Home | History | Annotate | Download | only in service
      1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
      2 
      3 Licensed under the Apache License, Version 2.0 (the "License");
      4 you may not use this file except in compliance with the License.
      5 You may obtain a copy of the License at
      6 
      7     http://www.apache.org/licenses/LICENSE-2.0
      8 
      9 Unless required by applicable law or agreed to in writing, software
     10 distributed under the License is distributed on an "AS IS" BASIS,
     11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 See the License for the specific language governing permissions and
     13 limitations under the License.
     14 ==============================================================================*/
     15 
     16 #include "tensorflow/compiler/xla/service/hlo_cost_analysis.h"
     17 
     18 #include <cmath>
     19 
     20 #include "tensorflow/compiler/xla/shape_util.h"
     21 #include "tensorflow/compiler/xla/status_macros.h"
     22 #include "tensorflow/compiler/xla/util.h"
     23 #include "tensorflow/compiler/xla/window_util.h"
     24 #include "tensorflow/core/lib/core/bits.h"
     25 #include "tensorflow/core/lib/core/errors.h"
     26 #include "tensorflow/core/lib/gtl/map_util.h"
     27 
     28 namespace xla {
     29 
     30 constexpr char HloCostAnalysis::kFlopsKey[];
     31 constexpr char HloCostAnalysis::kTranscendentalsKey[];
     32 constexpr char HloCostAnalysis::kBytesAccessedKey[];
     33 constexpr char HloCostAnalysis::kOptimalSecondsKey[];
     34 
     35 HloCostAnalysis::HloCostAnalysis(const ShapeSizeFunction& shape_size)
     36     : HloCostAnalysis(shape_size, {}) {}
     37 
     38 HloCostAnalysis::HloCostAnalysis(const ShapeSizeFunction& shape_size,
     39                                  const Properties& per_second_rates)
     40     : shape_size_(shape_size), per_second_rates_(per_second_rates) {}
     41 
     42 Status HloCostAnalysis::Preprocess(const HloInstruction* hlo) {
     43   // Set current instruction cost values to reasonable default values. Each
     44   // handler can overwrite these values. In Postprocess, these values are
     45   // accumulated and written to the per-instruction maps.
     46   current_properties_.clear();
     47   current_should_compute_bottleneck_time_ = true;
     48 
     49   // The default number of bytes accessed for an instruction is the sum of the
     50   // sizes of the inputs and outputs. The default ShapeUtil::ByteSizeOf does not
     51   // handle opaque types.
     52   float bytes_accessed = GetShapeSize(hlo->shape());
     53   for (const HloInstruction* operand : hlo->operands()) {
     54     bytes_accessed += GetShapeSize(operand->shape());
     55   }
     56   current_properties_[kBytesAccessedKey] = bytes_accessed;
     57 
     58   return Status::OK();
     59 }
     60 
     61 Status HloCostAnalysis::Postprocess(const HloInstruction* hlo) {
     62   if (current_should_compute_bottleneck_time_) {
     63     // Compute the time as the time of the bottleneck, i.e. the slowest property
     64     // given the per-second rate of each property.
     65     float optimal_seconds = 0.0f;
     66     for (const auto& property : current_properties_) {
     67       if (property.first != kOptimalSecondsKey) {
     68         optimal_seconds = std::max(
     69             optimal_seconds,
     70             property.second /
     71                 GetProperty(property.first, per_second_rates_, INFINITY));
     72       }
     73     }
     74     current_properties_[kOptimalSecondsKey] = optimal_seconds;
     75   }
     76 
     77   TF_RET_CHECK(hlo_properties_.emplace(hlo, current_properties_).second);
     78   for (const auto& property : current_properties_) {
     79     properties_sum_[property.first] += property.second;
     80   }
     81 
     82   return Status::OK();
     83 }
     84 
     85 Status HloCostAnalysis::HandleElementwiseOp(
     86     const HloInstruction* hlo_instruction) {
     87   const auto& shape = hlo_instruction->shape();
     88   // For element-wise operations, the number of computations is the same as the
     89   // number of elements in the output shape.
     90   auto computation_count = ShapeUtil::ElementsIn(shape);
     91   auto opcode = hlo_instruction->opcode();
     92   // We treat transcendental operations separately since one transcendental
     93   // operation can correspond to several floating point ops.
