi_err(ubi, "zero used_ebs");
    931 			goto bad;
    932 		}
    933 		if (data_size == 0) {
    934 			ubi_err(ubi, "zero data_size");
    935 			goto bad;
    936 		}
    937 		if (lnum < used_ebs - 1) {
    938 			if (data_size != usable_leb_size) {
    939 				ubi_err(ubi, "bad data_size");
    940 				goto bad;
    941 			}
    942 		} else if (lnum == used_ebs - 1) {
    943 			if (data_size == 0) {
    944 				ubi_err(ubi, "bad data_size at last LEB");
    945 				goto bad;
    946 			}
    947 		} else {
    948 			ubi_err(ubi, "too high lnum");
    949 			goto bad;
    950 		}
    951 	} else {
    952 		if (copy_flag == 0) {
    953 			if (data_crc != 0) {
    954 				ubi_err(ubi, "non-zero data CRC");
    955 				goto bad;
    956 			}
    957 			if (data_size != 0) {
    958 				ubi_err(ubi, "non-zero data_size");
    959 				goto bad;
    960 			}
    961 		} else {
    962 			if (data_size == 0) {
    963 				ubi_err(ubi, "zero data_size of copy");
    964 				goto bad;
    965 			}
    966 		}
    967 		if (used_ebs != 0) {
    968 			ubi_err(ubi, "bad used_ebs");
    969 			goto bad;
    970 		}
    971 	}
    972 
    973 	return 0;
    974 
    975 bad:
    976 	ubi_err(ubi, "bad VID header");
    977 	ubi_dump_vid_hdr(vid_hdr);
    978 	dump_stack();
    979 	return 1;
    980 }
    981 
    982 /**
    983  * ubi_io_read_vid_hdr - read and check a volume identifier header.
    984  * @ubi: UBI device description object
    985  * @pnum: physical eraseblock number to read from
    986  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
    987  * identifier header
    988  * @verbose: be verbose if the header is corrupted or wasn't found
    989  *
    990  * This function reads the volume identifier header from physical eraseblock
    991  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
    992  * volume identifier header. The error codes are the same as in
    993  * 'ubi_io_read_ec_hdr()'.
    994  *
    995  * Note, the implementation of this function is also very similar to
    996  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
    997  */
    998 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
    999 			struct ubi_vid_hdr *vid_hdr, int verbose)
   1000 {
   1001 	int err, read_err;
   1002 	uint32_t crc, magic, hdr_crc;
   1003 	void *p;
   1004 
   1005 	dbg_io("read VID header from PEB %d", pnum);
   1006 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
   1007 
   1008 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
   1009 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
   1010 			  ubi->vid_hdr_alsize);
   1011 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
   1012 		return read_err;
   1013 
   1014 	magic = be32_to_cpu(vid_hdr->magic);
   1015 	if (magic != UBI_VID_HDR_MAGIC) {
   1016 		if (mtd_is_eccerr(read_err))
   1017 			return UBI_IO_BAD_HDR_EBADMSG;
   1018 
   1019 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
   1020 			if (verbose)
   1021 				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
   1022 					 pnum);
   1023 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
   1024 				pnum);
   1025 			if (!read_err)
   1026 				return UBI_IO_FF;
   1027 			else
   1028 				return UBI_IO_FF_BITFLIPS;
   1029 		}
   1030 
   1031 		if (verbose) {
   1032 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
   1033 				 pnum, magic, UBI_VID_HDR_MAGIC);
   1034 			ubi_dump_vid_hdr(vid_hdr);
   1035 		}
   1036 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
   1037 			pnum, magic, UBI_VID_HDR_MAGIC);
   1038 		return UBI_IO_BAD_HDR;
   1039 	}
   1040 
   1041 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
   1042 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
   1043 
   1044 	if (hdr_crc != crc) {
   1045 		if (verbose) {
   1046 			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
   1047 				 pnum, crc, hdr_crc);
   1048 			ubi_dump_vid_hdr(vid_hdr);
   1049 		}
   1050 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
   1051 			pnum, crc, hdr_crc);
   1052 		if (!read_err)
   1053 			return UBI_IO_BAD_HDR;
   1054 		else
   1055 			return UBI_IO_BAD_HDR_EBADMSG;
   1056 	}
   1057 
   1058 	err = validate_vid_hdr(ubi, vid_hdr);
   1059 	if (err) {
   1060 		ubi_err(ubi, "validation failed for PEB %d", pnum);
   1061 		return -EINVAL;
   1062 	}
   1063 
   1064 	return read_err ? UBI_IO_BITFLIPS : 0;
   1065 }
   1066 
   1067 /**
   1068  * ubi_io_write_vid_hdr - write a volume identifier header.
