Home | History | Annotate | Download | only in crypto
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This code implements SPAKE2, a variant of EKE:
      6 //  http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
      7 
      8 #include "crypto/p224_spake.h"
      9 
     10 #include <algorithm>
     11 
     12 #include "base/logging.h"
     13 #include "crypto/p224.h"
     14 #include "crypto/random.h"
     15 #include "crypto/secure_util.h"
     16 
     17 namespace {
     18 
     19 // The following two points (M and N in the protocol) are verifiable random
     20 // points on the curve and can be generated with the following code:
     21 
     22 // #include <stdint.h>
     23 // #include <stdio.h>
     24 // #include <string.h>
     25 //
     26 // #include <openssl/ec.h>
     27 // #include <openssl/obj_mac.h>
     28 // #include <openssl/sha.h>
     29 //
     30 // // Silence a presubmit.
     31 // #define PRINTF printf
     32 //
     33 // static const char kSeed1[] = "P224 point generation seed (M)";
     34 // static const char kSeed2[] = "P224 point generation seed (N)";
     35 //
     36 // void find_seed(const char* seed) {
     37 //   SHA256_CTX sha256;
     38 //   uint8_t digest[SHA256_DIGEST_LENGTH];
     39 //
     40 //   SHA256_Init(&sha256);
     41 //   SHA256_Update(&sha256, seed, strlen(seed));
     42 //   SHA256_Final(digest, &sha256);
     43 //
     44 //   BIGNUM x, y;
     45 //   EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
     46 //   EC_POINT* p = EC_POINT_new(p224);
     47 //
     48 //   for (unsigned i = 0;; i++) {
     49 //     BN_init(&x);
     50 //     BN_bin2bn(digest, 28, &x);
     51 //
     52 //     if (EC_POINT_set_compressed_coordinates_GFp(
     53 //             p224, p, &x, digest[28] & 1, NULL)) {
     54 //       BN_init(&y);
     55 //       EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
     56 //       char* x_str = BN_bn2hex(&x);
     57 //       char* y_str = BN_bn2hex(&y);
     58 //       PRINTF("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
     59 //       OPENSSL_free(x_str);
     60 //       OPENSSL_free(y_str);
     61 //       BN_free(&x);
     62 //       BN_free(&y);
     63 //       break;
     64 //     }
     65 //
     66 //     SHA256_Init(&sha256);
     67 //     SHA256_Update(&sha256, digest, sizeof(digest));
     68 //     SHA256_Final(digest, &sha256);
     69 //
     70 //     BN_free(&x);
     71 //   }
     72 //
     73 //   EC_POINT_free(p);
     74 //   EC_GROUP_free(p224);
     75 // }
     76 //
     77 // int main() {
     78 //   find_seed(kSeed1);
     79 //   find_seed(kSeed2);
     80 //   return 0;
     81 // }
     82 
     83 const crypto::p224::Point kM = {
     84   {174237515, 77186811, 235213682, 33849492,
     85    33188520, 48266885, 177021753, 81038478},
     86   {104523827, 245682244, 266509668, 236196369,
     87    28372046, 145351378, 198520366, 113345994},
     88   {1, 0, 0, 0, 0, 0, 0, 0},
     89 };
     90 
     91 const crypto::p224::Point kN = {
     92   {136176322, 263523628, 251628795, 229292285,
     93    5034302, 185981975, 171998428, 11653062},
     94   {197567436, 51226044, 60372156, 175772188,
     95    42075930, 8083165, 160827401, 65097570},
     96   {1, 0, 0, 0, 0, 0, 0, 0},
     97 };
     98 
     99 }  // anonymous namespace
    100 
    101 namespace crypto {
    102 
    103 P224EncryptedKeyExchange::P224EncryptedKeyExchange(PeerType peer_type,
    104                                                    base::StringPiece password)
    105     : state_(kStateInitial), is_server_(peer_type == kPeerTypeServer) {
    106   memset(&x_, 0, sizeof(x_));
    107   memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
    108 
    109   // x_ is a random scalar.
    110   RandBytes(x_, sizeof(x_));
    111 
    112   // Calculate |password| hash to get SPAKE password value.
    113   SHA256HashString(std::string(password.data(), password.length()),
    114                    pw_, sizeof(pw_));
    115 
    116   Init();
    117 }
    118 
    119 void P224EncryptedKeyExchange::Init() {
    120   // X = g**x_
    121   p224::Point X;
    122   p224::ScalarBaseMult(x_, &X);
    123 
    124   // The client masks the Diffie-Hellman value, X, by adding M**pw and the
    125   // server uses N**pw.
