1 // Copyright 2017 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // Parts of the implementation below: 6 7 // Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file [1] 8 // for details. All rights reserved. Use of this source code is governed by a 9 // BSD-style license that can be found in the LICENSE file [2]. 10 // 11 // [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS 12 // [2] https://github.com/dart-lang/sdk/blob/master/LICENSE 13 14 // Copyright 2009 The Go Authors. All rights reserved. 15 // Use of this source code is governed by a BSD-style 16 // license that can be found in the LICENSE file [3]. 17 // 18 // [3] https://golang.org/LICENSE 19 20 #include "src/objects/bigint.h" 21 22 #include "src/double.h" 23 #include "src/objects-inl.h" 24 25 namespace v8 { 26 namespace internal { 27 28 // The MutableBigInt class is an implementation detail designed to prevent 29 // accidental mutation of a BigInt after its construction. Step-by-step 30 // construction of a BigInt must happen in terms of MutableBigInt, the 31 // final result is then passed through MutableBigInt::MakeImmutable and not 32 // modified further afterwards. 33 // Many of the functions in this class use arguments of type {BigIntBase}, 34 // indicating that they will be used in a read-only capacity, and both 35 // {BigInt} and {MutableBigInt} objects can be passed in. 36 class MutableBigInt : public FreshlyAllocatedBigInt, 37 public NeverReadOnlySpaceObject { 38 public: 39 using NeverReadOnlySpaceObject::GetHeap; 40 using NeverReadOnlySpaceObject::GetIsolate; 41 42 // Bottleneck for converting MutableBigInts to BigInts. 43 static MaybeHandle<BigInt> MakeImmutable(MaybeHandle<MutableBigInt> maybe); 44 static Handle<BigInt> MakeImmutable(Handle<MutableBigInt> result); 45 46 // Allocation helpers. 47 static MaybeHandle<MutableBigInt> New(Isolate* isolate, int length, 48 PretenureFlag pretenure = NOT_TENURED); 49 static Handle<BigInt> NewFromInt(Isolate* isolate, int value); 50 static Handle<BigInt> NewFromDouble(Isolate* isolate, double value); 51 void InitializeDigits(int length, byte value = 0); 52 static Handle<MutableBigInt> Copy(Isolate* isolate, 53 Handle<BigIntBase> source); 54 static Handle<BigInt> Zero(Isolate* isolate) { 55 // TODO(jkummerow): Consider caching a canonical zero-BigInt. 56 return MakeImmutable(New(isolate, 0)).ToHandleChecked(); 57 } 58 59 static Handle<MutableBigInt> Cast(Handle<FreshlyAllocatedBigInt> bigint) { 60 SLOW_DCHECK(bigint->IsBigInt()); 61 return Handle<MutableBigInt>::cast(bigint); 62 } 63 64 // Internal helpers. 65 static MaybeHandle<MutableBigInt> BitwiseAnd(Isolate* isolate, 66 Handle<BigInt> x, 67 Handle<BigInt> y); 68 static MaybeHandle<MutableBigInt> BitwiseXor(Isolate* isolate, 69 Handle<BigInt> x, 70 Handle<BigInt> y); 71 static MaybeHandle<MutableBigInt> BitwiseOr(Isolate* isolate, 72 Handle<BigInt> x, 73 Handle<BigInt> y); 74 75 static Handle<BigInt> TruncateToNBits(Isolate* isolate, int n, 76 Handle<BigInt> x); 77 static Handle<BigInt> TruncateAndSubFromPowerOfTwo(Isolate* isolate, int n, 78 Handle<BigInt> x, 79 bool result_sign); 80 81 static MaybeHandle<BigInt> AbsoluteAdd(Isolate* isolate, Handle<BigInt> x, 82 Handle<BigInt> y, bool result_sign); 83 static Handle<BigInt> AbsoluteSub(Isolate* isolate, Handle<BigInt> x, 84 Handle<BigInt> y, bool result_sign); 85 static MaybeHandle<MutableBigInt> AbsoluteAddOne( 86 Isolate* isolate, Handle<BigIntBase> x, bool sign, 87 MutableBigInt* result_storage = nullptr); 88 static Handle<MutableBigInt> AbsoluteSubOne(Isolate* isolate, 89 Handle<BigIntBase> x); 90 static MaybeHandle<MutableBigInt> AbsoluteSubOne(Isolate* isolate, 91 Handle<BigIntBase> x, 92 int result_length); 93 94 enum ExtraDigitsHandling { kCopy, kSkip }; 95 enum SymmetricOp { kSymmetric, kNotSymmetric }; 96 static inline Handle<MutableBigInt> AbsoluteBitwiseOp( 97 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y, 98 MutableBigInt* result_storage, ExtraDigitsHandling extra_digits, 99 SymmetricOp symmetric, std::function<digit_t(digit_t, digit_t)> op); 100 static Handle<MutableBigInt> AbsoluteAnd( 101 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y, 102 MutableBigInt* result_storage = nullptr); 103 static Handle<MutableBigInt> AbsoluteAndNot( 104 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y, 105 MutableBigInt* result_storage = nullptr); 106 static Handle<MutableBigInt> AbsoluteOr( 107 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y, 108 MutableBigInt* result_storage = nullptr); 109 static Handle<MutableBigInt> AbsoluteXor( 110 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y, 111 MutableBigInt* result_storage = nullptr); 112 113 static int AbsoluteCompare(Handle<BigIntBase> x, Handle<BigIntBase> y); 114 115 static void MultiplyAccumulate(Handle<BigIntBase> multiplicand, 116 digit_t multiplier, 117 Handle<MutableBigInt> accumulator, 118 int accumulator_index); 119 static void InternalMultiplyAdd(BigIntBase* source, digit_t factor, 120 digit_t summand, int n, 121 MutableBigInt* result); 122 void InplaceMultiplyAdd(uintptr_t factor, uintptr_t summand); 123 124 // Specialized helpers for Divide/Remainder. 125 static void AbsoluteDivSmall(Isolate* isolate, Handle<BigIntBase> x, 126 digit_t divisor, Handle<MutableBigInt>* quotient, 127 digit_t* remainder); 128 static bool AbsoluteDivLarge(Isolate* isolate, Handle<BigIntBase> dividend, 129 Handle<BigIntBase> divisor, 130 Handle<MutableBigInt>* quotient, 131 Handle<MutableBigInt>* remainder); 132 static bool ProductGreaterThan(digit_t factor1, digit_t factor2, digit_t high, 133 digit_t low); 134 digit_t InplaceAdd(Handle<BigIntBase> summand, int start_index); 135 digit_t InplaceSub(Handle<BigIntBase> subtrahend, int start_index); 136 void InplaceRightShift(int shift); 137 enum SpecialLeftShiftMode { 138 kSameSizeResult, 139 kAlwaysAddOneDigit, 140 }; 141 static MaybeHandle<MutableBigInt> SpecialLeftShift(Isolate* isolate, 142 Handle<BigIntBase> x, 143 int shift, 144 SpecialLeftShiftMode mode); 145 146 // Specialized helpers for shift operations. 147 static MaybeHandle<BigInt> LeftShiftByAbsolute(Isolate* isolate, 148 Handle<BigIntBase> x, 149 Handle<BigIntBase> y); 150 static Handle<BigInt> RightShiftByAbsolute(Isolate* isolate, 151 Handle<BigIntBase> x, 152 Handle<BigIntBase> y); 153 static Handle<BigInt> RightShiftByMaximum(Isolate* isolate, bool sign); 154 static Maybe<digit_t> ToShiftAmount(Handle<BigIntBase> x); 155 156 static MaybeHandle<String> ToStringBasePowerOfTwo(Isolate* isolate, 157 Handle<BigIntBase> x, 158 int radix); 159 static MaybeHandle<String> ToStringGeneric(Isolate* isolate, 160 Handle<BigIntBase> x, int radix); 161 162 static double ToDouble(Handle<BigIntBase> x); 163 enum Rounding { kRoundDown, kTie, kRoundUp }; 164 static Rounding DecideRounding(Handle<BigIntBase> x, int mantissa_bits_unset, 165 int digit_index, uint64_t current_digit); 166 167 // Returns the least significant 64 bits, simulating two's complement 168 // representation. 169 static uint64_t GetRawBits(BigIntBase* x, bool* lossless); 170 171 // Digit arithmetic helpers. 172 static inline digit_t digit_add(digit_t a, digit_t b, digit_t* carry); 173 static inline digit_t digit_sub(digit_t a, digit_t b, digit_t* borrow); 174 static inline digit_t digit_mul(digit_t a, digit_t b, digit_t* high); 175 static inline digit_t digit_div(digit_t high, digit_t low, digit_t divisor, 176 digit_t* remainder); 177 static digit_t digit_pow(digit_t base, digit_t exponent); 178 static inline bool digit_ismax(digit_t x) { 179 return static_cast<digit_t>(~x) == 0; 180 } 181 182 // Internal field setters. Non-mutable BigInts don't have these. 183 #include "src/objects/object-macros.h" 184 inline void set_sign(bool new_sign) { 185 intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset); 186 bitfield = SignBits::update(static_cast<uint32_t>(bitfield), new_sign); 187 WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield); 188 } 189 inline void set_length(int new_length) { 190 intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset); 191 bitfield = LengthBits::update(static_cast<uint32_t>(bitfield), new_length); 192 WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield); 193 } 194 inline void initialize_bitfield(bool sign, int length) { 195 intptr_t bitfield = LengthBits::encode(length) | SignBits::encode(sign); 196 WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield); 197 } 198 inline void set_digit(int n, digit_t value) { 199 SLOW_DCHECK(0 <= n && n < length()); 200 Address address = FIELD_ADDR(this, kDigitsOffset + n * kDigitSize); 201 (*reinterpret_cast<digit_t*>(address)) = value; 202 } 203 #include "src/objects/object-macros-undef.h" 204 205 void set_64_bits(uint64_t bits); 206 }; 207 208 MaybeHandle<MutableBigInt> MutableBigInt::New(Isolate* isolate, int length, 209 PretenureFlag pretenure) { 210 if (length > BigInt::kMaxLength) { 211 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), 212 MutableBigInt); 213 } 214 Handle<MutableBigInt> result = 215 Cast(isolate->factory()->NewBigInt(length, pretenure)); 216 result->initialize_bitfield(false, length); 217 #if DEBUG 218 result->InitializeDigits(length, 0xBF); 219 #endif 220 return result; 221 } 222 223 Handle<BigInt> MutableBigInt::NewFromInt(Isolate* isolate, int value) { 224 if (value == 0) return Zero(isolate); 225 Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(1)); 226 bool sign = value < 0; 227 result->initialize_bitfield(sign, 1); 228 if (!sign) { 229 result->set_digit(0, value); 230 } else { 231 if (value == kMinInt) { 232 STATIC_ASSERT(kMinInt == -kMaxInt - 1); 233 result->set_digit(0, static_cast<BigInt::digit_t>(kMaxInt) + 1); 234 } else { 235 result->set_digit(0, -value); 236 } 237 } 238 return MakeImmutable(result); 239 } 240 241 Handle<BigInt> MutableBigInt::NewFromDouble(Isolate* isolate, double value) { 242 DCHECK_EQ(value, std::floor(value)); 243 if (value == 0) return Zero(isolate); 244 245 bool sign = value < 0; // -0 was already handled above. 246 uint64_t double_bits = bit_cast<uint64_t>(value); 247 int raw_exponent = 248 static_cast<int>(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF; 249 DCHECK_NE(raw_exponent, 0x7FF); 250 DCHECK_GE(raw_exponent, 0x3FF); 251 int exponent = raw_exponent - 0x3FF; 252 int digits = exponent / kDigitBits + 1; 253 Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(digits)); 254 result->initialize_bitfield(sign, digits); 255 256 // We construct a BigInt from the double {value} by shifting its mantissa 257 // according to its exponent and mapping the bit pattern onto digits. 