   1069  * @ubi: UBI device description object
   1070  * @pnum: the physical eraseblock number to write to
   1071  * @vid_hdr: the volume identifier header to write
   1072  *
   1073  * This function writes the volume identifier header described by @vid_hdr to
   1074  * physical eraseblock @pnum. This function automatically fills the
   1075  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
   1076  * header CRC checksum and stores it at vid_hdr->hdr_crc.
   1077  *
   1078  * This function returns zero in case of success and a negative error code in
   1079  * case of failure. If %-EIO is returned, the physical eraseblock probably went
   1080  * bad.
   1081  */
   1082 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
   1083 			 struct ubi_vid_hdr *vid_hdr)
   1084 {
   1085 	int err;
   1086 	uint32_t crc;
   1087 	void *p;
   1088 
   1089 	dbg_io("write VID header to PEB %d", pnum);
   1090 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
   1091 
   1092 	err = self_check_peb_ec_hdr(ubi, pnum);
   1093 	if (err)
   1094 		return err;
   1095 
   1096 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
   1097 	vid_hdr->version = UBI_VERSION;
   1098 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
   1099 	vid_hdr->hdr_crc = cpu_to_be32(crc);
   1100 
   1101 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
   1102 	if (err)
   1103 		return err;
   1104 
   1105 	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
   1106 		return -EROFS;
   1107 
   1108 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
   1109 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
   1110 			   ubi->vid_hdr_alsize);
   1111 	return err;
   1112 }
   1113 
   1114 /**
   1115  * self_check_not_bad - ensure that a physical eraseblock is not bad.
   1116  * @ubi: UBI device description object
   1117  * @pnum: physical eraseblock number to check
   1118  *
   1119  * This function returns zero if the physical eraseblock is good, %-EINVAL if
   1120  * it is bad and a negative error code if an error occurred.
   1121  */
   1122 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
   1123 {
   1124 	int err;
   1125 
   1126 	if (!ubi_dbg_chk_io(ubi))
   1127 		return 0;
   1128 
   1129 	err = ubi_io_is_bad(ubi, pnum);
   1130 	if (!err)
   1131 		return err;
   1132 
   1133 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1134 	dump_stack();
   1135 	return err > 0 ? -EINVAL : err;
   1136 }
   1137 
   1138 /**
   1139  * self_check_ec_hdr - check if an erase counter header is all right.
   1140  * @ubi: UBI device description object
   1141  * @pnum: physical eraseblock number the erase counter header belongs to
   1142  * @ec_hdr: the erase counter header to check
   1143  *
   1144  * This function returns zero if the erase counter header contains valid
   1145  * values, and %-EINVAL if not.
   1146  */
   1147 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
   1148 			     const struct ubi_ec_hdr *ec_hdr)
   1149 {
   1150 	int err;
   1151 	uint32_t magic;
   1152 
   1153 	if (!ubi_dbg_chk_io(ubi))
   1154 		return 0;
   1155 
   1156 	magic = be32_to_cpu(ec_hdr->magic);
   1157 	if (magic != UBI_EC_HDR_MAGIC) {
   1158 		ubi_err(ubi, "bad magic %#08x, must be %#08x",
   1159 			magic, UBI_EC_HDR_MAGIC);
   1160 		goto fail;
   1161 	}
   1162 
   1163 	err = validate_ec_hdr(ubi, ec_hdr);
   1164 	if (err) {
   1165 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1166 		goto fail;
   1167 	}
   1168 
   1169 	return 0;
   1170 
   1171 fail:
   1172 	ubi_dump_ec_hdr(ec_hdr);
   1173 	dump_stack();
   1174 	return -EINVAL;
   1175 }
   1176 
   1177 /**
   1178  * self_check_peb_ec_hdr - check erase counter header.
