Home | History | Annotate | Download | only in llvmpipe
      1 /**************************************************************************
      2  *
      3  * Copyright 2007 VMware, Inc.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /*
     29  * Binning code for triangles
     30  */
     31 
     32 #include "util/u_math.h"
     33 #include "util/u_memory.h"
     34 #include "util/u_rect.h"
     35 #include "util/u_sse.h"
     36 #include "lp_perf.h"
     37 #include "lp_setup_context.h"
     38 #include "lp_rast.h"
     39 #include "lp_state_fs.h"
     40 #include "lp_state_setup.h"
     41 #include "lp_context.h"
     42 
     43 #include <inttypes.h>
     44 
     45 #define NUM_CHANNELS 4
     46 
     47 #if defined(PIPE_ARCH_SSE)
     48 #include <emmintrin.h>
     49 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN)
     50 #include <altivec.h>
     51 #include "util/u_pwr8.h"
     52 #endif
     53 
     54 #if !defined(PIPE_ARCH_SSE)
     55 
     56 static inline int
     57 subpixel_snap(float a)
     58 {
     59    return util_iround(FIXED_ONE * a);
     60 }
     61 
     62 #endif
     63 
     64 /* Position and area in fixed point coordinates */
     65 struct fixed_position {
     66    int32_t x[4];
     67    int32_t y[4];
     68    int32_t dx01;
     69    int32_t dy01;
     70    int32_t dx20;
     71    int32_t dy20;
     72    int64_t area;
     73 };
     74 
     75 
     76 /**
     77  * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
     78  * immediately after it.
     79  * The memory is allocated from the per-scene pool, not per-tile.
     80  * \param tri_size  returns number of bytes allocated
     81  * \param num_inputs  number of fragment shader inputs
     82  * \return pointer to triangle space
     83  */
     84 struct lp_rast_triangle *
     85 lp_setup_alloc_triangle(struct lp_scene *scene,
     86                         unsigned nr_inputs,
     87                         unsigned nr_planes,
     88                         unsigned *tri_size)
     89 {
     90    unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
     91    unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
     92    struct lp_rast_triangle *tri;
     93 
     94    STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0);
     95 
     96    *tri_size = (sizeof(struct lp_rast_triangle) +
     97                 3 * input_array_sz +
     98                 plane_sz);
     99 
    100    tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
    101    if (!tri)
    102       return NULL;
    103 
    104    tri->inputs.stride = input_array_sz;
    105 
    106    {
    107       char *a = (char *)tri;
    108       char *b = (char *)&GET_PLANES(tri)[nr_planes];
    109       assert(b - a == *tri_size);
    110    }
    111 
    112    return tri;
    113 }
    114 
    115 void
    116 lp_setup_print_vertex(struct lp_setup_context *setup,
    117                       const char *name,
    118                       const float (*v)[4])
    119 {
    120    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    121    int i, j;
    122 
    123    debug_printf("   wpos (%s[0]) xyzw %f %f %f %f\n",
    124                 name,
    125                 v[0][0], v[0][1], v[0][2], v[0][3]);
    126 
    127    for (i = 0; i < key->num_inputs; i++) {
    128       const float *in = v[key->inputs[i].src_index];
    129 
    130       debug_printf("  in[%d] (%s[%d]) %s%s%s%s ",
    131                    i,
    132                    name, key->inputs[i].src_index,
    133                    (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
    134                    (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
    135                    (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
    136                    (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
    137 
    138       for (j = 0; j < 4; j++)
    139          if (key->inputs[i].usage_mask & (1<<j))
    140             debug_printf("%.5f ", in[j]);
    141 
    142       debug_printf("\n");
    143    }
    144 }
    145 
    146 
    147 /**
    148  * Print triangle vertex attribs (for debug).
    149  */
    150 void
    151 lp_setup_print_triangle(struct lp_setup_context *setup,
    152                         const float (*v0)[4],
    153                         const float (*v1)[4],
    154                         const float (*v2)[4])
    155 {
    156    debug_printf("triangle\n");
    157 
    158    {
    159       const float ex = v0[0][0] - v2[0][0];
    160       const float ey = v0[0][1] - v2[0][1];
    161       const float fx = v1[0][0] - v2[0][0];
    162       const float fy = v1[0][1] - v2[0][1];
    163 
    164       /* det = cross(e,f).z */
    165       const float det = ex * fy - ey * fx;
    166       if (det < 0.0f)
    167          debug_printf("   - ccw\n");
    168       else if (det > 0.0f)
    169          debug_printf("   - cw\n");
    170       else
    171          debug_printf("   - zero area\n");
    172    }
    173 
    174    lp_setup_print_vertex(setup, "v0", v0);
    175    lp_setup_print_vertex(setup, "v1", v1);
    176    lp_setup_print_vertex(setup, "v2", v2);
    177 }
    178 
    179 
    180 #define MAX_PLANES 8
    181 static unsigned
    182 lp_rast_tri_tab[MAX_PLANES+1] = {
    183    0,               /* should be impossible */
    184    LP_RAST_OP_TRIANGLE_1,
    185    LP_RAST_OP_TRIANGLE_2,
    186    LP_RAST_OP_TRIANGLE_3,
    187    LP_RAST_OP_TRIANGLE_4,
    188    LP_RAST_OP_TRIANGLE_5,
    189    LP_RAST_OP_TRIANGLE_6,
    190    LP_RAST_OP_TRIANGLE_7,
    191    LP_RAST_OP_TRIANGLE_8
    192 };
    193 
    194 static unsigned
    195 lp_rast_32_tri_tab[MAX_PLANES+1] = {
    196    0,               /* should be impossible */
    197    LP_RAST_OP_TRIANGLE_32_1,
    198    LP_RAST_OP_TRIANGLE_32_2,
    199    LP_RAST_OP_TRIANGLE_32_3,
    200    LP_RAST_OP_TRIANGLE_32_4,
    201    LP_RAST_OP_TRIANGLE_32_5,
    202    LP_RAST_OP_TRIANGLE_32_6,
    203    LP_RAST_OP_TRIANGLE_32_7,
    204    LP_RAST_OP_TRIANGLE_32_8
    205 };
    206 
    207 
    208 
    209 /**
    210  * The primitive covers the whole tile- shade whole tile.