258 // 259 // <----------- bitlength = exponent + 1 -----------> 260 // <----- 52 ------> <------ trailing zeroes ------> 261 // mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000 262 // digits: 0001xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 263 // <--> <------> 264 // msd_topbit kDigitBits 265 // 266 uint64_t mantissa = 267 (double_bits & Double::kSignificandMask) | Double::kHiddenBit; 268 const int kMantissaTopBit = Double::kSignificandSize - 1; // 0-indexed. 269 // 0-indexed position of most significant bit in the most significant digit. 270 int msd_topbit = exponent % kDigitBits; 271 // Number of unused bits in {mantissa}. We'll keep them shifted to the 272 // left (i.e. most significant part) of the underlying uint64_t. 273 int remaining_mantissa_bits = 0; 274 // Next digit under construction. 275 digit_t digit; 276 277 // First, build the MSD by shifting the mantissa appropriately. 278 if (msd_topbit < kMantissaTopBit) { 279 remaining_mantissa_bits = kMantissaTopBit - msd_topbit; 280 digit = mantissa >> remaining_mantissa_bits; 281 mantissa = mantissa << (64 - remaining_mantissa_bits); 282 } else { 283 DCHECK_GE(msd_topbit, kMantissaTopBit); 284 digit = mantissa << (msd_topbit - kMantissaTopBit); 285 mantissa = 0; 286 } 287 result->set_digit(digits - 1, digit); 288 // Then fill in the rest of the digits. 289 for (int digit_index = digits - 2; digit_index >= 0; digit_index--) { 290 if (remaining_mantissa_bits > 0) { 291 remaining_mantissa_bits -= kDigitBits; 292 if (sizeof(digit) == 4) { 293 digit = mantissa >> 32; 294 mantissa = mantissa << 32; 295 } else { 296 DCHECK_EQ(sizeof(digit), 8); 297 digit = mantissa; 298 mantissa = 0; 299 } 300 } else { 301 digit = 0; 302 } 303 result->set_digit(digit_index, digit); 304 } 305 return MakeImmutable(result); 306 } 307 308 Handle<MutableBigInt> MutableBigInt::Copy(Isolate* isolate, 309 Handle<BigIntBase> source) { 310 int length = source->length(); 311 // Allocating a BigInt of the same length as an existing BigInt cannot throw. 312 Handle<MutableBigInt> result = New(isolate, length).ToHandleChecked(); 313 memcpy(reinterpret_cast<void*>(result->address() + BigIntBase::kHeaderSize), 314 reinterpret_cast<void*>(source->address() + BigIntBase::kHeaderSize), 315 BigInt::SizeFor(length) - BigIntBase::kHeaderSize); 316 return result; 317 } 318 319 void MutableBigInt::InitializeDigits(int length, byte value) { 320 memset(reinterpret_cast<void*>(reinterpret_cast<Address>(this) + 321 kDigitsOffset - kHeapObjectTag), 322 value, length * kDigitSize); 323 } 324 325 MaybeHandle<BigInt> MutableBigInt::MakeImmutable( 326 MaybeHandle<MutableBigInt> maybe) { 327 Handle<MutableBigInt> result; 328 if (!maybe.ToHandle(&result)) return MaybeHandle<BigInt>(); 329 return MakeImmutable(result); 330 } 331 332 Handle<BigInt> MutableBigInt::MakeImmutable(Handle<MutableBigInt> result) { 333 // Check if we need to right-trim any leading zero-digits. 334 int old_length = result->length(); 335 int new_length = old_length; 336 while (new_length > 0 && result->digit(new_length - 1) == 0) new_length--; 337 int to_trim = old_length - new_length; 338 if (to_trim != 0) { 339 int size_delta = to_trim * kDigitSize; 340 Address new_end = result->address() + BigInt::SizeFor(new_length); 341 Heap* heap = result->GetHeap(); 342 heap->CreateFillerObjectAt(new_end, size_delta, ClearRecordedSlots::kNo); 343 result->set_length(new_length); 344 345 // Canonicalize -0n. 346 if (new_length == 0) { 347 result->set_sign(false); 348 // TODO(jkummerow): If we cache a canonical 0n, return that here. 349 } 350 } 351 DCHECK_IMPLIES(result->length() > 0, 352 result->digit(result->length() - 1) != 0); // MSD is non-zero. 353 return Handle<BigInt>(reinterpret_cast<BigInt**>(result.location())); 354 } 355 356 Handle<BigInt> BigInt::Zero(Isolate* isolate) { 357 return MutableBigInt::Zero(isolate); 358 } 359 360 Handle<BigInt> BigInt::UnaryMinus(Isolate* isolate, Handle<BigInt> x) { 361 // Special case: There is no -0n. 362 if (x->is_zero()) { 363 return x; 364 } 365 Handle<MutableBigInt> result = MutableBigInt::Copy(isolate, x); 366 result->set_sign(!x->sign()); 367 return MutableBigInt::MakeImmutable(result); 368 } 369 370 MaybeHandle<BigInt> BigInt::BitwiseNot(Isolate* isolate, Handle<BigInt> x) { 371 MaybeHandle<MutableBigInt> result; 372 if (x->sign()) { 373 // ~(-x) == ~(~(x-1)) == x-1 374 result = MutableBigInt::AbsoluteSubOne(isolate, x, x->length()); 375 } else { 376 // ~x == -x-1 == -(x+1) 377 result = MutableBigInt::AbsoluteAddOne(isolate, x, true); 378 } 379 return MutableBigInt::MakeImmutable(result); 380 } 381 382 MaybeHandle<BigInt> BigInt::Exponentiate(Isolate* isolate, Handle<BigInt> base, 383 Handle<BigInt> exponent) { 384 // 1. If exponent is < 0, throw a RangeError exception. 385 if (exponent->sign()) { 386 THROW_NEW_ERROR(isolate, 387 NewRangeError(MessageTemplate::kBigIntNegativeExponent), 388 BigInt); 389 } 390 // 2. If base is 0n and exponent is 0n, return 1n. 391 if (exponent->is_zero()) { 392 return MutableBigInt::NewFromInt(isolate, 1); 393 } 394 // 3. Return a BigInt representing the mathematical value of base raised 395 // to the power exponent. 396 if (base->is_zero()) return base; 397 if (base->length() == 1 && base->digit(0) == 1) { 398 // (-1) ** even_number == 1. 399 if (base->sign() && (exponent->digit(0) & 1) == 0) { 400 return UnaryMinus(isolate, base); 401 } 402 // (-1) ** odd_number == -1; 1 ** anything == 1. 403 return base; 404 } 405 // For all bases >= 2, very large exponents would lead to unrepresentable 406 // results. 407 STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max()); 408 if (exponent->length() > 1) { 409 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), 410 BigInt); 411 } 412 digit_t exp_value = exponent->digit(0); 413 if (exp_value == 1) return base; 414 if (exp_value >= kMaxLengthBits) { 415 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), 416 BigInt); 417 } 418 STATIC_ASSERT(kMaxLengthBits <= kMaxInt); 419 int n = static_cast<int>(exp_value); 420 if (base->length() == 1 && base->digit(0) == 2) { 421 // Fast path for 2^n. 422 int needed_digits = 1 + (n / kDigitBits); 423 Handle<MutableBigInt> result; 424 if (!MutableBigInt::New(isolate, needed_digits).ToHandle(&result)) { 425 return MaybeHandle<BigInt>(); 426 } 427 result->InitializeDigits(needed_digits); 428 // All bits are zero. Now set the n-th bit. 429 digit_t msd = static_cast<digit_t>(1) << (n % kDigitBits); 430 result->set_digit(needed_digits - 1, msd); 431 // Result is negative for odd powers of -2n. 432 if (base->sign()) result->set_sign((n & 1) != 0); 433 return MutableBigInt::MakeImmutable(result); 434 } 435 Handle<BigInt> result; 436 Handle<BigInt> running_square = base; 437 // This implicitly sets the result's sign correctly. 438 if (n & 1) result = base; 439 n >>= 1; 440 for (; n != 0; n >>= 1) { 441 MaybeHandle<BigInt> maybe_result = 442 Multiply(isolate, running_square, running_square); 443 if (!maybe_result.ToHandle(&running_square)) return maybe_result; 444 if (n & 1) { 445 if (result.is_null()) { 446 result = running_square; 447 } else { 448 maybe_result = Multiply(isolate, result, running_square); 449 if (!maybe_result.ToHandle(&result)) return maybe_result; 450 } 451 } 452 } 453 return result; 454 } 455 456 MaybeHandle<BigInt> BigInt::Multiply(Isolate* isolate, Handle<BigInt> x, 457 Handle<BigInt> y) { 458 if (x->is_zero()) return x; 459 if (y->is_zero()) return y; 460 int result_length = x->length() + y->length(); 461 Handle<MutableBigInt> result; 462 if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) { 463 return MaybeHandle<BigInt>(); 464 } 465 result->InitializeDigits(result_length); 466 for (int i = 0; i < x->length(); i++) { 467 MutableBigInt::MultiplyAccumulate(y, x->digit(i), result, i); 468 } 469 result->set_sign(x->sign() != y->sign()); 470 return MutableBigInt::MakeImmutable(result); 471 } 472 473 MaybeHandle<BigInt> BigInt::Divide(Isolate* isolate, Handle<BigInt> x, 474 Handle<BigInt> y) { 475 // 1. If y is 0n, throw a RangeError exception. 476 if (y->is_zero()) { 477 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero), 478 BigInt); 479 } 480 // 2. Let quotient be the mathematical value of x divided by y. 481 // 3. Return a BigInt representing quotient rounded towards 0 to the next 482 // integral value. 483 if (MutableBigInt::AbsoluteCompare(x, y) < 0) { 484 return Zero(isolate); 485 } 486 Handle<MutableBigInt> quotient; 487 bool result_sign = x->sign() != y->sign(); 488 if (y->length() == 1) { 489 digit_t divisor = y->digit(0); 490 if (divisor == 1) { 491 return result_sign == x->sign() ? x : UnaryMinus(isolate, x); 492 } 493 digit_t remainder; 494 MutableBigInt::AbsoluteDivSmall(isolate, x, divisor, "ient, &remainder); 495 } else { 496 if (!MutableBigInt::AbsoluteDivLarge(isolate, x, y, "ient, nullptr)) { 497 return MaybeHandle<BigInt>(); 498 } 499 } 500 quotient->set_sign(x->sign() != y->sign()); 501 return MutableBigInt::MakeImmutable(quotient); 502 } 503 504 MaybeHandle<BigInt> BigInt::Remainder(Isolate* isolate, Handle<BigInt> x, 505 Handle<BigInt> y) { 506 // 1. If y is 0n, throw a RangeError exception. 507 if (y->is_zero()) { 508 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero), 509 BigInt); 510 } 511 // 2. Return the BigInt representing x modulo y. 512 // See https://github.com/tc39/proposal-bigint/issues/84 though. 