   1179  * @ubi: UBI device description object
   1180  * @pnum: the physical eraseblock number to check
   1181  *
   1182  * This function returns zero if the erase counter header is all right and and
   1183  * a negative error code if not or if an error occurred.
   1184  */
   1185 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
   1186 {
   1187 	int err;
   1188 	uint32_t crc, hdr_crc;
   1189 	struct ubi_ec_hdr *ec_hdr;
   1190 
   1191 	if (!ubi_dbg_chk_io(ubi))
   1192 		return 0;
   1193 
   1194 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
   1195 	if (!ec_hdr)
   1196 		return -ENOMEM;
   1197 
   1198 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
   1199 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
   1200 		goto exit;
   1201 
   1202 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
   1203 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
   1204 	if (hdr_crc != crc) {
   1205 		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
   1206 			crc, hdr_crc);
   1207 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1208 		ubi_dump_ec_hdr(ec_hdr);
   1209 		dump_stack();
   1210 		err = -EINVAL;
   1211 		goto exit;
   1212 	}
   1213 
   1214 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
   1215 
   1216 exit:
   1217 	kfree(ec_hdr);
   1218 	return err;
   1219 }
   1220 
   1221 /**
   1222  * self_check_vid_hdr - check that a volume identifier header is all right.
   1223  * @ubi: UBI device description object
   1224  * @pnum: physical eraseblock number the volume identifier header belongs to
   1225  * @vid_hdr: the volume identifier header to check
   1226  *
   1227  * This function returns zero if the volume identifier header is all right, and
   1228  * %-EINVAL if not.
   1229  */
   1230 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
   1231 			      const struct ubi_vid_hdr *vid_hdr)
   1232 {
   1233 	int err;
   1234 	uint32_t magic;
   1235 
   1236 	if (!ubi_dbg_chk_io(ubi))
   1237 		return 0;
   1238 
   1239 	magic = be32_to_cpu(vid_hdr->magic);
   1240 	if (magic != UBI_VID_HDR_MAGIC) {
   1241 		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
   1242 			magic, pnum, UBI_VID_HDR_MAGIC);
   1243 		goto fail;
   1244 	}
   1245 
   1246 	err = validate_vid_hdr(ubi, vid_hdr);
   1247 	if (err) {
   1248 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1249 		goto fail;
   1250 	}
   1251 
   1252 	return err;
   1253 
   1254 fail:
   1255 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1256 	ubi_dump_vid_hdr(vid_hdr);
   1257 	dump_stack();
   1258 	return -EINVAL;
   1259 
   1260 }
   1261 
   1262 /**
   1263  * self_check_peb_vid_hdr - check volume identifier header.
   1264  * @ubi: UBI device description object
   1265  * @pnum: the physical eraseblock number to check
   1266  *
   1267  * This function returns zero if the volume identifier header is all right,
   1268  * and a negative error code if not or if an error occurred.
   1269  */
   1270 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
   1271 {
   1272 	int err;
   1273 	uint32_t crc, hdr_crc;
   1274 	struct ubi_vid_hdr *vid_hdr;
   1275 	void *p;
   1276 
   1277 	if (!ubi_dbg_chk_io(ubi))
   1278 		return 0;
   1279 
   1280 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
   1281 	if (!vid_hdr)
   1282 		return -ENOMEM;
   1283 
   1284 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
   1285 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
   1286 			  ubi->vid_hdr_alsize);
   1287 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
   1288 		goto exit;
   1289 
   1290 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
   1291 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
   1292 	if (hdr_crc != crc) {
   1293 		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
   1294 			pnum, crc, hdr_crc);
   1295 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1296 		ubi_dump_vid_hdr(vid_hdr);
   1297 		dump_stack();
   1298 		err = -EINVAL;
   1299 		goto exit;
   1300 	}
   1301 
   1302 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
   1303 
   1304 exit:
   1305 	ubi_free_vid_hdr(ubi, vid_hdr);
   1306 	return err;
   1307 }
   1308 
   1309 /**
   1310  * self_check_write - make sure write succeeded.