     94   if (opcode == HloOpcode::kExp || opcode == HloOpcode::kLog ||
     95       opcode == HloOpcode::kPower || opcode == HloOpcode::kSqrt ||
     96       opcode == HloOpcode::kRsqrt || opcode == HloOpcode::kTanh ||
     97       opcode == HloOpcode::kSin || opcode == HloOpcode::kCos) {
     98     current_properties_[kTranscendentalsKey] = computation_count;
     99   } else {
    100     // Note: transcendental operations are considered a separate category from
    101     // FLOPs.
    102     current_properties_[kFlopsKey] = computation_count;
    103   }
    104   return Status::OK();
    105 }
    106 
    107 /*static*/ float HloCostAnalysis::GetProperty(const string& key,
    108                                               const Properties& properties,
    109                                               const float default_value) {
    110   auto key_value = properties.find(key);
    111   return key_value == properties.end() ? default_value : key_value->second;
    112 }
    113 
    114 /*static*/ float HloCostAnalysis::GetPropertyForHlo(
    115     const HloInstruction& hlo, const string& key,
    116     const HloToProperties& hlo_to_properties) {
    117   auto it = hlo_to_properties.find(&hlo);
    118   if (it == hlo_to_properties.end()) {
    119     return 0.0f;
    120   } else {
    121     return GetProperty(key, it->second);
    122   }
    123 }
    124 
    125 int64 HloCostAnalysis::GetShapeSize(const Shape& shape) const {
    126   if (!LayoutUtil::HasLayout(shape)) {
    127     return 0;
    128   }
    129   return shape_size_(shape);
    130 }
    131 
    132 Status HloCostAnalysis::HandleElementwiseUnary(const HloInstruction* hlo) {
    133   return HandleElementwiseOp(hlo);
    134 }
    135 
    136 Status HloCostAnalysis::HandleElementwiseBinary(const HloInstruction* hlo) {
    137   return HandleElementwiseOp(hlo);
    138 }
    139 
    140 Status HloCostAnalysis::HandleCompare(const HloInstruction* compare) {
    141   return HandleElementwiseOp(compare);
    142 }
    143 
    144 Status HloCostAnalysis::HandleClamp(const HloInstruction* clamp) {
    145   return HandleElementwiseOp(clamp);
    146 }
    147 
    148 Status HloCostAnalysis::HandleReducePrecision(const HloInstruction* hlo) {
    149   return HandleElementwiseOp(hlo);
    150 }
    151 
    152 Status HloCostAnalysis::HandleParameter(const HloInstruction*) {
    153   current_should_compute_bottleneck_time_ = false;
    154   current_properties_[kBytesAccessedKey] = 0;
    155   current_properties_[kOptimalSecondsKey] = 0;
    156   return Status::OK();
    157 }
    158 
    159 Status HloCostAnalysis::HandleConstant(const HloInstruction*) {
    160   current_should_compute_bottleneck_time_ = false;
    161   current_properties_[kBytesAccessedKey] = 0;
    162   current_properties_[kOptimalSecondsKey] = 0;
    163   return Status::OK();
    164 }
    165 
    166 Status HloCostAnalysis::HandleIota(const HloInstruction*) {
    167   return Status::OK();
    168 }
    169 
    170 Status HloCostAnalysis::HandleGetTupleElement(const HloInstruction*) {
    171   // GetTupleElement forwards a pointer and does not touch each element in the
    172   // output.
    173   current_should_compute_bottleneck_time_ = false;
    174   current_properties_[kBytesAccessedKey] = 0;
    175   current_properties_[kOptimalSecondsKey] = 0;
    176   return Status::OK();
    177 }
    178 
    179 Status HloCostAnalysis::HandleSelect(const HloInstruction* hlo) {
    180   return HandleElementwiseOp(hlo);
    181 }
    182 
    183 Status HloCostAnalysis::HandleTupleSelect(const HloInstruction*) {
    184   return Status::OK();
    185 }
    186 
    187 Status HloCostAnalysis::HandleReverse(const HloInstruction*) {
    188   return Status::OK();
    189 }
    190 
    191 Status HloCostAnalysis::HandleSlice(const HloInstruction* slice) {
    192   current_properties_[kBytesAccessedKey] = GetShapeSize(slice->shape()) * 2;
    193   return Status::OK();
    194 }
    195 
    196 Status HloCostAnalysis::HandleDynamicSlice(
    197     const HloInstruction* dynamic_slice) {
    198   current_properties_[kBytesAccessedKey] =
    199       GetShapeSize(dynamic_slice->shape()) * 2;
    200   return Status::OK();
    201 }
    202 
    203 Status HloCostAnalysis::HandleDynamicUpdateSlice(
    204     const HloInstruction* dynamic_update_slice) {
    205   current_properties_[kBytesAccessedKey] =
    206       GetShapeSize(dynamic_update_slice->operand(1)->shape()) * 2;
    207   return Status::OK();
    208 }
    209 
    210 Status HloCostAnalysis::HandleTuple(const HloInstruction* tuple) {
    211   // The tuple instruction only gathers pointers from inputs (it doesn't iterate
    212   // through them). The memory touched is then only the size of the output
    213   // index table of the tuple.
