Home | History | Annotate | Download | only in timer
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * Copyright (c) 2012 The Chromium OS Authors.
      4  *
      5  * TSC calibration codes are adapted from Linux kernel
      6  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
      7  */
      8 
      9 #include <common.h>
     10 #include <dm.h>
     11 #include <malloc.h>
     12 #include <timer.h>
     13 #include <asm/cpu.h>
     14 #include <asm/io.h>
     15 #include <asm/i8254.h>
     16 #include <asm/ibmpc.h>
     17 #include <asm/msr.h>
     18 #include <asm/u-boot-x86.h>
     19 
     20 #define MAX_NUM_FREQS	9
     21 
     22 DECLARE_GLOBAL_DATA_PTR;
     23 
     24 static unsigned long cpu_mhz_from_cpuid(void)
     25 {
     26 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
     27 		return 0;
     28 
     29 	if (cpuid_eax(0) < 0x16)
     30 		return 0;
     31 
     32 	return cpuid_eax(0x16);
     33 }
     34 
     35 /*
     36  * According to Intel 64 and IA-32 System Programming Guide,
     37  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
     38  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
     39  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
     40  * so we need manually differentiate SoC families. This is what the
     41  * field msr_plat does.
     42  */
     43 struct freq_desc {
     44 	u8 x86_family;	/* CPU family */
     45 	u8 x86_model;	/* model */
     46 	/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
     47 	u8 msr_plat;
     48 	u32 freqs[MAX_NUM_FREQS];
     49 };
     50 
     51 static struct freq_desc freq_desc_tables[] = {
     52 	/* PNW */
     53 	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
     54 	/* CLV+ */
     55 	{ 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
     56 	/* TNG - Intel Atom processor Z3400 series */
     57 	{ 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
     58 	/* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
     59 	{ 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
     60 	/* ANN - Intel Atom processor Z3500 series */
     61 	{ 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
     62 	/* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
     63 	{ 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
     64 			80000, 93300, 90000, 88900, 87500 } },
     65 	/* Ivybridge */
     66 	{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
     67 };
     68 
     69 static int match_cpu(u8 family, u8 model)
     70 {
     71 	int i;
     72 
     73 	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
     74 		if ((family == freq_desc_tables[i].x86_family) &&
     75 		    (model == freq_desc_tables[i].x86_model))
     76 			return i;
     77 	}
     78 
     79 	return -1;
     80 }
     81 
     82 /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
     83 #define id_to_freq(cpu_index, freq_id) \
     84 	(freq_desc_tables[cpu_index].freqs[freq_id])
     85 
     86 /*
     87  * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
     88  * reliable and the frequency is known (provided by HW).
     89  *
     90  * On these platforms PIT/HPET is generally not available so calibration won't
     91  * work at all and there is no other clocksource to act as a watchdog for the
     92  * TSC, so we have no other choice than to trust it.
     93  *
     94  * Returns the TSC frequency in MHz or 0 if HW does not provide it.
     95  */
     96 static unsigned long __maybe_unused cpu_mhz_from_msr(void)
     97 {
     98 	u32 lo, hi, ratio, freq_id, freq;
     99 	unsigned long res;
    100 	int cpu_index;
    101 
    102 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
    103 		return 0;
    104 
    105 	cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
    106 	if (cpu_index < 0)
    107 		return 0;
    108 
    109 	if (freq_desc_tables[cpu_index].msr_plat) {
    110 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
    111 		ratio = (lo >> 8) & 0xff;
    112 	} else {
    113 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
    114 		ratio = (hi >> 8) & 0x1f;
    115 	}
    116 	debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
    117 
    118 	if (freq_desc_tables[cpu_index].msr_plat == 2) {
    119 		/* TODO: Figure out how best to deal with this */
    120 		freq = 100000;
    121 		debug("Using frequency: %u KHz\n", freq);
    122 	} else {
    123 		/* Get FSB FREQ ID */
    124 		rdmsr(MSR_FSB_FREQ, lo, hi);
    125 		freq_id = lo & 0x7;
    126 		freq = id_to_freq(cpu_index, freq_id);
    127 		debug("Resolved frequency ID: %u, frequency: %u KHz\n",
    128 		      freq_id, freq);
    129 	}
    130 
    131 	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
    132 	res = freq * ratio / 1000;
    133 	debug("TSC runs at %lu MHz\n", res);
    134 
    135 	return res;
    136 }
    137 
    138 /*
    139  * This reads the current MSB of the PIT counter, and
    140  * checks if we are running on sufficiently fast and
    141  * non-virtualized hardware.
