1 /* ----------------------------------------------------------------------------- 2 Software License for The Fraunhofer FDK AAC Codec Library for Android 3 4 Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Frderung der angewandten 5 Forschung e.V. All rights reserved. 6 7 1. INTRODUCTION 8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software 9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding 10 scheme for digital audio. This FDK AAC Codec software is intended to be used on 11 a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient 14 general perceptual audio codecs. AAC-ELD is considered the best-performing 15 full-bandwidth communications codec by independent studies and is widely 16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG 17 specifications. 18 19 Patent licenses for necessary patent claims for the FDK AAC Codec (including 20 those of Fraunhofer) may be obtained through Via Licensing 21 (www.vialicensing.com) or through the respective patent owners individually for 22 the purpose of encoding or decoding bit streams in products that are compliant 23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of 24 Android devices already license these patent claims through Via Licensing or 25 directly from the patent owners, and therefore FDK AAC Codec software may 26 already be covered under those patent licenses when it is used for those 27 licensed purposes only. 28 29 Commercially-licensed AAC software libraries, including floating-point versions 30 with enhanced sound quality, are also available from Fraunhofer. Users are 31 encouraged to check the Fraunhofer website for additional applications 32 information and documentation. 33 34 2. COPYRIGHT LICENSE 35 36 Redistribution and use in source and binary forms, with or without modification, 37 are permitted without payment of copyright license fees provided that you 38 satisfy the following conditions: 39 40 You must retain the complete text of this software license in redistributions of 41 the FDK AAC Codec or your modifications thereto in source code form. 42 43 You must retain the complete text of this software license in the documentation 44 and/or other materials provided with redistributions of the FDK AAC Codec or 45 your modifications thereto in binary form. You must make available free of 46 charge copies of the complete source code of the FDK AAC Codec and your 47 modifications thereto to recipients of copies in binary form. 48 49 The name of Fraunhofer may not be used to endorse or promote products derived 50 from this library without prior written permission. 51 52 You may not charge copyright license fees for anyone to use, copy or distribute 53 the FDK AAC Codec software or your modifications thereto. 54 55 Your modified versions of the FDK AAC Codec must carry prominent notices stating 56 that you changed the software and the date of any change. For modified versions 57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" 58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK 59 AAC Codec Library for Android." 60 61 3. NO PATENT LICENSE 62 63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without 64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. 65 Fraunhofer provides no warranty of patent non-infringement with respect to this 66 software. 67 68 You may use this FDK AAC Codec software or modifications thereto only for 69 purposes that are authorized by appropriate patent licenses. 70 71 4. DISCLAIMER 72 73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright 74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, 75 including but not limited to the implied warranties of merchantability and 76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, 78 or consequential damages, including but not limited to procurement of substitute 79 goods or services; loss of use, data, or profits, or business interruption, 80 however caused and on any theory of liability, whether in contract, strict 81 liability, or tort (including negligence), arising in any way out of the use of 82 this software, even if advised of the possibility of such damage. 83 84 5. CONTACT INFORMATION 85 86 Fraunhofer Institute for Integrated Circuits IIS 87 Attention: Audio and Multimedia Departments - FDK AAC LL 88 Am Wolfsmantel 33 89 91058 Erlangen, Germany 90 91 www.iis.fraunhofer.de/amm 92 amm-info (at) iis.fraunhofer.de 93 ----------------------------------------------------------------------------- */ 94 95 /**************************** AAC encoder library ****************************** 96 97 Author(s): Alex Groeschel, Tobias Chalupka 98 99 Description: Temporal noise shaping 100 101 *******************************************************************************/ 102 103 #include "aacenc_tns.h" 104 #include "psy_const.h" 105 #include "psy_configuration.h" 106 #include "tns_func.h" 107 #include "aacEnc_rom.h" 108 #include "aacenc_tns.h" 109 #include "FDK_lpc.h" 110 111 #define FILTER_DIRECTION 0 /* 0 = up, 1 = down */ 112 113 static const FIXP_DBL acfWindowLong[12 + 3 + 1] = { 114 0x7fffffff, 0x7fb80000, 0x7ee00000, 0x7d780000, 0x7b800000, 0x78f80000, 115 