513 if (MutableBigInt::AbsoluteCompare(x, y) < 0) return x; 514 Handle<MutableBigInt> remainder; 515 if (y->length() == 1) { 516 digit_t divisor = y->digit(0); 517 if (divisor == 1) return Zero(isolate); 518 digit_t remainder_digit; 519 MutableBigInt::AbsoluteDivSmall(isolate, x, divisor, nullptr, 520 &remainder_digit); 521 if (remainder_digit == 0) { 522 return Zero(isolate); 523 } 524 remainder = MutableBigInt::New(isolate, 1).ToHandleChecked(); 525 remainder->set_digit(0, remainder_digit); 526 } else { 527 if (!MutableBigInt::AbsoluteDivLarge(isolate, x, y, nullptr, &remainder)) { 528 return MaybeHandle<BigInt>(); 529 } 530 } 531 remainder->set_sign(x->sign()); 532 return MutableBigInt::MakeImmutable(remainder); 533 } 534 535 MaybeHandle<BigInt> BigInt::Add(Isolate* isolate, Handle<BigInt> x, 536 Handle<BigInt> y) { 537 bool xsign = x->sign(); 538 if (xsign == y->sign()) { 539 // x + y == x + y 540 // -x + -y == -(x + y) 541 return MutableBigInt::AbsoluteAdd(isolate, x, y, xsign); 542 } 543 // x + -y == x - y == -(y - x) 544 // -x + y == y - x == -(x - y) 545 if (MutableBigInt::AbsoluteCompare(x, y) >= 0) { 546 return MutableBigInt::AbsoluteSub(isolate, x, y, xsign); 547 } 548 return MutableBigInt::AbsoluteSub(isolate, y, x, !xsign); 549 } 550 551 MaybeHandle<BigInt> BigInt::Subtract(Isolate* isolate, Handle<BigInt> x, 552 Handle<BigInt> y) { 553 bool xsign = x->sign(); 554 if (xsign != y->sign()) { 555 // x - (-y) == x + y 556 // (-x) - y == -(x + y) 557 return MutableBigInt::AbsoluteAdd(isolate, x, y, xsign); 558 } 559 // x - y == -(y - x) 560 // (-x) - (-y) == y - x == -(x - y) 561 if (MutableBigInt::AbsoluteCompare(x, y) >= 0) { 562 return MutableBigInt::AbsoluteSub(isolate, x, y, xsign); 563 } 564 return MutableBigInt::AbsoluteSub(isolate, y, x, !xsign); 565 } 566 567 MaybeHandle<BigInt> BigInt::LeftShift(Isolate* isolate, Handle<BigInt> x, 568 Handle<BigInt> y) { 569 if (y->is_zero() || x->is_zero()) return x; 570 if (y->sign()) return MutableBigInt::RightShiftByAbsolute(isolate, x, y); 571 return MutableBigInt::LeftShiftByAbsolute(isolate, x, y); 572 } 573 574 MaybeHandle<BigInt> BigInt::SignedRightShift(Isolate* isolate, Handle<BigInt> x, 575 Handle<BigInt> y) { 576 if (y->is_zero() || x->is_zero()) return x; 577 if (y->sign()) return MutableBigInt::LeftShiftByAbsolute(isolate, x, y); 578 return MutableBigInt::RightShiftByAbsolute(isolate, x, y); 579 } 580 581 MaybeHandle<BigInt> BigInt::UnsignedRightShift(Isolate* isolate, 582 Handle<BigInt> x, 583 Handle<BigInt> y) { 584 THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kBigIntShr), BigInt); 585 } 586 587 namespace { 588 589 // Produces comparison result for {left_negative} == sign(x) != sign(y). 590 ComparisonResult UnequalSign(bool left_negative) { 591 return left_negative ? ComparisonResult::kLessThan 592 : ComparisonResult::kGreaterThan; 593 } 594 595 // Produces result for |x| > |y|, with {both_negative} == sign(x) == sign(y); 596 ComparisonResult AbsoluteGreater(bool both_negative) { 597 return both_negative ? ComparisonResult::kLessThan 598 : ComparisonResult::kGreaterThan; 599 } 600 601 // Produces result for |x| < |y|, with {both_negative} == sign(x) == sign(y). 602 ComparisonResult AbsoluteLess(bool both_negative) { 603 return both_negative ? ComparisonResult::kGreaterThan 604 : ComparisonResult::kLessThan; 605 } 606 607 } // namespace 608 609 // (Never returns kUndefined.) 610 ComparisonResult BigInt::CompareToBigInt(Handle<BigInt> x, Handle<BigInt> y) { 611 bool x_sign = x->sign(); 612 if (x_sign != y->sign()) return UnequalSign(x_sign); 613 614 int result = MutableBigInt::AbsoluteCompare(x, y); 615 if (result > 0) return AbsoluteGreater(x_sign); 616 if (result < 0) return AbsoluteLess(x_sign); 617 return ComparisonResult::kEqual; 618 } 619 620 bool BigInt::EqualToBigInt(BigInt* x, BigInt* y) { 621 if (x->sign() != y->sign()) return false; 622 if (x->length() != y->length()) return false; 623 for (int i = 0; i < x->length(); i++) { 624 if (x->digit(i) != y->digit(i)) return false; 625 } 626 return true; 627 } 628 629 MaybeHandle<BigInt> BigInt::BitwiseAnd(Isolate* isolate, Handle<BigInt> x, 630 Handle<BigInt> y) { 631 return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseAnd(isolate, x, y)); 632 } 633 634 MaybeHandle<MutableBigInt> MutableBigInt::BitwiseAnd(Isolate* isolate, 635 Handle<BigInt> x, 636 Handle<BigInt> y) { 637 if (!x->sign() && !y->sign()) { 638 return AbsoluteAnd(isolate, x, y); 639 } else if (x->sign() && y->sign()) { 640 int result_length = Max(x->length(), y->length()) + 1; 641 // (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1)) 642 // == -(((x-1) | (y-1)) + 1) 643 Handle<MutableBigInt> result; 644 if (!AbsoluteSubOne(isolate, x, result_length).ToHandle(&result)) { 645 return MaybeHandle<MutableBigInt>(); 646 } 647 Handle<MutableBigInt> y_1 = AbsoluteSubOne(isolate, y); 648 result = AbsoluteOr(isolate, result, y_1, *result); 649 return AbsoluteAddOne(isolate, result, true, *result); 650 } else { 651 DCHECK(x->sign() != y->sign()); 652 // Assume that x is the positive BigInt. 653 if (x->sign()) std::swap(x, y); 654 // x & (-y) == x & ~(y-1) == x &~ (y-1) 655 return AbsoluteAndNot(isolate, x, AbsoluteSubOne(isolate, y)); 656 } 657 } 658 659 MaybeHandle<BigInt> BigInt::BitwiseXor(Isolate* isolate, Handle<BigInt> x, 660 Handle<BigInt> y) { 661 return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseXor(isolate, x, y)); 662 } 663 664 MaybeHandle<MutableBigInt> MutableBigInt::BitwiseXor(Isolate* isolate, 665 Handle<BigInt> x, 666 Handle<BigInt> y) { 667 if (!x->sign() && !y->sign()) { 668 return AbsoluteXor(isolate, x, y); 669 } else if (x->sign() && y->sign()) { 670 int result_length = Max(x->length(), y->length()); 671 // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1) 672 Handle<MutableBigInt> result = 673 AbsoluteSubOne(isolate, x, result_length).ToHandleChecked(); 674 Handle<MutableBigInt> y_1 = AbsoluteSubOne(isolate, y); 675 return AbsoluteXor(isolate, result, y_1, *result); 676 } else { 677 DCHECK(x->sign() != y->sign()); 678 int result_length = Max(x->length(), y->length()) + 1; 679 // Assume that x is the positive BigInt. 680 if (x->sign()) std::swap(x, y); 681 // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1) 682 Handle<MutableBigInt> result; 683 if (!AbsoluteSubOne(isolate, y, result_length).ToHandle(&result)) { 684 return MaybeHandle<MutableBigInt>(); 685 } 686 result = AbsoluteXor(isolate, result, x, *result); 687 return AbsoluteAddOne(isolate, result, true, *result); 688 } 689 } 690 691 MaybeHandle<BigInt> BigInt::BitwiseOr(Isolate* isolate, Handle<BigInt> x, 692 Handle<BigInt> y) { 693 return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseOr(isolate, x, y)); 694 } 695 696 MaybeHandle<MutableBigInt> MutableBigInt::BitwiseOr(Isolate* isolate, 697 Handle<BigInt> x, 698 Handle<BigInt> y) { 699 int result_length = Max(x->length(), y->length()); 700 if (!x->sign() && !y->sign()) { 701 return AbsoluteOr(isolate, x, y); 702 } else if (x->sign() && y->sign()) { 703 // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1)) 704 // == -(((x-1) & (y-1)) + 1) 705 Handle<MutableBigInt> result = 706 AbsoluteSubOne(isolate, x, result_length).ToHandleChecked(); 707 Handle<MutableBigInt> y_1 = AbsoluteSubOne(isolate, y); 708 result = AbsoluteAnd(isolate, result, y_1, *result); 709 return AbsoluteAddOne(isolate, result, true, *result); 710 } else { 711 DCHECK(x->sign() != y->sign()); 712 // Assume that x is the positive BigInt. 713 if (x->sign()) std::swap(x, y); 714 // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1) 715 Handle<MutableBigInt> result = 716 AbsoluteSubOne(isolate, y, result_length).ToHandleChecked(); 717 result = AbsoluteAndNot(isolate, result, x, *result); 718 return AbsoluteAddOne(isolate, result, true, *result); 719 } 720 } 721 722 MaybeHandle<BigInt> BigInt::Increment(Isolate* isolate, Handle<BigInt> x) { 723 if (x->sign()) { 724 Handle<MutableBigInt> result = MutableBigInt::AbsoluteSubOne(isolate, x); 725 result->set_sign(true); 726 return MutableBigInt::MakeImmutable(result); 727 } else { 728 return MutableBigInt::MakeImmutable( 729 MutableBigInt::AbsoluteAddOne(isolate, x, false)); 730 } 731 } 732 733 MaybeHandle<BigInt> BigInt::Decrement(Isolate* isolate, Handle<BigInt> x) { 734 MaybeHandle<MutableBigInt> result; 735 if (x->sign()) { 736 result = MutableBigInt::AbsoluteAddOne(isolate, x, true); 737 } else if (x->is_zero()) { 738 // TODO(jkummerow): Consider caching a canonical -1n BigInt. 739 return MutableBigInt::NewFromInt(isolate, -1); 740 } else { 741 result = MutableBigInt::AbsoluteSubOne(isolate, x); 742 } 743 return MutableBigInt::MakeImmutable(result); 744 } 745 746 ComparisonResult BigInt::CompareToString(Isolate* isolate, Handle<BigInt> x, 747 Handle<String> y) { 748 // a. Let ny be StringToBigInt(y); 749 MaybeHandle<BigInt> maybe_ny = StringToBigInt(isolate, y); 750 // b. If ny is NaN, return undefined. 751 Handle<BigInt> ny; 752 if (!maybe_ny.ToHandle(&ny)) { 753 DCHECK(!isolate->has_pending_exception()); 754 return ComparisonResult::kUndefined; 755 } 756 // c. Return BigInt::lessThan(x, ny). 757 return CompareToBigInt(x, ny); 758 } 759 760 bool BigInt::EqualToString(Isolate* isolate, Handle<BigInt> x, 761 Handle<String> y) { 762 // a. Let n be StringToBigInt(y). 763 MaybeHandle<BigInt> maybe_n = StringToBigInt(isolate, y); 764 // b. If n is NaN, return false. 765 Handle<BigInt> n; 766 if (!maybe_n.ToHandle(&n)) { 767 DCHECK(!isolate->has_pending_exception()); 768 return false; 769 } 770 // c. Return the result of x == n. 771 return EqualToBigInt(*x, *n); 772 } 773 774 bool BigInt::EqualToNumber(Handle<BigInt> x, Handle<Object> y) { 775 DCHECK(y->IsNumber()); 776 // a. If x or y are any of NaN, +, or -, return false. 777 // b. If the mathematical value of x is equal to the mathematical value of y, 778 // return true, otherwise return false. 779 if (y->IsSmi()) { 780 int value = Smi::ToInt(*y); 781 if (value == 0) return x->is_zero(); 782 // Any multi-digit BigInt is bigger than a Smi. 783 STATIC_ASSERT(sizeof(digit_t) >= sizeof(value)); 784 return (x->length() == 1) && (x->sign() == (value < 0)) && 785 (x->digit(0) == 786 static_cast<digit_t>(std::abs(static_cast<int64_t>(value)))); 787 } 788 DCHECK(y->IsHeapNumber()); 789 double value = Handle<HeapNumber>::cast(y)->value(); 790 return CompareToDouble(x, value) == ComparisonResult::kEqual; 791 } 792 793 ComparisonResult BigInt::CompareToNumber(Handle<BigInt> x, Handle<Object> y) { 794 DCHECK(y->IsNumber()); 795 if (y->IsSmi()) { 796 bool x_sign = x->sign(); 797 int y_value = Smi::ToInt(*y); 798 bool y_sign = (y_value < 0); 799 if (x_sign != y_sign) return UnequalSign(x_sign); 800 801 if (x->is_zero()) { 802 DCHECK(!y_sign); 803 return y_value == 0 ? ComparisonResult::kEqual 804 : ComparisonResult::kLessThan; 805 } 806 // Any multi-digit BigInt is bigger than a Smi. 807 STATIC_ASSERT(sizeof(digit_t) >= sizeof(y_value)); 808 if (x->length() > 1) return AbsoluteGreater(x_sign); 809 810 digit_t abs_value = std::abs(static_cast<int64_t>(y_value)); 811 digit_t x_digit = x->digit(0); 812 if (x_digit > abs_value) return AbsoluteGreater(x_sign); 813 if (x_digit < abs_value) return AbsoluteLess(x_sign); 814 return ComparisonResult::kEqual; 815 } 816 DCHECK(y->IsHeapNumber()); 817 double value = Handle<HeapNumber>::cast(y)->value(); 818 return CompareToDouble(x, value); 819 } 820 821 ComparisonResult BigInt::CompareToDouble(Handle<BigInt> x, double y) { 822 if (std::isnan(y)) return ComparisonResult::kUndefined; 823 if (y == V8_INFINITY) return ComparisonResult::kLessThan; 824 if (y == -V8_INFINITY) return ComparisonResult::kGreaterThan; 825 bool x_sign = x->sign(); 826 // Note that this is different from the double's sign bit for -0. That's 827 // intentional because -0 must be treated like 0. 