1 /************************************************************************** 2 * 3 * Copyright 2007 VMware, Inc. 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR 22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 /* 29 * Binning code for triangles 30 */ 31 32 #include "util/u_math.h" 33 #include "util/u_memory.h" 34 #include "util/u_rect.h" 35 #include "util/u_sse.h" 36 #include "lp_perf.h" 37 #include "lp_setup_context.h" 38 #include "lp_rast.h" 39 #include "lp_state_fs.h" 40 #include "lp_state_setup.h" 41 #include "lp_context.h" 42 43 #include <inttypes.h> 44 45 #define NUM_CHANNELS 4 46 47 #if defined(PIPE_ARCH_SSE) 48 #include <emmintrin.h> 49 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN) 50 #include <altivec.h> 51 #include "util/u_pwr8.h" 52 #endif 53 54 #if !defined(PIPE_ARCH_SSE) 55 56 static inline int 57 subpixel_snap(float a) 58 { 59 return util_iround(FIXED_ONE * a); 60 } 61 62 #endif 63 64 /* Position and area in fixed point coordinates */ 65 struct fixed_position { 66 int32_t x[4]; 67 int32_t y[4]; 68 int32_t dx01; 69 int32_t dy01; 70 int32_t dx20; 71 int32_t dy20; 72 int64_t area; 73 }; 74 75 76 /** 77 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays 78 * immediately after it. 79 * The memory is allocated from the per-scene pool, not per-tile. 80 * \param tri_size returns number of bytes allocated 81 * \param num_inputs number of fragment shader inputs 82 * \return pointer to triangle space 83 */ 84 struct lp_rast_triangle * 85 lp_setup_alloc_triangle(struct lp_scene *scene, 86 unsigned nr_inputs, 87 unsigned nr_planes, 88 unsigned *tri_size) 89 { 90 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float); 91 unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane); 92 struct lp_rast_triangle *tri; 93 94 STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0); 95 96 *tri_size = (sizeof(struct lp_rast_triangle) + 97 3 * input_array_sz + 98 plane_sz); 99 100 tri = lp_scene_alloc_aligned( scene, *tri_size, 16 ); 101 if (!tri) 102 return NULL; 103 104 tri->inputs.stride = input_array_sz; 105 106 { 107 char *a = (char *)tri; 108 char *b = (char *)&GET_PLANES(tri)[nr_planes]; 109 assert(b - a == *tri_size); 110 } 111 112 return tri; 113 } 114 115 void 116 lp_setup_print_vertex(struct lp_setup_context *setup, 117 const char *name, 118 const float (*v)[4]) 119 { 120 const struct lp_setup_variant_key *key = &setup->setup.variant->key; 121 int i, j; 122 123 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n", 124 name, 125 v[0][0], v[0][1], v[0][2], v[0][3]); 126 127 for (i = 0; i < key->num_inputs; i++) { 128 const float *in = v[key->inputs[i].src_index]; 129 130 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ", 131 i, 132 name, key->inputs[i].src_index, 133 (key->inputs[i].usage_mask & 0x1) ? "x" : " ", 134 (key->inputs[i].usage_mask & 0x2) ? "y" : " ", 135 (key->inputs[i].usage_mask & 0x4) ? "z" : " ", 136 (key->inputs[i].usage_mask & 0x8) ? "w" : " "); 137 138 for (j = 0; j < 4; j++) 139 if (key->inputs[i].usage_mask & (1<<j)) 140 debug_printf("%.5f ", in[j]); 141 142 debug_printf("\n"); 143 } 144 } 145 146 147 /** 148 * Print triangle vertex attribs (for debug). 149 */ 150 void 151 lp_setup_print_triangle(struct lp_setup_context *setup, 152 const float (*v0)[4], 153 const float (*v1)[4], 154 const float (*v2)[4]) 155 { 156 debug_printf("triangle\n"); 157 158 { 159 const float ex = v0[0][0] - v2[0][0]; 160 const float ey = v0[0][1] - v2[0][1]; 161 const float fx = v1[0][0] - v2[0][0]; 162 const float fy = v1[0][1] - v2[0][1]; 163 164 /* det = cross(e,f).z */ 165 const float det = ex * fy - ey * fx; 166 if (det < 0.0f) 167 debug_printf(" - ccw\n"); 168 else if (det > 0.0f) 169 debug_printf(" - cw\n"); 170 else 171 debug_printf(" - zero area\n"); 172 } 173 174 lp_setup_print_vertex(setup, "v0", v0); 175 lp_setup_print_vertex(setup, "v1", v1); 176 lp_setup_print_vertex(setup, "v2", v2); 177 } 178 179 180 #define MAX_PLANES 8 181 static unsigned 182 lp_rast_tri_tab[MAX_PLANES+1] = { 183 0, /* should be impossible */ 184 LP_RAST_OP_TRIANGLE_1, 185 LP_RAST_OP_TRIANGLE_2, 186 LP_RAST_OP_TRIANGLE_3, 187 LP_RAST_OP_TRIANGLE_4, 188 LP_RAST_OP_TRIANGLE_5, 189 LP_RAST_OP_TRIANGLE_6, 190 LP_RAST_OP_TRIANGLE_7, 191 LP_RAST_OP_TRIANGLE_8 192 }; 193 194 static unsigned 195 lp_rast_32_tri_tab[MAX_PLANES+1] = { 196 0, /* should be impossible */ 197 LP_RAST_OP_TRIANGLE_32_1, 198 LP_RAST_OP_TRIANGLE_32_2, 199 LP_RAST_OP_TRIANGLE_32_3, 200 LP_RAST_OP_TRIANGLE_32_4, 201 LP_RAST_OP_TRIANGLE_32_5, 