    211  *
    212  * \param tx, ty  the tile position in tiles, not pixels
    213  */
    214 static boolean
    215 lp_setup_whole_tile(struct lp_setup_context *setup,
    216                     const struct lp_rast_shader_inputs *inputs,
    217                     int tx, int ty)
    218 {
    219    struct lp_scene *scene = setup->scene;
    220 
    221    LP_COUNT(nr_fully_covered_64);
    222 
    223    /* if variant is opaque and scissor doesn't effect the tile */
    224    if (inputs->opaque) {
    225       /* Several things prevent this optimization from working:
    226        * - For layered rendering we can't determine if this covers the same layer
    227        * as previous rendering (or in case of clears those actually always cover
    228        * all layers so optimization is impossible). Need to use fb_max_layer and
    229        * not setup->layer_slot to determine this since even if there's currently
    230        * no slot assigned previous rendering could have used one.
    231        * - If there were any Begin/End query commands in the scene then those
    232        * would get removed which would be very wrong. Furthermore, if queries
    233        * were just active we also can't do the optimization since to get
    234        * accurate query results we unfortunately need to execute the rendering
    235        * commands.
    236        */
    237       if (!scene->fb.zsbuf && scene->fb_max_layer == 0 && !scene->had_queries) {
    238          /*
    239           * All previous rendering will be overwritten so reset the bin.
    240           */
    241          lp_scene_bin_reset( scene, tx, ty );
    242       }
    243 
    244       LP_COUNT(nr_shade_opaque_64);
    245       return lp_scene_bin_cmd_with_state( scene, tx, ty,
    246                                           setup->fs.stored,
    247                                           LP_RAST_OP_SHADE_TILE_OPAQUE,
    248                                           lp_rast_arg_inputs(inputs) );
    249    } else {
    250       LP_COUNT(nr_shade_64);
    251       return lp_scene_bin_cmd_with_state( scene, tx, ty,
    252                                           setup->fs.stored,
    253                                           LP_RAST_OP_SHADE_TILE,
    254                                           lp_rast_arg_inputs(inputs) );
    255    }
    256 }
    257 
    258 
    259 /**
    260  * Do basic setup for triangle rasterization and determine which
    261  * framebuffer tiles are touched.  Put the triangle in the scene's
    262  * bins for the tiles which we overlap.
    263  */
    264 static boolean
    265 do_triangle_ccw(struct lp_setup_context *setup,
    266                 struct fixed_position* position,
    267                 const float (*v0)[4],
    268                 const float (*v1)[4],
    269                 const float (*v2)[4],
    270                 boolean frontfacing )
    271 {
    272    struct lp_scene *scene = setup->scene;
    273    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    274    struct lp_rast_triangle *tri;
    275    struct lp_rast_plane *plane;
    276    const struct u_rect *scissor;
    277    struct u_rect bbox, bboxpos;
    278    boolean s_planes[4];
    279    unsigned tri_bytes;
    280    int nr_planes = 3;
    281    unsigned viewport_index = 0;
    282    unsigned layer = 0;
    283    const float (*pv)[4];
    284 
    285    /* Area should always be positive here */
    286    assert(position->area > 0);
    287 
    288    if (0)
    289       lp_setup_print_triangle(setup, v0, v1, v2);
    290 
    291    if (setup->flatshade_first) {
    292       pv = v0;
    293    }
    294    else {
    295       pv = v2;
    296    }
    297    if (setup->viewport_index_slot > 0) {
    298       unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
    299       viewport_index = lp_clamp_viewport_idx(*udata);
    300    }
    301    if (setup->layer_slot > 0) {
    302       layer = *(unsigned*)pv[setup->layer_slot];
    303       layer = MIN2(layer, scene->fb_max_layer);
    304    }
    305 
    306    /* Bounding rectangle (in pixels) */
    307    {
    308       /* Yes this is necessary to accurately calculate bounding boxes
    309        * with the two fill-conventions we support.  GL (normally) ends
    310        * up needing a bottom-left fill convention, which requires
    311        * slightly different rounding.
    312        */
    313       int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
    314 
    315       /* Inclusive x0, exclusive x1 */
    316       bbox.x0 =  MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
    317       bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
    318 
    319       /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
    320       bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
    321       bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
    322    }
    323 
    324    if (bbox.x1 < bbox.x0 ||
    325        bbox.y1 < bbox.y0) {
    326       if (0) debug_printf("empty bounding box\n");
    327       LP_COUNT(nr_culled_tris);
    328       return TRUE;
    329    }
    330 
    331    if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
    332       if (0) debug_printf("offscreen\n");
    333       LP_COUNT(nr_culled_tris);
    334       return TRUE;
    335    }
    336 
    337    bboxpos = bbox;
    338 
    339    /* Can safely discard negative regions, but need to keep hold of
    340     * information about when the triangle extends past screen
    341     * boundaries.  See trimmed_box in lp_setup_bin_triangle().