828 bool y_sign = (y < 0); 829 if (x_sign != y_sign) return UnequalSign(x_sign); 830 if (y == 0) { 831 DCHECK(!x_sign); 832 return x->is_zero() ? ComparisonResult::kEqual 833 : ComparisonResult::kGreaterThan; 834 } 835 if (x->is_zero()) { 836 DCHECK(!y_sign); 837 return ComparisonResult::kLessThan; 838 } 839 uint64_t double_bits = bit_cast<uint64_t>(y); 840 int raw_exponent = 841 static_cast<int>(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF; 842 uint64_t mantissa = double_bits & Double::kSignificandMask; 843 // Non-finite doubles are handled above. 844 DCHECK_NE(raw_exponent, 0x7FF); 845 int exponent = raw_exponent - 0x3FF; 846 if (exponent < 0) { 847 // The absolute value of the double is less than 1. Only 0n has an 848 // absolute value smaller than that, but we've already covered that case. 849 DCHECK(!x->is_zero()); 850 return AbsoluteGreater(x_sign); 851 } 852 int x_length = x->length(); 853 digit_t x_msd = x->digit(x_length - 1); 854 int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd); 855 int x_bitlength = x_length * kDigitBits - msd_leading_zeros; 856 int y_bitlength = exponent + 1; 857 if (x_bitlength < y_bitlength) return AbsoluteLess(x_sign); 858 if (x_bitlength > y_bitlength) return AbsoluteGreater(x_sign); 859 860 // At this point, we know that signs and bit lengths (i.e. position of 861 // the most significant bit in exponent-free representation) are identical. 862 // {x} is not zero, {y} is finite and not denormal. 863 // Now we virtually convert the double to an integer by shifting its 864 // mantissa according to its exponent, so it will align with the BigInt {x}, 865 // and then we compare them bit for bit until we find a difference or the 866 // least significant bit. 867 // <----- 52 ------> <-- virtual trailing zeroes --> 868 // y / mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000 869 // x / digits: 0001xxxx xxxxxxxx xxxxxxxx ... 870 // <--> <------> 871 // msd_topbit kDigitBits 872 // 873 mantissa |= Double::kHiddenBit; 874 const int kMantissaTopBit = 52; // 0-indexed. 875 // 0-indexed position of {x}'s most significant bit within the {msd}. 876 int msd_topbit = kDigitBits - 1 - msd_leading_zeros; 877 DCHECK_EQ(msd_topbit, (x_bitlength - 1) % kDigitBits); 878 // Shifted chunk of {mantissa} for comparing with {digit}. 879 digit_t compare_mantissa; 880 // Number of unprocessed bits in {mantissa}. We'll keep them shifted to 881 // the left (i.e. most significant part) of the underlying uint64_t. 882 int remaining_mantissa_bits = 0; 883 884 // First, compare the most significant digit against the beginning of 885 // the mantissa. 886 if (msd_topbit < kMantissaTopBit) { 887 remaining_mantissa_bits = (kMantissaTopBit - msd_topbit); 888 compare_mantissa = mantissa >> remaining_mantissa_bits; 889 mantissa = mantissa << (64 - remaining_mantissa_bits); 890 } else { 891 DCHECK_GE(msd_topbit, kMantissaTopBit); 892 compare_mantissa = mantissa << (msd_topbit - kMantissaTopBit); 893 mantissa = 0; 894 } 895 if (x_msd > compare_mantissa) return AbsoluteGreater(x_sign); 896 if (x_msd < compare_mantissa) return AbsoluteLess(x_sign); 897 898 // Then, compare additional digits against any remaining mantissa bits. 899 for (int digit_index = x_length - 2; digit_index >= 0; digit_index--) { 900 if (remaining_mantissa_bits > 0) { 901 remaining_mantissa_bits -= kDigitBits; 902 if (sizeof(mantissa) != sizeof(x_msd)) { 903 compare_mantissa = mantissa >> (64 - kDigitBits); 904 // "& 63" to appease compilers. kDigitBits is 32 here anyway. 905 mantissa = mantissa << (kDigitBits & 63); 906 } else { 907 compare_mantissa = mantissa; 908 mantissa = 0; 909 } 910 } else { 911 compare_mantissa = 0; 912 } 913 digit_t digit = x->digit(digit_index); 914 if (digit > compare_mantissa) return AbsoluteGreater(x_sign); 915 if (digit < compare_mantissa) return AbsoluteLess(x_sign); 916 } 917 918 // Integer parts are equal; check whether {y} has a fractional part. 919 if (mantissa != 0) { 920 DCHECK_GT(remaining_mantissa_bits, 0); 921 return AbsoluteLess(x_sign); 922 } 923 return ComparisonResult::kEqual; 924 } 925 926 MaybeHandle<String> BigInt::ToString(Isolate* isolate, Handle<BigInt> bigint, 927 int radix) { 928 if (bigint->is_zero()) { 929 return isolate->factory()->NewStringFromStaticChars("0"); 930 } 931 if (base::bits::IsPowerOfTwo(radix)) { 932 return MutableBigInt::ToStringBasePowerOfTwo(isolate, bigint, radix); 933 } 934 return MutableBigInt::ToStringGeneric(isolate, bigint, radix); 935 } 936 937 MaybeHandle<BigInt> BigInt::FromNumber(Isolate* isolate, 938 Handle<Object> number) { 939 DCHECK(number->IsNumber()); 940 if (number->IsSmi()) { 941 return MutableBigInt::NewFromInt(isolate, Smi::ToInt(*number)); 942 } 943 double value = HeapNumber::cast(*number)->value(); 944 if (!std::isfinite(value) || (DoubleToInteger(value) != value)) { 945 THROW_NEW_ERROR(isolate, 946 NewRangeError(MessageTemplate::kBigIntFromNumber, number), 947 BigInt); 948 } 949 return MutableBigInt::NewFromDouble(isolate, value); 950 } 951 952 MaybeHandle<BigInt> BigInt::FromObject(Isolate* isolate, Handle<Object> obj) { 953 if (obj->IsJSReceiver()) { 954 ASSIGN_RETURN_ON_EXCEPTION( 955 isolate, obj, 956 JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(obj), 957 ToPrimitiveHint::kNumber), 958 BigInt); 959 } 960 961 if (obj->IsBoolean()) { 962 return MutableBigInt::NewFromInt(isolate, obj->BooleanValue(isolate)); 963 } 964 if (obj->IsBigInt()) { 965 return Handle<BigInt>::cast(obj); 966 } 967 if (obj->IsString()) { 968 Handle<BigInt> n; 969 if (!StringToBigInt(isolate, Handle<String>::cast(obj)).ToHandle(&n)) { 970 THROW_NEW_ERROR(isolate, 971 NewSyntaxError(MessageTemplate::kBigIntFromObject, obj), 972 BigInt); 973 } 974 return n; 975 } 976 977 THROW_NEW_ERROR( 978 isolate, NewTypeError(MessageTemplate::kBigIntFromObject, obj), BigInt); 979 } 980 981 Handle<Object> BigInt::ToNumber(Isolate* isolate, Handle<BigInt> x) { 982 if (x->is_zero()) return Handle<Smi>(Smi::kZero, isolate); 983 if (x->length() == 1 && x->digit(0) < Smi::kMaxValue) { 984 int value = static_cast<int>(x->digit(0)); 985 if (x->sign()) value = -value; 986 return Handle<Smi>(Smi::FromInt(value), isolate); 987 } 988 double result = MutableBigInt::ToDouble(x); 989 return isolate->factory()->NewHeapNumber(result); 990 } 991 992 double MutableBigInt::ToDouble(Handle<BigIntBase> x) { 993 if (x->is_zero()) return 0.0; 994 int x_length = x->length(); 995 digit_t x_msd = x->digit(x_length - 1); 996 int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd); 997 int x_bitlength = x_length * kDigitBits - msd_leading_zeros; 998 if (x_bitlength > 1024) return x->sign() ? -V8_INFINITY : V8_INFINITY; 999 uint64_t exponent = x_bitlength - 1; 1000 // We need the most significant bit shifted to the position of a double's 1001 // "hidden bit". We also need to hide that MSB, so we shift it out. 1002 uint64_t current_digit = x_msd; 1003 int digit_index = x_length - 1; 1004 int shift = msd_leading_zeros + 1 + (64 - kDigitBits); 1005 DCHECK_LE(1, shift); 1006 DCHECK_LE(shift, 64); 1007 uint64_t mantissa = (shift == 64) ? 0 : current_digit << shift; 1008 mantissa >>= 12; 1009 int mantissa_bits_unset = shift - 12; 1010 // If not all mantissa bits are defined yet, get more digits as needed. 1011 if (mantissa_bits_unset >= kDigitBits && digit_index > 0) { 1012 digit_index--; 1013 current_digit = static_cast<uint64_t>(x->digit(digit_index)); 1014 mantissa |= (current_digit << (mantissa_bits_unset - kDigitBits)); 1015 mantissa_bits_unset -= kDigitBits; 1016 } 1017 if (mantissa_bits_unset > 0 && digit_index > 0) { 1018 DCHECK_LT(mantissa_bits_unset, kDigitBits); 1019 digit_index--; 1020 current_digit = static_cast<uint64_t>(x->digit(digit_index)); 1021 mantissa |= (current_digit >> (kDigitBits - mantissa_bits_unset)); 1022 mantissa_bits_unset -= kDigitBits; 1023 } 1024 // If there are unconsumed digits left, we may have to round. 1025 Rounding rounding = 1026 DecideRounding(x, mantissa_bits_unset, digit_index, current_digit); 1027 if (rounding == kRoundUp || (rounding == kTie && (mantissa & 1) == 1)) { 1028 mantissa++; 1029 // Incrementing the mantissa can overflow the mantissa bits. In that case 1030 // the new mantissa will be all zero (plus hidden bit). 1031 if ((mantissa >> Double::kPhysicalSignificandSize) != 0) { 1032 mantissa = 0; 1033 exponent++; 1034 // Incrementing the exponent can overflow too. 1035 if (exponent > 1023) { 1036 return x->sign() ? -V8_INFINITY : V8_INFINITY; 1037 } 1038 } 1039 } 1040 // Assemble the result. 1041 uint64_t sign_bit = x->sign() ? (static_cast<uint64_t>(1) << 63) : 0; 1042 exponent = (exponent + 0x3FF) << Double::kPhysicalSignificandSize; 1043 uint64_t double_bits = sign_bit | exponent | mantissa; 1044 return bit_cast<double>(double_bits); 1045 } 1046 1047 // This is its own function to keep control flow sane. The meaning of the 1048 // parameters is defined by {ToDouble}'s local variable usage. 1049 MutableBigInt::Rounding MutableBigInt::DecideRounding(Handle<BigIntBase> x, 1050 int mantissa_bits_unset, 1051 int digit_index, 1052 uint64_t current_digit) { 1053 if (mantissa_bits_unset > 0) return kRoundDown; 1054 int top_unconsumed_bit; 1055 if (mantissa_bits_unset < 0) { 1056 // There are unconsumed bits in {current_digit}. 1057 top_unconsumed_bit = -mantissa_bits_unset - 1; 1058 } else { 1059 DCHECK_EQ(mantissa_bits_unset, 0); 1060 // {current_digit} fit the mantissa exactly; look at the next digit. 1061 if (digit_index == 0) return kRoundDown; 1062 digit_index--; 1063 current_digit = static_cast<uint64_t>(x->digit(digit_index)); 1064 top_unconsumed_bit = kDigitBits - 1; 1065 } 1066 // If the most significant remaining bit is 0, round down. 1067 uint64_t bitmask = static_cast<uint64_t>(1) << top_unconsumed_bit; 1068 if ((current_digit & bitmask) == 0) { 1069 return kRoundDown; 1070 } 1071 // If any other remaining bit is set, round up. 1072 bitmask -= 1; 1073 if ((current_digit & bitmask) != 0) return kRoundUp; 1074 while (digit_index > 0) { 1075 digit_index--; 1076 if (x->digit(digit_index) != 0) return kRoundUp; 1077 } 1078 return kTie; 1079 } 1080 1081 void BigInt::BigIntShortPrint(std::ostream& os) { 1082 if (sign()) os << "-"; 1083 int len = length(); 1084 if (len == 0) { 1085 os << "0"; 1086 return; 1087 } 1088 if (len > 1) os << "..."; 1089 os << digit(0); 1090 } 1091 1092 // Internal helpers. 