202 LP_RAST_OP_TRIANGLE_32_6, 203 LP_RAST_OP_TRIANGLE_32_7, 204 LP_RAST_OP_TRIANGLE_32_8 205 }; 206 207 208 209 /** 210 * The primitive covers the whole tile- shade whole tile. 211 * 212 * \param tx, ty the tile position in tiles, not pixels 213 */ 214 static boolean 215 lp_setup_whole_tile(struct lp_setup_context *setup, 216 const struct lp_rast_shader_inputs *inputs, 217 int tx, int ty) 218 { 219 struct lp_scene *scene = setup->scene; 220 221 LP_COUNT(nr_fully_covered_64); 222 223 /* if variant is opaque and scissor doesn't effect the tile */ 224 if (inputs->opaque) { 225 /* Several things prevent this optimization from working: 226 * - For layered rendering we can't determine if this covers the same layer 227 * as previous rendering (or in case of clears those actually always cover 228 * all layers so optimization is impossible). Need to use fb_max_layer and 229 * not setup->layer_slot to determine this since even if there's currently 230 * no slot assigned previous rendering could have used one. 231 * - If there were any Begin/End query commands in the scene then those 232 * would get removed which would be very wrong. Furthermore, if queries 233 * were just active we also can't do the optimization since to get 234 * accurate query results we unfortunately need to execute the rendering 235 * commands. 236 */ 237 if (!scene->fb.zsbuf && scene->fb_max_layer == 0 && !scene->had_queries) { 238 /* 239 * All previous rendering will be overwritten so reset the bin. 240 */ 241 lp_scene_bin_reset( scene, tx, ty ); 242 } 243 244 LP_COUNT(nr_shade_opaque_64); 245 return lp_scene_bin_cmd_with_state( scene, tx, ty, 246 setup->fs.stored, 247 LP_RAST_OP_SHADE_TILE_OPAQUE, 248 lp_rast_arg_inputs(inputs) ); 249 } else { 250 LP_COUNT(nr_shade_64); 251 return lp_scene_bin_cmd_with_state( scene, tx, ty, 252 setup->fs.stored, 253 LP_RAST_OP_SHADE_TILE, 254 lp_rast_arg_inputs(inputs) ); 255 } 256 } 257 258 259 /** 260 * Do basic setup for triangle rasterization and determine which 261 * framebuffer tiles are touched. Put the triangle in the scene's 262 * bins for the tiles which we overlap. 263 */ 264 static boolean 265 do_triangle_ccw(struct lp_setup_context *setup, 266 struct fixed_position* position, 267 const float (*v0)[4], 268 const float (*v1)[4], 269 const float (*v2)[4], 270 boolean frontfacing ) 271 { 272 struct lp_scene *scene = setup->scene; 273 const struct lp_setup_variant_key *key = &setup->setup.variant->key; 274 struct lp_rast_triangle *tri; 275 struct lp_rast_plane *plane; 276 const struct u_rect *scissor; 277 struct u_rect bbox, bboxpos; 278 boolean s_planes[4]; 279 unsigned tri_bytes; 280 int nr_planes = 3; 281 unsigned viewport_index = 0; 282 unsigned layer = 0; 283 const float (*pv)[4]; 284 285 /* Area should always be positive here */ 286 assert(position->area > 0); 287 288 if (0) 289 lp_setup_print_triangle(setup, v0, v1, v2); 290 291 if (setup->flatshade_first) { 292 pv = v0; 293 } 294 else { 295 pv = v2; 296 } 297 if (setup->viewport_index_slot > 0) { 298 unsigned *udata = (unsigned*)pv[setup->viewport_index_slot]; 299 viewport_index = lp_clamp_viewport_idx(*udata); 300 } 301 if (setup->layer_slot > 0) { 302 layer = *(unsigned*)pv[setup->layer_slot]; 303 layer = MIN2(layer, scene->fb_max_layer); 304 } 305 306 /* Bounding rectangle (in pixels) */ 307 { 308 /* Yes this is necessary to accurately calculate bounding boxes 309 * with the two fill-conventions we support. GL (normally) ends 310 * up needing a bottom-left fill convention, which requires 311 * slightly different rounding. 312 */ 313 int adj = (setup->bottom_edge_rule != 0) ? 1 : 0; 314 315 /* Inclusive x0, exclusive x1 */ 316 bbox.x0 = MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER; 317 bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER; 318 319 /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */ 320 bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER; 321 bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER; 322 } 323 324 if (bbox.x1 < bbox.x0 || 325 bbox.y1 < bbox.y0) { 326 if (0) debug_printf("empty bounding box\n"); 327 LP_COUNT(nr_culled_tris); 328 return TRUE; 329 } 330 331 if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) { 332 if (0) debug_printf("offscreen\n"); 333 LP_COUNT(nr_culled_tris); 334 return TRUE; 335 } 336 337 bboxpos = bbox; 338 339 /* Can safely discard negative regions, but need to keep hold of 340 * information about when the triangle extends past screen 341 * boundaries. See trimmed_box in lp_setup_bin_triangle(). 