    214 
    215   current_properties_[kBytesAccessedKey] = GetShapeSize(tuple->shape());
    216   return Status::OK();
    217 }
    218 
    219 Status HloCostAnalysis::HandleConcatenate(const HloInstruction*) {
    220   return Status::OK();
    221 }
    222 
    223 Status HloCostAnalysis::HandleConvert(const HloInstruction* convert) {
    224   return HandleElementwiseOp(convert);
    225 }
    226 
    227 Status HloCostAnalysis::HandleCopy(const HloInstruction*) {
    228   return Status::OK();
    229 }
    230 
    231 Status HloCostAnalysis::HandleDomain(const HloInstruction* domain) {
    232   // Domain does not have any computation or data transfer.
    233   current_should_compute_bottleneck_time_ = false;
    234   current_properties_[kBytesAccessedKey] = 0;
    235   current_properties_[kOptimalSecondsKey] = 0;
    236   return Status::OK();
    237 }
    238 
    239 Status HloCostAnalysis::HandleDot(const HloInstruction* dot) {
    240   const Shape& lhs_shape = dot->operand(0)->shape();
    241   const Shape& dot_shape = dot->shape();
    242   const DotDimensionNumbers& dnums = dot->dot_dimension_numbers();
    243   // Count of elements along the reduction dimension (last dimension for the
    244   // rhs).
    245   int64 reduction_width = 1;
    246   for (auto dim : dnums.lhs_contracting_dimensions()) {
    247     reduction_width *= lhs_shape.dimensions(dim);
    248   }
    249   // Each output elment requires reduction_width FMA operations.
    250   current_properties_[kFlopsKey] =
    251       kFmaFlops * ShapeUtil::ElementsIn(dot_shape) * reduction_width;
    252   return Status::OK();
    253 }
    254 
    255 Status HloCostAnalysis::HandleInfeed(const HloInstruction*) {
    256   return Status::OK();
    257 }
    258 
    259 Status HloCostAnalysis::HandleOutfeed(const HloInstruction*) {
    260   return Status::OK();
    261 }
    262 
    263 Status HloCostAnalysis::HandleMap(const HloInstruction* map) {
    264   // Compute properties of the mapped function.
    265   TF_ASSIGN_OR_RETURN(const Properties sub_properties,
    266                       ProcessNestedSubcomputation(map->to_apply()));
    267 
    268   // Compute the cost of all elements for this Map operation.
    269   const int64 element_count = ShapeUtil::ElementsIn(map->shape());
    270   for (const auto& property : sub_properties) {
    271     if (property.first != kBytesAccessedKey) {
    272       current_properties_[property.first] = property.second * element_count;
    273     }
    274   }
    275   return Status::OK();
    276 }
    277 
    278 Status HloCostAnalysis::HandleReduce(const HloInstruction* reduce) {
    279   HloComputation* function = reduce->to_apply();
    280   // Compute the cost of the user function.
    281   TF_ASSIGN_OR_RETURN(const Properties sub_properties,
    282                       ProcessNestedSubcomputation(function));
    283 
    284   // Compute the cost of all elements for this Reduce operation.
    285   // This counts the number of times the reduction function is applied, so it
    286   // does not need to be multiplied by the number of input tensors - that's
    287   // already "priced in" by the sub-computation doing more work.
    288   auto arg = reduce->operand(0);
    289   auto output_shape = reduce->shape().IsArray()
    290                           ? reduce->shape()
    291                           : reduce->shape().tuple_shapes(0);
    292   int64 reduction_count =
    293       ShapeUtil::ElementsIn(arg->shape()) - ShapeUtil::ElementsIn(output_shape);
    294   for (const auto& property : sub_properties) {
    295     if (property.first != kBytesAccessedKey) {
    296       current_properties_[property.first] = property.second * reduction_count;
    297     }
    298   }
    299   return Status::OK();
    300 }
    301 
    302 Status HloCostAnalysis::HandleReduceWindow(
    303     const HloInstruction* reduce_window) {
    304   const Window& window = reduce_window->window();
    305   auto function = reduce_window->to_apply();
    306   // Compute the properties of the reduction function.