0x75e00000, 0x72380000, 0x6e000000, 0x69380000, 0x63e00000, 0x5df80000, 116 0x57800000, 0x50780000, 0x48e00000, 0x40b80000}; 117 118 static const FIXP_DBL acfWindowShort[4 + 3 + 1] = { 119 0x7fffffff, 0x7e000000, 0x78000000, 0x6e000000, 120 0x60000000, 0x4e000000, 0x38000000, 0x1e000000}; 121 122 typedef struct { 123 INT bitRateFrom[2]; /* noneSbr=0, useSbr=1 */ 124 INT bitRateTo[2]; /* noneSbr=0, useSbr=1 */ 125 TNS_PARAMETER_TABULATED paramTab[2]; /* mono=0, stereo=1 */ 126 127 } TNS_INFO_TAB; 128 129 #define TNS_TIMERES_SCALE (1) 130 #define FL2_TIMERES_FIX(a) (FL2FXCONST_DBL(a / (float)(1 << TNS_TIMERES_SCALE))) 131 132 static const TNS_INFO_TAB tnsInfoTab[] = { 133 {{16000, 13500}, 134 {32000, 28000}, 135 {{{1, 1}, 136 {1437, 1500}, 137 {1400, 600}, 138 {12, 12}, 139 {FILTER_DIRECTION, FILTER_DIRECTION}, 140 {3, 1}, 141 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.2f)}, 142 1}, 143 {{1, 1}, 144 {1437, 1500}, 145 {1400, 600}, 146 {12, 12}, 147 {FILTER_DIRECTION, FILTER_DIRECTION}, 148 {3, 1}, 149 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.2f)}, 150 1}}}, 151 {{32001, 28001}, 152 {60000, 52000}, 153 {{{1, 1}, 154 {1437, 1500}, 155 {1400, 600}, 156 {12, 10}, 157 {FILTER_DIRECTION, FILTER_DIRECTION}, 158 {3, 1}, 159 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)}, 160 1}, 161 {{1, 1}, 162 {1437, 1500}, 163 {1400, 600}, 164 {12, 10}, 165 {FILTER_DIRECTION, FILTER_DIRECTION}, 166 {3, 1}, 167 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)}, 168 1}}}, 169 {{60001, 52001}, 170 {384000, 384000}, 171 {{{1, 1}, 172 {1437, 1500}, 173 {1400, 600}, 174 {12, 8}, 175 {FILTER_DIRECTION, FILTER_DIRECTION}, 176 {3, 1}, 177 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)}, 178 1}, 179 {{1, 1}, 180 {1437, 1500}, 181 {1400, 600}, 182 {12, 8}, 183 {FILTER_DIRECTION, FILTER_DIRECTION}, 184 {3, 1}, 185 {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)}, 186 1}}}}; 187 188 typedef struct { 189 INT samplingRate; 190 SCHAR maxBands[2]; /* long=0; short=1 */ 191 192 } TNS_MAX_TAB_ENTRY; 193 194 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab1024[] = { 195 {96000, {31, 9}}, {88200, {31, 9}}, {64000, {34, 10}}, {48000, {40, 14}}, 196 {44100, {42, 14}}, {32000, {51, 14}}, {24000, {46, 14}}, {22050, {46, 14}}, 197 {16000, {42, 14}}, {12000, {42, 14}}, {11025, {42, 14}}, {8000, {39, 14}}}; 198 199 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab120[] = { 200 {48000, {12, -1}}, /* 48000 */ 201 {44100, {12, -1}}, /* 44100 */ 202 {32000, {15, -1}}, /* 32000 */ 203 {24000, {15, -1}}, /* 24000 */ 204 {22050, {15, -1}} /* 22050 */ 205 }; 206 207 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab128[] = { 208 {48000, {12, -1}}, /* 48000 */ 209 {44100, {12, -1}}, /* 44100 */ 210 {32000, {15, -1}}, /* 32000 */ 211 {24000, {15, -1}}, /* 24000 */ 212 {22050, {15, -1}} /* 22050 */ 213 }; 214 215 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab240[] = { 216 {96000, {22, -1}}, /* 96000 */ 217 {48000, {22, -1}}, /* 48000 */ 218 {44100, {22, -1}}, /* 44100 */ 219 {32000, {21, -1}}, /* 32000 */ 220 {24000, {21, -1}}, /* 24000 */ 221 {22050, {21, -1}} /* 22050 */ 222 }; 223 224 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab256[] = { 225 {96000, {25, -1}}, /* 96000 */ 226 {48000, {25, -1}}, /* 48000 */ 227 {44100, {25, -1}}, /* 44100 */ 228 {32000, {24, -1}}, /* 32000 */ 229 {24000, {24, -1}}, /* 24000 */ 230 {22050, {24, -1}} /* 22050 */ 231 }; 232 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab480[] = {{48000, {31, -1}}, 233 {44100, {32, -1}}, 234 {32000, {37, -1}}, 235 {24000, {30, -1}}, 236 {22050, {30, -1}}}; 237 238 static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab512[] = {{48000, {31, -1}}, 239 {44100, {32, -1}}, 240 {32000, {37, -1}}, 241 {24000, {31, -1}}, 242 {22050, {31, -1}}}; 243 244 static void FDKaacEnc_Parcor2Index(const FIXP_LPC *parcor, INT *RESTRICT index, 245 const INT order, const INT bitsPerCoeff); 246 247 static void FDKaacEnc_Index2Parcor(const INT *index, FIXP_LPC *RESTRICT parcor, 248 const INT order, const INT bitsPerCoeff); 249 250 static void FDKaacEnc_CalcGaussWindow(FIXP_DBL *win, const int winSize, 251 const INT samplingRate, 252 const INT transformResolution, 253 const FIXP_DBL timeResolution, 254 const INT timeResolution_e); 255 256 static const TNS_PARAMETER_TABULATED *FDKaacEnc_GetTnsParam(const INT bitRate, 257 const INT channels, 258 const INT sbrLd) { 259 int i; 260 const TNS_PARAMETER_TABULATED *tnsConfigTab = NULL; 261 262 for (i = 0; i < (int)(sizeof(tnsInfoTab) / sizeof(TNS_INFO_TAB)); i++) { 263 if ((bitRate >= tnsInfoTab[i].bitRateFrom[sbrLd ? 1 : 0]) && 264 bitRate <= tnsInfoTab[i].bitRateTo[sbrLd ? 1 : 0]) { 265 tnsConfigTab = &tnsInfoTab[i].paramTab[(channels == 1) ? 