342 */ 343 bboxpos.x0 = MAX2(bboxpos.x0, 0); 344 bboxpos.y0 = MAX2(bboxpos.y0, 0); 345 346 nr_planes = 3; 347 /* 348 * Determine how many scissor planes we need, that is drop scissor 349 * edges if the bounding box of the tri is fully inside that edge. 350 */ 351 if (setup->scissor_test) { 352 /* why not just use draw_regions */ 353 scissor = &setup->scissors[viewport_index]; 354 scissor_planes_needed(s_planes, &bboxpos, scissor); 355 nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3]; 356 } 357 358 tri = lp_setup_alloc_triangle(scene, 359 key->num_inputs, 360 nr_planes, 361 &tri_bytes); 362 if (!tri) 363 return FALSE; 364 365 #ifdef DEBUG 366 tri->v[0][0] = v0[0][0]; 367 tri->v[1][0] = v1[0][0]; 368 tri->v[2][0] = v2[0][0]; 369 tri->v[0][1] = v0[0][1]; 370 tri->v[1][1] = v1[0][1]; 371 tri->v[2][1] = v2[0][1]; 372 #endif 373 374 LP_COUNT(nr_tris); 375 376 /* Setup parameter interpolants: 377 */ 378 setup->setup.variant->jit_function(v0, v1, v2, 379 frontfacing, 380 GET_A0(&tri->inputs), 381 GET_DADX(&tri->inputs), 382 GET_DADY(&tri->inputs)); 383 384 tri->inputs.frontfacing = frontfacing; 385 tri->inputs.disable = FALSE; 386 tri->inputs.opaque = setup->fs.current.variant->opaque; 387 tri->inputs.layer = layer; 388 tri->inputs.viewport_index = viewport_index; 389 390 if (0) 391 lp_dump_setup_coef(&setup->setup.variant->key, 392 (const float (*)[4])GET_A0(&tri->inputs), 393 (const float (*)[4])GET_DADX(&tri->inputs), 394 (const float (*)[4])GET_DADY(&tri->inputs)); 395 396 plane = GET_PLANES(tri); 397 398 #if defined(PIPE_ARCH_SSE) 399 if (1) { 400 __m128i vertx, verty; 401 __m128i shufx, shufy; 402 __m128i dcdx, dcdy; 403 __m128i cdx02, cdx13, cdy02, cdy13, c02, c13; 404 __m128i c01, c23, unused; 405 __m128i dcdx_neg_mask; 406 __m128i dcdy_neg_mask; 407 __m128i dcdx_zero_mask; 408 __m128i top_left_flag, c_dec; 409 __m128i eo, p0, p1, p2; 410 __m128i zero = _mm_setzero_si128(); 411 412 vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */ 413 verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */ 414 415 shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1)); 416 shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1)); 417 418 dcdx = _mm_sub_epi32(verty, shufy); 419 dcdy = _mm_sub_epi32(vertx, shufx); 420 421 dcdx_neg_mask = _mm_srai_epi32(dcdx, 31); 422 dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero); 423 dcdy_neg_mask = _mm_srai_epi32(dcdy, 31); 424 425 top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0); 426 427 c_dec = _mm_or_si128(dcdx_neg_mask, 428 _mm_and_si128(dcdx_zero_mask, 429 _mm_xor_si128(dcdy_neg_mask, 430 top_left_flag))); 431 432 /* 433 * 64 bit arithmetic. 434 * Note we need _signed_ mul (_mm_mul_epi32) which we emulate. 435 */ 436 cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13); 437 cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13); 438 c02 = _mm_sub_epi64(cdx02, cdy02); 439 c13 = _mm_sub_epi64(cdx13, cdy13); 440 c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec, 441 _MM_SHUFFLE(2,2,0,0))); 442 c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec, 443 _MM_SHUFFLE(3,3,1,1))); 444 445 /* 446 * Useful for very small fbs/tris (or fewer subpixel bits) only: 447 * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx), 448 * mm_mullo_epi32(dcdy, verty)); 449 * 450 * c = _mm_sub_epi32(c, c_dec); 451 */ 452 453 /* Scale up to match c: 454 */ 455 dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER); 456 dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER); 457 458 /* 459 * Calculate trivial reject values: 460 * Note eo cannot overflow even if dcdx/dcdy would already have 461 * 31 bits (which they shouldn't have). This is because eo 462 * is never negative (albeit if we rely on that need to be careful...) 463 */ 464 eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy), 465 _mm_and_si128(dcdx_neg_mask, dcdx)); 466 467 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */ 468 469 /* 470 * Pointless transpose which gets undone immediately in 471 * rasterization. 472 * It is actually difficult to do away with it - would essentially 473 * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations 474 * for this then would need to depend on the number of planes. 475 * The transpose is quite special here due to c being 64bit... 476 * The store has to be unaligned (unless we'd make the plane size 477 * a multiple of 128), and of course storing eo separately... 