Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
     18 #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
     19 
     20 #include <stdint.h>
     21 
     22 #include <iosfwd>
     23 #include <limits>
     24 #include <string>
     25 
     26 #include <android-base/logging.h>
     27 
     28 #include "base/bit_utils.h"
     29 #include "base/locks.h"
     30 #include "base/macros.h"
     31 #include "base/mem_map.h"
     32 #include "gc_root.h"
     33 #include "obj_ptr.h"
     34 #include "offsets.h"
     35 #include "read_barrier_option.h"
     36 
     37 namespace art {
     38 
     39 class RootInfo;
     40 
     41 namespace mirror {
     42 class Object;
     43 }  // namespace mirror
     44 
     45 // Maintain a table of indirect references.  Used for local/global JNI references.
     46 //
     47 // The table contains object references, where the strong (local/global) references are part of the
     48 // GC root set (but not the weak global references). When an object is added we return an
     49 // IndirectRef that is not a valid pointer but can be used to find the original value in O(1) time.
     50 // Conversions to and from indirect references are performed on upcalls and downcalls, so they need
     51 // to be very fast.
     52 //
     53 // To be efficient for JNI local variable storage, we need to provide operations that allow us to
     54 // operate on segments of the table, where segments are pushed and popped as if on a stack. For
     55 // example, deletion of an entry should only succeed if it appears in the current segment, and we
     56 // want to be able to strip off the current segment quickly when a method returns. Additions to the
     57 // table must be made in the current segment even if space is available in an earlier area.
     58 //
     59 // A new segment is created when we call into native code from interpreted code, or when we handle
     60 // the JNI PushLocalFrame function.
     61 //
     62 // The GC must be able to scan the entire table quickly.
     63 //
     64 // In summary, these must be very fast:
     65 //  - adding or removing a segment
     66 //  - adding references to a new segment
     67 //  - converting an indirect reference back to an Object
     68 // These can be a little slower, but must still be pretty quick:
     69 //  - adding references to a "mature" segment
     70 //  - removing individual references
     71 //  - scanning the entire table straight through
     72 //
     73 // If there's more than one segment, we don't guarantee that the table will fill completely before
     74 // we fail due to lack of space. We do ensure that the current segment will pack tightly, which
     75 // should satisfy JNI requirements (e.g. EnsureLocalCapacity).
     76 //
     77 // Only SynchronizedGet is synchronized.
     78 
     79 // Indirect reference definition.  This must be interchangeable with JNI's jobject, and it's
     80 // convenient to let null be null, so we use void*.
     81 //
     82 // We need a (potentially) large table index and a 2-bit reference type (global, local, weak
     83 // global). We also reserve some bits to be used to detect stale indirect references: we put a
     84 // serial number in the extra bits, and keep a copy of the serial number in the table. This requires
     85 // more memory and additional memory accesses on add/get, but is moving-GC safe. It will catch
     86 // additional problems, e.g.: create iref1 for obj, delete iref1, create iref2 for same obj,
     87 // lookup iref1. A pattern based on object bits will miss this.
     88 typedef void* IndirectRef;
     89 
     90 // Indirect reference kind, used as the two low bits of IndirectRef.
     91 //
     92 // For convenience these match up with enum jobjectRefType from jni.h.
     93 enum IndirectRefKind {
     94   kHandleScopeOrInvalid = 0,           // <<stack indirect reference table or invalid reference>>
     95   kLocal                = 1,           // <<local reference>>
     96   kGlobal               = 2,           // <<global reference>>
     97   kWeakGlobal           = 3,           // <<weak global reference>>
     98   kLastKind             = kWeakGlobal
     99 };
    100 std::ostream& operator<<(std::ostream& os, const IndirectRefKind& rhs);
    101 const char* GetIndirectRefKindString(const IndirectRefKind& kind);
    102 
    103 // Table definition.
    104 //
    105 // For the global reference table, the expected common operations are adding a new entry and
    106 // removing a recently-added entry (usually the most-recently-added entry).  For JNI local
    107 // references, the common operations are adding a new entry and removing an entire table segment.
    108 //
    109 // If we delete entries from the middle of the list, we will be left with "holes".  We track the
    110 // number of holes so that, when adding new elements, we can quickly decide to do a trivial append
    111 // or go slot-hunting.
    112 //
    113 // When the top-most entry is removed, any holes immediately below it are also removed. Thus,
    114 // deletion of an entry may reduce "top_index" by more than one.
    115 //
    116 // To get the desired behavior for JNI locals, we need to know the bottom and top of the current
    117 // "segment". The top is managed internally, and the bottom is passed in as a function argument.