0 : 1]; 266 } 267 } 268 269 return tnsConfigTab; 270 } 271 272 static INT getTnsMaxBands(const INT sampleRate, const INT granuleLength, 273 const INT isShortBlock) { 274 int i; 275 INT numBands = -1; 276 const TNS_MAX_TAB_ENTRY *pMaxBandsTab = NULL; 277 int maxBandsTabSize = 0; 278 279 switch (granuleLength) { 280 case 960: 281 case 1024: 282 pMaxBandsTab = tnsMaxBandsTab1024; 283 maxBandsTabSize = sizeof(tnsMaxBandsTab1024) / sizeof(TNS_MAX_TAB_ENTRY); 284 break; 285 case 120: 286 pMaxBandsTab = tnsMaxBandsTab120; 287 maxBandsTabSize = sizeof(tnsMaxBandsTab120) / sizeof(TNS_MAX_TAB_ENTRY); 288 break; 289 case 128: 290 pMaxBandsTab = tnsMaxBandsTab128; 291 maxBandsTabSize = sizeof(tnsMaxBandsTab128) / sizeof(TNS_MAX_TAB_ENTRY); 292 break; 293 case 240: 294 pMaxBandsTab = tnsMaxBandsTab240; 295 maxBandsTabSize = sizeof(tnsMaxBandsTab240) / sizeof(TNS_MAX_TAB_ENTRY); 296 break; 297 case 256: 298 pMaxBandsTab = tnsMaxBandsTab256; 299 maxBandsTabSize = sizeof(tnsMaxBandsTab256) / sizeof(TNS_MAX_TAB_ENTRY); 300 break; 301 case 480: 302 pMaxBandsTab = tnsMaxBandsTab480; 303 maxBandsTabSize = sizeof(tnsMaxBandsTab480) / sizeof(TNS_MAX_TAB_ENTRY); 304 break; 305 case 512: 306 pMaxBandsTab = tnsMaxBandsTab512; 307 maxBandsTabSize = sizeof(tnsMaxBandsTab512) / sizeof(TNS_MAX_TAB_ENTRY); 308 break; 309 default: 310 numBands = -1; 311 } 312 313 if (pMaxBandsTab != NULL) { 314 for (i = 0; i < maxBandsTabSize; i++) { 315 numBands = pMaxBandsTab[i].maxBands[(!isShortBlock) ? 0 : 1]; 316 if (sampleRate >= pMaxBandsTab[i].samplingRate) { 317 break; 318 } 319 } 320 } 321 322 return numBands; 323 } 324 325 /***************************************************************************/ 326 /*! 327 \brief FDKaacEnc_FreqToBandWidthRounding 328 329 Returns index of nearest band border 330 331 \param frequency 332 \param sampling frequency 333 \param total number of bands 334 \param pointer to table of band borders 335 336 \return band border 337 ****************************************************************************/ 338 339 INT FDKaacEnc_FreqToBandWidthRounding(const INT freq, const INT fs, 340 const INT numOfBands, 341 const INT *bandStartOffset) { 342 INT lineNumber, band; 343 344 /* assert(freq >= 0); */ 345 lineNumber = (freq * bandStartOffset[numOfBands] * 4 / fs + 1) / 2; 346 347 /* freq > fs/2 */ 348 if (lineNumber >= bandStartOffset[numOfBands]) return numOfBands; 349 350 /* find band the line number lies in */ 351 for (band = 0; band < numOfBands; band++) { 352 if (bandStartOffset[band + 1] > lineNumber) break; 353 } 354 355 /* round to nearest band border */ 356 if (lineNumber - bandStartOffset[band] > 357 bandStartOffset[band + 1] - lineNumber) { 358 band++; 359 } 360 361 return (band); 362 } 363 364 /***************************************************************************** 365 366 functionname: FDKaacEnc_InitTnsConfiguration 367 description: fill TNS_CONFIG structure with sensible content 368 returns: 369 input: bitrate, samplerate, number of channels, 370 blocktype (long or short), 371 TNS Config struct (modified), 372 psy config struct, 373 tns active flag 374 output: 375 376 *****************************************************************************/ 377 AAC_ENCODER_ERROR FDKaacEnc_InitTnsConfiguration( 378 INT bitRate, INT sampleRate, INT channels, INT blockType, INT granuleLength, 379 INT isLowDelay, INT ldSbrPresent, TNS_CONFIG *tC, PSY_CONFIGURATION *pC, 380 INT active, INT useTnsPeak) { 381 int i; 382 // float acfTimeRes = (blockType == SHORT_WINDOW) ? 0.125f : 0.046875f; 383 384 if (channels <= 0) return (AAC_ENCODER_ERROR)1; 385 386 tC->isLowDelay = isLowDelay; 387 388 /* initialize TNS filter flag, order, and coefficient resolution (in bits per 389 * coeff) */ 390 tC->tnsActive = (active) ? TRUE : FALSE; 391 tC->maxOrder = (blockType == SHORT_WINDOW) ? 5 : 12; /* maximum: 7, 20 */ 392 if (bitRate < 16000) tC->maxOrder -= 2; 393 tC->coefRes = (blockType == SHORT_WINDOW) ? 3 : 4; 394 395 /* LPC stop line: highest MDCT line to be coded, but do not go beyond 396 * TNS_MAX_BANDS! */ 397 tC->lpcStopBand = getTnsMaxBands(sampleRate, granuleLength, 398 (blockType == SHORT_WINDOW) ? 1 : 0); 399 400 if (tC->lpcStopBand < 0) { 401 return (AAC_ENCODER_ERROR)1; 402 } 403 404 tC->lpcStopBand = fMin(tC->lpcStopBand, pC->sfbActive); 405 tC->lpcStopLine = pC->sfbOffset[tC->lpcStopBand]; 406 407 switch (granuleLength) { 408 case 960: 409 case 1024: 410 /* TNS start line: skip lower MDCT lines to prevent artifacts due to 411 * filter mismatch */ 412 if (blockType == SHORT_WINDOW) { 413 tC->lpcStartBand[LOFILT] = 0; 414 } else { 415 tC->lpcStartBand[LOFILT] = 416 (sampleRate < 9391) ? 2 : ((sampleRate < 18783) ? 4 : 8); 417 } 418 tC->lpcStartLine[LOFILT] = pC->sfbOffset[tC->lpcStartBand[LOFILT]]; 419 420 i = tC->lpcStopBand; 421 while (pC->sfbOffset[i] > 422 (tC->lpcStartLine[LOFILT] + 423 (tC->lpcStopLine - tC->lpcStartLine[LOFILT]) / 4)) 424 i--; 425 tC->lpcStartBand[HIFILT] = i; 426 tC->lpcStartLine[HIFILT] = pC->sfbOffset[i]; 427 428 tC->confTab.threshOn[HIFILT] = 1437; 429 tC->confTab.threshOn[LOFILT] = 1500; 430 431 tC->confTab.tnsLimitOrder[HIFILT] = tC->maxOrder; 432 tC->confTab.tnsLimitOrder[LOFILT] = fMax(0, tC->maxOrder - 7); 433 434 tC->confTab.tnsFilterDirection[HIFILT] = FILTER_DIRECTION; 435 tC->confTab.tnsFilterDirection[LOFILT] = FILTER_DIRECTION; 436 437 tC->confTab.acfSplit[HIFILT] = 438 -1; /* signal Merged4to2QuartersAutoCorrelation in 439 FDKaacEnc_MergedAutoCorrelation*/ 440 tC->confTab.acfSplit[LOFILT] = 441 -1; /* signal Merged4to2QuartersAutoCorrelation in 442 FDKaacEnc_MergedAutoCorrelation */ 443 444 tC->confTab.filterEnabled[HIFILT] = 1; 445 tC->confTab.filterEnabled[LOFILT] = 1; 446 tC->confTab.seperateFiltersAllowed = 1; 447 448 /* compute autocorrelation window based on maximum filter order for given 449 * block type */ 450 /* for (i = 0; i <= tC->maxOrder + 3; i++) { 451 float acfWinTemp = acfTimeRes * i; 452 acfWindow[i] = FL2FXCONST_DBL(1.0f - acfWinTemp * acfWinTemp); 453 } 454 */ 455 if (blockType == SHORT_WINDOW) { 456 FDKmemcpy(tC->acfWindow[HIFILT], acfWindowShort, 457 fMin((LONG)sizeof(acfWindowShort), 458 (LONG)sizeof(tC->acfWindow[HIFILT]))); 459 FDKmemcpy(tC->acfWindow[LOFILT], acfWindowShort, 460 fMin((LONG)sizeof(acfWindowShort), 461 (LONG)sizeof(tC->acfWindow[HIFILT]))); 462 } else { 463 FDKmemcpy(tC->acfWindow[HIFILT], acfWindowLong, 464 fMin((LONG)sizeof(acfWindowLong), 465 (LONG)sizeof(tC->acfWindow[HIFILT]))); 466 FDKmemcpy(tC->acfWindow[LOFILT], acfWindowLong, 467 fMin((LONG)sizeof(acfWindowLong), 468 (LONG)sizeof(tC->acfWindow[HIFILT]))); 469 } 470 break; 471 case 480: 472 case 512: { 473 const TNS_PARAMETER_TABULATED *pCfg = 474 FDKaacEnc_GetTnsParam(bitRate, channels, ldSbrPresent); 475 if (pCfg != NULL) { 476 FDKmemcpy(&(tC->confTab), pCfg, sizeof(tC->confTab)); 477 478 tC->lpcStartBand[HIFILT] = FDKaacEnc_FreqToBandWidthRounding( 479 pCfg->filterStartFreq[HIFILT], sampleRate, pC->sfbCnt, 480 pC->sfbOffset); 481 tC->lpcStartLine[HIFILT] = pC->sfbOffset[tC->lpcStartBand[HIFILT]]; 482 tC->lpcStartBand[LOFILT] = FDKaacEnc_FreqToBandWidthRounding( 483 pCfg->filterStartFreq[LOFILT], sampleRate, pC->sfbCnt, 484 pC->sfbOffset); 485 tC->lpcStartLine[LOFILT] = pC->sfbOffset[tC->lpcStartBand[LOFILT]]; 486 487 FDKaacEnc_CalcGaussWindow( 488 tC->acfWindow[HIFILT], tC->maxOrder + 1, sampleRate, granuleLength, 489 pCfg->tnsTimeResolution[HIFILT], TNS_TIMERES_SCALE); 490 FDKaacEnc_CalcGaussWindow( 491 tC->acfWindow[LOFILT], tC->maxOrder + 1, sampleRate, granuleLength, 492 pCfg->tnsTimeResolution[LOFILT], TNS_TIMERES_SCALE); 493 } else { 494 tC->tnsActive = 495 FALSE; /* no configuration available, disable tns tool */ 496 } 497 } break; 498 default: 499 tC->tnsActive = FALSE; /* no configuration available, disable tns tool */ 500 } 501 502 return AAC_ENC_OK; 503 } 504 505 /***************************************************************************/ 506 /*! 507 \brief FDKaacEnc_ScaleUpSpectrum 508 509 Scales up spectrum lines in a given frequency section 510 511 \param scaled spectrum 512 \param original spectrum 513 \param frequency line to start scaling 514 \param frequency line to enc scaling 515 516 \return scale factor 517 518 ****************************************************************************/ 519 static inline INT FDKaacEnc_ScaleUpSpectrum(FIXP_DBL *dest, const FIXP_DBL *src, 520 const INT startLine, 521 const INT stopLine) { 522 INT i, scale; 523 524 FIXP_DBL maxVal = FL2FXCONST_DBL(0.f); 525 526 /* Get highest value in given spectrum */ 527 for (i = startLine; i < stopLine; i++) { 528 maxVal = fixMax(maxVal, fixp_abs(src[i])); 529 } 530 scale = CountLeadingBits(maxVal); 531 532 /* Scale spectrum according to highest value */ 533 for (i = startLine; i < stopLine; i++) { 534 dest[i] = src[i] << scale; 535 } 536 537 return scale; 538 } 539 540 /***************************************************************************/ 541 /*! 542 \brief FDKaacEnc_CalcAutoCorrValue 543 544 Calculate autocorellation value for one lag 545 546 \param pointer to spectrum 547 \param start line 548 \param stop line 549 \param lag to be calculated 550 \param scaling of the lag 551 552 ****************************************************************************/ 553 static inline FIXP_DBL FDKaacEnc_CalcAutoCorrValue(const FIXP_DBL *spectrum, 554 const INT startLine, 555 const INT stopLine, 556 const INT lag, 557 const INT scale) { 558 int i; 559 FIXP_DBL result = FL2FXCONST_DBL(0.f); 560 561 /* This versions allows to save memory accesses, when computing pow2 */ 562 /* It is of interest for ARM, XTENSA without parallel memory access */ 563 if (lag == 0) { 564 for (i = startLine; i < stopLine; i++) { 565 result += (fPow2(spectrum[i]) >> scale); 566 } 567 } else { 568 for (i = startLine; i < (stopLine - lag); i++) { 569 result += (fMult(spectrum[i], spectrum[i + lag]) >> scale); 570 } 571 } 572 573 return result; 574 } 575 576 /***************************************************************************/ 577 /*! 