478 */ 479 c01 = _mm_unpacklo_epi64(c02, c13); 480 c23 = _mm_unpackhi_epi64(c02, c13); 481 transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy, 482 &p0, &p1, &p2, &unused); 483 _mm_storeu_si128((__m128i *)&plane[0], p0); 484 plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo); 485 _mm_storeu_si128((__m128i *)&plane[1], p1); 486 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1)); 487 plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo); 488 _mm_storeu_si128((__m128i *)&plane[2], p2); 489 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2)); 490 plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo); 491 } else 492 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN) 493 /* 494 * XXX this code is effectively disabled for all practical purposes, 495 * as the allowed fb size is tiny if FIXED_ORDER is 8. 496 */ 497 if (setup->fb.width <= MAX_FIXED_LENGTH32 && 498 setup->fb.height <= MAX_FIXED_LENGTH32 && 499 (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 && 500 (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) { 501 unsigned int bottom_edge; 502 __m128i vertx, verty; 503 __m128i shufx, shufy; 504 __m128i dcdx, dcdy, c; 505 __m128i unused; 506 __m128i dcdx_neg_mask; 507 __m128i dcdy_neg_mask; 508 __m128i dcdx_zero_mask; 509 __m128i top_left_flag; 510 __m128i c_inc_mask, c_inc; 511 __m128i eo, p0, p1, p2; 512 __m128i_union vshuf_mask; 513 __m128i zero = vec_splats((unsigned char) 0); 514 PIPE_ALIGN_VAR(16) int32_t temp_vec[4]; 515 516 #ifdef PIPE_ARCH_LITTLE_ENDIAN 517 vshuf_mask.i[0] = 0x07060504; 518 vshuf_mask.i[1] = 0x0B0A0908; 519 vshuf_mask.i[2] = 0x03020100; 520 vshuf_mask.i[3] = 0x0F0E0D0C; 521 #else 522 vshuf_mask.i[0] = 0x00010203; 523 vshuf_mask.i[1] = 0x0C0D0E0F; 524 vshuf_mask.i[2] = 0x04050607; 525 vshuf_mask.i[3] = 0x08090A0B; 526 #endif 527 528 /* vertex x coords */ 529 vertx = vec_load_si128((const uint32_t *) position->x); 530 /* vertex y coords */ 531 verty = vec_load_si128((const uint32_t *) position->y); 532 533 shufx = vec_perm (vertx, vertx, vshuf_mask.m128i); 534 shufy = vec_perm (verty, verty, vshuf_mask.m128i); 535 536 dcdx = vec_sub_epi32(verty, shufy); 537 dcdy = vec_sub_epi32(vertx, shufx); 538 539 dcdx_neg_mask = vec_srai_epi32(dcdx, 31); 540 dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero); 541 dcdy_neg_mask = vec_srai_epi32(dcdy, 31); 542 543 bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0; 544 top_left_flag = (__m128i) vec_splats(bottom_edge); 545 546 c_inc_mask = vec_or(dcdx_neg_mask, 547 vec_and(dcdx_zero_mask, 548 vec_xor(dcdy_neg_mask, 549 top_left_flag))); 550 551 c_inc = vec_srli_epi32(c_inc_mask, 31); 552 553 c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx), 554 vec_mullo_epi32(dcdy, verty)); 555 556 c = vec_add_epi32(c, c_inc); 557 558 /* Scale up to match c: 559 */ 560 dcdx = vec_slli_epi32(dcdx, FIXED_ORDER); 561 dcdy = vec_slli_epi32(dcdy, FIXED_ORDER); 562 563 /* Calculate trivial reject values: 564 */ 565 eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy), 566 vec_and(dcdx_neg_mask, dcdx)); 567 568 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */ 569 570 /* Pointless transpose which gets undone immediately in 571 * rasterization: 572 */ 573 transpose4_epi32(&c, &dcdx, &dcdy, &eo, 574 &p0, &p1, &p2, &unused); 575 576 #define STORE_PLANE(plane, vec) do { \ 577 vec_store_si128((uint32_t *)&temp_vec, vec); \ 578 plane.c = (int64_t)temp_vec[0]; \ 579 plane.dcdx = temp_vec[1]; \ 580 plane.dcdy = temp_vec[2]; \ 581 plane.eo = temp_vec[3]; \ 582 } while(0) 583 584 STORE_PLANE(plane[0], p0); 585 STORE_PLANE(plane[1], p1); 586 STORE_PLANE(plane[2], p2); 587 #undef STORE_PLANE 588 } else 589 #endif 590 { 591 int i; 592 plane[0].dcdy = position->dx01; 593 plane[1].dcdy = position->x[1] - position->x[2]; 594 plane[2].dcdy = position->dx20; 595 plane[0].dcdx = position->dy01; 596 plane[1].dcdx = position->y[1] - position->y[2]; 597 plane[2].dcdx = position->dy20; 598 599 for (i = 0; i < 3; i++) { 600 /* half-edge constants, will be iterated over the whole render 601 * target. 602 */ 603 plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) - 604 IMUL64(plane[i].dcdy, position->y[i]); 605 606 /* correct for top-left vs. bottom-left fill convention. 