    342     */
    343    bboxpos.x0 = MAX2(bboxpos.x0, 0);
    344    bboxpos.y0 = MAX2(bboxpos.y0, 0);
    345 
    346    nr_planes = 3;
    347    /*
    348     * Determine how many scissor planes we need, that is drop scissor
    349     * edges if the bounding box of the tri is fully inside that edge.
    350     */
    351    if (setup->scissor_test) {
    352       /* why not just use draw_regions */
    353       scissor = &setup->scissors[viewport_index];
    354       scissor_planes_needed(s_planes, &bboxpos, scissor);
    355       nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
    356    }
    357 
    358    tri = lp_setup_alloc_triangle(scene,
    359                                  key->num_inputs,
    360                                  nr_planes,
    361                                  &tri_bytes);
    362    if (!tri)
    363       return FALSE;
    364 
    365 #ifdef DEBUG
    366    tri->v[0][0] = v0[0][0];
    367    tri->v[1][0] = v1[0][0];
    368    tri->v[2][0] = v2[0][0];
    369    tri->v[0][1] = v0[0][1];
    370    tri->v[1][1] = v1[0][1];
    371    tri->v[2][1] = v2[0][1];
    372 #endif
    373 
    374    LP_COUNT(nr_tris);
    375 
    376    /* Setup parameter interpolants:
    377     */
    378    setup->setup.variant->jit_function(v0, v1, v2,
    379                                       frontfacing,
    380                                       GET_A0(&tri->inputs),
    381                                       GET_DADX(&tri->inputs),
    382                                       GET_DADY(&tri->inputs));
    383 
    384    tri->inputs.frontfacing = frontfacing;
    385    tri->inputs.disable = FALSE;
    386    tri->inputs.opaque = setup->fs.current.variant->opaque;
    387    tri->inputs.layer = layer;
    388    tri->inputs.viewport_index = viewport_index;
    389 
    390    if (0)
    391       lp_dump_setup_coef(&setup->setup.variant->key,
    392                          (const float (*)[4])GET_A0(&tri->inputs),
    393                          (const float (*)[4])GET_DADX(&tri->inputs),
    394                          (const float (*)[4])GET_DADY(&tri->inputs));
    395 
    396    plane = GET_PLANES(tri);
    397 
    398 #if defined(PIPE_ARCH_SSE)
    399    if (1) {
    400       __m128i vertx, verty;
    401       __m128i shufx, shufy;
    402       __m128i dcdx, dcdy;
    403       __m128i cdx02, cdx13, cdy02, cdy13, c02, c13;
    404       __m128i c01, c23, unused;
    405       __m128i dcdx_neg_mask;
    406       __m128i dcdy_neg_mask;
    407       __m128i dcdx_zero_mask;
    408       __m128i top_left_flag, c_dec;
    409       __m128i eo, p0, p1, p2;
    410       __m128i zero = _mm_setzero_si128();
    411 
    412       vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */
    413       verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */
    414 
    415       shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
    416       shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
    417 
    418       dcdx = _mm_sub_epi32(verty, shufy);
    419       dcdy = _mm_sub_epi32(vertx, shufx);
    420 
    421       dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
    422       dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
    423       dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
    424 
    425       top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
    426 
    427       c_dec = _mm_or_si128(dcdx_neg_mask,
    428                            _mm_and_si128(dcdx_zero_mask,
    429                                          _mm_xor_si128(dcdy_neg_mask,
    430                                                        top_left_flag)));
    431 
    432       /*
    433        * 64 bit arithmetic.
    434        * Note we need _signed_ mul (_mm_mul_epi32) which we emulate.
    435        */
    436       cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13);
    437       cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13);
    438       c02 = _mm_sub_epi64(cdx02, cdy02);
    439       c13 = _mm_sub_epi64(cdx13, cdy13);
    440       c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec,
    441                                                  _MM_SHUFFLE(2,2,0,0)));
    442       c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec,
    443                                                  _MM_SHUFFLE(3,3,1,1)));
    444 
    445       /*
    446        * Useful for very small fbs/tris (or fewer subpixel bits) only:
    447        * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
    448        *                   mm_mullo_epi32(dcdy, verty));
    449        *
    450        * c = _mm_sub_epi32(c, c_dec);
    451        */
    452 
    453       /* Scale up to match c:
    454        */
    455       dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
    456       dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
    457 
    458       /*
    459        * Calculate trivial reject values:
    460        * Note eo cannot overflow even if dcdx/dcdy would already have
    461        * 31 bits (which they shouldn't have). This is because eo
    462        * is never negative (albeit if we rely on that need to be careful...)
    463        */
    464       eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
    465                          _mm_and_si128(dcdx_neg_mask, dcdx));
    466 
    467       /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
    468 
    469       /*
    470        * Pointless transpose which gets undone immediately in
    471        * rasterization.
    472        * It is actually difficult to do away with it - would essentially
    473        * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations
    474        * for this then would need to depend on the number of planes.
    475        * The transpose is quite special here due to c being 64bit...
    476        * The store has to be unaligned (unless we'd make the plane size
    477        * a multiple of 128), and of course storing eo separately...