   1311  * @ubi: UBI device description object
   1312  * @buf: buffer with data which were written
   1313  * @pnum: physical eraseblock number the data were written to
   1314  * @offset: offset within the physical eraseblock the data were written to
   1315  * @len: how many bytes were written
   1316  *
   1317  * This functions reads data which were recently written and compares it with
   1318  * the original data buffer - the data have to match. Returns zero if the data
   1319  * match and a negative error code if not or in case of failure.
   1320  */
   1321 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
   1322 			    int offset, int len)
   1323 {
   1324 	int err, i;
   1325 	size_t read;
   1326 	void *buf1;
   1327 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
   1328 
   1329 	if (!ubi_dbg_chk_io(ubi))
   1330 		return 0;
   1331 
   1332 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
   1333 	if (!buf1) {
   1334 		ubi_err(ubi, "cannot allocate memory to check writes");
   1335 		return 0;
   1336 	}
   1337 
   1338 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
   1339 	if (err && !mtd_is_bitflip(err))
   1340 		goto out_free;
   1341 
   1342 	for (i = 0; i < len; i++) {
   1343 		uint8_t c = ((uint8_t *)buf)[i];
   1344 		uint8_t c1 = ((uint8_t *)buf1)[i];
   1345 #if !defined(CONFIG_UBI_SILENCE_MSG)
   1346 		int dump_len = max_t(int, 128, len - i);
   1347 #endif
   1348 
   1349 		if (c == c1)
   1350 			continue;
   1351 
   1352 		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
   1353 			pnum, offset, len);
   1354 		ubi_msg(ubi, "data differ at position %d", i);
   1355 		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
   1356 			i, i + dump_len);
   1357 		print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
   1358 			       buf + i, dump_len, 1);
   1359 		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
   1360 			i, i + dump_len);
   1361 		print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
   1362 			       buf1 + i, dump_len, 1);
   1363 		dump_stack();
   1364 		err = -EINVAL;
   1365 		goto out_free;
   1366 	}
   1367 
   1368 	vfree(buf1);
   1369 	return 0;
   1370 
   1371 out_free:
   1372 	vfree(buf1);
   1373 	return err;
   1374 }
   1375 
   1376 /**
   1377  * ubi_self_check_all_ff - check that a region of flash is empty.
   1378  * @ubi: UBI device description object
   1379  * @pnum: the physical eraseblock number to check
   1380  * @offset: the starting offset within the physical eraseblock to check
   1381  * @len: the length of the region to check
   1382  *
   1383  * This function returns zero if only 0xFF bytes are present at offset
   1384  * @offset of the physical eraseblock @pnum, and a negative error code if not
   1385  * or if an error occurred.
   1386  */
   1387 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
   1388 {
   1389 	size_t read;
   1390 	int err;
   1391 	void *buf;
   1392 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
   1393 
   1394 	if (!ubi_dbg_chk_io(ubi))
   1395 		return 0;
   1396 
   1397 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
   1398 	if (!buf) {
   1399 		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
   1400 		return 0;
   1401 	}
   1402 
   1403 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
   1404 	if (err && !mtd_is_bitflip(err)) {
   1405 		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
   1406 			err, len, pnum, offset, read);
   1407 		goto error;
   1408 	}
   1409 
   1410 	err = ubi_check_pattern(buf, 0xFF, len);
   1411 	if (err == 0) {
   1412 		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
   1413 			pnum, offset, len);
   1414 		goto fail;
   1415 	}
   1416 
   1417 	vfree(buf);
   1418 	return 0;
   1419 
   1420 fail:
   1421 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1422 	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
   1423 	print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
   1424 	err = -EINVAL;
   1425 error:
   1426 	dump_stack();
   1427 	vfree(buf);
   1428 	return err;
   1429 }
   1430