1093 1094 MaybeHandle<BigInt> MutableBigInt::AbsoluteAdd(Isolate* isolate, 1095 Handle<BigInt> x, 1096 Handle<BigInt> y, 1097 bool result_sign) { 1098 if (x->length() < y->length()) return AbsoluteAdd(isolate, y, x, result_sign); 1099 if (x->is_zero()) { 1100 DCHECK(y->is_zero()); 1101 return x; 1102 } 1103 if (y->is_zero()) { 1104 return result_sign == x->sign() ? x : BigInt::UnaryMinus(isolate, x); 1105 } 1106 Handle<MutableBigInt> result; 1107 if (!New(isolate, x->length() + 1).ToHandle(&result)) { 1108 return MaybeHandle<BigInt>(); 1109 } 1110 digit_t carry = 0; 1111 int i = 0; 1112 for (; i < y->length(); i++) { 1113 digit_t new_carry = 0; 1114 digit_t sum = digit_add(x->digit(i), y->digit(i), &new_carry); 1115 sum = digit_add(sum, carry, &new_carry); 1116 result->set_digit(i, sum); 1117 carry = new_carry; 1118 } 1119 for (; i < x->length(); i++) { 1120 digit_t new_carry = 0; 1121 digit_t sum = digit_add(x->digit(i), carry, &new_carry); 1122 result->set_digit(i, sum); 1123 carry = new_carry; 1124 } 1125 result->set_digit(i, carry); 1126 result->set_sign(result_sign); 1127 return MakeImmutable(result); 1128 } 1129 1130 Handle<BigInt> MutableBigInt::AbsoluteSub(Isolate* isolate, Handle<BigInt> x, 1131 Handle<BigInt> y, bool result_sign) { 1132 DCHECK(x->length() >= y->length()); 1133 SLOW_DCHECK(AbsoluteCompare(x, y) >= 0); 1134 if (x->is_zero()) { 1135 DCHECK(y->is_zero()); 1136 return x; 1137 } 1138 if (y->is_zero()) { 1139 return result_sign == x->sign() ? x : BigInt::UnaryMinus(isolate, x); 1140 } 1141 Handle<MutableBigInt> result = New(isolate, x->length()).ToHandleChecked(); 1142 digit_t borrow = 0; 1143 int i = 0; 1144 for (; i < y->length(); i++) { 1145 digit_t new_borrow = 0; 1146 digit_t difference = digit_sub(x->digit(i), y->digit(i), &new_borrow); 1147 difference = digit_sub(difference, borrow, &new_borrow); 1148 result->set_digit(i, difference); 1149 borrow = new_borrow; 1150 } 1151 for (; i < x->length(); i++) { 1152 digit_t new_borrow = 0; 1153 digit_t difference = digit_sub(x->digit(i), borrow, &new_borrow); 1154 result->set_digit(i, difference); 1155 borrow = new_borrow; 1156 } 1157 DCHECK_EQ(0, borrow); 1158 result->set_sign(result_sign); 1159 return MakeImmutable(result); 1160 } 1161 1162 // Adds 1 to the absolute value of {x} and sets the result's sign to {sign}. 1163 // {result_storage} is optional; if present, it will be used to store the 1164 // result, otherwise a new BigInt will be allocated for the result. 1165 // {result_storage} and {x} may refer to the same BigInt for in-place 1166 // modification. 1167 MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteAddOne( 1168 Isolate* isolate, Handle<BigIntBase> x, bool sign, 1169 MutableBigInt* result_storage) { 1170 int input_length = x->length(); 1171 // The addition will overflow into a new digit if all existing digits are 1172 // at maximum. 1173 bool will_overflow = true; 1174 for (int i = 0; i < input_length; i++) { 1175 if (!digit_ismax(x->digit(i))) { 1176 will_overflow = false; 1177 break; 1178 } 1179 } 1180 int result_length = input_length + will_overflow; 1181 Handle<MutableBigInt> result(result_storage, isolate); 1182 if (result_storage == nullptr) { 1183 if (!New(isolate, result_length).ToHandle(&result)) { 1184 return MaybeHandle<MutableBigInt>(); 1185 } 1186 } else { 1187 DCHECK(result->length() == result_length); 1188 } 1189 digit_t carry = 1; 1190 for (int i = 0; i < input_length; i++) { 1191 digit_t new_carry = 0; 1192 result->set_digit(i, digit_add(x->digit(i), carry, &new_carry)); 1193 carry = new_carry; 1194 } 1195 if (result_length > input_length) { 1196 result->set_digit(input_length, carry); 1197 } else { 1198 DCHECK_EQ(carry, 0); 1199 } 1200 result->set_sign(sign); 1201 return result; 1202 } 1203 1204 // Subtracts 1 from the absolute value of {x}. {x} must not be zero. 1205 Handle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Isolate* isolate, 1206 Handle<BigIntBase> x) { 1207 DCHECK(!x->is_zero()); 1208 // Requesting a result length identical to an existing BigInt's length 1209 // cannot overflow the limit. 1210 return AbsoluteSubOne(isolate, x, x->length()).ToHandleChecked(); 1211 } 1212 1213 // Like the above, but you can specify that the allocated result should have 1214 // length {result_length}, which must be at least as large as {x->length()}. 1215 MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Isolate* isolate, 1216 Handle<BigIntBase> x, 1217 int result_length) { 1218 DCHECK(!x->is_zero()); 1219 DCHECK(result_length >= x->length()); 1220 Handle<MutableBigInt> result; 1221 if (!New(isolate, result_length).ToHandle(&result)) { 1222 return MaybeHandle<MutableBigInt>(); 1223 } 1224 int length = x->length(); 1225 digit_t borrow = 1; 1226 for (int i = 0; i < length; i++) { 1227 digit_t new_borrow = 0; 1228 result->set_digit(i, digit_sub(x->digit(i), borrow, &new_borrow)); 1229 borrow = new_borrow; 1230 } 1231 DCHECK_EQ(borrow, 0); 1232 for (int i = length; i < result_length; i++) { 1233 result->set_digit(i, borrow); 1234 } 1235 return result; 1236 } 1237 1238 // Helper for Absolute{And,AndNot,Or,Xor}. 1239 // Performs the given binary {op} on digit pairs of {x} and {y}; when the 1240 // end of the shorter of the two is reached, {extra_digits} configures how 1241 // remaining digits in the longer input (if {symmetric} == kSymmetric, in 1242 // {x} otherwise) are handled: copied to the result or ignored. 1243 // If {result_storage} is non-nullptr, it will be used for the result and 1244 // any extra digits in it will be zeroed out, otherwise a new BigInt (with 1245 // the same length as the longer input) will be allocated. 1246 // {result_storage} may alias {x} or {y} for in-place modification. 1247 // Example: 1248 // y: [ y2 ][ y1 ][ y0 ] 1249 // x: [ x3 ][ x2 ][ x1 ][ x0 ] 1250 // | | | | 1251 // (kCopy) (op) (op) (op) 1252 // | | | | 1253 // v v v v 1254 // result_storage: [ 0 ][ x3 ][ r2 ][ r1 ][ r0 ] 1255 inline Handle<MutableBigInt> MutableBigInt::AbsoluteBitwiseOp( 1256 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y, 1257 MutableBigInt* result_storage, ExtraDigitsHandling extra_digits, 1258 SymmetricOp symmetric, std::function<digit_t(digit_t, digit_t)> op) { 1259 int x_length = x->length(); 1260 int y_length = y->length(); 1261 int num_pairs = y_length; 1262 if (x_length < y_length) { 1263 num_pairs = x_length; 1264 if (symmetric == kSymmetric) { 1265 std::swap(x, y); 1266 std::swap(x_length, y_length); 1267 } 1268 } 1269 DCHECK(num_pairs == Min(x_length, y_length)); 1270 Handle<MutableBigInt> result(result_storage, isolate); 1271 int result_length = extra_digits == kCopy ? x_length : num_pairs; 1272 if (result_storage == nullptr) { 1273 result = New(isolate, result_length).ToHandleChecked(); 1274 } else { 1275 DCHECK(result_storage->length() >= result_length); 1276 result_length = result_storage->length(); 1277 } 1278 int i = 0; 1279 for (; i < num_pairs; i++) { 1280 result->set_digit(i, op(x->digit(i), y->digit(i))); 1281 } 1282 if (extra_digits == kCopy) { 1283 for (; i < x_length; i++) { 1284 result->set_digit(i, x->digit(i)); 1285 } 1286 } 1287 for (; i < result_length; i++) { 1288 result->set_digit(i, 0); 1289 } 1290 return result; 1291 } 1292 1293 // If {result_storage} is non-nullptr, it will be used for the result, 1294 // otherwise a new BigInt of appropriate length will be allocated. 1295 // {result_storage} may alias {x} or {y} for in-place modification. 1296 Handle<MutableBigInt> MutableBigInt::AbsoluteAnd( 1297 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y, 1298 MutableBigInt* result_storage) { 1299 return AbsoluteBitwiseOp(isolate, x, y, result_storage, kSkip, kSymmetric, 1300 [](digit_t a, digit_t b) { return a & b; }); 1301 } 1302 1303 // If {result_storage} is non-nullptr, it will be used for the result, 1304 // otherwise a new BigInt of appropriate length will be allocated. 1305 // {result_storage} may alias {x} or {y} for in-place modification. 1306 Handle<MutableBigInt> MutableBigInt::AbsoluteAndNot( 1307 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y, 1308 MutableBigInt* result_storage) { 1309 return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kNotSymmetric, 1310 [](digit_t a, digit_t b) { return a & ~b; }); 1311 } 1312 1313 // If {result_storage} is non-nullptr, it will be used for the result, 1314 // otherwise a new BigInt of appropriate length will be allocated. 1315 // {result_storage} may alias {x} or {y} for in-place modification. 1316 Handle<MutableBigInt> MutableBigInt::AbsoluteOr(Isolate* isolate, 1317 Handle<BigIntBase> x, 1318 Handle<BigIntBase> y, 1319 MutableBigInt* result_storage) { 1320 return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kSymmetric, 1321 [](digit_t a, digit_t b) { return a | b; }); 1322 } 1323 1324 // If {result_storage} is non-nullptr, it will be used for the result, 1325 // otherwise a new BigInt of appropriate length will be allocated. 1326 // {result_storage} may alias {x} or {y} for in-place modification. 1327 Handle<MutableBigInt> MutableBigInt::AbsoluteXor( 1328 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y, 1329 MutableBigInt* result_storage) { 1330 return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kSymmetric, 1331 [](digit_t a, digit_t b) { return a ^ b; }); 1332 } 1333 1334 // Returns a positive value if abs(x) > abs(y), a negative value if 1335 // abs(x) < abs(y), or zero if abs(x) == abs(y). 1336 int MutableBigInt::AbsoluteCompare(Handle<BigIntBase> x, Handle<BigIntBase> y) { 1337 int diff = x->length() - y->length(); 1338 if (diff != 0) return diff; 1339 int i = x->length() - 1; 1340 while (i >= 0 && x->digit(i) == y->digit(i)) i--; 1341 if (i < 0) return 0; 1342 return x->digit(i) > y->digit(i) ? 1 : -1; 1343 } 1344 1345 // Multiplies {multiplicand} with {multiplier} and adds the result to 1346 // {accumulator}, starting at {accumulator_index} for the least-significant 1347 // digit. 1348 // Callers must ensure that {accumulator} is big enough to hold the result. 1349 void MutableBigInt::MultiplyAccumulate(Handle<BigIntBase> multiplicand, 1350 digit_t multiplier, 1351 Handle<MutableBigInt> accumulator, 1352 int accumulator_index) { 1353 // This is a minimum requirement; the DCHECK in the second loop below 1354 // will enforce more as needed. 1355 DCHECK(accumulator->length() > multiplicand->length() + accumulator_index); 1356 if (multiplier == 0L) return; 1357 digit_t carry = 0; 1358 digit_t high = 0; 1359 for (int i = 0; i < multiplicand->length(); i++, accumulator_index++) { 1360 digit_t acc = accumulator->digit(accumulator_index); 1361 digit_t new_carry = 0; 1362 // Add last round's carryovers. 1363 acc = digit_add(acc, high, &new_carry); 1364 acc = digit_add(acc, carry, &new_carry); 1365 // Compute this round's multiplication. 1366 digit_t m_digit = multiplicand->digit(i); 1367 digit_t low = digit_mul(multiplier, m_digit, &high); 1368 acc = digit_add(acc, low, &new_carry); 1369 // Store result and prepare for next round. 