Home | History | Annotate | Download | only in kernels
      1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
      2 
      3 Licensed under the Apache License, Version 2.0 (the "License");
      4 you may not use this file except in compliance with the License.
      5 You may obtain a copy of the License at
      6 
      7     http://www.apache.org/licenses/LICENSE-2.0
      8 
      9 Unless required by applicable law or agreed to in writing, software
     10 distributed under the License is distributed on an "AS IS" BASIS,
     11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 See the License for the specific language governing permissions and
     13 limitations under the License.
     14 ==============================================================================*/
     15 #include "flatbuffers/flexbuffers.h"  // TF:flatbuffers
     16 #include "tensorflow/lite/c/builtin_op_data.h"
     17 #include "tensorflow/lite/c/c_api_internal.h"
     18 #include "tensorflow/lite/core/subgraph.h"
     19 #include "tensorflow/lite/kernels/kernel_util.h"
     20 
     21 namespace tflite {
     22 namespace ops {
     23 namespace custom {
     24 namespace if_kernel {
     25 
     26 struct OpData {
     27   int then_subgraph_index;
     28   int else_subgraph_index;
     29 };
     30 
     31 void* Init(TfLiteContext* context, const char* buffer, size_t length) {
     32   auto* op_data = new OpData;
     33   const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
     34   const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap();
     35   op_data->then_subgraph_index = m["then_subgraph_index"].AsInt32();
     36   op_data->else_subgraph_index = m["else_subgraph_index"].AsInt32();
     37   return op_data;
     38 }
     39 
     40 void Free(TfLiteContext* context, void* buffer) {
     41   delete reinterpret_cast<OpData*>(buffer);
     42 }
     43 
     44 TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
     45   const OpData* op_data = reinterpret_cast<OpData*>(node->user_data);
     46 
     47   TF_LITE_ENSURE(context, node->inputs->size > 0);
     48 
     49   // The first input is the condition.
     50   const TfLiteTensor* cond = GetInput(context, node, 0);
     51   // Currently only bool is supported.
     52   // TODO(ycling): Support other types since TensorFlow also support
     53   // non-bool types as condition.
     54   TF_LITE_ENSURE_EQ(context, cond->type, kTfLiteBool);
     55   TF_LITE_ENSURE_EQ(context, NumElements(cond), 1);
     56 
     57   // The first input of the node is the condition. The rest of inputs are
     58   // passed to the branch subgraphs. Therefore, the number of subgraph inputs
     59   // will be the number of node inputs - 1.
     60   int num_inputs = node->inputs->size - 1;
     61   int num_outputs = node->outputs->size;
     62 
     63   Subgraph* this_subgraph = reinterpret_cast<Subgraph*>(context->impl_);
     64   auto* subgraphs = this_subgraph->GetSubgraphs();
     65   TF_LITE_ENSURE(context, op_data->then_subgraph_index < subgraphs->size());
     66   TF_LITE_ENSURE(context, op_data->else_subgraph_index < subgraphs->size());
     67 
     68   Subgraph* then_subgraph = (*subgraphs)[op_data->then_subgraph_index].get();
     69   Subgraph* else_subgraph = (*subgraphs)[op_data->else_subgraph_index].get();
     70 
     71   for (auto* subgraph : {then_subgraph, else_subgraph}) {
     72     TF_LITE_ENSURE_EQ(context, num_inputs, subgraph->inputs().size());
     73     TF_LITE_ENSURE_EQ(context, num_outputs, subgraph->outputs().size());
     74   }
     75 
     76   bool has_dynamic_output_tensors = false;
     77   for (auto* subgraph : {then_subgraph, else_subgraph}) {
     78     for (int i = 0; i < num_inputs; ++i) {
     79       // The first input of the node is the condition. The indices of the inputs
     80       // passed to the subgraphs are offset by 1.
     81       const TfLiteTensor* input = GetInput(context, node, i + 1);
     82       std::vector<int> dims(input->dims->data,
     83                             input->dims->data + input->dims->size);
     84       subgraph->ResizeInputTensor(i, dims);
     85       TfLiteTensor* subgraph_input = subgraph->tensor(subgraph->inputs()[i]);
     86       TF_LITE_ENSURE_EQ(context, input->type, subgraph_input->type);
     87     }
     88     // Note: The `Prepare` function is responsible to run `AllocateTensors` on
     89     // both subgraphs. It's intentionally not to break out of the loop when
     90     // finding a dynamic output tensor.
     91     TF_LITE_ENSURE_OK(context, subgraph->AllocateTensors());
     92     has_dynamic_output_tensors |= subgraph->HasDynamicTensors();
     93   }
     94 
     95   if (!has_dynamic_output_tensors) {
     96     for (int i = 0; i < num_outputs; ++i) {
     97       TfLiteTensor* then_output =
     98           then_subgraph->tensor(then_subgraph->outputs()[i]);
     99       TfLiteTensor* else_output =
    100           else_subgraph->tensor(else_subgraph->outputs()[i]);
    101       // If the 2 subgraphs have static but different output shapes, the output
    102       // tensors of the IF op have dynamic sizes.