607 */ 608 if (plane[i].dcdx < 0) { 609 /* both fill conventions want this - adjust for left edges */ 610 plane[i].c++; 611 } 612 else if (plane[i].dcdx == 0) { 613 if (setup->bottom_edge_rule == 0){ 614 /* correct for top-left fill convention: 615 */ 616 if (plane[i].dcdy > 0) plane[i].c++; 617 } 618 else { 619 /* correct for bottom-left fill convention: 620 */ 621 if (plane[i].dcdy < 0) plane[i].c++; 622 } 623 } 624 625 /* Scale up to match c: 626 */ 627 assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx); 628 assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy); 629 plane[i].dcdx <<= FIXED_ORDER; 630 plane[i].dcdy <<= FIXED_ORDER; 631 632 /* find trivial reject offsets for each edge for a single-pixel 633 * sized block. These will be scaled up at each recursive level to 634 * match the active blocksize. Scaling in this way works best if 635 * the blocks are square. 636 */ 637 plane[i].eo = 0; 638 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx; 639 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy; 640 } 641 } 642 643 if (0) { 644 debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n", 645 plane[0].c, 646 plane[0].dcdx, 647 plane[0].dcdy, 648 plane[0].eo); 649 650 debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n", 651 plane[1].c, 652 plane[1].dcdx, 653 plane[1].dcdy, 654 plane[1].eo); 655 656 debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n", 657 plane[2].c, 658 plane[2].dcdx, 659 plane[2].dcdy, 660 plane[2].eo); 661 } 662 663 664 /* 665 * When rasterizing scissored tris, use the intersection of the 666 * triangle bounding box and the scissor rect to generate the 667 * scissor planes. 668 * 669 * This permits us to cut off the triangle "tails" that are present 670 * in the intermediate recursive levels caused when two of the 671 * triangles edges don't diverge quickly enough to trivially reject 672 * exterior blocks from the triangle. 673 * 674 * It's not really clear if it's worth worrying about these tails, 675 * but since we generate the planes for each scissored tri, it's 676 * free to trim them in this case. 677 * 678 * Note that otherwise, the scissor planes only vary in 'C' value, 679 * and even then only on state-changes. Could alternatively store 680 * these planes elsewhere. 681 * (Or only store the c value together with a bit indicating which 682 * scissor edge this is, so rasterization would treat them differently 683 * (easier to evaluate) to ordinary planes.) 684 */ 685 if (nr_planes > 3) { 686 /* why not just use draw_regions */ 687 struct lp_rast_plane *plane_s = &plane[3]; 688 689 if (s_planes[0]) { 690 plane_s->dcdx = -1 << 8; 691 plane_s->dcdy = 0; 692 plane_s->c = (1-scissor->x0) << 8; 693 plane_s->eo = 1 << 8; 694 plane_s++; 695 } 696 if (s_planes[1]) { 697 plane_s->dcdx = 1 << 8; 698 plane_s->dcdy = 0; 699 plane_s->c = (scissor->x1+1) << 8; 700 plane_s->eo = 0 << 8; 701 plane_s++; 702 } 703 if (s_planes[2]) { 704 plane_s->dcdx = 0; 705 plane_s->dcdy = 1 << 8; 706 plane_s->c = (1-scissor->y0) << 8; 707 plane_s->eo = 1 << 8; 708 plane_s++; 709 } 710 if (s_planes[3]) { 711 plane_s->dcdx = 0; 712 plane_s->dcdy = -1 << 8; 713 plane_s->c = (scissor->y1+1) << 8; 714 plane_s->eo = 0; 715 plane_s++; 716 } 717 assert(plane_s == &plane[nr_planes]); 718 } 719 720 return lp_setup_bin_triangle(setup, tri, &bbox, &bboxpos, nr_planes, viewport_index); 721 } 722 723 /* 724 * Round to nearest less or equal power of two of the input. 725 * 726 * Undefined if no bit set exists, so code should check against 0 first. 727 */ 728 static inline uint32_t 729 floor_pot(uint32_t n) 730 { 731 #if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)) 732 if (n == 0) 733 return 0; 734 735 __asm__("bsr %1,%0" 736 : "=r" (n) 737 : "rm" (n)); 738 return 1 << n; 739 #else 740 n |= (n >> 1); 741 n |= (n >> 2); 742 n |= (n >> 4); 743 n |= (n >> 8); 744 n |= (n >> 16); 745 return n - (n >> 1); 746 #endif 747 } 748 749 750 boolean 751 lp_setup_bin_triangle(struct lp_setup_context *setup, 752 struct lp_rast_triangle *tri, 753 const struct u_rect *bboxorig, 754 const struct u_rect *bbox, 755 int nr_planes, 756 unsigned viewport_index) 757 { 758 struct lp_scene *scene = setup->scene; 759 struct u_rect trimmed_box = *bbox; 760 int i; 761 /* What is the largest power-of-two boundary this triangle crosses: 762 */ 763 int dx = floor_pot((bbox->x0 ^ bbox->x1) | 764 (bbox->y0 ^ bbox->y1)); 765 766 /* The largest dimension of the rasterized area of the triangle 767 * (aligned to a 4x4 grid), rounded down to the nearest power of two: 768 */ 769 int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) | 770 (bbox->y1 - (bbox->y0 & ~3))); 771 int sz = floor_pot(max_sz); 772 773 /* 774 * NOTE: It is important to use the original bounding box 775 * which might contain negative values here, because if the 776 * plane math may overflow or not with the 32bit rasterization 777 * functions depends on the original extent of the triangle. 