1370 accumulator->set_digit(accumulator_index, acc); 1371 carry = new_carry; 1372 } 1373 for (; carry != 0 || high != 0; accumulator_index++) { 1374 DCHECK(accumulator_index < accumulator->length()); 1375 digit_t acc = accumulator->digit(accumulator_index); 1376 digit_t new_carry = 0; 1377 acc = digit_add(acc, high, &new_carry); 1378 high = 0; 1379 acc = digit_add(acc, carry, &new_carry); 1380 accumulator->set_digit(accumulator_index, acc); 1381 carry = new_carry; 1382 } 1383 } 1384 1385 // Multiplies {source} with {factor} and adds {summand} to the result. 1386 // {result} and {source} may be the same BigInt for inplace modification. 1387 void MutableBigInt::InternalMultiplyAdd(BigIntBase* source, digit_t factor, 1388 digit_t summand, int n, 1389 MutableBigInt* result) { 1390 DCHECK(source->length() >= n); 1391 DCHECK(result->length() >= n); 1392 digit_t carry = summand; 1393 digit_t high = 0; 1394 for (int i = 0; i < n; i++) { 1395 digit_t current = source->digit(i); 1396 digit_t new_carry = 0; 1397 // Compute this round's multiplication. 1398 digit_t new_high = 0; 1399 current = digit_mul(current, factor, &new_high); 1400 // Add last round's carryovers. 1401 current = digit_add(current, high, &new_carry); 1402 current = digit_add(current, carry, &new_carry); 1403 // Store result and prepare for next round. 1404 result->set_digit(i, current); 1405 carry = new_carry; 1406 high = new_high; 1407 } 1408 if (result->length() > n) { 1409 result->set_digit(n++, carry + high); 1410 // Current callers don't pass in such large results, but let's be robust. 1411 while (n < result->length()) { 1412 result->set_digit(n++, 0); 1413 } 1414 } else { 1415 CHECK_EQ(carry + high, 0); 1416 } 1417 } 1418 1419 // Multiplies {x} with {factor} and then adds {summand} to it. 1420 void BigInt::InplaceMultiplyAdd(Handle<FreshlyAllocatedBigInt> x, 1421 uintptr_t factor, uintptr_t summand) { 1422 STATIC_ASSERT(sizeof(factor) == sizeof(digit_t)); 1423 STATIC_ASSERT(sizeof(summand) == sizeof(digit_t)); 1424 Handle<MutableBigInt> bigint = MutableBigInt::Cast(x); 1425 MutableBigInt::InternalMultiplyAdd(*bigint, factor, summand, bigint->length(), 1426 *bigint); 1427 } 1428 1429 // Divides {x} by {divisor}, returning the result in {quotient} and {remainder}. 1430 // Mathematically, the contract is: 1431 // quotient = (x - remainder) / divisor, with 0 <= remainder < divisor. 1432 // If {quotient} is an empty handle, an appropriately sized BigInt will be 1433 // allocated for it; otherwise the caller must ensure that it is big enough. 1434 // {quotient} can be the same as {x} for an in-place division. {quotient} can 1435 // also be nullptr if the caller is only interested in the remainder. 1436 void MutableBigInt::AbsoluteDivSmall(Isolate* isolate, Handle<BigIntBase> x, 1437 digit_t divisor, 1438 Handle<MutableBigInt>* quotient, 1439 digit_t* remainder) { 1440 DCHECK_NE(divisor, 0); 1441 DCHECK(!x->is_zero()); // Callers check anyway, no need to handle this. 1442 *remainder = 0; 1443 int length = x->length(); 1444 if (quotient != nullptr) { 1445 if ((*quotient).is_null()) { 1446 *quotient = New(isolate, length).ToHandleChecked(); 1447 } 1448 for (int i = length - 1; i >= 0; i--) { 1449 digit_t q = digit_div(*remainder, x->digit(i), divisor, remainder); 1450 (*quotient)->set_digit(i, q); 1451 } 1452 } else { 1453 for (int i = length - 1; i >= 0; i--) { 1454 digit_div(*remainder, x->digit(i), divisor, remainder); 1455 } 1456 } 1457 } 1458 1459 // Divides {dividend} by {divisor}, returning the result in {quotient} and 1460 // {remainder}. Mathematically, the contract is: 1461 // quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor. 1462 // Both {quotient} and {remainder} are optional, for callers that are only 1463 // interested in one of them. 1464 // See Knuth, Volume 2, section 4.3.1, Algorithm D. 1465 bool MutableBigInt::AbsoluteDivLarge(Isolate* isolate, 1466 Handle<BigIntBase> dividend, 1467 Handle<BigIntBase> divisor, 1468 Handle<MutableBigInt>* quotient, 1469 Handle<MutableBigInt>* remainder) { 1470 DCHECK_GE(divisor->length(), 2); 1471 DCHECK(dividend->length() >= divisor->length()); 1472 // The unusual variable names inside this function are consistent with 1473 // Knuth's book, as well as with Go's implementation of this algorithm. 1474 // Maintaining this consistency is probably more useful than trying to 1475 // come up with more descriptive names for them. 1476 int n = divisor->length(); 1477 int m = dividend->length() - n; 1478 1479 // The quotient to be computed. 1480 Handle<MutableBigInt> q; 1481 if (quotient != nullptr) q = New(isolate, m + 1).ToHandleChecked(); 1482 // In each iteration, {qhatv} holds {divisor} * {current quotient digit}. 1483 // "v" is the book's name for {divisor}, "qhat" the current quotient digit. 1484 Handle<MutableBigInt> qhatv; 1485 if (!New(isolate, n + 1).ToHandle(&qhatv)) return false; 1486 1487 // D1. 1488 // Left-shift inputs so that the divisor's MSB is set. This is necessary 1489 // to prevent the digit-wise divisions (see digit_div call below) from 1490 // overflowing (they take a two digits wide input, and return a one digit 1491 // result). 1492 int shift = base::bits::CountLeadingZeros(divisor->digit(n - 1)); 1493 if (shift > 0) { 1494 divisor = SpecialLeftShift(isolate, divisor, shift, kSameSizeResult) 1495 .ToHandleChecked(); 1496 } 1497 // Holds the (continuously updated) remaining part of the dividend, which 1498 // eventually becomes the remainder. 1499 Handle<MutableBigInt> u; 1500 if (!SpecialLeftShift(isolate, dividend, shift, kAlwaysAddOneDigit) 1501 .ToHandle(&u)) { 1502 return false; 1503 } 1504 1505 // D2. 1506 // Iterate over the dividend's digit (like the "grad school" algorithm). 1507 // {vn1} is the divisor's most significant digit. 1508 digit_t vn1 = divisor->digit(n - 1); 1509 for (int j = m; j >= 0; j--) { 1510 // D3. 1511 // Estimate the current iteration's quotient digit (see Knuth for details). 1512 // {qhat} is the current quotient digit. 1513 digit_t qhat = std::numeric_limits<digit_t>::max(); 1514 // {ujn} is the dividend's most significant remaining digit. 1515 digit_t ujn = u->digit(j + n); 1516 if (ujn != vn1) { 1517 // {rhat} is the current iteration's remainder. 1518 digit_t rhat = 0; 1519 // Estimate the current quotient digit by dividing the most significant 1520 // digits of dividend and divisor. The result will not be too small, 1521 // but could be a bit too large. 1522 qhat = digit_div(ujn, u->digit(j + n - 1), vn1, &rhat); 1523 1524 // Decrement the quotient estimate as needed by looking at the next 1525 // digit, i.e. by testing whether 1526 // qhat * v_{n-2} > (rhat << kDigitBits) + u_{j+n-2}. 1527 digit_t vn2 = divisor->digit(n - 2); 1528 digit_t ujn2 = u->digit(j + n - 2); 1529 while (ProductGreaterThan(qhat, vn2, rhat, ujn2)) { 1530 qhat--; 1531 digit_t prev_rhat = rhat; 1532 rhat += vn1; 1533 // v[n-1] >= 0, so this tests for overflow. 1534 if (rhat < prev_rhat) break; 1535 } 1536 } 1537 1538 // D4. 1539 // Multiply the divisor with the current quotient digit, and subtract 1540 // it from the dividend. If there was "borrow", then the quotient digit 1541 // was one too high, so we must correct it and undo one subtraction of 1542 // the (shifted) divisor. 1543 InternalMultiplyAdd(*divisor, qhat, 0, n, *qhatv); 1544 digit_t c = u->InplaceSub(qhatv, j); 1545 if (c != 0) { 1546 c = u->InplaceAdd(divisor, j); 1547 u->set_digit(j + n, u->digit(j + n) + c); 1548 qhat--; 1549 } 1550 1551 if (quotient != nullptr) q->set_digit(j, qhat); 1552 } 1553 if (quotient != nullptr) { 1554 *quotient = q; // Caller will right-trim. 1555 } 1556 if (remainder != nullptr) { 1557 u->InplaceRightShift(shift); 1558 *remainder = u; 1559 } 1560 return true; 1561 } 1562 1563 // Returns whether (factor1 * factor2) > (high << kDigitBits) + low. 1564 bool MutableBigInt::ProductGreaterThan(digit_t factor1, digit_t factor2, 1565 digit_t high, digit_t low) { 1566 digit_t result_high; 1567 digit_t result_low = digit_mul(factor1, factor2, &result_high); 1568 return result_high > high || (result_high == high && result_low > low); 1569 } 1570 1571 // Adds {summand} onto {this}, starting with {summand}'s 0th digit 1572 // at {this}'s {start_index}'th digit. Returns the "carry" (0 or 1). 1573 BigInt::digit_t MutableBigInt::InplaceAdd(Handle<BigIntBase> summand, 1574 int start_index) { 1575 digit_t carry = 0; 1576 int n = summand->length(); 1577 DCHECK(length() >= start_index + n); 1578 for (int i = 0; i < n; i++) { 1579 digit_t new_carry = 0; 1580 digit_t sum = 1581 digit_add(digit(start_index + i), summand->digit(i), &new_carry); 1582 sum = digit_add(sum, carry, &new_carry); 1583 set_digit(start_index + i, sum); 1584 carry = new_carry; 1585 } 1586 return carry; 1587 } 1588 1589 // Subtracts {subtrahend} from {this}, starting with {subtrahend}'s 0th digit 1590 // at {this}'s {start_index}-th digit. Returns the "borrow" (0 or 1). 1591 BigInt::digit_t MutableBigInt::InplaceSub(Handle<BigIntBase> subtrahend, 1592 int start_index) { 1593 digit_t borrow = 0; 1594 int n = subtrahend->length(); 1595 DCHECK(length() >= start_index + n); 1596 for (int i = 0; i < n; i++) { 1597 digit_t new_borrow = 0; 1598 digit_t difference = 1599 digit_sub(digit(start_index + i), subtrahend->digit(i), &new_borrow); 1600 difference = digit_sub(difference, borrow, &new_borrow); 1601 set_digit(start_index + i, difference); 1602 borrow = new_borrow; 1603 } 1604 return borrow; 1605 } 1606 1607 void MutableBigInt::InplaceRightShift(int shift) { 1608 DCHECK_GE(shift, 0); 1609 DCHECK_LT(shift, kDigitBits); 1610 DCHECK_GT(length(), 0); 1611 DCHECK_EQ(digit(0) & ((static_cast<digit_t>(1) << shift) - 1), 0); 1612 if (shift == 0) return; 1613 digit_t carry = digit(0) >> shift; 1614 int last = length() - 1; 1615 for (int i = 0; i < last; i++) { 1616 digit_t d = digit(i + 1); 1617 set_digit(i, (d << (kDigitBits - shift)) | carry); 1618 carry = d >> shift; 1619 } 1620 set_digit(last, carry); 1621 } 1622 1623 // Always copies the input, even when {shift} == 0. 