    307   TF_ASSIGN_OR_RETURN(const Properties sub_properties,
    308                       ProcessNestedSubcomputation(function));
    309 
    310   // Compute the cost of all elements for this ReduceWindow operation. For each
    311   // output element there are window_size - 1 reductions to perform.
    312   int64 window_element_count = 1;
    313   for (const auto& dimension : window.dimensions()) {
    314     window_element_count *= dimension.size();
    315   }
    316   const int64 output_element_count =
    317       ShapeUtil::ElementsIn(reduce_window->shape());
    318   const int64 reduction_count =
    319       (window_element_count - 1) * output_element_count;
    320   for (const auto& property : sub_properties) {
    321     if (property.first != kBytesAccessedKey) {
    322       current_properties_[property.first] = property.second * reduction_count;
    323     }
    324   }
    325   return Status::OK();
    326 }
    327 
    328 Status HloCostAnalysis::HandleSelectAndScatter(
    329     const HloInstruction* instruction) {
    330   // Compute the properties of the select and scatter function.
    331   // Compute the properties of the reduction function.
    332   TF_ASSIGN_OR_RETURN(const Properties select_properties,
    333                       ProcessNestedSubcomputation(instruction->select()));
    334   TF_ASSIGN_OR_RETURN(const Properties scatter_properties,
    335                       ProcessNestedSubcomputation(instruction->scatter()));
    336 
    337   // Compute the cost of all elements for this operation. For each scatter
    338   // source element there are window_size - 1 select computations to perform and
    339   // 1 scatter computation to perform.
    340   const auto source = instruction->operand(1);
    341   const auto source_element_count = ShapeUtil::ElementsIn(source->shape());
    342   int64 window_element_count = 1;
    343   for (const auto& dimension : instruction->window().dimensions()) {
    344     window_element_count *= dimension.size();
    345   }
    346   const int64 select_count = source_element_count * (window_element_count - 1);
    347   for (const auto& property : select_properties) {
    348     if (property.first != kBytesAccessedKey) {
    349       current_properties_[property.first] += property.second * select_count;
    350     }
    351   }
    352   for (const auto& property : scatter_properties) {
    353     if (property.first != kBytesAccessedKey) {
    354       current_properties_[property.first] +=
    355           property.second * source_element_count;
    356     }
    357   }
    358   return Status::OK();
    359 }
    360 
    361 Status HloCostAnalysis::HandleBitcast(const HloInstruction*) {
    362   // A bitcast does no computation and touches no memory.
    363   current_properties_[kBytesAccessedKey] = 0;
    364   current_properties_[kOptimalSecondsKey] = 0;
    365   return Status::OK();
    366 }
    367 
    368 Status HloCostAnalysis::HandleBroadcast(const HloInstruction*) {
    369   return Status::OK();
    370 }
    371 
    372 Status HloCostAnalysis::HandlePad(const HloInstruction*) {
    373   return Status::OK();
    374 }
    375 
    376 Status HloCostAnalysis::HandleSend(const HloInstruction*) {
    377   return Status::OK();
    378 }
    379 
    380 Status HloCostAnalysis::HandleSendDone(const HloInstruction*) {
    381   return Status::OK();
    382 }
    383 
    384 Status HloCostAnalysis::HandleRecv(const HloInstruction*) {
    385   return Status::OK();
    386 }
    387 
    388 Status HloCostAnalysis::HandleRecvDone(const HloInstruction*) {
    389   return Status::OK();
    390 }
    391 
    392 Status HloCostAnalysis::HandleReshape(const HloInstruction*) {
    393   return Status::OK();
    394 }
    395 
    396 Status HloCostAnalysis::HandleBatchNormTraining(const HloInstruction*) {
    397   // TODO(b/62294698): Implement cost analysis for batch-norm-training.
    398   return Status::OK();
    399 }
    400 
    401 Status HloCostAnalysis::HandleBatchNormInference(const HloInstruction*) {
    402   // TODO(b/62294698): Implement cost analysis for batch-norm-inference.
    403   return Status::OK();
    404 }
    405 
    406 Status HloCostAnalysis::HandleBatchNormGrad(const HloInstruction*) {
    407   // TODO(b/62294698): Implement cost analysis for batch-norm-grad.