    118 // When we call a native method or push a local frame, the current top index gets pushed on, and
    119 // serves as the new bottom. When we pop a frame off, the value from the stack becomes the new top
    120 // index, and the value stored in the previous frame becomes the new bottom.
    121 //
    122 // Holes are being locally cached for the segment. Otherwise we'd have to pass bottom index and
    123 // number of holes, which restricts us to 16 bits for the top index. The value is cached within the
    124 // table. To avoid code in generated JNI transitions, which implicitly form segments, the code for
    125 // adding and removing references needs to detect the change of a segment. Helper fields are used
    126 // for this detection.
    127 //
    128 // Common alternative implementation: make IndirectRef a pointer to the actual reference slot.
    129 // Instead of getting a table and doing a lookup, the lookup can be done instantly. Operations like
    130 // determining the type and deleting the reference are more expensive because the table must be
    131 // hunted for (i.e. you have to do a pointer comparison to see which table it's in), you can't move
    132 // the table when expanding it (so realloc() is out), and tricks like serial number checking to
    133 // detect stale references aren't possible (though we may be able to get similar benefits with other
    134 // approaches).
    135 //
    136 // TODO: consider a "lastDeleteIndex" for quick hole-filling when an add immediately follows a
    137 // delete; must invalidate after segment pop might be worth only using it for JNI globals.
    138 //
    139 // TODO: may want completely different add/remove algorithms for global and local refs to improve
    140 // performance.  A large circular buffer might reduce the amortized cost of adding global
    141 // references.
    142 
    143 // The state of the current segment. We only store the index. Splitting it for index and hole
    144 // count restricts the range too much.
    145 struct IRTSegmentState {
    146   uint32_t top_index;
    147 };
    148 
    149 // Use as initial value for "cookie", and when table has only one segment.
    150 static constexpr IRTSegmentState kIRTFirstSegment = { 0 };
    151 
    152 // Try to choose kIRTPrevCount so that sizeof(IrtEntry) is a power of 2.
    153 // Contains multiple entries but only one active one, this helps us detect use after free errors
    154 // since the serial stored in the indirect ref wont match.
    155 static constexpr size_t kIRTPrevCount = kIsDebugBuild ? 7 : 3;
    156 
    157 class IrtEntry {
    158  public:
    159   void Add(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
    160 
    161   GcRoot<mirror::Object>* GetReference() {
    162     DCHECK_LT(serial_, kIRTPrevCount);
    163     return &references_[serial_];
    164   }
    165 
    166   const GcRoot<mirror::Object>* GetReference() const {
    167     DCHECK_LT(serial_, kIRTPrevCount);
    168     return &references_[serial_];
    169   }
    170 
    171   uint32_t GetSerial() const {
    172     return serial_;
    173   }
    174 
    175   void SetReference(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
    176 
    177  private:
    178   uint32_t serial_;
    179   GcRoot<mirror::Object> references_[kIRTPrevCount];
    180 };
    181 static_assert(sizeof(IrtEntry) == (1 + kIRTPrevCount) * sizeof(uint32_t),
    182               "Unexpected sizeof(IrtEntry)");
    183 static_assert(IsPowerOfTwo(sizeof(IrtEntry)), "Unexpected sizeof(IrtEntry)");
    184 
    185 class IrtIterator {
    186  public:
    187   IrtIterator(IrtEntry* table, size_t i, size_t capacity) REQUIRES_SHARED(Locks::mutator_lock_)
    188       : table_(table), i_(i), capacity_(capacity) {
    189     // capacity_ is used in some target; has warning with unused attribute.
    190     UNUSED(capacity_);
    191   }
    192 
    193   IrtIterator& operator++() REQUIRES_SHARED(Locks::mutator_lock_) {
    194     ++i_;
    195     return *this;
    196   }
    197 
    198   GcRoot<mirror::Object>* operator*() REQUIRES_SHARED(Locks::mutator_lock_) {
    199     // This does not have a read barrier as this is used to visit roots.
    200     return table_[i_].GetReference();
    201   }
    202 
    203   bool equals(const IrtIterator& rhs) const {
    204     return (i_ == rhs.i_ && table_ == rhs.table_);
    205   }
    206 
    207  private:
    208   IrtEntry* const table_;
    209   size_t i_;
    210   const size_t capacity_;
    211 };
    212 
    213 bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) {
    214   return lhs.equals(rhs);
    215 }
    216 
    217 bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) {
    218   return !lhs.equals(rhs);
    219 }
    220 
    221 class IndirectReferenceTable {
    222  public:
    223   enum class ResizableCapacity {
    224     kNo,
    225     kYes
    226   };
    227 
    228   // WARNING: Construction of the IndirectReferenceTable may fail.