    126   p224::Point MNpw;
    127   p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
    128 
    129   // X* = X + (N|M)**pw
    130   p224::Point Xstar;
    131   p224::Add(X, MNpw, &Xstar);
    132 
    133   next_message_ = Xstar.ToString();
    134 }
    135 
    136 const std::string& P224EncryptedKeyExchange::GetNextMessage() {
    137   if (state_ == kStateInitial) {
    138     state_ = kStateRecvDH;
    139     return next_message_;
    140   } else if (state_ == kStateSendHash) {
    141     state_ = kStateRecvHash;
    142     return next_message_;
    143   }
    144 
    145   LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
    146                 " bad state " << state_;
    147   next_message_ = "";
    148   return next_message_;
    149 }
    150 
    151 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
    152     base::StringPiece message) {
    153   if (state_ == kStateRecvHash) {
    154     // This is the final state of the protocol: we are reading the peer's
    155     // authentication hash and checking that it matches the one that we expect.
    156     if (message.size() != sizeof(expected_authenticator_)) {
    157       error_ = "peer's hash had an incorrect size";
    158       return kResultFailed;
    159     }
    160     if (!SecureMemEqual(message.data(), expected_authenticator_,
    161                         message.size())) {
    162       error_ = "peer's hash had incorrect value";
    163       return kResultFailed;
    164     }
    165     state_ = kStateDone;
    166     return kResultSuccess;
    167   }
    168 
    169   if (state_ != kStateRecvDH) {
    170     LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
    171                   " bad state " << state_;
    172     error_ = "internal error";
    173     return kResultFailed;
    174   }
    175 
    176   // Y* is the other party's masked, Diffie-Hellman value.
    177   p224::Point Ystar;
    178   if (!Ystar.SetFromString(message)) {
    179     error_ = "failed to parse peer's masked Diffie-Hellman value";
    180     return kResultFailed;
    181   }
    182 
    183   // We calculate the mask value: (N|M)**pw
    184   p224::Point MNpw, minus_MNpw, Y, k;
    185   p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
    186   p224::Negate(MNpw, &minus_MNpw);
    187 
    188   // Y = Y* - (N|M)**pw
    189   p224::Add(Ystar, minus_MNpw, &Y);
    190 
    191   // K = Y**x_
    192   p224::ScalarMult(Y, x_, &k);
    193 
    194   // If everything worked out, then K is the same for both parties.
    195   key_ = k.ToString();
    196 
    197   std::string client_masked_dh, server_masked_dh;
    198   if (is_server_) {
    199     client_masked_dh = message.as_string();
    200     server_masked_dh = next_message_;
    201   } else {
    202     client_masked_dh = next_message_;
    203     server_masked_dh = message.as_string();
    204   }
    205 
    206   // Now we calculate the hashes that each side will use to prove to the other
    207   // that they derived the correct value for K.
    208   uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
    209   CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
    210                 client_hash);
    211   CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
    212                 server_hash);
    213 
    214   const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
    215   const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
    216 
    217   next_message_ =
    218       std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
    219   memcpy(expected_authenticator_, their_hash, kSHA256Length);
    220   state_ = kStateSendHash;
    221   return kResultPending;
    222 }
    223 
    224 void P224EncryptedKeyExchange::CalculateHash(
    225     PeerType peer_type,
    226     const std::string& client_masked_dh,
    227     const std::string& server_masked_dh,
    228     const std::string& k,
    229     uint8_t* out_digest) {
    230   std::string hash_contents;
    231 
    232   if (peer_type == kPeerTypeServer) {
    233     hash_contents = "server";
    234   } else {
    235     hash_contents = "client";
    236   }
    237 
    238   hash_contents += client_masked_dh;
    239   hash_contents += server_masked_dh;
    240   hash_contents +=
    241       std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
    242   hash_contents += k;
    243 
    244   SHA256HashString(hash_contents, out_digest, kSHA256Length);
    245 }
    246 
    247 const std::string& P224EncryptedKeyExchange::error() const {
    248   return error_;
    249 }
    250 
    251 const std::string& P224EncryptedKeyExchange::GetKey() const {
    252   DCHECK_EQ(state_, kStateDone);
    253   return GetUnverifiedKey();
    254 }
    255 
    256 const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
    257   // Key is already final when state is kStateSendHash. Subsequent states are
    258   // used only for verification of the key. Some users may combine verification
    259   // with sending verifiable data instead of |expected_authenticator_|.
    260   DCHECK_GE(state_, kStateSendHash);
    261   return key_;
    262 }
    263 
    264 void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
    265   memset(&x_, 0, sizeof(x_));
    266   memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
    267   Init();
    268 }
    269 
    270 }  // namespace crypto
    271