    408   return Status::OK();
    409 }
    410 
    411 Status HloCostAnalysis::HandleTranspose(const HloInstruction*) {
    412   return Status::OK();
    413 }
    414 
    415 Status HloCostAnalysis::HandleAfterAll(const HloInstruction*) {
    416   // This instruction is used to enforce ordering at compile time. No code is
    417   // emitted.
    418   current_should_compute_bottleneck_time_ = false;
    419   current_properties_[kBytesAccessedKey] = 0;
    420   current_properties_[kOptimalSecondsKey] = 0;
    421   return Status::OK();
    422 }
    423 
    424 Status HloCostAnalysis::HandleAddDependency(
    425     const HloInstruction* add_dependency) {
    426   // This instruction is used to enforce ordering at compile time. No code is
    427   // emitted.
    428   current_should_compute_bottleneck_time_ = false;
    429   current_properties_[kBytesAccessedKey] = 0;
    430   current_properties_[kOptimalSecondsKey] = 0;
    431   return Status::OK();
    432 }
    433 
    434 Status HloCostAnalysis::HandleConvolution(const HloInstruction* convolution) {
    435   auto lhs = convolution->operand(0);
    436   auto rhs = convolution->operand(1);
    437   Window window = convolution->window();
    438   const auto& result_shape = convolution->shape();
    439   const Shape& lhs_shape = lhs->shape();
    440   const Shape& rhs_shape = rhs->shape();
    441 
    442   const auto& dnums = convolution->convolution_dimension_numbers();
    443 
    444   const int64 input_batch_dim = dnums.input_batch_dimension();
    445   const int64 input_feature_dim = dnums.input_feature_dimension();
    446   const int64 output_feature_dim = dnums.output_feature_dimension();
    447   const int64 input_feature =
    448       ShapeUtil::GetDimension(lhs_shape, input_feature_dim);
    449   const int64 output_feature =
    450       ShapeUtil::GetDimension(result_shape, output_feature_dim);
    451   const int64 batch = ShapeUtil::GetDimension(lhs_shape, input_batch_dim);
    452 
    453   DimensionVector kernel_limits;
    454   DimensionVector output_limits;
    455   DimensionVector input_limits;
    456   if (window.dimensions().empty()) {
    457     window = window_util::MakeWindow({1});
    458     kernel_limits.push_back(1);
    459     output_limits.push_back(1);
    460     input_limits.push_back(1);
    461   } else {
    462     for (int64 spatial_dimension = 0;
    463          spatial_dimension < window.dimensions_size(); ++spatial_dimension) {
    464       // Spatial dimension number for kernel (rhs).
    465       const int64 kernel_spatial_dim =
    466           dnums.kernel_spatial_dimensions(spatial_dimension);
    467       const int64 kernel_limit = rhs_shape.dimensions(kernel_spatial_dim);
    468       kernel_limits.push_back(kernel_limit);
    469 
    470       // Spatial dimension number for output.
    471       const int64 output_spatial_dim =
    472           dnums.output_spatial_dimensions(spatial_dimension);
    473       const int64 output_limit = result_shape.dimensions(output_spatial_dim);
    474       output_limits.push_back(output_limit);
    475 
    476       // Spatial dimension number for input (lhs).
    477       const int64 input_spatial_dim =
    478           dnums.input_spatial_dimensions(spatial_dimension);
    479       const int64 input_limit = lhs_shape.dimensions(input_spatial_dim);
    480       input_limits.push_back(input_limit);
    481     }
    482   }
    483 
    484   DimensionVector valid_position_counts;
    485 
    486   // Loop over each spatial dimension.
    487   for (int64 spatial_dimension = 0;
    488        spatial_dimension < window.dimensions_size(); ++spatial_dimension) {
    489     int64 valid_position_count = 0;
    490     // Loop over each point in the kernel.
    491     for (int64 kernel_idx = 0; kernel_idx < kernel_limits[spatial_dimension];
    492          ++kernel_idx) {
    493       // Loop over each point in the output.
    494       for (int64 output_idx = 0; output_idx < output_limits[spatial_dimension];
    495            ++output_idx) {
    496         // Calculate lhs (input) index without taking base dilation into
    497         // account.
    498         const auto& window_dim = window.dimensions(spatial_dimension);
    499         const int64 undilated_index = output_idx * window_dim.stride() -
    500                                       window_dim.padding_low() +
    501                                       kernel_idx * window_dim.window_dilation();
    502 
    503         // Calculate the actual lhs (input) index after dilation. Avoid the
    504         // division as an optimization.
