OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:ieee_sqrt
(Results
1 - 11
of
11
) sorted by null
/external/fdlibm/
w_sqrt.c
15
* wrapper
ieee_sqrt
(x)
21
double
ieee_sqrt
(double x) /* wrapper sqrt */
function
23
double
ieee_sqrt
(x) /* wrapper sqrt */
34
return __kernel_standard(x,x,26); /*
ieee_sqrt
(negative) */
e_acosh.c
18
* acosh(x) = log [ x +
ieee_sqrt
(x*x-1) ]
21
* acosh(x) := ieee_log(2x-1/(
ieee_sqrt
(x*x-1)+x)) if x>2; else
22
* acosh(x) := ieee_log1p(t+
ieee_sqrt
(2.0*t+t*t)); where t=x-1.
60
return __ieee754_log(2.0*x-one/(x+
ieee_sqrt
(t-one)));
63
return ieee_log1p(t+
ieee_sqrt
(2.0*t+t*t));
s_asinh.c
17
* asinh(x) = sign(x) * log [ |x| +
ieee_sqrt
(x*x+1) ]
21
* := sign(x)*ieee_log(2|x|+1/(|x|+
ieee_sqrt
(x*x+1))) if|x|>2, else
22
* := sign(x)*ieee_log1p(|x| + x^2/(1 +
ieee_sqrt
(1+x^2)))
55
w = __ieee754_log(2.0*t+one/(
ieee_sqrt
(x*x+one)+t));
58
w =ieee_log1p(ieee_fabs(x)+t/(one+
ieee_sqrt
(one+t)));
e_acos.c
21
* acos(x) = pi/2 - (pi/2 - 2asin(
ieee_sqrt
((1-x)/2)))
22
* = 2asin(
ieee_sqrt
((1-x)/2))
23
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=
ieee_sqrt
(z)
26
* for f so that f+c ~
ieee_sqrt
(z).
28
* acos(x) = pi - 2asin(
ieee_sqrt
((1-|x|)/2))
29
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=
ieee_sqrt
(z)
89
s =
ieee_sqrt
(z);
95
s =
ieee_sqrt
(z);
e_hypot.c
18
* has error less than
ieee_sqrt
(2)/2 ulp, than
21
* So, compute
ieee_sqrt
(x*x+y*y) with some care as
42
* hypot(x,y) returns
ieee_sqrt
(x^2+y^2) with error less
99
w =
ieee_sqrt
(t1*t1-(b*(-b)-t2*(a+t1)));
108
w =
ieee_sqrt
(t1*y1-(w*(-w)-(t1*y2+t2*b)));
e_j0.c
23
* j0(x) =
ieee_sqrt
(2/(pi*x))*(p0(x)*ieee_cos(x0)-q0(x)*ieee_sin(x0))
27
* = 1/
ieee_sqrt
(2) * (ieee_cos(x) + ieee_sin(x))
29
* = 1/
ieee_sqrt
(2) * (ieee_sin(x) - ieee_cos(x))
53
* y0(x) =
ieee_sqrt
(2/(pi*x))*(p0(x)*ieee_cos(x0)+q0(x)*ieee_sin(x0))
113
* ieee_j0(x) = 1/
ieee_sqrt
(pi) * (P(0,x)*cc - Q(0,x)*ss) /
ieee_sqrt
(x)
114
* ieee_y0(x) = 1/
ieee_sqrt
(pi) * (P(0,x)*ss + Q(0,x)*cc) /
ieee_sqrt
(x)
116
if(ix>0x48000000) z = (invsqrtpi*cc)/
ieee_sqrt
(x);
119
z = invsqrtpi*(u*cc-v*ss)/
ieee_sqrt
(x)
[
all
...]
e_j1.c
23
* j1(x) =
ieee_sqrt
(2/(pi*x))*(p1(x)*ieee_cos(x1)-q1(x)*ieee_sin(x1))
24
* y1(x) =
ieee_sqrt
(2/(pi*x))*(p1(x)*ieee_sin(x1)+q1(x)*ieee_cos(x1))
28
* = 1/
ieee_sqrt
(2) * (ieee_sin(x) - ieee_cos(x))
30
* = -1/
ieee_sqrt
(2) * (ieee_sin(x) + ieee_cos(x))
54
* y1(x) =
ieee_sqrt
(2/(pi*x))*(p1(x)*ieee_sin(x1)+q1(x)*ieee_cos(x1))
114
* ieee_j1(x) = 1/
ieee_sqrt
(pi) * (P(1,x)*cc - Q(1,x)*ss) /
ieee_sqrt
(x)
115
* ieee_y1(x) = 1/
ieee_sqrt
(pi) * (P(1,x)*ss + Q(1,x)*cc) /
ieee_sqrt
(x)
117
if(ix>0x48000000) z = (invsqrtpi*cc)/
ieee_sqrt
(y)
[
all
...]
e_asin.c
25
* asin(x) = pi/2-2*ieee_asin(
ieee_sqrt
((1-x)/2))
26
* Let y = (1-x), z = y/2, s :=
ieee_sqrt
(z), and pio2_hi+pio2_lo=pi/2;
32
* c =
ieee_sqrt
(z) - f = (z-f*f)/(s+f) ...f+c=
ieee_sqrt
(z)
100
s =
ieee_sqrt
(t);
e_jn.c
87
* Jn(x) = ieee_cos(x-(2n+1)*pi/4)*
ieee_sqrt
(2/x*pi)
88
* Yn(x) = ieee_sin(x-(2n+1)*pi/4)*
ieee_sqrt
(2/x*pi)
90
* xn=x-(2n+1)*pi/4, sqt2 =
ieee_sqrt
(2),then
105
b = invsqrtpi*temp/
ieee_sqrt
(x);
242
* Jn(x) = ieee_cos(x-(2n+1)*pi/4)*
ieee_sqrt
(2/x*pi)
243
* Yn(x) = ieee_sin(x-(2n+1)*pi/4)*
ieee_sqrt
(2/x*pi)
245
* xn=x-(2n+1)*pi/4, sqt2 =
ieee_sqrt
(2),then
260
b = invsqrtpi*temp/
ieee_sqrt
(x);
fdlibm.h
122
extern double
ieee_sqrt
__P((double));
e_pow.c
162
return
ieee_sqrt
(x);
218
if(j<=0x3988E) k=0; /* |x|<
ieee_sqrt
(3/2) */
219
else if(j<0xBB67A) k=1; /* |x|<
ieee_sqrt
(3) */
Completed in 537 milliseconds