    142  *
    143  * Our expectations are:
    144  *
    145  *  - the PIT is running at roughly 1.19MHz
    146  *
    147  *  - each IO is going to take about 1us on real hardware,
    148  *    but we allow it to be much faster (by a factor of 10) or
    149  *    _slightly_ slower (ie we allow up to a 2us read+counter
    150  *    update - anything else implies a unacceptably slow CPU
    151  *    or PIT for the fast calibration to work.
    152  *
    153  *  - with 256 PIT ticks to read the value, we have 214us to
    154  *    see the same MSB (and overhead like doing a single TSC
    155  *    read per MSB value etc).
    156  *
    157  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
    158  *    them each to take about a microsecond on real hardware.
    159  *    So we expect a count value of around 100. But we'll be
    160  *    generous, and accept anything over 50.
    161  *
    162  *  - if the PIT is stuck, and we see *many* more reads, we
    163  *    return early (and the next caller of pit_expect_msb()
    164  *    then consider it a failure when they don't see the
    165  *    next expected value).
    166  *
    167  * These expectations mean that we know that we have seen the
    168  * transition from one expected value to another with a fairly
    169  * high accuracy, and we didn't miss any events. We can thus
    170  * use the TSC value at the transitions to calculate a pretty
    171  * good value for the TSC frequencty.
    172  */
    173 static inline int pit_verify_msb(unsigned char val)
    174 {
    175 	/* Ignore LSB */
    176 	inb(0x42);
    177 	return inb(0x42) == val;
    178 }
    179 
    180 static inline int pit_expect_msb(unsigned char val, u64 *tscp,
    181 				 unsigned long *deltap)
    182 {
    183 	int count;
    184 	u64 tsc = 0, prev_tsc = 0;
    185 
    186 	for (count = 0; count < 50000; count++) {
    187 		if (!pit_verify_msb(val))
    188 			break;
    189 		prev_tsc = tsc;
    190 		tsc = rdtsc();
    191 	}
    192 	*deltap = rdtsc() - prev_tsc;
    193 	*tscp = tsc;
    194 
    195 	/*
    196 	 * We require _some_ success, but the quality control
    197 	 * will be based on the error terms on the TSC values.
    198 	 */
    199 	return count > 5;
    200 }
    201 
    202 /*
    203  * How many MSB values do we want to see? We aim for
    204  * a maximum error rate of 500ppm (in practice the
    205  * real error is much smaller), but refuse to spend
    206  * more than 50ms on it.
    207  */
    208 #define MAX_QUICK_PIT_MS 50
    209 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
    210 
    211 static unsigned long __maybe_unused quick_pit_calibrate(void)
    212 {
    213 	int i;
    214 	u64 tsc, delta;
    215 	unsigned long d1, d2;
    216 
    217 	/* Set the Gate high, disable speaker */
    218 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
    219 
    220 	/*
    221 	 * Counter 2, mode 0 (one-shot), binary count
    222 	 *
    223 	 * NOTE! Mode 2 decrements by two (and then the
    224 	 * output is flipped each time, giving the same
    225 	 * final output frequency as a decrement-by-one),
    226 	 * so mode 0 is much better when looking at the
    227 	 * individual counts.
    228 	 */
    229 	outb(0xb0, 0x43);
    230 
    231 	/* Start at 0xffff */
    232 	outb(0xff, 0x42);
    233 	outb(0xff, 0x42);
    234 
    235 	/*
    236 	 * The PIT starts counting at the next edge, so we
    237 	 * need to delay for a microsecond. The easiest way
    238 	 * to do that is to just read back the 16-bit counter
    239 	 * once from the PIT.
    240 	 */
    241 	pit_verify_msb(0);
    242 
    243 	if (pit_expect_msb(0xff, &tsc, &d1)) {
    244 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
    245 			if (!pit_expect_msb(0xff-i, &delta, &d2))
    246 				break;
    247 
    248 			/*
    249 			 * Iterate until the error is less than 500 ppm
    250 			 */
    251 			delta -= tsc;
    252 			if (d1+d2 >= delta >> 11)
    253 				continue;
    254 
    255 			/*
    256 			 * Check the PIT one more time to verify that
    257 			 * all TSC reads were stable wrt the PIT.
    258 			 *
    259 			 * This also guarantees serialization of the
    260 			 * last cycle read ('d2') in pit_expect_msb.
    261 			 */
    262 			if (!pit_verify_msb(0xfe - i))
    263 				break;
    264 			goto success;
    265 		}
    266 	}
    267 	debug("Fast TSC calibration failed\n");
    268 	return 0;
    269 
    270 success:
    271 	/*
    272 	 * Ok, if we get here, then we've seen the
    273 	 * MSB of the PIT decrement 'i' times, and the
    274 	 * error has shrunk to less than 500 ppm.