    505         const int64 lhs_spatial_index =
    506             window_dim.base_dilation() > 1
    507                 ? undilated_index / window_dim.base_dilation()
    508                 : undilated_index;
    509 
    510         // Skip if the lhs (input) index is to be dilated.
    511         if (undilated_index != lhs_spatial_index * window_dim.base_dilation()) {
    512           continue;
    513         }
    514 
    515         // Skip if input index is not in bound.
    516         if (lhs_spatial_index < 0 ||
    517             lhs_spatial_index >= input_limits[spatial_dimension]) {
    518           continue;
    519         }
    520 
    521         valid_position_count += 1;
    522       }
    523     }
    524     valid_position_counts.push_back(valid_position_count);
    525   }
    526 
    527   const int64 fma_count = (input_feature / convolution->feature_group_count()) *
    528                           output_feature *
    529                           (batch / convolution->batch_group_count()) *
    530                           Product(valid_position_counts);
    531   current_properties_[kFlopsKey] = fma_count * kFmaFlops;
    532   return Status::OK();
    533 }
    534 
    535 Status HloCostAnalysis::HandleFft(const HloInstruction* fft) {
    536   auto real_shape =
    537       fft->operand(0)->shape().IsTuple()
    538           ? ShapeUtil::GetTupleElementShape(fft->operand(0)->shape(), 0)
    539           : fft->operand(0)->shape();
    540   constexpr int kFmaPerComplexMul = 4;
    541   int64 log_factors = 1;
    542   for (int64 dim : fft->fft_length()) {
    543     log_factors *= tensorflow::Log2Floor(dim);
    544   }
    545   current_properties_[kFlopsKey] = kFmaFlops * kFmaPerComplexMul * log_factors *
    546                                    ShapeUtil::ElementsIn(real_shape);
    547   return Status::OK();
    548 }
    549 
    550 Status HloCostAnalysis::HandleTriangularSolve(const HloInstruction* hlo) {
    551   float bytes_accessed = GetShapeSize(hlo->operand(0)->shape()) / 2.0f;
    552   bytes_accessed += GetShapeSize(hlo->operand(1)->shape());
    553   current_properties_[kBytesAccessedKey] = bytes_accessed;
    554 
    555   const Shape& a_shape = hlo->operand(0)->shape();
    556   const Shape& b_shape = hlo->operand(1)->shape();
    557   // Estimate as batch * mn^2 / 2 flops.
    558   int64 elems = a_shape.dimensions(a_shape.dimensions_size() - 1);
    559   elems *= ShapeUtil::ElementsIn(b_shape);
    560   current_properties_[kFlopsKey] = kFmaFlops * elems;
    561   return Status::OK();
    562 }
    563 
    564 Status HloCostAnalysis::HandleCholesky(const HloInstruction* hlo) {
    565   float bytes_accessed = GetShapeSize(hlo->operand(0)->shape()) / 2.0f;
    566   current_properties_[kBytesAccessedKey] = bytes_accessed;
    567 
    568   const Shape& a_shape = hlo->operand(0)->shape();
    569   // Estimate as batch * n^3 / 3 flops.
    570   int64 elems = a_shape.dimensions(a_shape.dimensions_size() - 1);
    571   elems *= ShapeUtil::ElementsIn(a_shape);
    572   current_properties_[kFlopsKey] = elems / 3;
    573   return Status::OK();
    574 }
    575 
    576 Status HloCostAnalysis::HandleAllReduce(const HloInstruction* crs) {
    577   // We assume 2 replicas, so that each output element is the sum of two input
    578   // elements.
    579   //
    580   // TODO(b/33004697): Compute correct cost here, taking the actual number of
    581   // replicas into account.
    582   double flops = 0.0;
    583   ShapeUtil::ForEachSubshape(crs->shape(),
    584                              [&](const Shape& subshape, const ShapeIndex&) {
    585                                if (subshape.IsArray()) {
    586                                  flops += ShapeUtil::ElementsIn(subshape);
    587                                }
    588                              });
    589   current_properties_[kFlopsKey] = flops;
    590   return Status::OK();
    591 }
    592 
    593 Status HloCostAnalysis::HandleAllToAll(const HloInstruction* hlo) {
    594   return Status::OK();
    595 }
    596 
    597 Status HloCostAnalysis::HandleCollectivePermute(const HloInstruction* /*hlo*/) {
    598   return Status::OK();
    599 }
    600 
    601 Status HloCostAnalysis::HandleReplicaId(const HloInstruction* /*hlo*/) {
    602   return Status::OK();
    603 }
    604 
    605 Status HloCostAnalysis::HandleRng(const HloInstruction* random) {
    606   // TODO(b/26346211): Implement better estimates for the RNG cost, since the
    607   // cost changes with the implementation and the distribution. For now, assume
    608   // the cost of each RNG is same as a transcendental operation.