    478        */
    479       c01 = _mm_unpacklo_epi64(c02, c13);
    480       c23 = _mm_unpackhi_epi64(c02, c13);
    481       transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy,
    482                          &p0, &p1, &p2, &unused);
    483       _mm_storeu_si128((__m128i *)&plane[0], p0);
    484       plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo);
    485       _mm_storeu_si128((__m128i *)&plane[1], p1);
    486       eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1));
    487       plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo);
    488       _mm_storeu_si128((__m128i *)&plane[2], p2);
    489       eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2));
    490       plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo);
    491    } else
    492 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN)
    493    /*
    494     * XXX this code is effectively disabled for all practical purposes,
    495     * as the allowed fb size is tiny if FIXED_ORDER is 8.
    496     */
    497    if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
    498        setup->fb.height <= MAX_FIXED_LENGTH32 &&
    499        (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
    500        (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) {
    501       unsigned int bottom_edge;
    502       __m128i vertx, verty;
    503       __m128i shufx, shufy;
    504       __m128i dcdx, dcdy, c;
    505       __m128i unused;
    506       __m128i dcdx_neg_mask;
    507       __m128i dcdy_neg_mask;
    508       __m128i dcdx_zero_mask;
    509       __m128i top_left_flag;
    510       __m128i c_inc_mask, c_inc;
    511       __m128i eo, p0, p1, p2;
    512       __m128i_union vshuf_mask;
    513       __m128i zero = vec_splats((unsigned char) 0);
    514       PIPE_ALIGN_VAR(16) int32_t temp_vec[4];
    515 
    516 #ifdef PIPE_ARCH_LITTLE_ENDIAN
    517       vshuf_mask.i[0] = 0x07060504;
    518       vshuf_mask.i[1] = 0x0B0A0908;
    519       vshuf_mask.i[2] = 0x03020100;
    520       vshuf_mask.i[3] = 0x0F0E0D0C;
    521 #else
    522       vshuf_mask.i[0] = 0x00010203;
    523       vshuf_mask.i[1] = 0x0C0D0E0F;
    524       vshuf_mask.i[2] = 0x04050607;
    525       vshuf_mask.i[3] = 0x08090A0B;
    526 #endif
    527 
    528       /* vertex x coords */
    529       vertx = vec_load_si128((const uint32_t *) position->x);
    530       /* vertex y coords */
    531       verty = vec_load_si128((const uint32_t *) position->y);
    532 
    533       shufx = vec_perm (vertx, vertx, vshuf_mask.m128i);
    534       shufy = vec_perm (verty, verty, vshuf_mask.m128i);
    535 
    536       dcdx = vec_sub_epi32(verty, shufy);
    537       dcdy = vec_sub_epi32(vertx, shufx);
    538 
    539       dcdx_neg_mask = vec_srai_epi32(dcdx, 31);
    540       dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero);
    541       dcdy_neg_mask = vec_srai_epi32(dcdy, 31);
    542 
    543       bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0;
    544       top_left_flag = (__m128i) vec_splats(bottom_edge);
    545 
    546       c_inc_mask = vec_or(dcdx_neg_mask,
    547                                 vec_and(dcdx_zero_mask,
    548                                               vec_xor(dcdy_neg_mask,
    549                                                             top_left_flag)));
    550 
    551       c_inc = vec_srli_epi32(c_inc_mask, 31);
    552 
    553       c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx),
    554                         vec_mullo_epi32(dcdy, verty));
    555 
    556       c = vec_add_epi32(c, c_inc);
    557 
    558       /* Scale up to match c:
    559        */
    560       dcdx = vec_slli_epi32(dcdx, FIXED_ORDER);
    561       dcdy = vec_slli_epi32(dcdy, FIXED_ORDER);
    562 
    563       /* Calculate trivial reject values:
    564        */
    565       eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy),
    566                          vec_and(dcdx_neg_mask, dcdx));
    567 
    568       /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
    569 
    570       /* Pointless transpose which gets undone immediately in
    571        * rasterization:
    572        */
    573       transpose4_epi32(&c, &dcdx, &dcdy, &eo,
    574                        &p0, &p1, &p2, &unused);
    575 
    576 #define STORE_PLANE(plane, vec) do {                  \
    577          vec_store_si128((uint32_t *)&temp_vec, vec); \
    578          plane.c    = (int64_t)temp_vec[0];           \
    579          plane.dcdx = temp_vec[1];                    \
    580          plane.dcdy = temp_vec[2];                    \
    581          plane.eo   = temp_vec[3];                    \
    582       } while(0)
    583 
    584       STORE_PLANE(plane[0], p0);
    585       STORE_PLANE(plane[1], p1);
    586       STORE_PLANE(plane[2], p2);
    587 #undef STORE_PLANE
    588    } else
    589 #endif
    590    {
    591       int i;
    592       plane[0].dcdy = position->dx01;
    593       plane[1].dcdy = position->x[1] - position->x[2];
    594       plane[2].dcdy = position->dx20;
    595       plane[0].dcdx = position->dy01;
    596       plane[1].dcdx = position->y[1] - position->y[2];
    597       plane[2].dcdx = position->dy20;
    598 
    599       for (i = 0; i < 3; i++) {
    600          /* half-edge constants, will be iterated over the whole render
    601           * target.
    602           */
    603          plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
    604                       IMUL64(plane[i].dcdy, position->y[i]);
    605 
    606          /* correct for top-left vs. bottom-left fill convention.