    275 	 *
    276 	 * As a result, we can depend on there not being
    277 	 * any odd delays anywhere, and the TSC reads are
    278 	 * reliable (within the error).
    279 	 *
    280 	 * kHz = ticks / time-in-seconds / 1000;
    281 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
    282 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
    283 	 */
    284 	delta *= PIT_TICK_RATE;
    285 	delta /= (i*256*1000);
    286 	debug("Fast TSC calibration using PIT\n");
    287 	return delta / 1000;
    288 }
    289 
    290 /* Get the speed of the TSC timer in MHz */
    291 unsigned notrace long get_tbclk_mhz(void)
    292 {
    293 	return get_tbclk() / 1000000;
    294 }
    295 
    296 static ulong get_ms_timer(void)
    297 {
    298 	return (get_ticks() * 1000) / get_tbclk();
    299 }
    300 
    301 ulong get_timer(ulong base)
    302 {
    303 	return get_ms_timer() - base;
    304 }
    305 
    306 ulong notrace timer_get_us(void)
    307 {
    308 	return get_ticks() / get_tbclk_mhz();
    309 }
    310 
    311 ulong timer_get_boot_us(void)
    312 {
    313 	return timer_get_us();
    314 }
    315 
    316 void __udelay(unsigned long usec)
    317 {
    318 	u64 now = get_ticks();
    319 	u64 stop;
    320 
    321 	stop = now + usec * get_tbclk_mhz();
    322 
    323 	while ((int64_t)(stop - get_ticks()) > 0)
    324 #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
    325 		/*
    326 		 * Add a 'pause' instruction on qemu target,
    327 		 * to give other VCPUs a chance to run.
    328 		 */
    329 		asm volatile("pause");
    330 #else
    331 		;
    332 #endif
    333 }
    334 
    335 static int tsc_timer_get_count(struct udevice *dev, u64 *count)
    336 {
    337 	u64 now_tick = rdtsc();
    338 
    339 	*count = now_tick - gd->arch.tsc_base;
    340 
    341 	return 0;
    342 }
    343 
    344 static void tsc_timer_ensure_setup(void)
    345 {
    346 	if (gd->arch.tsc_base)
    347 		return;
    348 	gd->arch.tsc_base = rdtsc();
    349 
    350 	/*
    351 	 * If there is no clock frequency specified in the device tree,
    352 	 * calibrate it by ourselves.
    353 	 */
    354 	if (!gd->arch.clock_rate) {
    355 		unsigned long fast_calibrate;
    356 
    357 		fast_calibrate = cpu_mhz_from_cpuid();
    358 		if (fast_calibrate)
    359 			goto done;
    360 
    361 		fast_calibrate = cpu_mhz_from_msr();
    362 		if (fast_calibrate)
    363 			goto done;
    364 
    365 		fast_calibrate = quick_pit_calibrate();
    366 		if (fast_calibrate)
    367 			goto done;
    368 
    369 		panic("TSC frequency is ZERO");
    370 
    371 done:
    372 		gd->arch.clock_rate = fast_calibrate * 1000000;
    373 	}
    374 }
    375 
    376 static int tsc_timer_probe(struct udevice *dev)
    377 {
    378 	struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
    379 
    380 	if (!uc_priv->clock_rate) {
    381 		tsc_timer_ensure_setup();
    382 		uc_priv->clock_rate = gd->arch.clock_rate;
    383 	} else {
    384 		gd->arch.tsc_base = rdtsc();
    385 	}
    386 
    387 	return 0;
    388 }
    389 
    390 unsigned long notrace timer_early_get_rate(void)
    391 {
    392 	/*
    393 	 * When TSC timer is used as the early timer, be warned that the timer
    394 	 * clock rate can only be calibrated via some hardware ways. Specifying
    395 	 * it in the device tree won't work for the early timer.
    396 	 */
    397 	tsc_timer_ensure_setup();
    398 
    399 	return gd->arch.clock_rate;
    400 }
    401 
    402 u64 notrace timer_early_get_count(void)
    403 {
    404 	return rdtsc() - gd->arch.tsc_base;
    405 }
    406 
    407 static const struct timer_ops tsc_timer_ops = {
    408 	.get_count = tsc_timer_get_count,
    409 };
    410 
    411 static const struct udevice_id tsc_timer_ids[] = {
    412 	{ .compatible = "x86,tsc-timer", },
    413 	{ }
    414 };
    415 
    416 U_BOOT_DRIVER(tsc_timer) = {
    417 	.name	= "tsc_timer",
    418 	.id	= UCLASS_TIMER,
    419 	.of_match = tsc_timer_ids,
    420 	.probe = tsc_timer_probe,
    421 	.ops	= &tsc_timer_ops,
    422 	.flags = DM_FLAG_PRE_RELOC,
    423 };
    424