    609   current_properties_[kTranscendentalsKey] =
    610       ShapeUtil::ElementsIn(random->shape());
    611   return Status::OK();
    612 }
    613 
    614 Status HloCostAnalysis::HandleFusion(const HloInstruction* fusion) {
    615   TF_ASSIGN_OR_RETURN(
    616       current_properties_,
    617       ProcessNestedSubcomputation(fusion->fused_instructions_computation()));
    618 
    619   // Fusion nodes that produce a tuple also produce the entries in the tuple.
    620   // Ignore the memory accessed inside fused ops, since fusion is supposed to
    621   // prevent intermediate data from touching slow memory.
    622   current_properties_[kBytesAccessedKey] = 0;
    623   ShapeUtil::ForEachSubshape(
    624       fusion->shape(),
    625       [this](const Shape& subshape, const ShapeIndex& /*shape_index*/) {
    626         current_properties_[kBytesAccessedKey] += GetShapeSize(subshape);
    627       });
    628 
    629   for (const HloInstruction* operand : fusion->operands()) {
    630     current_properties_[kBytesAccessedKey] += GetShapeSize(operand->shape());
    631   }
    632 
    633   return Status::OK();
    634 }
    635 
    636 Status HloCostAnalysis::HandleCall(const HloInstruction* call) {
    637   TF_ASSIGN_OR_RETURN(current_properties_,
    638                       ProcessUnnestedSubcomputation(call->to_apply()));
    639   current_should_compute_bottleneck_time_ = false;
    640   return Status::OK();
    641 }
    642 
    643 Status HloCostAnalysis::HandleCustomCall(const HloInstruction*) {
    644   // Mark applicable fields as "unknown", since we don't know what CustomCall
    645   // does.  This is better than returning an error, which would stop iteration,
    646   // and therefore would prevent us from getting *any* stats for a computation
    647   // which contains a CustomCall.
    648   current_properties_[kOptimalSecondsKey] = -1;
    649   current_properties_[kBytesAccessedKey] = -1;
    650   current_properties_[kFlopsKey] = -1;
    651   current_should_compute_bottleneck_time_ = false;
    652   return Status::OK();
    653 }
    654 
    655 Status HloCostAnalysis::HandleSort(const HloInstruction* sort) {
    656   // This assumes a comparison based N*log(N) algorithm. As for all ops, the
    657   // actual properties of the op depend on the backend implementation.
    658   int64 elements = ShapeUtil::ElementsIn(sort->operand(0)->shape());
    659   current_properties_[kFlopsKey] = elements * tensorflow::Log2Ceiling(elements);
    660   return Status::OK();
    661 }
    662 
    663 Status HloCostAnalysis::HandleWhile(const HloInstruction* xla_while) {
    664   // Since the number of iterations of the while node will not always be
    665   // something that we can statically analyze, we cannot precisely compute the
    666   // cost of a while node. For now compute the cost of a single iteration.
    667   TF_ASSIGN_OR_RETURN(const Properties body_properties,
    668                       ProcessUnnestedSubcomputation(xla_while->while_body()));
    669 
    670   TF_ASSIGN_OR_RETURN(
    671       const Properties condition_properties,
    672       ProcessUnnestedSubcomputation(xla_while->while_condition()));
    673 
    674   current_properties_.clear();
    675   for (const auto& property : body_properties) {
    676     current_properties_[property.first] += property.second;
    677   }
    678   for (const auto& property : condition_properties) {
    679     current_properties_[property.first] += property.second;
    680   }
    681   current_should_compute_bottleneck_time_ = false;
    682 
    683   return Status::OK();
    684 }
    685 
    686 Status HloCostAnalysis::HandleConditional(const HloInstruction* conditional) {
    687   // Compute the cost of the branch computations and take the maximum from those
    688   // for each property.