    607           */
    608          if (plane[i].dcdx < 0) {
    609             /* both fill conventions want this - adjust for left edges */
    610             plane[i].c++;
    611          }
    612          else if (plane[i].dcdx == 0) {
    613             if (setup->bottom_edge_rule == 0){
    614                /* correct for top-left fill convention:
    615                 */
    616                if (plane[i].dcdy > 0) plane[i].c++;
    617             }
    618             else {
    619                /* correct for bottom-left fill convention:
    620                 */
    621                if (plane[i].dcdy < 0) plane[i].c++;
    622             }
    623          }
    624 
    625          /* Scale up to match c:
    626           */
    627          assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
    628          assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
    629          plane[i].dcdx <<= FIXED_ORDER;
    630          plane[i].dcdy <<= FIXED_ORDER;
    631 
    632          /* find trivial reject offsets for each edge for a single-pixel
    633           * sized block.  These will be scaled up at each recursive level to
    634           * match the active blocksize.  Scaling in this way works best if
    635           * the blocks are square.
    636           */
    637          plane[i].eo = 0;
    638          if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
    639          if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
    640       }
    641    }
    642 
    643    if (0) {
    644       debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n",
    645                    plane[0].c,
    646                    plane[0].dcdx,
    647                    plane[0].dcdy,
    648                    plane[0].eo);
    649 
    650       debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n",
    651                    plane[1].c,
    652                    plane[1].dcdx,
    653                    plane[1].dcdy,
    654                    plane[1].eo);
    655 
    656       debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n",
    657                    plane[2].c,
    658                    plane[2].dcdx,
    659                    plane[2].dcdy,
    660                    plane[2].eo);
    661    }
    662 
    663 
    664    /*
    665     * When rasterizing scissored tris, use the intersection of the
    666     * triangle bounding box and the scissor rect to generate the
    667     * scissor planes.
    668     *
    669     * This permits us to cut off the triangle "tails" that are present
    670     * in the intermediate recursive levels caused when two of the
    671     * triangles edges don't diverge quickly enough to trivially reject
    672     * exterior blocks from the triangle.
    673     *
    674     * It's not really clear if it's worth worrying about these tails,
    675     * but since we generate the planes for each scissored tri, it's
    676     * free to trim them in this case.
    677     *
    678     * Note that otherwise, the scissor planes only vary in 'C' value,
    679     * and even then only on state-changes.  Could alternatively store
    680     * these planes elsewhere.
    681     * (Or only store the c value together with a bit indicating which
    682     * scissor edge this is, so rasterization would treat them differently
    683     * (easier to evaluate) to ordinary planes.)
    684     */
    685    if (nr_planes > 3) {
    686       /* why not just use draw_regions */
    687       struct lp_rast_plane *plane_s = &plane[3];
    688 
    689       if (s_planes[0]) {
    690          plane_s->dcdx = -1 << 8;
    691          plane_s->dcdy = 0;
    692          plane_s->c = (1-scissor->x0) << 8;
    693          plane_s->eo = 1 << 8;
    694          plane_s++;
    695       }
    696       if (s_planes[1]) {
    697          plane_s->dcdx = 1 << 8;
    698          plane_s->dcdy = 0;
    699          plane_s->c = (scissor->x1+1) << 8;
    700          plane_s->eo = 0 << 8;
    701          plane_s++;
    702       }
    703       if (s_planes[2]) {
    704          plane_s->dcdx = 0;
    705          plane_s->dcdy = 1 << 8;
    706          plane_s->c = (1-scissor->y0) << 8;
    707          plane_s->eo = 1 << 8;
    708          plane_s++;
    709       }
    710       if (s_planes[3]) {
    711          plane_s->dcdx = 0;
    712          plane_s->dcdy = -1 << 8;
    713          plane_s->c = (scissor->y1+1) << 8;
    714          plane_s->eo = 0;
    715          plane_s++;
    716       }
    717       assert(plane_s == &plane[nr_planes]);
    718    }
    719 
    720    return lp_setup_bin_triangle(setup, tri, &bbox, &bboxpos, nr_planes, viewport_index);
    721 }
    722 
    723 /*
    724  * Round to nearest less or equal power of two of the input.
    725  *
    726  * Undefined if no bit set exists, so code should check against 0 first.
    727  */
    728 static inline uint32_t
    729 floor_pot(uint32_t n)
    730 {
    731 #if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64))
    732    if (n == 0)
    733       return 0;
    734 
    735    __asm__("bsr %1,%0"
    736           : "=r" (n)
    737           : "rm" (n));
    738    return 1 << n;
    739 #else
    740    n |= (n >>  1);
    741    n |= (n >>  2);
    742    n |= (n >>  4);
    743    n |= (n >>  8);
    744    n |= (n >> 16);
    745    return n - (n >> 1);
    746 #endif
    747 }
    748 
    749 
    750 boolean
    751 lp_setup_bin_triangle(struct lp_setup_context *setup,
    752                       struct lp_rast_triangle *tri,
    753                       const struct u_rect *bboxorig,
    754                       const struct u_rect *bbox,
    755                       int nr_planes,
    756                       unsigned viewport_index)
    757 {
    758    struct lp_scene *scene = setup->scene;
    759    struct u_rect trimmed_box = *bbox;
    760    int i;
    761    /* What is the largest power-of-two boundary this triangle crosses:
    762     */
    763    int dx = floor_pot((bbox->x0 ^ bbox->x1) |
    764 		      (bbox->y0 ^ bbox->y1));
    765 
    766    /* The largest dimension of the rasterized area of the triangle
    767     * (aligned to a 4x4 grid), rounded down to the nearest power of two:
    768     */
    769    int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
    770                  (bbox->y1 - (bbox->y0 & ~3)));
    771    int sz = floor_pot(max_sz);
    772 
    773    /*
    774     * NOTE: It is important to use the original bounding box
    775     * which might contain negative values here, because if the
    776     * plane math may overflow or not with the 32bit rasterization
    777     * functions depends on the original extent of the triangle.