    229   // error_msg must not be null. If error_msg is set by the constructor, then
    230   // construction has failed and the IndirectReferenceTable will be in an
    231   // invalid state. Use IsValid to check whether the object is in an invalid
    232   // state.
    233   IndirectReferenceTable(size_t max_count,
    234                          IndirectRefKind kind,
    235                          ResizableCapacity resizable,
    236                          std::string* error_msg);
    237 
    238   ~IndirectReferenceTable();
    239 
    240   /*
    241    * Checks whether construction of the IndirectReferenceTable succeeded.
    242    *
    243    * This object must only be used if IsValid() returns true. It is safe to
    244    * call IsValid from multiple threads without locking or other explicit
    245    * synchronization.
    246    */
    247   bool IsValid() const;
    248 
    249   // Add a new entry. "obj" must be a valid non-null object reference. This function will
    250   // return null if an error happened (with an appropriate error message set).
    251   IndirectRef Add(IRTSegmentState previous_state,
    252                   ObjPtr<mirror::Object> obj,
    253                   std::string* error_msg)
    254       REQUIRES_SHARED(Locks::mutator_lock_);
    255 
    256   // Given an IndirectRef in the table, return the Object it refers to.
    257   //
    258   // This function may abort under error conditions.
    259   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
    260   ObjPtr<mirror::Object> Get(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_)
    261       ALWAYS_INLINE;
    262 
    263   // Synchronized get which reads a reference, acquiring a lock if necessary.
    264   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
    265   ObjPtr<mirror::Object> SynchronizedGet(IndirectRef iref) const
    266       REQUIRES_SHARED(Locks::mutator_lock_) {
    267     return Get<kReadBarrierOption>(iref);
    268   }
    269 
    270   // Updates an existing indirect reference to point to a new object.
    271   void Update(IndirectRef iref, ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
    272 
    273   // Remove an existing entry.
    274   //
    275   // If the entry is not between the current top index and the bottom index
    276   // specified by the cookie, we don't remove anything.  This is the behavior
    277   // required by JNI's DeleteLocalRef function.
    278   //
    279   // Returns "false" if nothing was removed.
    280   bool Remove(IRTSegmentState previous_state, IndirectRef iref);
    281 
    282   void AssertEmpty() REQUIRES_SHARED(Locks::mutator_lock_);
    283 
    284   void Dump(std::ostream& os) const
    285       REQUIRES_SHARED(Locks::mutator_lock_)
    286       REQUIRES(!Locks::alloc_tracker_lock_);
    287 
    288   // Return the #of entries in the entire table.  This includes holes, and
    289   // so may be larger than the actual number of "live" entries.
    290   size_t Capacity() const {
    291     return segment_state_.top_index;
    292   }
    293 
    294   // Ensure that at least free_capacity elements are available, or return false.
    295   bool EnsureFreeCapacity(size_t free_capacity, std::string* error_msg)
    296       REQUIRES_SHARED(Locks::mutator_lock_);
    297   // See implementation of EnsureFreeCapacity. We'll only state here how much is trivially free,
    298   // without recovering holes. Thus this is a conservative estimate.
    299   size_t FreeCapacity() const;
    300 
    301   // Note IrtIterator does not have a read barrier as it's used to visit roots.
    302   IrtIterator begin() {
    303     return IrtIterator(table_, 0, Capacity());
    304   }
    305 
    306   IrtIterator end() {
    307     return IrtIterator(table_, Capacity(), Capacity());
    308   }
    309 
    310   void VisitRoots(RootVisitor* visitor, const RootInfo& root_info)
    311       REQUIRES_SHARED(Locks::mutator_lock_);
    312 
    313   IRTSegmentState GetSegmentState() const {
    314     return segment_state_;
    315   }
    316 
    317   void SetSegmentState(IRTSegmentState new_state);
    318 
    319   static Offset SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED) {
    320     // Note: Currently segment_state_ is at offset 0. We're testing the expected value in
    321     //       jni_internal_test to make sure it stays correct. It is not OFFSETOF_MEMBER, as that
    322     //       is not pointer-size-safe.
    323     return Offset(0);
    324   }
    325 
    326   // Release pages past the end of the table that may have previously held references.
    327   void Trim() REQUIRES_SHARED(Locks::mutator_lock_);
    328 
    329   // Determine what kind of indirect reference this is. Opposite of EncodeIndirectRefKind.