778 */ 779 int max_szorig = ((bboxorig->x1 - (bboxorig->x0 & ~3)) | 780 (bboxorig->y1 - (bboxorig->y0 & ~3))); 781 boolean use_32bits = max_szorig <= MAX_FIXED_LENGTH32; 782 783 /* Now apply scissor, etc to the bounding box. Could do this 784 * earlier, but it confuses the logic for tri-16 and would force 785 * the rasterizer to also respect scissor, etc, just for the rare 786 * cases where a small triangle extends beyond the scissor. 787 */ 788 u_rect_find_intersection(&setup->draw_regions[viewport_index], 789 &trimmed_box); 790 791 /* Determine which tile(s) intersect the triangle's bounding box 792 */ 793 if (dx < TILE_SIZE) 794 { 795 int ix0 = bbox->x0 / TILE_SIZE; 796 int iy0 = bbox->y0 / TILE_SIZE; 797 unsigned px = bbox->x0 & 63 & ~3; 798 unsigned py = bbox->y0 & 63 & ~3; 799 800 assert(iy0 == bbox->y1 / TILE_SIZE && 801 ix0 == bbox->x1 / TILE_SIZE); 802 803 if (nr_planes == 3) { 804 if (sz < 4) 805 { 806 /* Triangle is contained in a single 4x4 stamp: 807 */ 808 assert(px + 4 <= TILE_SIZE); 809 assert(py + 4 <= TILE_SIZE); 810 return lp_scene_bin_cmd_with_state( scene, ix0, iy0, 811 setup->fs.stored, 812 use_32bits ? 813 LP_RAST_OP_TRIANGLE_32_3_4 : 814 LP_RAST_OP_TRIANGLE_3_4, 815 lp_rast_arg_triangle_contained(tri, px, py) ); 816 } 817 818 if (sz < 16) 819 { 820 /* Triangle is contained in a single 16x16 block: 821 */ 822 823 /* 824 * The 16x16 block is only 4x4 aligned, and can exceed the tile 825 * dimensions if the triangle is 16 pixels in one dimension but 4 826 * in the other. So budge the 16x16 back inside the tile. 827 */ 828 px = MIN2(px, TILE_SIZE - 16); 829 py = MIN2(py, TILE_SIZE - 16); 830 831 assert(px + 16 <= TILE_SIZE); 832 assert(py + 16 <= TILE_SIZE); 833 834 return lp_scene_bin_cmd_with_state( scene, ix0, iy0, 835 setup->fs.stored, 836 use_32bits ? 837 LP_RAST_OP_TRIANGLE_32_3_16 : 838 LP_RAST_OP_TRIANGLE_3_16, 839 lp_rast_arg_triangle_contained(tri, px, py) ); 840 } 841 } 842 else if (nr_planes == 4 && sz < 16) 843 { 844 px = MIN2(px, TILE_SIZE - 16); 845 py = MIN2(py, TILE_SIZE - 16); 846 847 assert(px + 16 <= TILE_SIZE); 848 assert(py + 16 <= TILE_SIZE); 849 850 return lp_scene_bin_cmd_with_state(scene, ix0, iy0, 851 setup->fs.stored, 852 use_32bits ? 853 LP_RAST_OP_TRIANGLE_32_4_16 : 854 LP_RAST_OP_TRIANGLE_4_16, 855 lp_rast_arg_triangle_contained(tri, px, py)); 856 } 857 858 859 /* Triangle is contained in a single tile: 860 */ 861 return lp_scene_bin_cmd_with_state( 862 scene, ix0, iy0, setup->fs.stored, 863 use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes], 864 lp_rast_arg_triangle(tri, (1<<nr_planes)-1)); 865 } 866 else 867 { 868 struct lp_rast_plane *plane = GET_PLANES(tri); 869 int64_t c[MAX_PLANES]; 870 int64_t ei[MAX_PLANES]; 871 872 int64_t eo[MAX_PLANES]; 873 int64_t xstep[MAX_PLANES]; 874 int64_t ystep[MAX_PLANES]; 875 int x, y; 876 877 int ix0 = trimmed_box.x0 / TILE_SIZE; 878 int iy0 = trimmed_box.y0 / TILE_SIZE; 879 int ix1 = trimmed_box.x1 / TILE_SIZE; 880 int iy1 = trimmed_box.y1 / TILE_SIZE; 881 882 for (i = 0; i < nr_planes; i++) { 883 c[i] = (plane[i].c + 884 IMUL64(plane[i].dcdy, iy0) * TILE_SIZE - 885 IMUL64(plane[i].dcdx, ix0) * TILE_SIZE); 886 887 ei[i] = (plane[i].dcdy - 888 plane[i].dcdx - 889 (int64_t)plane[i].eo) << TILE_ORDER; 890 891 eo[i] = (int64_t)plane[i].eo << TILE_ORDER; 892 xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER); 893 ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER; 894 } 895 896 897 898 /* Test tile-sized blocks against the triangle. 899 * Discard blocks fully outside the tri. If the block is fully 900 * contained inside the tri, bin an lp_rast_shade_tile command. 901 * Else, bin a lp_rast_triangle command. 902 */ 903 for (y = iy0; y <= iy1; y++) 904 { 905 boolean in = FALSE; /* are we inside the triangle? */ 906 int64_t cx[MAX_PLANES]; 907 908 for (i = 0; i < nr_planes; i++) 909 cx[i] = c[i]; 910 911 for (x = ix0; x <= ix1; x++) 912 { 913 int out = 0; 914 int partial = 0; 915 916 for (i = 0; i < nr_planes; i++) { 917 int64_t planeout = cx[i] + eo[i]; 918 int64_t planepartial = cx[i] + ei[i] - 1; 919 out |= (int) (planeout >> 63); 920 partial |= ((int) (planepartial >> 63)) & (1<<i); 921 } 922 923 if (out) { 924 /* do nothing */ 925 if (in) 926 break; /* exiting triangle, all done with this row */ 927 LP_COUNT(nr_empty_64); 928 } 929 else if (partial) { 930 /* Not trivially accepted by at least one plane - 931 * rasterize/shade partial tile 932 */ 933 int count = util_bitcount(partial); 934 in = TRUE; 935 936 if (!lp_scene_bin_cmd_with_state( scene, x, y, 937 setup->fs.stored, 938 use_32bits ? 