    778     */
    779    int max_szorig = ((bboxorig->x1 - (bboxorig->x0 & ~3)) |
    780                      (bboxorig->y1 - (bboxorig->y0 & ~3)));
    781    boolean use_32bits = max_szorig <= MAX_FIXED_LENGTH32;
    782 
    783    /* Now apply scissor, etc to the bounding box.  Could do this
    784     * earlier, but it confuses the logic for tri-16 and would force
    785     * the rasterizer to also respect scissor, etc, just for the rare
    786     * cases where a small triangle extends beyond the scissor.
    787     */
    788    u_rect_find_intersection(&setup->draw_regions[viewport_index],
    789                             &trimmed_box);
    790 
    791    /* Determine which tile(s) intersect the triangle's bounding box
    792     */
    793    if (dx < TILE_SIZE)
    794    {
    795       int ix0 = bbox->x0 / TILE_SIZE;
    796       int iy0 = bbox->y0 / TILE_SIZE;
    797       unsigned px = bbox->x0 & 63 & ~3;
    798       unsigned py = bbox->y0 & 63 & ~3;
    799 
    800       assert(iy0 == bbox->y1 / TILE_SIZE &&
    801 	     ix0 == bbox->x1 / TILE_SIZE);
    802 
    803       if (nr_planes == 3) {
    804          if (sz < 4)
    805          {
    806             /* Triangle is contained in a single 4x4 stamp:
    807              */
    808             assert(px + 4 <= TILE_SIZE);
    809             assert(py + 4 <= TILE_SIZE);
    810             return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
    811                                                 setup->fs.stored,
    812                                                 use_32bits ?
    813                                                 LP_RAST_OP_TRIANGLE_32_3_4 :
    814                                                 LP_RAST_OP_TRIANGLE_3_4,
    815                                                 lp_rast_arg_triangle_contained(tri, px, py) );
    816          }
    817 
    818          if (sz < 16)
    819          {
    820             /* Triangle is contained in a single 16x16 block:
    821              */
    822 
    823             /*
    824              * The 16x16 block is only 4x4 aligned, and can exceed the tile
    825              * dimensions if the triangle is 16 pixels in one dimension but 4
    826              * in the other. So budge the 16x16 back inside the tile.
    827              */
    828             px = MIN2(px, TILE_SIZE - 16);
    829             py = MIN2(py, TILE_SIZE - 16);
    830 
    831             assert(px + 16 <= TILE_SIZE);
    832             assert(py + 16 <= TILE_SIZE);
    833 
    834             return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
    835                                                 setup->fs.stored,
    836                                                 use_32bits ?
    837                                                 LP_RAST_OP_TRIANGLE_32_3_16 :
    838                                                 LP_RAST_OP_TRIANGLE_3_16,
    839                                                 lp_rast_arg_triangle_contained(tri, px, py) );
    840          }
    841       }
    842       else if (nr_planes == 4 && sz < 16)
    843       {
    844          px = MIN2(px, TILE_SIZE - 16);
    845          py = MIN2(py, TILE_SIZE - 16);
    846 
    847          assert(px + 16 <= TILE_SIZE);
    848          assert(py + 16 <= TILE_SIZE);
    849 
    850          return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
    851                                             setup->fs.stored,
    852                                             use_32bits ?
    853                                             LP_RAST_OP_TRIANGLE_32_4_16 :
    854                                             LP_RAST_OP_TRIANGLE_4_16,
    855                                             lp_rast_arg_triangle_contained(tri, px, py));
    856       }
    857 
    858 
    859       /* Triangle is contained in a single tile:
    860        */
    861       return lp_scene_bin_cmd_with_state(
    862          scene, ix0, iy0, setup->fs.stored,
    863          use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes],
    864          lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
    865    }
    866    else
    867    {
    868       struct lp_rast_plane *plane = GET_PLANES(tri);
    869       int64_t c[MAX_PLANES];
    870       int64_t ei[MAX_PLANES];
    871 
    872       int64_t eo[MAX_PLANES];
    873       int64_t xstep[MAX_PLANES];
    874       int64_t ystep[MAX_PLANES];
    875       int x, y;
    876 
    877       int ix0 = trimmed_box.x0 / TILE_SIZE;
    878       int iy0 = trimmed_box.y0 / TILE_SIZE;
    879       int ix1 = trimmed_box.x1 / TILE_SIZE;
    880       int iy1 = trimmed_box.y1 / TILE_SIZE;
    881 
    882       for (i = 0; i < nr_planes; i++) {
    883          c[i] = (plane[i].c +
    884                  IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
    885                  IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
    886 
    887          ei[i] = (plane[i].dcdy -
    888                   plane[i].dcdx -
    889                   (int64_t)plane[i].eo) << TILE_ORDER;
    890 
    891          eo[i] = (int64_t)plane[i].eo << TILE_ORDER;
    892          xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
    893          ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
    894       }
    895 
    896 
    897 
    898       /* Test tile-sized blocks against the triangle.
    899        * Discard blocks fully outside the tri.  If the block is fully
    900        * contained inside the tri, bin an lp_rast_shade_tile command.
    901        * Else, bin a lp_rast_triangle command.