578 \brief FDKaacEnc_AutoCorrNormFac 579 580 Autocorrelation function for 1st and 2nd half of the spectrum 581 582 \param pointer to spectrum 583 \param pointer to autocorrelation window 584 \param filter start line 585 586 ****************************************************************************/ 587 static inline FIXP_DBL FDKaacEnc_AutoCorrNormFac(const FIXP_DBL value, 588 const INT scale, INT *sc) { 589 #define HLM_MIN_NRG 0.0000000037252902984619140625f /* 2^-28 */ 590 #define MAX_INV_NRGFAC (1.f / HLM_MIN_NRG) 591 592 FIXP_DBL retValue; 593 FIXP_DBL A, B; 594 595 if (scale >= 0) { 596 A = value; 597 B = FL2FXCONST_DBL(HLM_MIN_NRG) >> fixMin(DFRACT_BITS - 1, scale); 598 } else { 599 A = value >> fixMin(DFRACT_BITS - 1, (-scale)); 600 B = FL2FXCONST_DBL(HLM_MIN_NRG); 601 } 602 603 if (A > B) { 604 int shift = 0; 605 FIXP_DBL tmp = invSqrtNorm2(value, &shift); 606 607 retValue = fMult(tmp, tmp); 608 *sc += (2 * shift); 609 } else { 610 /* MAX_INV_NRGFAC*FDKpow(2,-28) = 1/2^-28 * 2^-28 = 1.0 */ 611 retValue = 612 /*FL2FXCONST_DBL(MAX_INV_NRGFAC*FDKpow(2,-28))*/ (FIXP_DBL)MAXVAL_DBL; 613 *sc += scale + 28; 614 } 615 616 return retValue; 617 } 618 619 static void FDKaacEnc_MergedAutoCorrelation( 620 const FIXP_DBL *spectrum, const INT isLowDelay, 621 const FIXP_DBL acfWindow[MAX_NUM_OF_FILTERS][TNS_MAX_ORDER + 3 + 1], 622 const INT lpcStartLine[MAX_NUM_OF_FILTERS], const INT lpcStopLine, 623 const INT maxOrder, const INT acfSplit[MAX_NUM_OF_FILTERS], FIXP_DBL *_rxx1, 624 FIXP_DBL *_rxx2) { 625 int i, idx0, idx1, idx2, idx3, idx4, lag; 626 FIXP_DBL rxx1_0, rxx2_0, rxx3_0, rxx4_0; 627 628 /* buffer for temporal spectrum */ 629 C_ALLOC_SCRATCH_START(pSpectrum, FIXP_DBL, (1024)) 630 631 /* MDCT line indices separating the 1st, 2nd, 3rd, and 4th analysis quarters 632 */ 633 if ((acfSplit[LOFILT] == -1) || (acfSplit[HIFILT] == -1)) { 634 /* autocorrelation function for 1st, 2nd, 3rd, and 4th quarter of the 635 * spectrum */ 636 idx0 = lpcStartLine[LOFILT]; 637 i = lpcStopLine - lpcStartLine[LOFILT]; 638 idx1 = idx0 + i / 4; 639 idx2 = idx0 + i / 2; 640 idx3 = idx0 + i * 3 / 4; 641 idx4 = lpcStopLine; 642 } else { 643 FDK_ASSERT(acfSplit[LOFILT] == 1); 644 FDK_ASSERT(acfSplit[HIFILT] == 3); 645 i = (lpcStopLine - lpcStartLine[HIFILT]) / 3; 646 idx0 = lpcStartLine[LOFILT]; 647 idx1 = lpcStartLine[HIFILT]; 648 idx2 = idx1 + i; 649 idx3 = idx2 + i; 650 idx4 = lpcStopLine; 651 } 652 653 /* copy spectrum to temporal buffer and scale up as much as possible */ 654 INT sc1 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx0, idx1); 655 INT sc2 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx1, idx2); 656 INT sc3 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx2, idx3); 657 INT sc4 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx3, idx4); 658 659 /* get scaling values for summation */ 660 INT nsc1, nsc2, nsc3, nsc4; 661 for (nsc1 = 1; (1 << nsc1) < (idx1 - idx0); nsc1++) 662 ; 663 for (nsc2 = 1; (1 << nsc2) < (idx2 - idx1); nsc2++) 664 ; 665 for (nsc3 = 1; (1 << nsc3) < (idx3 - idx2); nsc3++) 666 ; 667 for (nsc4 = 1; (1 << nsc4) < (idx4 - idx3); nsc4++) 668 ; 669 670 /* compute autocorrelation value at lag zero, i. e. energy, for each quarter 671 */ 672 rxx1_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, 0, nsc1); 673 rxx2_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx1, idx2, 0, nsc2); 674 rxx3_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx2, idx3, 0, nsc3); 675 rxx4_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx3, idx4, 0, nsc4); 676 677 /* compute energy normalization factors, i. e. 1/energy (saves some divisions) 678 */ 679 if (rxx1_0 != FL2FXCONST_DBL(0.f)) { 680 INT sc_fac1 = -1; 681 FIXP_DBL fac1 = 682 FDKaacEnc_AutoCorrNormFac(rxx1_0, ((-2 * sc1) + nsc1), &sc_fac1); 683 _rxx1[0] = scaleValue(fMult(rxx1_0, fac1), sc_fac1); 684 685 if (isLowDelay) { 686 for (lag = 1; lag <= maxOrder; lag++) { 687 /* compute energy-normalized and windowed autocorrelation values at this 688 * lag */ 689 FIXP_DBL x1 = 690 FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, lag, nsc1); 691 _rxx1[lag] = 692 fMult(scaleValue(fMult(x1, fac1), sc_fac1), acfWindow[LOFILT][lag]); 693 } 694 } else { 695 for (lag = 1; lag <= maxOrder; lag++) { 696 if ((3 * lag) <= maxOrder + 3) { 697 FIXP_DBL x1 = 698 FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, lag, nsc1); 699 _rxx1[lag] = fMult(scaleValue(fMult(x1, fac1), sc_fac1), 700 acfWindow[LOFILT][3 * lag]); 701 } 702 } 703 } 704 } 705 706 /* auto corr over upper 3/4 of spectrum */ 707 if (!((rxx2_0 == FL2FXCONST_DBL(0.f)) && (rxx3_0 == FL2FXCONST_DBL(0.f)) && 708 (rxx4_0 == FL2FXCONST_DBL(0.f)))) { 709 FIXP_DBL fac2, fac3, fac4; 710 fac2 = fac3 = fac4 = FL2FXCONST_DBL(0.f); 711 INT sc_fac2, sc_fac3, sc_fac4; 712 sc_fac2 = sc_fac3 = sc_fac4 = 0; 713 714 if (rxx2_0 != FL2FXCONST_DBL(0.f)) { 715 fac2 = FDKaacEnc_AutoCorrNormFac(rxx2_0, ((-2 * sc2) + nsc2), &sc_fac2); 716 sc_fac2 -= 2; 717 } 718 if (rxx3_0 != FL2FXCONST_DBL(0.f)) { 719 fac3 = FDKaacEnc_AutoCorrNormFac(rxx3_0, ((-2 * sc3) + nsc3), &sc_fac3); 720 sc_fac3 -= 2; 721 } 722 if (rxx4_0 != FL2FXCONST_DBL(0.f)) { 723 fac4 = FDKaacEnc_AutoCorrNormFac(rxx4_0, ((-2 * sc4) + nsc4), &sc_fac4); 724 sc_fac4 -= 2; 725 } 726 727 _rxx2[0] = scaleValue(fMult(rxx2_0, fac2), sc_fac2) + 728 scaleValue(fMult(rxx3_0, fac3), sc_fac3) + 729 scaleValue(fMult(rxx4_0, fac4), sc_fac4); 730 731 for (lag = 1; lag <= maxOrder; lag++) { 732 /* merge quarters 2, 3, 4 into one autocorrelation; quarter 1 stays 733 * separate */ 734 FIXP_DBL x2 = scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue( 735 pSpectrum, idx1, idx2, lag, nsc2), 736 fac2), 737 sc_fac2) + 738 scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue( 739 pSpectrum, idx2, idx3, lag, nsc3), 740 fac3), 741 sc_fac3) + 742 scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue( 743 pSpectrum, idx3, idx4, lag, nsc4), 744 fac4), 745 sc_fac4); 746 747 _rxx2[lag] = fMult(x2, acfWindow[HIFILT][lag]); 748 } 749 } 750 751 C_ALLOC_SCRATCH_END(pSpectrum, FIXP_DBL, (1024)) 752 } 753 754 /***************************************************************************** 755 functionname: FDKaacEnc_TnsDetect 756 description: do decision, if TNS shall be used or not 757 returns: 758 input: tns data structure (modified), 759 tns config structure, 760 scalefactor size and table, 761 spectrum, 762 subblock num, blocktype, 763 sfb-wise energy. 