1624 // {shift} must be less than kDigitBits, {x} must be non-zero. 1625 MaybeHandle<MutableBigInt> MutableBigInt::SpecialLeftShift( 1626 Isolate* isolate, Handle<BigIntBase> x, int shift, 1627 SpecialLeftShiftMode mode) { 1628 DCHECK_GE(shift, 0); 1629 DCHECK_LT(shift, kDigitBits); 1630 DCHECK_GT(x->length(), 0); 1631 int n = x->length(); 1632 int result_length = mode == kAlwaysAddOneDigit ? n + 1 : n; 1633 Handle<MutableBigInt> result; 1634 if (!New(isolate, result_length).ToHandle(&result)) { 1635 return MaybeHandle<MutableBigInt>(); 1636 } 1637 if (shift == 0) { 1638 for (int i = 0; i < n; i++) result->set_digit(i, x->digit(i)); 1639 if (mode == kAlwaysAddOneDigit) result->set_digit(n, 0); 1640 return result; 1641 } 1642 DCHECK_GT(shift, 0); 1643 digit_t carry = 0; 1644 for (int i = 0; i < n; i++) { 1645 digit_t d = x->digit(i); 1646 result->set_digit(i, (d << shift) | carry); 1647 carry = d >> (kDigitBits - shift); 1648 } 1649 if (mode == kAlwaysAddOneDigit) { 1650 result->set_digit(n, carry); 1651 } else { 1652 DCHECK_EQ(mode, kSameSizeResult); 1653 DCHECK_EQ(carry, 0); 1654 } 1655 return result; 1656 } 1657 1658 MaybeHandle<BigInt> MutableBigInt::LeftShiftByAbsolute(Isolate* isolate, 1659 Handle<BigIntBase> x, 1660 Handle<BigIntBase> y) { 1661 Maybe<digit_t> maybe_shift = ToShiftAmount(y); 1662 if (maybe_shift.IsNothing()) { 1663 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), 1664 BigInt); 1665 } 1666 digit_t shift = maybe_shift.FromJust(); 1667 int digit_shift = static_cast<int>(shift / kDigitBits); 1668 int bits_shift = static_cast<int>(shift % kDigitBits); 1669 int length = x->length(); 1670 bool grow = bits_shift != 0 && 1671 (x->digit(length - 1) >> (kDigitBits - bits_shift)) != 0; 1672 int result_length = length + digit_shift + grow; 1673 if (result_length > kMaxLength) { 1674 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), 1675 BigInt); 1676 } 1677 Handle<MutableBigInt> result; 1678 if (!New(isolate, result_length).ToHandle(&result)) { 1679 return MaybeHandle<BigInt>(); 1680 } 1681 if (bits_shift == 0) { 1682 int i = 0; 1683 for (; i < digit_shift; i++) result->set_digit(i, 0ul); 1684 for (; i < result_length; i++) { 1685 result->set_digit(i, x->digit(i - digit_shift)); 1686 } 1687 } else { 1688 digit_t carry = 0; 1689 for (int i = 0; i < digit_shift; i++) result->set_digit(i, 0ul); 1690 for (int i = 0; i < length; i++) { 1691 digit_t d = x->digit(i); 1692 result->set_digit(i + digit_shift, (d << bits_shift) | carry); 1693 carry = d >> (kDigitBits - bits_shift); 1694 } 1695 if (grow) { 1696 result->set_digit(length + digit_shift, carry); 1697 } else { 1698 DCHECK_EQ(carry, 0); 1699 } 1700 } 1701 result->set_sign(x->sign()); 1702 return MakeImmutable(result); 1703 } 1704 1705 Handle<BigInt> MutableBigInt::RightShiftByAbsolute(Isolate* isolate, 1706 Handle<BigIntBase> x, 1707 Handle<BigIntBase> y) { 1708 int length = x->length(); 1709 bool sign = x->sign(); 1710 Maybe<digit_t> maybe_shift = ToShiftAmount(y); 1711 if (maybe_shift.IsNothing()) { 1712 return RightShiftByMaximum(isolate, sign); 1713 } 1714 digit_t shift = maybe_shift.FromJust(); 1715 int digit_shift = static_cast<int>(shift / kDigitBits); 1716 int bits_shift = static_cast<int>(shift % kDigitBits); 1717 int result_length = length - digit_shift; 1718 if (result_length <= 0) { 1719 return RightShiftByMaximum(isolate, sign); 1720 } 1721 // For negative numbers, round down if any bit was shifted out (so that e.g. 1722 // -5n >> 1n == -3n and not -2n). Check now whether this will happen and 1723 // whether it can cause overflow into a new digit. If we allocate the result 1724 // large enough up front, it avoids having to do a second allocation later. 1725 bool must_round_down = false; 1726 if (sign) { 1727 const digit_t mask = (static_cast<digit_t>(1) << bits_shift) - 1; 1728 if ((x->digit(digit_shift) & mask) != 0) { 1729 must_round_down = true; 1730 } else { 1731 for (int i = 0; i < digit_shift; i++) { 1732 if (x->digit(i) != 0) { 1733 must_round_down = true; 1734 break; 1735 } 1736 } 1737 } 1738 } 1739 // If bits_shift is non-zero, it frees up bits, preventing overflow. 1740 if (must_round_down && bits_shift == 0) { 1741 // Overflow cannot happen if the most significant digit has unset bits. 1742 digit_t msd = x->digit(length - 1); 1743 bool rounding_can_overflow = digit_ismax(msd); 1744 if (rounding_can_overflow) result_length++; 1745 } 1746 1747 DCHECK_LE(result_length, length); 1748 Handle<MutableBigInt> result = New(isolate, result_length).ToHandleChecked(); 1749 if (bits_shift == 0) { 1750 for (int i = digit_shift; i < length; i++) { 1751 result->set_digit(i - digit_shift, x->digit(i)); 1752 } 1753 } else { 1754 digit_t carry = x->digit(digit_shift) >> bits_shift; 1755 int last = length - digit_shift - 1; 1756 for (int i = 0; i < last; i++) { 1757 digit_t d = x->digit(i + digit_shift + 1); 1758 result->set_digit(i, (d << (kDigitBits - bits_shift)) | carry); 1759 carry = d >> bits_shift; 1760 } 1761 result->set_digit(last, carry); 1762 } 1763 1764 if (sign) { 1765 result->set_sign(true); 1766 if (must_round_down) { 1767 // Since the result is negative, rounding down means adding one to 1768 // its absolute value. This cannot overflow. 1769 result = AbsoluteAddOne(isolate, result, true, *result).ToHandleChecked(); 1770 } 1771 } 1772 return MakeImmutable(result); 1773 } 1774 1775 Handle<BigInt> MutableBigInt::RightShiftByMaximum(Isolate* isolate, bool sign) { 1776 if (sign) { 1777 // TODO(jkummerow): Consider caching a canonical -1n BigInt. 1778 return NewFromInt(isolate, -1); 1779 } else { 1780 return Zero(isolate); 1781 } 1782 } 1783 1784 // Returns the value of {x} if it is less than the maximum bit length of 1785 // a BigInt, or Nothing otherwise. 1786 Maybe<BigInt::digit_t> MutableBigInt::ToShiftAmount(Handle<BigIntBase> x) { 1787 if (x->length() > 1) return Nothing<digit_t>(); 1788 digit_t value = x->digit(0); 1789 STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max()); 1790 if (value > kMaxLengthBits) return Nothing<digit_t>(); 1791 return Just(value); 1792 } 1793 1794 // Lookup table for the maximum number of bits required per character of a 1795 // base-N string representation of a number. To increase accuracy, the array 1796 // value is the actual value multiplied by 32. To generate this table: 1797 // for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); } 1798 constexpr uint8_t kMaxBitsPerChar[] = { 1799 0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8 1800 102, 107, 111, 115, 119, 122, 126, 128, // 9..16 1801 131, 134, 136, 139, 141, 143, 145, 147, // 17..24 1802 149, 151, 153, 154, 156, 158, 159, 160, // 25..32 1803 162, 163, 165, 166, // 33..36 1804 }; 1805 1806 static const int kBitsPerCharTableShift = 5; 1807 static const size_t kBitsPerCharTableMultiplier = 1u << kBitsPerCharTableShift; 1808 1809 MaybeHandle<FreshlyAllocatedBigInt> BigInt::AllocateFor( 1810 Isolate* isolate, int radix, int charcount, ShouldThrow should_throw, 1811 PretenureFlag pretenure) { 1812 DCHECK(2 <= radix && radix <= 36); 1813 DCHECK_GE(charcount, 0); 1814 size_t bits_per_char = kMaxBitsPerChar[radix]; 1815 size_t chars = static_cast<size_t>(charcount); 1816 const int roundup = kBitsPerCharTableMultiplier - 1; 1817 if (chars <= (std::numeric_limits<size_t>::max() - roundup) / bits_per_char) { 1818 size_t bits_min = bits_per_char * chars; 1819 // Divide by 32 (see table), rounding up. 1820 bits_min = (bits_min + roundup) >> kBitsPerCharTableShift; 1821 if (bits_min <= static_cast<size_t>(kMaxInt)) { 1822 // Divide by kDigitsBits, rounding up. 1823 int length = (static_cast<int>(bits_min) + kDigitBits - 1) / kDigitBits; 1824 if (length <= kMaxLength) { 1825 Handle<MutableBigInt> result = 1826 MutableBigInt::New(isolate, length, pretenure).ToHandleChecked(); 1827 result->InitializeDigits(length); 1828 return result; 1829 } 1830 } 1831 } 1832 // All the overflow/maximum checks above fall through to here. 1833 if (should_throw == kThrowOnError) { 1834 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), 1835 FreshlyAllocatedBigInt); 1836 } else { 1837 return MaybeHandle<FreshlyAllocatedBigInt>(); 1838 } 1839 } 1840 1841 Handle<BigInt> BigInt::Finalize(Handle<FreshlyAllocatedBigInt> x, bool sign) { 1842 Handle<MutableBigInt> bigint = MutableBigInt::Cast(x); 1843 bigint->set_sign(sign); 1844 return MutableBigInt::MakeImmutable(bigint); 1845 } 1846 1847 // The serialization format MUST NOT CHANGE without updating the format 1848 // version in value-serializer.cc! 1849 uint32_t BigInt::GetBitfieldForSerialization() const { 1850 // In order to make the serialization format the same on 32/64 bit builds, 1851 // we convert the length-in-digits to length-in-bytes for serialization. 1852 // Being able to do this depends on having enough LengthBits: 1853 STATIC_ASSERT(kMaxLength * kDigitSize <= LengthBits::kMax); 1854 int bytelength = length() * kDigitSize; 1855 return SignBits::encode(sign()) | LengthBits::encode(bytelength); 1856 } 1857 1858 int BigInt::DigitsByteLengthForBitfield(uint32_t bitfield) { 1859 return LengthBits::decode(bitfield); 1860 } 1861 1862 // The serialization format MUST NOT CHANGE without updating the format 1863 // version in value-serializer.cc! 1864 void BigInt::SerializeDigits(uint8_t* storage) { 1865 void* digits = reinterpret_cast<void*>(reinterpret_cast<Address>(this) + 1866 kDigitsOffset - kHeapObjectTag); 1867 #if defined(V8_TARGET_LITTLE_ENDIAN) 1868 int bytelength = length() * kDigitSize; 1869 memcpy(storage, digits, bytelength); 1870 #elif defined(V8_TARGET_BIG_ENDIAN) 1871 digit_t* digit_storage = reinterpret_cast<digit_t*>(storage); 1872 const digit_t* digit = reinterpret_cast<const digit_t*>(digits); 1873 for (int i = 0; i < length(); i++) { 1874 *digit_storage = ByteReverse(*digit); 1875 digit_storage++; 1876 digit++; 1877 } 1878 #endif // V8_TARGET_BIG_ENDIAN 1879 } 1880 1881 // The serialization format MUST NOT CHANGE without updating the format 1882 // version in value-serializer.cc! 1883 MaybeHandle<BigInt> BigInt::FromSerializedDigits( 1884 Isolate* isolate, uint32_t bitfield, Vector<const uint8_t> digits_storage, 1885 PretenureFlag pretenure) { 1886 int bytelength = LengthBits::decode(bitfield); 1887 DCHECK(digits_storage.length() == bytelength); 1888 bool sign = SignBits::decode(bitfield); 1889 int length = (bytelength + kDigitSize - 1) / kDigitSize; // Round up. 1890 Handle<MutableBigInt> result = 1891 MutableBigInt::Cast(isolate->factory()->NewBigInt(length, pretenure)); 1892 result->initialize_bitfield(sign, length); 1893 void* digits = reinterpret_cast<void*>(reinterpret_cast<Address>(*result) + 1894 kDigitsOffset - kHeapObjectTag); 1895 #if defined(V8_TARGET_LITTLE_ENDIAN) 1896 memcpy(digits, digits_storage.start(), bytelength); 1897 void* padding_start = 1898 reinterpret_cast<void*>(reinterpret_cast<Address>(digits) + bytelength); 1899 memset(padding_start, 0, length * kDigitSize - bytelength); 1900 #elif defined(V8_TARGET_BIG_ENDIAN) 1901 digit_t* digit = reinterpret_cast<digit_t*>(digits); 1902 const digit_t* digit_storage = 1903 reinterpret_cast<const digit_t*>(digits_storage.start()); 1904 for (int i = 0; i < bytelength / kDigitSize; i++) { 1905 *digit = ByteReverse(*digit_storage); 1906 digit_storage++; 1907 digit++; 1908 } 1909 if (bytelength % kDigitSize) { 1910 *digit = 0; 1911 byte* digit_byte = reinterpret_cast<byte*>(digit); 1912 digit_byte += sizeof(*digit) - 1; 1913 const byte* digit_storage_byte = 1914 reinterpret_cast<const byte*>(digit_storage); 1915 for (int i = 0; i < bytelength % kDigitSize; i++) { 1916 *digit_byte = *digit_storage_byte; 1917 digit_byte--; 1918 digit_storage_byte++; 1919 } 1920 } 1921 #endif // V8_TARGET_BIG_ENDIAN 1922 return MutableBigInt::MakeImmutable(result); 1923 } 1924 1925 static const char kConversionChars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; 1926 1927 MaybeHandle<String> MutableBigInt::ToStringBasePowerOfTwo(Isolate* isolate, 1928 Handle<BigIntBase> x, 1929 int radix) { 1930 STATIC_ASSERT(base::bits::IsPowerOfTwo(kDigitBits)); 1931 DCHECK(base::bits::IsPowerOfTwo(radix)); 1932 DCHECK(radix >= 2 && radix <= 32); 1933 DCHECK(!x->is_zero()); 1934 1935 const int length = x->length(); 1936 const bool sign = x->sign(); 1937 const int bits_per_char = base::bits::CountTrailingZeros(radix); 1938 const int char_mask = radix - 1; 1939 // Compute the length of the resulting string: divide the bit length of the 1940 // BigInt by the number of bits representable per character (rounding up). 