939 lp_rast_32_tri_tab[count] : 940 lp_rast_tri_tab[count], 941 lp_rast_arg_triangle(tri, partial) )) 942 goto fail; 943 944 LP_COUNT(nr_partially_covered_64); 945 } 946 else { 947 /* triangle covers the whole tile- shade whole tile */ 948 LP_COUNT(nr_fully_covered_64); 949 in = TRUE; 950 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y)) 951 goto fail; 952 } 953 954 /* Iterate cx values across the region: */ 955 for (i = 0; i < nr_planes; i++) 956 cx[i] += xstep[i]; 957 } 958 959 /* Iterate c values down the region: */ 960 for (i = 0; i < nr_planes; i++) 961 c[i] += ystep[i]; 962 } 963 } 964 965 return TRUE; 966 967 fail: 968 /* Need to disable any partially binned triangle. This is easier 969 * than trying to locate all the triangle, shade-tile, etc, 970 * commands which may have been binned. 971 */ 972 tri->inputs.disable = TRUE; 973 return FALSE; 974 } 975 976 977 /** 978 * Try to draw the triangle, restart the scene on failure. 979 */ 980 static void retry_triangle_ccw( struct lp_setup_context *setup, 981 struct fixed_position* position, 982 const float (*v0)[4], 983 const float (*v1)[4], 984 const float (*v2)[4], 985 boolean front) 986 { 987 if (!do_triangle_ccw( setup, position, v0, v1, v2, front )) 988 { 989 if (!lp_setup_flush_and_restart(setup)) 990 return; 991 992 if (!do_triangle_ccw( setup, position, v0, v1, v2, front )) 993 return; 994 } 995 } 996 997 /** 998 * Calculate fixed position data for a triangle 999 * It is unfortunate we need to do that here (as we need area 1000 * calculated in fixed point), as there's quite some code duplication 1001 * to what is done in the jit setup prog. 1002 */ 1003 static inline void 1004 calc_fixed_position(struct lp_setup_context *setup, 1005 struct fixed_position* position, 1006 const float (*v0)[4], 1007 const float (*v1)[4], 1008 const float (*v2)[4]) 1009 { 1010 /* 1011 * The rounding may not be quite the same with PIPE_ARCH_SSE 1012 * (util_iround right now only does nearest/even on x87, 1013 * otherwise nearest/away-from-zero). 1014 * Both should be acceptable, I think. 1015 */ 1016 #if defined(PIPE_ARCH_SSE) 1017 __m128 v0r, v1r; 1018 __m128 vxy0xy2, vxy1xy0; 1019 __m128i vxy0xy2i, vxy1xy0i; 1020 __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120; 1021 __m128 pix_offset = _mm_set1_ps(setup->pixel_offset); 1022 __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE); 1023 v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0])); 1024 vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]); 1025 v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0])); 1026 vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2); 1027 vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset); 1028 vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset); 1029 vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one); 1030 vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one); 1031 vxy0xy2i = _mm_cvtps_epi32(vxy0xy2); 1032 vxy1xy0i = _mm_cvtps_epi32(vxy1xy0); 1033 dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i); 1034 _mm_store_si128((__m128i *)&position->dx01, dxdy0120); 1035 /* 1036 * For the mul, would need some more shuffles, plus emulation 1037 * for the signed mul (without sse41), so don't bother. 1038 */ 1039 x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0)); 1040 x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0)); 1041 x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0); 1042 y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0); 1043 _mm_store_si128((__m128i *)&position->x[0], x0120); 1044 _mm_store_si128((__m128i *)&position->y[0], y0120); 1045 1046 #else 1047 position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset); 1048 position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset); 1049 position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset); 1050 position->x[3] = 0; // should be unused 1051 1052 position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset); 1053 position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset); 1054 position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset); 1055 position->y[3] = 0; // should be unused 1056 1057 position->dx01 = position->x[0] - position->x[1]; 1058 position->dy01 = position->y[0] - position->y[1]; 1059 1060 position->dx20 = position->x[2] - position->x[0]; 