Home | History | Annotate | Download | only in fdlibm
      1 
      2 /* @(#)e_jn.c 1.4 95/01/18 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      8  * Permission to use, copy, modify, and distribute this
      9  * software is freely granted, provided that this notice
     10  * is preserved.
     11  * ====================================================
     12  */
     13 
     14 /*
     15  * __ieee754_jn(n, x), __ieee754_yn(n, x)
     16  * floating point Bessel's function of the 1st and 2nd kind
     17  * of order n
     18  *
     19  * Special cases:
     20  *	y0(0)=ieee_y1(0)=ieee_yn(n,0) = -inf with division by zero signal;
     21  *	y0(-ve)=ieee_y1(-ve)=ieee_yn(n,-ve) are NaN with invalid signal.
     22  * Note 2. About ieee_jn(n,x), ieee_yn(n,x)
     23  *	For n=0, ieee_j0(x) is called,
     24  *	for n=1, ieee_j1(x) is called,
     25  *	for n<x, forward recursion us used starting
     26  *	from values of ieee_j0(x) and ieee_j1(x).
     27  *	for n>x, a continued fraction approximation to
     28  *	j(n,x)/j(n-1,x) is evaluated and then backward
     29  *	recursion is used starting from a supposed value
     30  *	for j(n,x). The resulting value of j(0,x) is
     31  *	compared with the actual value to correct the
     32  *	supposed value of j(n,x).
     33  *
     34  *	yn(n,x) is similar in all respects, except
     35  *	that forward recursion is used for all
     36  *	values of n>1.
     37  *
     38  */
     39 
     40 #include "fdlibm.h"
     41 
     42 #ifdef __STDC__
     43 static const double
     44 #else
     45 static double
     46 #endif
     47 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
     48 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
     49 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
     50 
     51 static double zero  =  0.00000000000000000000e+00;
     52 
     53 #ifdef __STDC__
     54 	double __ieee754_jn(int n, double x)
     55 #else
     56 	double __ieee754_jn(n,x)
     57 	int n; double x;
     58 #endif
     59 {
     60 	int i,hx,ix,lx, sgn;
     61 	double a, b, temp, di;
     62 	double z, w;
     63 
     64     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
     65      * Thus, J(-n,x) = J(n,-x)
     66      */
     67 	hx = __HI(x);
     68 	ix = 0x7fffffff&hx;
     69 	lx = __LO(x);
     70     /* if J(n,NaN) is NaN */
     71 	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
     72 	if(n<0){
     73 		n = -n;
     74 		x = -x;
     75 		hx ^= 0x80000000;
     76 	}
     77 	if(n==0) return(__ieee754_j0(x));
     78 	if(n==1) return(__ieee754_j1(x));
     79 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
     80 	x = ieee_fabs(x);
     81 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
     82 	    b = zero;
     83 	else if((double)n<=x) {
     84 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
     85 	    if(ix>=0x52D00000) { /* x > 2**302 */
     86     /* (x >> n**2)
     87      *	    Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
     88      *	    Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
     89      *	    Let s=ieee_sin(x), c=ieee_cos(x),
     90      *		xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
     91      *
     92      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
     93      *		----------------------------------
     94      *		   0	 s-c		 c+s
     95      *		   1	-s-c 		-c+s
     96      *		   2	-s+c		-c-s
     97      *		   3	 s+c		 c-s
     98      */
     99 		switch(n&3) {
    100 		    case 0: temp =  ieee_cos(x)+ieee_sin(x); break;
    101 		    case 1: temp = -ieee_cos(x)+ieee_sin(x); break;
    102 		    case 2: temp = -ieee_cos(x)-ieee_sin(x); break;
    103 		    case 3: temp =  ieee_cos(x)-ieee_sin(x); break;
    104 		}
    105 		b = invsqrtpi*temp/ieee_sqrt(x);
    106 	    } else {
    107 	        a = __ieee754_j0(x);
    108 	        b = __ieee754_j1(x);
    109 	        for(i=1;i<n;i++){
    110 		    temp = b;
    111 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
    112 		    a = temp;
    113 	        }
    114 	    }
    115 	} else {
    116 	    if(ix<0x3e100000) {	/* x < 2**-29 */
    117     /* x is tiny, return the first Taylor expansion of J(n,x)
    118      * J(n,x) = 1/n!*(x/2)^n  - ...
    119      */
    120 		if(n>33)	/* underflow */
    121 		    b = zero;
    122 		else {
    123 		    temp = x*0.5; b = temp;
    124 		    for (a=one,i=2;i<=n;i++) {
    125 			a *= (double)i;		/* a = n! */
    126 			b *= temp;		/* b = (x/2)^n */
    127 		    }
    128 		    b = b/a;
    129 		}
    130 	    } else {
    131 		/* use backward recurrence */
    132 		/* 			x      x^2      x^2
    133 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
    134 		 *			2n  - 2(n+1) - 2(n+2)
    135 		 *
    136 		 * 			1      1        1
    137 		 *  (for large x)   =  ----  ------   ------   .....