764 765 *****************************************************************************/ 766 INT FDKaacEnc_TnsDetect(TNS_DATA *tnsData, const TNS_CONFIG *tC, 767 TNS_INFO *tnsInfo, INT sfbCnt, const FIXP_DBL *spectrum, 768 INT subBlockNumber, INT blockType) { 769 /* autocorrelation function for 1st, 2nd, 3rd, and 4th quarter of the 770 * spectrum. */ 771 FIXP_DBL rxx1[TNS_MAX_ORDER + 1]; /* higher part */ 772 FIXP_DBL rxx2[TNS_MAX_ORDER + 1]; /* lower part */ 773 FIXP_LPC parcor_tmp[TNS_MAX_ORDER]; 774 775 int i; 776 777 FDKmemclear(rxx1, sizeof(rxx1)); 778 FDKmemclear(rxx2, sizeof(rxx2)); 779 780 TNS_SUBBLOCK_INFO *tsbi = 781 (blockType == SHORT_WINDOW) 782 ? &tnsData->dataRaw.Short.subBlockInfo[subBlockNumber] 783 : &tnsData->dataRaw.Long.subBlockInfo; 784 785 tnsData->filtersMerged = FALSE; 786 787 tsbi->tnsActive[HIFILT] = FALSE; 788 tsbi->predictionGain[HIFILT] = 1000; 789 tsbi->tnsActive[LOFILT] = FALSE; 790 tsbi->predictionGain[LOFILT] = 1000; 791 792 tnsInfo->numOfFilters[subBlockNumber] = 0; 793 tnsInfo->coefRes[subBlockNumber] = tC->coefRes; 794 for (i = 0; i < tC->maxOrder; i++) { 795 tnsInfo->coef[subBlockNumber][HIFILT][i] = 796 tnsInfo->coef[subBlockNumber][LOFILT][i] = 0; 797 } 798 799 tnsInfo->length[subBlockNumber][HIFILT] = 800 tnsInfo->length[subBlockNumber][LOFILT] = 0; 801 tnsInfo->order[subBlockNumber][HIFILT] = 802 tnsInfo->order[subBlockNumber][LOFILT] = 0; 803 804 if ((tC->tnsActive) && (tC->maxOrder > 0)) { 805 int sumSqrCoef; 806 807 FDKaacEnc_MergedAutoCorrelation( 808 spectrum, tC->isLowDelay, tC->acfWindow, tC->lpcStartLine, 809 tC->lpcStopLine, tC->maxOrder, tC->confTab.acfSplit, rxx1, rxx2); 810 811 /* compute higher TNS filter coefficients in lattice form (ParCor) with 812 * LeRoux-Gueguen/Schur algorithm */ 813 { 814 FIXP_DBL predictionGain_m; 815 INT predictionGain_e; 816 817 CLpc_AutoToParcor(rxx2, 0, parcor_tmp, tC->confTab.tnsLimitOrder[HIFILT], 818 &predictionGain_m, &predictionGain_e); 819 tsbi->predictionGain[HIFILT] = 820 (INT)fMultNorm(predictionGain_m, predictionGain_e, 1000, 31, 31); 821 } 822 823 /* non-linear quantization of TNS lattice coefficients with given resolution 824 */ 825 FDKaacEnc_Parcor2Index(parcor_tmp, tnsInfo->coef[subBlockNumber][HIFILT], 826 tC->confTab.tnsLimitOrder[HIFILT], tC->coefRes); 827 828 /* reduce filter order by truncating trailing zeros, compute sum(abs(coefs)) 829 */ 830 for (i = tC->confTab.tnsLimitOrder[HIFILT] - 1; i >= 0; i--) { 831 if (tnsInfo->coef[subBlockNumber][HIFILT][i] != 0) { 832 break; 833 } 834 } 835 836 tnsInfo->order[subBlockNumber][HIFILT] = i + 1; 837 838 sumSqrCoef = 0; 839 for (; i >= 0; i--) { 840 sumSqrCoef += tnsInfo->coef[subBlockNumber][HIFILT][i] * 841 tnsInfo->coef[subBlockNumber][HIFILT][i]; 842 } 843 844 tnsInfo->direction[subBlockNumber][HIFILT] = 845 tC->confTab.tnsFilterDirection[HIFILT]; 846 tnsInfo->length[subBlockNumber][HIFILT] = sfbCnt - tC->lpcStartBand[HIFILT]; 847 848 /* disable TNS if predictionGain is less than 3dB or sumSqrCoef is too small 849 */ 850 if ((tsbi->predictionGain[HIFILT] > tC->confTab.threshOn[HIFILT]) || 851 (sumSqrCoef > (tC->confTab.tnsLimitOrder[HIFILT] / 2 + 2))) { 852 tsbi->tnsActive[HIFILT] = TRUE; 853 tnsInfo->numOfFilters[subBlockNumber]++; 854 855 /* compute second filter for lower quarter; only allowed for long windows! 856 */ 857 if ((blockType != SHORT_WINDOW) && (tC->confTab.filterEnabled[LOFILT]) && 858 (tC->confTab.seperateFiltersAllowed)) { 859 /* compute second filter for lower frequencies */ 860 861 /* compute TNS filter in lattice (ParCor) form with LeRoux-Gueguen 862 * algorithm */ 863 INT predGain; 864 { 865 FIXP_DBL predictionGain_m; 866 INT predictionGain_e; 867 868 CLpc_AutoToParcor(rxx1, 0, parcor_tmp, 869 tC->confTab.tnsLimitOrder[LOFILT], 870 &predictionGain_m, &predictionGain_e); 871 predGain = 872 (INT)fMultNorm(predictionGain_m, predictionGain_e, 1000, 31, 31); 873 } 874 875 /* non-linear quantization of TNS lattice coefficients with given 876 * resolution */ 877 FDKaacEnc_Parcor2Index(parcor_tmp, 878 tnsInfo->coef[subBlockNumber][LOFILT], 879 tC->confTab.tnsLimitOrder[LOFILT], tC->coefRes); 880 881 /* reduce filter order by truncating trailing zeros, compute 882 * sum(abs(coefs)) */ 883 for (i = tC->confTab.tnsLimitOrder[LOFILT] - 1; i >= 0; i--) { 884 if (tnsInfo->coef[subBlockNumber][LOFILT][i] != 0) { 885 break; 886 } 887 } 888 tnsInfo->order[subBlockNumber][LOFILT] = i + 1; 889 890 sumSqrCoef = 0; 891 for (; i >= 0; i--) { 892 sumSqrCoef += tnsInfo->coef[subBlockNumber][LOFILT][i] * 893 tnsInfo->coef[subBlockNumber][LOFILT][i]; 894 } 895 896 tnsInfo->direction[subBlockNumber][LOFILT] = 897 tC->confTab.tnsFilterDirection[LOFILT]; 898 tnsInfo->length[subBlockNumber][LOFILT] = 899 tC->lpcStartBand[HIFILT] - tC->lpcStartBand[LOFILT]; 900 901 /* filter lower quarter if gain is high enough, but not if it's too high 902 */ 903 if (((predGain > tC->confTab.threshOn[LOFILT]) && 904 (predGain < (16000 * tC->confTab.tnsLimitOrder[LOFILT]))) || 905 ((sumSqrCoef > 9) && 906 (sumSqrCoef < 22 * tC->confTab.tnsLimitOrder[LOFILT]))) { 907 /* compare lower to upper filter; if they are very similar, merge them 908 */ 909 tsbi->tnsActive[LOFILT] = TRUE; 910 sumSqrCoef = 0; 911 for (i = 0; i < tC->confTab.tnsLimitOrder[LOFILT]; i++) { 912 sumSqrCoef += fAbs(tnsInfo->coef[subBlockNumber][HIFILT][i] - 913 tnsInfo->coef[subBlockNumber][LOFILT][i]); 914 } 915 if ((sumSqrCoef < 2) && 916 (tnsInfo->direction[subBlockNumber][LOFILT] == 917 tnsInfo->direction[subBlockNumber][HIFILT])) { 918 tnsData->filtersMerged = TRUE; 919 tnsInfo->length[subBlockNumber][HIFILT] = 920 sfbCnt - tC->lpcStartBand[LOFILT]; 921 for (; i < tnsInfo->order[subBlockNumber][HIFILT]; i++) { 922 if (fAbs(tnsInfo->coef[subBlockNumber][HIFILT][i]) > 1) { 923 break; 924 } 925 } 926 for (i--; i >= 0; i--) { 927 if (tnsInfo->coef[subBlockNumber][HIFILT][i] != 0) { 928 break; 929 } 930 } 931 if (i < tnsInfo->order[subBlockNumber][HIFILT]) { 932 tnsInfo->order[subBlockNumber][HIFILT] = i + 1; 933 } 934 } else { 935 tnsInfo->numOfFilters[subBlockNumber]++; 936 } 937 } /* filter lower part */ 938 tsbi->predictionGain[LOFILT] = predGain; 939 940 } /* second filter allowed */ 941 } /* if predictionGain > 1437 ... */ 942 } /* maxOrder > 0 && tnsActive */ 943 944 return 0; 945 } 946 947 /***************************************************************************/ 948 /*! 949 \brief FDKaacLdEnc_TnsSync 950 951 synchronize TNS parameters when TNS gain difference small (relative) 952 953 \param pointer to TNS data structure (destination) 954 \param pointer to TNS data structure (source) 955 \param pointer to TNS config structure 956 \param number of sub-block 957 \param block type 958 959 \return void 960 ****************************************************************************/ 961 void FDKaacEnc_TnsSync(TNS_DATA *tnsDataDest, const TNS_DATA *tnsDataSrc, 962 TNS_INFO *tnsInfoDest, TNS_INFO *tnsInfoSrc, 963 const INT blockTypeDest, const INT blockTypeSrc, 964 const TNS_CONFIG *tC) { 965 int i, w, absDiff, nWindows; 966 TNS_SUBBLOCK_INFO *sbInfoDest; 967 const TNS_SUBBLOCK_INFO *sbInfoSrc; 968 969 /* if one channel contains short blocks and the other not, do not synchronize 970 */ 971 if ((blockTypeSrc == SHORT_WINDOW && blockTypeDest != SHORT_WINDOW) || 972 (blockTypeDest == SHORT_WINDOW && blockTypeSrc != SHORT_WINDOW)) { 973 return; 974 } 975 976 if (blockTypeDest != SHORT_WINDOW) { 977 sbInfoDest = &tnsDataDest->dataRaw.Long.subBlockInfo; 978 sbInfoSrc = &tnsDataSrc->dataRaw.Long.subBlockInfo; 979 nWindows = 1; 980 } else { 981 sbInfoDest = &tnsDataDest->dataRaw.Short.subBlockInfo[0]; 982 sbInfoSrc = &tnsDataSrc->dataRaw.Short.subBlockInfo[0]; 983 nWindows = 8; 984 } 985 986 for (w = 0; w < nWindows; w++) { 987 const TNS_SUBBLOCK_INFO *pSbInfoSrcW = sbInfoSrc + w; 988 TNS_SUBBLOCK_INFO *pSbInfoDestW = sbInfoDest + w; 989 INT doSync = 1, absDiffSum = 0; 990 991 /* if TNS is active in at least one channel, check if ParCor coefficients of 992 * higher filter are similar */ 993 if (pSbInfoDestW->tnsActive[HIFILT] || pSbInfoSrcW->tnsActive[HIFILT]) { 994 for (i = 0; i < tC->maxOrder; i++) { 995 absDiff = fAbs(tnsInfoDest->coef[w][HIFILT][i] - 996 tnsInfoSrc->coef[w][HIFILT][i]); 997 absDiffSum += absDiff; 998 /* if coefficients diverge too much between channels, do not synchronize 999 */ 1000 if ((absDiff > 1) || (absDiffSum > 2)) { 1001 doSync = 0; 1002 break; 1003 } 1004 } 1005 1006 if (doSync) { 1007 /* if no significant difference was detected, synchronize coefficient 1008 * sets */ 1009 if (pSbInfoSrcW->tnsActive[HIFILT]) { 1010 /* no dest filter, or more dest than source filters: use one dest 1011 * filter */ 1012 if ((!pSbInfoDestW->tnsActive[HIFILT]) || 1013 ((pSbInfoDestW->tnsActive[HIFILT]) && 1014 (tnsInfoDest->numOfFilters[w] > tnsInfoSrc->numOfFilters[w]))) { 1015 pSbInfoDestW->tnsActive[HIFILT] = tnsInfoDest->numOfFilters[w] = 1; 1016 } 1017 tnsDataDest->filtersMerged = tnsDataSrc->filtersMerged; 1018 tnsInfoDest->order[w][HIFILT] = tnsInfoSrc->order[w][HIFILT]; 1019 tnsInfoDest->length[w][HIFILT] = tnsInfoSrc->length[w][HIFILT]; 1020 tnsInfoDest->direction[w][HIFILT] = tnsInfoSrc->direction[w][HIFILT]; 1021 tnsInfoDest->coefCompress[w][HIFILT] = 1022 tnsInfoSrc->coefCompress[w][HIFILT]; 1023 1024 for (i = 0; i < tC->maxOrder; i++) { 1025 tnsInfoDest->coef[w][HIFILT][i] = tnsInfoSrc->coef[w][HIFILT][i]; 1026 } 1027 } else 1028 pSbInfoDestW->tnsActive[HIFILT] = tnsInfoDest->numOfFilters[w] = 0; 1029 } 1030 } 1031 } 1032 } 1033 1034 /***************************************************************************/ 1035 /*! 