1061 position->dy20 = position->y[2] - position->y[0]; 1062 #endif 1063 1064 position->area = IMUL64(position->dx01, position->dy20) - 1065 IMUL64(position->dx20, position->dy01); 1066 } 1067 1068 1069 /** 1070 * Rotate a triangle, flipping its clockwise direction, 1071 * Swaps values for xy[0] and xy[1] 1072 */ 1073 static inline void 1074 rotate_fixed_position_01( struct fixed_position* position ) 1075 { 1076 int x, y; 1077 1078 x = position->x[1]; 1079 y = position->y[1]; 1080 position->x[1] = position->x[0]; 1081 position->y[1] = position->y[0]; 1082 position->x[0] = x; 1083 position->y[0] = y; 1084 1085 position->dx01 = -position->dx01; 1086 position->dy01 = -position->dy01; 1087 position->dx20 = position->x[2] - position->x[0]; 1088 position->dy20 = position->y[2] - position->y[0]; 1089 1090 position->area = -position->area; 1091 } 1092 1093 1094 /** 1095 * Rotate a triangle, flipping its clockwise direction, 1096 * Swaps values for xy[1] and xy[2] 1097 */ 1098 static inline void 1099 rotate_fixed_position_12( struct fixed_position* position ) 1100 { 1101 int x, y; 1102 1103 x = position->x[2]; 1104 y = position->y[2]; 1105 position->x[2] = position->x[1]; 1106 position->y[2] = position->y[1]; 1107 position->x[1] = x; 1108 position->y[1] = y; 1109 1110 x = position->dx01; 1111 y = position->dy01; 1112 position->dx01 = -position->dx20; 1113 position->dy01 = -position->dy20; 1114 position->dx20 = -x; 1115 position->dy20 = -y; 1116 1117 position->area = -position->area; 1118 } 1119 1120 1121 /** 1122 * Draw triangle if it's CW, cull otherwise. 1123 */ 1124 static void triangle_cw(struct lp_setup_context *setup, 1125 const float (*v0)[4], 1126 const float (*v1)[4], 1127 const float (*v2)[4]) 1128 { 1129 PIPE_ALIGN_VAR(16) struct fixed_position position; 1130 1131 calc_fixed_position(setup, &position, v0, v1, v2); 1132 1133 if (position.area < 0) { 1134 if (setup->flatshade_first) { 1135 rotate_fixed_position_12(&position); 1136 retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface); 1137 } else { 1138 rotate_fixed_position_01(&position); 1139 retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface); 1140 } 1141 } 1142 } 1143 1144 1145 static void triangle_ccw(struct lp_setup_context *setup, 1146 const float (*v0)[4], 1147 const float (*v1)[4], 1148 const float (*v2)[4]) 1149 { 1150 PIPE_ALIGN_VAR(16) struct fixed_position position; 1151 1152 calc_fixed_position(setup, &position, v0, v1, v2); 1153 1154 if (position.area > 0) 1155 retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface); 1156 } 1157 1158 /** 1159 * Draw triangle whether it's CW or CCW. 1160 */ 1161 static void triangle_both(struct lp_setup_context *setup, 1162 const float (*v0)[4], 1163 const float (*v1)[4], 1164 const float (*v2)[4]) 1165 { 1166 PIPE_ALIGN_VAR(16) struct fixed_position position; 1167 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe; 1168 1169 if (lp_context->active_statistics_queries && 1170 !llvmpipe_rasterization_disabled(lp_context)) { 1171 lp_context->pipeline_statistics.c_primitives++; 1172 } 1173 1174 calc_fixed_position(setup, &position, v0, v1, v2); 1175 1176 if (0) { 1177 assert(!util_is_inf_or_nan(v0[0][0])); 1178 assert(!util_is_inf_or_nan(v0[0][1])); 1179 assert(!util_is_inf_or_nan(v1[0][0])); 1180 assert(!util_is_inf_or_nan(v1[0][1])); 1181 assert(!util_is_inf_or_nan(v2[0][0])); 1182 assert(!util_is_inf_or_nan(v2[0][1])); 1183 } 1184 1185 if (position.area > 0) 1186 retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface ); 1187 else if (position.area < 0) { 1188 if (setup->flatshade_first) { 1189 rotate_fixed_position_12( &position ); 1190 retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface ); 1191 } else { 1192 rotate_fixed_position_01( &position ); 1193 retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface ); 1194 } 1195 } 1196 } 1197 1198 1199 static void triangle_nop( struct lp_setup_context *setup, 1200 const float (*v0)[4], 1201 const float (*v1)[4], 1202 const float (*v2)[4] ) 1203 { 1204 } 1205 1206 1207 void 1208 lp_setup_choose_triangle( struct lp_setup_context *setup ) 1209 { 1210 switch (setup->cullmode) { 1211 case PIPE_FACE_NONE: 1212 setup->triangle = triangle_both; 1213 break; 1214 case PIPE_FACE_BACK: 1215 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw; 1216 break; 1217 case PIPE_FACE_FRONT: 1218 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw; 1219 break; 1220 default: 1221 setup->triangle = triangle_nop; 1222 break; 1223 } 1224 } 1225