    902        */
    903       for (y = iy0; y <= iy1; y++)
    904       {
    905          boolean in = FALSE;  /* are we inside the triangle? */
    906          int64_t cx[MAX_PLANES];
    907 
    908          for (i = 0; i < nr_planes; i++)
    909             cx[i] = c[i];
    910 
    911          for (x = ix0; x <= ix1; x++)
    912          {
    913             int out = 0;
    914             int partial = 0;
    915 
    916             for (i = 0; i < nr_planes; i++) {
    917                int64_t planeout = cx[i] + eo[i];
    918                int64_t planepartial = cx[i] + ei[i] - 1;
    919                out |= (int) (planeout >> 63);
    920                partial |= ((int) (planepartial >> 63)) & (1<<i);
    921             }
    922 
    923             if (out) {
    924                /* do nothing */
    925                if (in)
    926                   break;  /* exiting triangle, all done with this row */
    927                LP_COUNT(nr_empty_64);
    928             }
    929             else if (partial) {
    930                /* Not trivially accepted by at least one plane -
    931                 * rasterize/shade partial tile
    932                 */
    933                int count = util_bitcount(partial);
    934                in = TRUE;
    935 
    936                if (!lp_scene_bin_cmd_with_state( scene, x, y,
    937                                                  setup->fs.stored,
    938                                                  use_32bits ?
    939                                                  lp_rast_32_tri_tab[count] :
    940                                                  lp_rast_tri_tab[count],
    941                                                  lp_rast_arg_triangle(tri, partial) ))
    942                   goto fail;
    943 
    944                LP_COUNT(nr_partially_covered_64);
    945             }
    946             else {
    947                /* triangle covers the whole tile- shade whole tile */
    948                LP_COUNT(nr_fully_covered_64);
    949                in = TRUE;
    950                if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
    951                   goto fail;
    952             }
    953 
    954             /* Iterate cx values across the region: */
    955             for (i = 0; i < nr_planes; i++)
    956                cx[i] += xstep[i];
    957          }
    958 
    959          /* Iterate c values down the region: */
    960          for (i = 0; i < nr_planes; i++)
    961             c[i] += ystep[i];
    962       }
    963    }
    964 
    965    return TRUE;
    966 
    967 fail:
    968    /* Need to disable any partially binned triangle.  This is easier
    969     * than trying to locate all the triangle, shade-tile, etc,
    970     * commands which may have been binned.
    971     */
    972    tri->inputs.disable = TRUE;
    973    return FALSE;
    974 }
    975 
    976 
    977 /**
    978  * Try to draw the triangle, restart the scene on failure.
    979  */
    980 static void retry_triangle_ccw( struct lp_setup_context *setup,
    981                                 struct fixed_position* position,
    982                                 const float (*v0)[4],
    983                                 const float (*v1)[4],
    984                                 const float (*v2)[4],
    985                                 boolean front)
    986 {
    987    if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
    988    {
    989       if (!lp_setup_flush_and_restart(setup))
    990          return;
    991 
    992       if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
    993          return;
    994    }
    995 }
    996 
    997 /**
    998  * Calculate fixed position data for a triangle
    999  * It is unfortunate we need to do that here (as we need area
   1000  * calculated in fixed point), as there's quite some code duplication
   1001  * to what is done in the jit setup prog.
   1002  */
   1003 static inline void
   1004 calc_fixed_position(struct lp_setup_context *setup,
   1005                     struct fixed_position* position,
   1006                     const float (*v0)[4],
   1007                     const float (*v1)[4],
   1008                     const float (*v2)[4])
   1009 {
   1010    /*
   1011     * The rounding may not be quite the same with PIPE_ARCH_SSE
   1012     * (util_iround right now only does nearest/even on x87,
   1013     * otherwise nearest/away-from-zero).
   1014     * Both should be acceptable, I think.
   1015     */
   1016 #if defined(PIPE_ARCH_SSE)
   1017    __m128 v0r, v1r;
   1018    __m128 vxy0xy2, vxy1xy0;
   1019    __m128i vxy0xy2i, vxy1xy0i;
   1020    __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120;
   1021    __m128 pix_offset = _mm_set1_ps(setup->pixel_offset);
   1022    __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE);
   1023    v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0]));
   1024    vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]);
   1025    v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0]));
   1026    vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2);
   1027    vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset);
   1028    vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset);
   1029    vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one);
   1030    vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one);
   1031    vxy0xy2i = _mm_cvtps_epi32(vxy0xy2);
   1032    vxy1xy0i = _mm_cvtps_epi32(vxy1xy0);
   1033    dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i);
   1034    _mm_store_si128((__m128i *)&position->dx01, dxdy0120);
   1035    /*
   1036     * For the mul, would need some more shuffles, plus emulation
   1037     * for the signed mul (without sse41), so don't bother.