    138 		 *			2n   2(n+1)   2(n+2)
    139 		 *			-- - ------ - ------ -
    140 		 *			 x     x         x
    141 		 *
    142 		 * Let w = 2n/x and h=2/x, then the above quotient
    143 		 * is equal to the continued fraction:
    144 		 *		    1
    145 		 *	= -----------------------
    146 		 *		       1
    147 		 *	   w - -----------------
    148 		 *			  1
    149 		 * 	        w+h - ---------
    150 		 *		       w+2h - ...
    151 		 *
    152 		 * To determine how many terms needed, let
    153 		 * Q(0) = w, Q(1) = w(w+h) - 1,
    154 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
    155 		 * When Q(k) > 1e4	good for single
    156 		 * When Q(k) > 1e9	good for double
    157 		 * When Q(k) > 1e17	good for quadruple
    158 		 */
    159 	    /* determine k */
    160 		double t,v;
    161 		double q0,q1,h,tmp; int k,m;
    162 		w  = (n+n)/(double)x; h = 2.0/(double)x;
    163 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
    164 		while(q1<1.0e9) {
    165 			k += 1; z += h;
    166 			tmp = z*q1 - q0;
    167 			q0 = q1;
    168 			q1 = tmp;
    169 		}
    170 		m = n+n;
    171 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
    172 		a = t;
    173 		b = one;
    174 		/*  estimate ieee_log((2/x)^n*n!) = n*ieee_log(2/x)+n*ln(n)
    175 		 *  Hence, if n*(ieee_log(2n/x)) > ...
    176 		 *  single 8.8722839355e+01
    177 		 *  double 7.09782712893383973096e+02
    178 		 *  long double 1.1356523406294143949491931077970765006170e+04
    179 		 *  then recurrent value may overflow and the result is
    180 		 *  likely underflow to zero
    181 		 */
    182 		tmp = n;
    183 		v = two/x;
    184 		tmp = tmp*__ieee754_log(ieee_fabs(v*tmp));
    185 		if(tmp<7.09782712893383973096e+02) {
    186 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
    187 		        temp = b;
    188 			b *= di;
    189 			b  = b/x - a;
    190 		        a = temp;
    191 			di -= two;
    192 	     	    }
    193 		} else {
    194 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
    195 		        temp = b;
    196 			b *= di;
    197 			b  = b/x - a;
    198 		        a = temp;
    199 			di -= two;
    200 		    /* scale b to avoid spurious overflow */
    201 			if(b>1e100) {
    202 			    a /= b;
    203 			    t /= b;
    204 			    b  = one;
    205 			}
    206 	     	    }
    207 		}
    208 	    	b = (t*__ieee754_j0(x)/b);
    209 	    }
    210 	}
    211 	if(sgn==1) return -b; else return b;
    212 }
    213 
    214 #ifdef __STDC__
    215 	double __ieee754_yn(int n, double x)
    216 #else
    217 	double __ieee754_yn(n,x)
    218 	int n; double x;
    219 #endif
    220 {
    221 	int i,hx,ix,lx;
    222 	int sign;
    223 	double a, b, temp;
    224 
    225 	hx = __HI(x);
    226 	ix = 0x7fffffff&hx;
    227 	lx = __LO(x);
    228     /* if Y(n,NaN) is NaN */
    229 	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
    230 	if((ix|lx)==0) return -one/zero;
    231 	if(hx<0) return zero/zero;
    232 	sign = 1;
    233 	if(n<0){
    234 		n = -n;
    235 		sign = 1 - ((n&1)<<1);
    236 	}
    237 	if(n==0) return(__ieee754_y0(x));
    238 	if(n==1) return(sign*__ieee754_y1(x));
    239 	if(ix==0x7ff00000) return zero;
    240 	if(ix>=0x52D00000) { /* x > 2**302 */
    241     /* (x >> n**2)
    242      *	    Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
    243      *	    Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
    244      *	    Let s=ieee_sin(x), c=ieee_cos(x),
    245      *		xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
    246      *
    247      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
    248      *		----------------------------------
    249      *		   0	 s-c		 c+s
    250      *		   1	-s-c 		-c+s
    251      *		   2	-s+c		-c-s
    252      *		   3	 s+c		 c-s
    253      */
    254 		switch(n&3) {
    255 		    case 0: temp =  ieee_sin(x)-ieee_cos(x); break;
    256 		    case 1: temp = -ieee_sin(x)-ieee_cos(x); break;
    257 		    case 2: temp = -ieee_sin(x)+ieee_cos(x); break;
    258 		    case 3: temp =  ieee_sin(x)+ieee_cos(x); break;
    259 		}
    260 		b = invsqrtpi*temp/ieee_sqrt(x);
    261 	} else {
    262 	    a = __ieee754_y0(x);
    263 	    b = __ieee754_y1(x);
    264 	/* quit if b is -inf */
    265 	    for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
    266 		temp = b;
    267 		b = ((double)(i+i)/x)*b - a;
    268 		a = temp;
    269 	    }
    270 	}
    271 	if(sign>0) return b; else return -b;
    272 }
    273