1036 \brief FDKaacEnc_TnsEncode 1037 1038 perform TNS encoding 1039 1040 \param pointer to TNS info structure 1041 \param pointer to TNS data structure 1042 \param number of sfbs 1043 \param pointer to TNS config structure 1044 \param low-pass line 1045 \param pointer to spectrum 1046 \param number of sub-block 1047 \param block type 1048 1049 \return ERROR STATUS 1050 ****************************************************************************/ 1051 INT FDKaacEnc_TnsEncode(TNS_INFO *tnsInfo, TNS_DATA *tnsData, 1052 const INT numOfSfb, const TNS_CONFIG *tC, 1053 const INT lowPassLine, FIXP_DBL *spectrum, 1054 const INT subBlockNumber, const INT blockType) { 1055 INT i, startLine, stopLine; 1056 1057 if (((blockType == SHORT_WINDOW) && 1058 (!tnsData->dataRaw.Short.subBlockInfo[subBlockNumber] 1059 .tnsActive[HIFILT])) || 1060 ((blockType != SHORT_WINDOW) && 1061 (!tnsData->dataRaw.Long.subBlockInfo.tnsActive[HIFILT]))) { 1062 return 1; 1063 } 1064 1065 startLine = (tnsData->filtersMerged) ? tC->lpcStartLine[LOFILT] 1066 : tC->lpcStartLine[HIFILT]; 1067 stopLine = tC->lpcStopLine; 1068 1069 for (i = 0; i < tnsInfo->numOfFilters[subBlockNumber]; i++) { 1070 INT lpcGainFactor; 1071 FIXP_LPC LpcCoeff[TNS_MAX_ORDER]; 1072 FIXP_DBL workBuffer[TNS_MAX_ORDER]; 1073 FIXP_LPC parcor_tmp[TNS_MAX_ORDER]; 1074 1075 FDKaacEnc_Index2Parcor(tnsInfo->coef[subBlockNumber][i], parcor_tmp, 1076 tnsInfo->order[subBlockNumber][i], tC->coefRes); 1077 1078 lpcGainFactor = CLpc_ParcorToLpc( 1079 parcor_tmp, LpcCoeff, tnsInfo->order[subBlockNumber][i], workBuffer); 1080 1081 FDKmemclear(workBuffer, TNS_MAX_ORDER * sizeof(FIXP_DBL)); 1082 CLpc_Analysis(&spectrum[startLine], stopLine - startLine, LpcCoeff, 1083 lpcGainFactor, tnsInfo->order[subBlockNumber][i], workBuffer, 1084 NULL); 1085 1086 /* update for second filter */ 1087 startLine = tC->lpcStartLine[LOFILT]; 1088 stopLine = tC->lpcStartLine[HIFILT]; 1089 } 1090 1091 return (0); 1092 } 1093 1094 static void FDKaacEnc_CalcGaussWindow(FIXP_DBL *win, const int winSize, 1095 const INT samplingRate, 1096 const INT transformResolution, 1097 const FIXP_DBL timeResolution, 1098 const INT timeResolution_e) { 1099 #define PI_E (2) 1100 #define PI_M FL2FXCONST_DBL(3.1416f / (float)(1 << PI_E)) 1101 1102 #define EULER_E (2) 1103 #define EULER_M FL2FXCONST_DBL(2.7183 / (float)(1 << EULER_E)) 1104 1105 #define COEFF_LOOP_SCALE (4) 1106 1107 INT i, e1, e2, gaussExp_e; 1108 FIXP_DBL gaussExp_m; 1109 1110 /* calc. window exponent from time resolution: 1111 * 1112 * gaussExp = PI * samplingRate * 0.001f * timeResolution / 1113 * transformResolution; gaussExp = -0.5f * gaussExp * gaussExp; 1114 */ 1115 gaussExp_m = fMultNorm( 1116 timeResolution, 1117 fMult(PI_M, 1118 fDivNorm((FIXP_DBL)(samplingRate), 1119 (FIXP_DBL)(LONG)(transformResolution * 1000.f), &e1)), 1120 &e2); 1121 gaussExp_m = -fPow2Div2(gaussExp_m); 1122 gaussExp_e = 2 * (e1 + e2 + timeResolution_e + PI_E); 1123 1124 FDK_ASSERT(winSize < (1 << COEFF_LOOP_SCALE)); 1125 1126 /* calc. window coefficients 1127 * win[i] = (float)exp( gaussExp * (i+0.5) * (i+0.5) ); 1128 */ 1129 for (i = 0; i < winSize; i++) { 1130 win[i] = fPow( 1131 EULER_M, EULER_E, 1132 fMult(gaussExp_m, 1133 fPow2((i * FL2FXCONST_DBL(1.f / (float)(1 << COEFF_LOOP_SCALE)) + 1134 FL2FXCONST_DBL(.5f / (float)(1 << COEFF_LOOP_SCALE))))), 1135 gaussExp_e + 2 * COEFF_LOOP_SCALE, &e1); 1136 1137 win[i] = scaleValueSaturate(win[i], e1); 1138 } 1139 } 1140 1141 static INT FDKaacEnc_Search3(FIXP_LPC parcor) { 1142 INT i, index = 0; 1143 1144 for (i = 0; i < 8; i++) { 1145 if (parcor > FDKaacEnc_tnsCoeff3Borders[i]) index = i; 1146 } 1147 return (index - 4); 1148 } 1149 1150 static INT FDKaacEnc_Search4(FIXP_LPC parcor) { 1151 INT i, index = 0; 1152 1153 for (i = 0; i < 16; i++) { 1154 if (parcor > FDKaacEnc_tnsCoeff4Borders[i]) index = i; 1155 } 1156 return (index - 8); 1157 } 1158 1159 /***************************************************************************** 1160 1161 functionname: FDKaacEnc_Parcor2Index 1162 1163 *****************************************************************************/ 1164 static void FDKaacEnc_Parcor2Index(const FIXP_LPC *parcor, INT *RESTRICT index, 1165 const INT order, const INT bitsPerCoeff) { 1166 INT i; 1167 for (i = 0; i < order; i++) { 1168 if (bitsPerCoeff == 3) 1169 index[i] = FDKaacEnc_Search3(parcor[i]); 1170 else 1171 index[i] = FDKaacEnc_Search4(parcor[i]); 1172 } 1173 } 1174 1175 /***************************************************************************** 1176 1177 functionname: FDKaacEnc_Index2Parcor 1178 description: inverse quantization for reflection coefficients 1179 returns: - 1180 input: quantized values, ptr. to reflection coefficients, 1181 no. of coefficients, resolution 1182 output: reflection coefficients 1183 1184 *****************************************************************************/ 1185 static void FDKaacEnc_Index2Parcor(const INT *index, FIXP_LPC *RESTRICT parcor, 1186 const INT order, const INT bitsPerCoeff) { 1187 INT i; 1188 for (i = 0; i < order; i++) 1189 parcor[i] = bitsPerCoeff == 4 ? FDKaacEnc_tnsEncCoeff4[index[i] + 8] 1190 : FDKaacEnc_tnsEncCoeff3[index[i] + 4]; 1191 } 1192