   1038     */
   1039    x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0));
   1040    x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0));
   1041    x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0);
   1042    y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0);
   1043    _mm_store_si128((__m128i *)&position->x[0], x0120);
   1044    _mm_store_si128((__m128i *)&position->y[0], y0120);
   1045 
   1046 #else
   1047    position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
   1048    position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
   1049    position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
   1050    position->x[3] = 0; // should be unused
   1051 
   1052    position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
   1053    position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
   1054    position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
   1055    position->y[3] = 0; // should be unused
   1056 
   1057    position->dx01 = position->x[0] - position->x[1];
   1058    position->dy01 = position->y[0] - position->y[1];
   1059 
   1060    position->dx20 = position->x[2] - position->x[0];
   1061    position->dy20 = position->y[2] - position->y[0];
   1062 #endif
   1063 
   1064    position->area = IMUL64(position->dx01, position->dy20) -
   1065          IMUL64(position->dx20, position->dy01);
   1066 }
   1067 
   1068 
   1069 /**
   1070  * Rotate a triangle, flipping its clockwise direction,
   1071  * Swaps values for xy[0] and xy[1]
   1072  */
   1073 static inline void
   1074 rotate_fixed_position_01( struct fixed_position* position )
   1075 {
   1076    int x, y;
   1077 
   1078    x = position->x[1];
   1079    y = position->y[1];
   1080    position->x[1] = position->x[0];
   1081    position->y[1] = position->y[0];
   1082    position->x[0] = x;
   1083    position->y[0] = y;
   1084 
   1085    position->dx01 = -position->dx01;
   1086    position->dy01 = -position->dy01;
   1087    position->dx20 = position->x[2] - position->x[0];
   1088    position->dy20 = position->y[2] - position->y[0];
   1089 
   1090    position->area = -position->area;
   1091 }
   1092 
   1093 
   1094 /**
   1095  * Rotate a triangle, flipping its clockwise direction,
   1096  * Swaps values for xy[1] and xy[2]
   1097  */
   1098 static inline void
   1099 rotate_fixed_position_12( struct fixed_position* position )
   1100 {
   1101    int x, y;
   1102 
   1103    x = position->x[2];
   1104    y = position->y[2];
   1105    position->x[2] = position->x[1];
   1106    position->y[2] = position->y[1];
   1107    position->x[1] = x;
   1108    position->y[1] = y;
   1109 
   1110    x = position->dx01;
   1111    y = position->dy01;
   1112    position->dx01 = -position->dx20;
   1113    position->dy01 = -position->dy20;
   1114    position->dx20 = -x;
   1115    position->dy20 = -y;
   1116 
   1117    position->area = -position->area;
   1118 }
   1119 
   1120 
   1121 /**
   1122  * Draw triangle if it's CW, cull otherwise.
   1123  */
   1124 static void triangle_cw(struct lp_setup_context *setup,
   1125                         const float (*v0)[4],
   1126                         const float (*v1)[4],
   1127                         const float (*v2)[4])
   1128 {
   1129    PIPE_ALIGN_VAR(16) struct fixed_position position;
   1130 
   1131    calc_fixed_position(setup, &position, v0, v1, v2);
   1132 
   1133    if (position.area < 0) {
   1134       if (setup->flatshade_first) {
   1135          rotate_fixed_position_12(&position);
   1136          retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
   1137       } else {
   1138          rotate_fixed_position_01(&position);
   1139          retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
   1140       }
   1141    }
   1142 }
   1143 
   1144 
   1145 static void triangle_ccw(struct lp_setup_context *setup,
   1146                          const float (*v0)[4],
   1147                          const float (*v1)[4],
   1148                          const float (*v2)[4])
   1149 {
   1150    PIPE_ALIGN_VAR(16) struct fixed_position position;
   1151 
   1152    calc_fixed_position(setup, &position, v0, v1, v2);
   1153 
   1154    if (position.area > 0)
   1155       retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
   1156 }
   1157 
   1158 /**
   1159  * Draw triangle whether it's CW or CCW.
   1160  */
   1161 static void triangle_both(struct lp_setup_context *setup,
   1162                           const float (*v0)[4],
   1163                           const float (*v1)[4],
   1164                           const float (*v2)[4])
   1165 {
   1166    PIPE_ALIGN_VAR(16) struct fixed_position position;
   1167    struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
   1168 
   1169    if (lp_context->active_statistics_queries &&
   1170        !llvmpipe_rasterization_disabled(lp_context)) {
   1171       lp_context->pipeline_statistics.c_primitives++;
   1172    }
   1173 
   1174    calc_fixed_position(setup, &position, v0, v1, v2);
   1175 
   1176    if (0) {
   1177       assert(!util_is_inf_or_nan(v0[0][0]));
   1178       assert(!util_is_inf_or_nan(v0[0][1]));
   1179       assert(!util_is_inf_or_nan(v1[0][0]));
   1180       assert(!util_is_inf_or_nan(v1[0][1]));
   1181       assert(!util_is_inf_or_nan(v2[0][0]));
   1182       assert(!util_is_inf_or_nan(v2[0][1]));
   1183    }
   1184 
   1185    if (position.area > 0)
   1186       retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
   1187    else if (position.area < 0) {
   1188       if (setup->flatshade_first) {
   1189          rotate_fixed_position_12( &position );
   1190          retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
   1191       } else {
   1192          rotate_fixed_position_01( &position );
   1193          retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
   1194       }
   1195    }
   1196 }
   1197 
   1198 
   1199 static void triangle_nop( struct lp_setup_context *setup,
   1200 			  const float (*v0)[4],
   1201 			  const float (*v1)[4],
   1202 			  const float (*v2)[4] )
   1203 {
   1204 }
   1205 
   1206 
   1207 void
   1208 lp_setup_choose_triangle( struct lp_setup_context *setup )
   1209 {
   1210    switch (setup->cullmode) {
   1211    case PIPE_FACE_NONE:
   1212       setup->triangle = triangle_both;
   1213       break;
   1214    case PIPE_FACE_BACK:
   1215       setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
   1216       break;
   1217    case PIPE_FACE_FRONT:
   1218       setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
   1219       break;
   1220    default:
   1221       setup->triangle = triangle_nop;
   1222       break;
   1223    }
   1224 }
   1225