    103       if (!TfLiteIntArrayEqual(then_output->dims, else_output->dims)) {
    104         has_dynamic_output_tensors = true;
    105         break;
    106       }
    107     }
    108   }
    109 
    110   for (int i = 0; i < num_outputs; ++i) {
    111     TfLiteTensor* output = GetOutput(context, node, i);
    112     if (has_dynamic_output_tensors) {
    113       SetTensorToDynamic(output);
    114     } else {
    115       // When there's no dynamic output tensors, the 2 subgraph has exactly
    116       // the same static sized outputs.
    117       TfLiteTensor* then_output =
    118           then_subgraph->tensor(then_subgraph->outputs()[i]);
    119       TfLiteIntArray* output_size = TfLiteIntArrayCopy(then_output->dims);
    120       TF_LITE_ENSURE_OK(context,
    121                         context->ResizeTensor(context, output, output_size));
    122     }
    123   }
    124 
    125   return kTfLiteOk;
    126 }
    127 
    128 TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
    129   const OpData* op_data = reinterpret_cast<OpData*>(node->user_data);
    130 
    131   const TfLiteTensor* cond = GetInput(context, node, 0);
    132   bool cond_value = cond->data.b[0];
    133 
    134   Subgraph* this_subgraph = reinterpret_cast<Subgraph*>(context->impl_);
    135   auto* subgraphs = this_subgraph->GetSubgraphs();
    136 
    137   // Currently we copy the input / output between the subgraphs. This isn't
    138   // optimized yet.
    139   // TODO(b/120234921): Optimize and avoid copying tensors between subgraphs.
    140   int active_branch_subgraph_index =
    141       cond_value ? op_data->then_subgraph_index : op_data->else_subgraph_index;
    142   Subgraph& active_branch_subgraph =
    143       *(*subgraphs)[active_branch_subgraph_index];
    144   for (int i = 0; i < active_branch_subgraph.inputs().size(); ++i) {
    145     const TfLiteTensor* input = GetInput(context, node, i + 1);
    146     TfLiteTensor* subgraph_input =
    147         active_branch_subgraph.tensor(active_branch_subgraph.inputs()[i]);
    148     TF_LITE_ENSURE_EQ(context, input->bytes, subgraph_input->bytes);
    149     memcpy(subgraph_input->data.raw, input->data.raw, input->bytes);
    150   }
    151 
    152   // Note: It's guaranteed that the subgraphs' `AllocateTensors` are called
    153   // in `Prepare`, so we don't need to do it here again.
    154   TF_LITE_ENSURE_OK(context, active_branch_subgraph.Invoke());
    155 
    156   for (int tensor_index : active_branch_subgraph.outputs()) {
    157     active_branch_subgraph.EnsureTensorDataIsReadable(tensor_index);
    158   }
    159 
    160   bool has_dynamic_output_tensors = false;
    161   for (int i = 0; i < node->outputs->size; ++i) {
    162     TfLiteTensor* output = GetOutput(context, node, i);
    163     if (IsDynamicTensor(output)) {
    164       has_dynamic_output_tensors = true;
    165       break;
    166     }
    167   }
    168 
    169   if (has_dynamic_output_tensors) {
    170     for (int i = 0; i < node->outputs->size; ++i) {
    171       TfLiteTensor* output = GetOutput(context, node, i);
    172       TfLiteTensor* subgraph_output =
    173           active_branch_subgraph.tensor(active_branch_subgraph.outputs()[i]);
    174       TfLiteIntArray* output_size = TfLiteIntArrayCopy(subgraph_output->dims);
    175       TF_LITE_ENSURE_OK(context,
    176                         context->ResizeTensor(context, output, output_size));
    177     }
    178   }
    179 
    180   for (int i = 0; i < active_branch_subgraph.outputs().size(); ++i) {
    181     const TfLiteTensor* subgraph_output =
    182         active_branch_subgraph.tensor(active_branch_subgraph.outputs()[i]);
    183     TfLiteTensor* output = GetOutput(context, node, i);
    184     TF_LITE_ENSURE_EQ(context, output->bytes, subgraph_output->bytes);
    185     memcpy(output->data.raw, subgraph_output->data.raw, output->bytes);
    186   }
    187   return kTfLiteOk;
    188 }
    189 
    190 }  // namespace if_kernel
    191 
    192 TfLiteRegistration* Register_IF() {
    193   static TfLiteRegistration r = {if_kernel::Init, if_kernel::Free,
    194                                  if_kernel::Prepare, if_kernel::Eval};
    195   return &r;
    196 }
    197 
    198 }  // namespace custom
    199 }  // namespace ops
    200 }  // namespace tflite
    201