    330   ALWAYS_INLINE static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) {
    331     return DecodeIndirectRefKind(reinterpret_cast<uintptr_t>(iref));
    332   }
    333 
    334  private:
    335   static constexpr size_t kSerialBits = MinimumBitsToStore(kIRTPrevCount);
    336   static constexpr uint32_t kShiftedSerialMask = (1u << kSerialBits) - 1;
    337 
    338   static constexpr size_t kKindBits = MinimumBitsToStore(
    339       static_cast<uint32_t>(IndirectRefKind::kLastKind));
    340   static constexpr uint32_t kKindMask = (1u << kKindBits) - 1;
    341 
    342   static constexpr uintptr_t EncodeIndex(uint32_t table_index) {
    343     static_assert(sizeof(IndirectRef) == sizeof(uintptr_t), "Unexpected IndirectRef size");
    344     DCHECK_LE(MinimumBitsToStore(table_index), BitSizeOf<uintptr_t>() - kSerialBits - kKindBits);
    345     return (static_cast<uintptr_t>(table_index) << kKindBits << kSerialBits);
    346   }
    347   static constexpr uint32_t DecodeIndex(uintptr_t uref) {
    348     return static_cast<uint32_t>((uref >> kKindBits) >> kSerialBits);
    349   }
    350 
    351   static constexpr uintptr_t EncodeIndirectRefKind(IndirectRefKind kind) {
    352     return static_cast<uintptr_t>(kind);
    353   }
    354   static constexpr IndirectRefKind DecodeIndirectRefKind(uintptr_t uref) {
    355     return static_cast<IndirectRefKind>(uref & kKindMask);
    356   }
    357 
    358   static constexpr uintptr_t EncodeSerial(uint32_t serial) {
    359     DCHECK_LE(MinimumBitsToStore(serial), kSerialBits);
    360     return serial << kKindBits;
    361   }
    362   static constexpr uint32_t DecodeSerial(uintptr_t uref) {
    363     return static_cast<uint32_t>(uref >> kKindBits) & kShiftedSerialMask;
    364   }
    365 
    366   constexpr uintptr_t EncodeIndirectRef(uint32_t table_index, uint32_t serial) const {
    367     DCHECK_LT(table_index, max_entries_);
    368     return EncodeIndex(table_index) | EncodeSerial(serial) | EncodeIndirectRefKind(kind_);
    369   }
    370 
    371   static void ConstexprChecks();
    372 
    373   // Extract the table index from an indirect reference.
    374   ALWAYS_INLINE static uint32_t ExtractIndex(IndirectRef iref) {
    375     return DecodeIndex(reinterpret_cast<uintptr_t>(iref));
    376   }
    377 
    378   IndirectRef ToIndirectRef(uint32_t table_index) const {
    379     DCHECK_LT(table_index, max_entries_);
    380     uint32_t serial = table_[table_index].GetSerial();
    381     return reinterpret_cast<IndirectRef>(EncodeIndirectRef(table_index, serial));
    382   }
    383 
    384   // Resize the backing table. Currently must be larger than the current size.
    385   bool Resize(size_t new_size, std::string* error_msg);
    386 
    387   void RecoverHoles(IRTSegmentState from);
    388 
    389   // Abort if check_jni is not enabled. Otherwise, just log as an error.
    390   static void AbortIfNoCheckJNI(const std::string& msg);
    391 
    392   /* extra debugging checks */
    393   bool GetChecked(IndirectRef) const REQUIRES_SHARED(Locks::mutator_lock_);
    394   bool CheckEntry(const char*, IndirectRef, uint32_t) const;
    395 
    396   /// semi-public - read/write by jni down calls.
    397   IRTSegmentState segment_state_;
    398 
    399   // Mem map where we store the indirect refs.
    400   MemMap table_mem_map_;
    401   // bottom of the stack. Do not directly access the object references
    402   // in this as they are roots. Use Get() that has a read barrier.
    403   IrtEntry* table_;
    404   // bit mask, ORed into all irefs.
    405   const IndirectRefKind kind_;
    406 
    407   // max #of entries allowed (modulo resizing).
    408   size_t max_entries_;
    409 
    410   // Some values to retain old behavior with holes. Description of the algorithm is in the .cc
    411   // file.
    412   // TODO: Consider other data structures for compact tables, e.g., free lists.
    413   size_t current_num_holes_;
    414   IRTSegmentState last_known_previous_state_;
    415 
    416   // Whether the table's capacity may be resized. As there are no locks used, it is the caller's
    417   // responsibility to ensure thread-safety.
    418   ResizableCapacity resizable_;
    419 };
    420 
    421 }  // namespace art
    422 
    423 #endif  // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
    424