    689   TF_ASSIGN_OR_RETURN(
    690       const Properties branch0_computation_properties,
    691       ProcessUnnestedSubcomputation(conditional->branch_computation(0)));
    692   current_properties_ = branch0_computation_properties;
    693   for (int j = 1; j < conditional->branch_count(); ++j) {
    694     TF_ASSIGN_OR_RETURN(
    695         const Properties branch_computation_properties,
    696         ProcessUnnestedSubcomputation(conditional->branch_computation(j)));
    697     for (const auto& property : branch_computation_properties) {
    698       if (!tensorflow::gtl::InsertIfNotPresent(&current_properties_,
    699                                                property)) {
    700         auto& current_property = current_properties_[property.first];
    701         current_property = std::max(current_property, property.second);
    702       }
    703     }
    704   }
    705   current_should_compute_bottleneck_time_ = false;
    706 
    707   return Status::OK();
    708 }
    709 
    710 Status HloCostAnalysis::HandleGather(const HloInstruction* gather) {
    711   // Gather doesn't read the whole input buffer, it's equivalent to a copy the
    712   // size of the output shape and a read of the gather indices.
    713   current_properties_[kBytesAccessedKey] =
    714       GetShapeSize(gather->shape()) * 2 +
    715       GetShapeSize(gather->operand(1)->shape());
    716   // Gather does not issue any flops.
    717   return Status::OK();
    718 }
    719 
    720 Status HloCostAnalysis::HandleScatter(const HloInstruction* scatter) {
    721   current_properties_[kBytesAccessedKey] =
    722       GetShapeSize(scatter->operand(2)->shape()) * 2 +
    723       GetShapeSize(scatter->operand(1)->shape());
    724   const int64 element_count =
    725       ShapeUtil::ElementsIn(scatter->operand(2)->shape());
    726   TF_ASSIGN_OR_RETURN(const Properties sub_properties,
    727                       ProcessNestedSubcomputation(scatter->to_apply()));
    728   for (const auto& property : sub_properties) {
    729     if (property.first != kBytesAccessedKey) {
    730       current_properties_[property.first] = property.second * element_count;
    731     }
    732   }
    733   return Status::OK();
    734 }
    735 
    736 Status HloCostAnalysis::HandleGetDimensionSize(
    737     const HloInstruction* /*get_size*/) {
    738   return Status::OK();
    739 }
    740 
    741 Status HloCostAnalysis::FinishVisit(const HloInstruction*) {
    742   return Status::OK();
    743 }
    744 
    745 float HloCostAnalysis::flop_count() const {
    746   return GetProperty(kFlopsKey, properties_sum_);
    747 }
    748 
    749 float HloCostAnalysis::transcendental_count() const {
    750   return GetProperty(kTranscendentalsKey, properties_sum_);
    751 }
    752 
    753 float HloCostAnalysis::bytes_accessed() const {
    754   return GetProperty(kBytesAccessedKey, properties_sum_);
    755 }
    756 
    757 float HloCostAnalysis::optimal_seconds() const {
    758   return GetProperty(kOptimalSecondsKey, properties_sum_);
    759 }
    760 
    761 int64 HloCostAnalysis::flop_count(const HloInstruction& hlo) const {
    762   return GetPropertyForHlo(hlo, kFlopsKey, hlo_properties_);
    763 }
    764 
    765 int64 HloCostAnalysis::transcendental_count(const HloInstruction& hlo) const {
    766   return GetPropertyForHlo(hlo, kTranscendentalsKey, hlo_properties_);
    767 }
    768 
    769 int64 HloCostAnalysis::bytes_accessed(const HloInstruction& hlo) const {
    770   return GetPropertyForHlo(hlo, kBytesAccessedKey, hlo_properties_);
    771 }
    772 
    773 float HloCostAnalysis::optimal_seconds(const HloInstruction& hlo) const {
    774   return GetPropertyForHlo(hlo, kOptimalSecondsKey, hlo_properties_);
    775 }
    776 
    777 StatusOr<HloCostAnalysis::Properties>
    778 HloCostAnalysis::ProcessNestedSubcomputation(HloComputation* computation) {
    779   HloCostAnalysis visitor(shape_size_, per_second_rates_);
    780   TF_RETURN_IF_ERROR(computation->Accept(&visitor));
    781   return visitor.properties();
    782 }
    783 
    784 StatusOr<HloCostAnalysis::Properties>
    785 HloCostAnalysis::ProcessUnnestedSubcomputation(HloComputation* computation) {
    786   HloCostAnalysis visitor(shape_size_, per_second_rates_);
    787   TF_RETURN_IF_ERROR(computation->Accept(&visitor));
    788   hlo_properties_.insert(visitor.hlo_properties_.begin(),
    789                          visitor.hlo_properties_.end());
    790   return visitor.properties();
    791 }
    792 
    793 }  // namespace xla
    794