1941 const digit_t msd = x->digit(length - 1); 1942 const int msd_leading_zeros = base::bits::CountLeadingZeros(msd); 1943 const size_t bit_length = length * kDigitBits - msd_leading_zeros; 1944 const size_t chars_required = 1945 (bit_length + bits_per_char - 1) / bits_per_char + sign; 1946 1947 if (chars_required > String::kMaxLength) { 1948 THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String); 1949 } 1950 1951 Handle<SeqOneByteString> result = 1952 isolate->factory() 1953 ->NewRawOneByteString(static_cast<int>(chars_required)) 1954 .ToHandleChecked(); 1955 DisallowHeapAllocation no_gc; 1956 uint8_t* buffer = result->GetChars(); 1957 // Print the number into the string, starting from the last position. 1958 int pos = static_cast<int>(chars_required - 1); 1959 digit_t digit = 0; 1960 // Keeps track of how many unprocessed bits there are in {digit}. 1961 int available_bits = 0; 1962 for (int i = 0; i < length - 1; i++) { 1963 digit_t new_digit = x->digit(i); 1964 // Take any leftover bits from the last iteration into account. 1965 int current = (digit | (new_digit << available_bits)) & char_mask; 1966 buffer[pos--] = kConversionChars[current]; 1967 int consumed_bits = bits_per_char - available_bits; 1968 digit = new_digit >> consumed_bits; 1969 available_bits = kDigitBits - consumed_bits; 1970 while (available_bits >= bits_per_char) { 1971 buffer[pos--] = kConversionChars[digit & char_mask]; 1972 digit >>= bits_per_char; 1973 available_bits -= bits_per_char; 1974 } 1975 } 1976 // Take any leftover bits from the last iteration into account. 1977 int current = (digit | (msd << available_bits)) & char_mask; 1978 buffer[pos--] = kConversionChars[current]; 1979 digit = msd >> (bits_per_char - available_bits); 1980 while (digit != 0) { 1981 buffer[pos--] = kConversionChars[digit & char_mask]; 1982 digit >>= bits_per_char; 1983 } 1984 if (sign) buffer[pos--] = '-'; 1985 DCHECK_EQ(pos, -1); 1986 return result; 1987 } 1988 1989 MaybeHandle<String> MutableBigInt::ToStringGeneric(Isolate* isolate, 1990 Handle<BigIntBase> x, 1991 int radix) { 1992 DCHECK(radix >= 2 && radix <= 36); 1993 DCHECK(!x->is_zero()); 1994 Heap* heap = isolate->heap(); 1995 1996 const int length = x->length(); 1997 const bool sign = x->sign(); 1998 1999 // Compute (an overapproximation of) the length of the resulting string: 2000 // Divide bit length of the BigInt by bits representable per character. 2001 const size_t bit_length = 2002 length * kDigitBits - base::bits::CountLeadingZeros(x->digit(length - 1)); 2003 // Maximum number of bits we can represent with one character. We'll use this 2004 // to find an appropriate chunk size below. 2005 const uint8_t max_bits_per_char = kMaxBitsPerChar[radix]; 2006 // For estimating result length, we have to be pessimistic and work with 2007 // the minimum number of bits one character can represent. 2008 const uint8_t min_bits_per_char = max_bits_per_char - 1; 2009 // Perform the following computation with uint64_t to avoid overflows. 2010 uint64_t chars_required = bit_length; 2011 chars_required *= kBitsPerCharTableMultiplier; 2012 chars_required += min_bits_per_char - 1; // Round up. 2013 chars_required /= min_bits_per_char; 2014 chars_required += sign; 2015 2016 if (chars_required > String::kMaxLength) { 2017 THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String); 2018 } 2019 Handle<SeqOneByteString> result = 2020 isolate->factory() 2021 ->NewRawOneByteString(static_cast<int>(chars_required)) 2022 .ToHandleChecked(); 2023 2024 #if DEBUG 2025 // Zap the string first. 2026 { 2027 DisallowHeapAllocation no_gc; 2028 uint8_t* chars = result->GetChars(); 2029 for (int i = 0; i < static_cast<int>(chars_required); i++) chars[i] = '?'; 2030 } 2031 #endif 2032 2033 // We assemble the result string in reverse order, and then reverse it. 2034 // TODO(jkummerow): Consider building the string from the right, and 2035 // left-shifting it if the length estimate was too large. 2036 int pos = 0; 2037 2038 digit_t last_digit; 2039 if (length == 1) { 2040 last_digit = x->digit(0); 2041 } else { 2042 int chunk_chars = 2043 kDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char; 2044 digit_t chunk_divisor = digit_pow(radix, chunk_chars); 2045 // By construction of chunk_chars, there can't have been overflow. 2046 DCHECK_NE(chunk_divisor, 0); 2047 int nonzero_digit = length - 1; 2048 DCHECK_NE(x->digit(nonzero_digit), 0); 2049 // {rest} holds the part of the BigInt that we haven't looked at yet. 2050 // Not to be confused with "remainder"! 2051 Handle<MutableBigInt> rest; 2052 // In the first round, divide the input, allocating a new BigInt for 2053 // the result == rest; from then on divide the rest in-place. 2054 Handle<BigIntBase>* dividend = &x; 2055 do { 2056 digit_t chunk; 2057 AbsoluteDivSmall(isolate, *dividend, chunk_divisor, &rest, &chunk); 2058 DCHECK(!rest.is_null()); 2059 dividend = reinterpret_cast<Handle<BigIntBase>*>(&rest); 2060 DisallowHeapAllocation no_gc; 2061 uint8_t* chars = result->GetChars(); 2062 for (int i = 0; i < chunk_chars; i++) { 2063 chars[pos++] = kConversionChars[chunk % radix]; 2064 chunk /= radix; 2065 } 2066 DCHECK_EQ(chunk, 0); 2067 if (rest->digit(nonzero_digit) == 0) nonzero_digit--; 2068 // We can never clear more than one digit per iteration, because 2069 // chunk_divisor is smaller than max digit value. 2070 DCHECK_GT(rest->digit(nonzero_digit), 0); 2071 } while (nonzero_digit > 0); 2072 last_digit = rest->digit(0); 2073 } 2074 DisallowHeapAllocation no_gc; 2075 uint8_t* chars = result->GetChars(); 2076 do { 2077 chars[pos++] = kConversionChars[last_digit % radix]; 2078 last_digit /= radix; 2079 } while (last_digit > 0); 2080 DCHECK_GE(pos, 1); 2081 DCHECK(pos <= static_cast<int>(chars_required)); 2082 // Remove leading zeroes. 2083 while (pos > 1 && chars[pos - 1] == '0') pos--; 2084 if (sign) chars[pos++] = '-'; 2085 // Trim any over-allocation (which can happen due to conservative estimates). 2086 if (pos < static_cast<int>(chars_required)) { 2087 result->synchronized_set_length(pos); 2088 int string_size = 2089 SeqOneByteString::SizeFor(static_cast<int>(chars_required)); 2090 int needed_size = SeqOneByteString::SizeFor(pos); 2091 if (needed_size < string_size) { 2092 Address new_end = result->address() + needed_size; 2093 heap->CreateFillerObjectAt(new_end, (string_size - needed_size), 2094 ClearRecordedSlots::kNo); 2095 } 2096 } 2097 // Reverse the string. 2098 for (int i = 0, j = pos - 1; i < j; i++, j--) { 2099 uint8_t tmp = chars[i]; 2100 chars[i] = chars[j]; 2101 chars[j] = tmp; 2102 } 2103 #if DEBUG 2104 // Verify that all characters have been written. 2105 DCHECK(result->length() == pos); 2106 for (int i = 0; i < pos; i++) DCHECK_NE(chars[i], '?'); 2107 #endif 2108 return result; 2109 } 2110 2111 Handle<BigInt> BigInt::AsIntN(Isolate* isolate, uint64_t n, Handle<BigInt> x) { 2112 if (x->is_zero()) return x; 2113 if (n == 0) return MutableBigInt::Zero(isolate); 2114 uint64_t needed_length = (n + kDigitBits - 1) / kDigitBits; 2115 uint64_t x_length = static_cast<uint64_t>(x->length()); 2116 // If {x} has less than {n} bits, return it directly. 2117 if (x_length < needed_length) return x; 2118 DCHECK_LE(needed_length, kMaxInt); 2119 digit_t top_digit = x->digit(static_cast<int>(needed_length) - 1); 2120 digit_t compare_digit = static_cast<digit_t>(1) << ((n - 1) % kDigitBits); 2121 if (x_length == needed_length && top_digit < compare_digit) return x; 2122 // Otherwise we have to truncate (which is a no-op in the special case 2123 // of x == -2^(n-1)), and determine the right sign. We also might have 2124 // to subtract from 2^n to simulate having two's complement representation. 2125 // In most cases, the result's sign is x->sign() xor "(n-1)th bit present". 2126 // The only exception is when x is negative, has the (n-1)th bit, and all 2127 // its bits below (n-1) are zero. In that case, the result is the minimum 2128 // n-bit integer (example: asIntN(3, -12n) => -4n). 2129 bool has_bit = (top_digit & compare_digit) == compare_digit; 2130 DCHECK_LE(n, kMaxInt); 2131 int N = static_cast<int>(n); 2132 if (!has_bit) { 2133 return MutableBigInt::TruncateToNBits(isolate, N, x); 2134 } 2135 if (!x->sign()) { 2136 return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, true); 2137 } 2138 // Negative numbers must subtract from 2^n, except for the special case 2139 // described above. 2140 if ((top_digit & (compare_digit - 1)) == 0) { 2141 for (int i = static_cast<int>(needed_length) - 2; i >= 0; i--) { 2142 if (x->digit(i) != 0) { 2143 return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, 2144 false); 2145 } 2146 } 2147 return MutableBigInt::TruncateToNBits(isolate, N, x); 2148 } 2149 return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, false); 2150 } 2151 2152 MaybeHandle<BigInt> BigInt::AsUintN(Isolate* isolate, uint64_t n, 2153 Handle<BigInt> x) { 2154 if (x->is_zero()) return x; 2155 if (n == 0) return MutableBigInt::Zero(isolate); 2156 // If {x} is negative, simulate two's complement representation. 2157 if (x->sign()) { 2158 if (n > kMaxLengthBits) { 2159 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), 2160 BigInt); 2161 } 2162 return MutableBigInt::TruncateAndSubFromPowerOfTwo( 2163 isolate, static_cast<int>(n), x, false); 2164 } 2165 // If {x} is positive and has up to {n} bits, return it directly. 2166 if (n >= kMaxLengthBits) return x; 2167 STATIC_ASSERT(kMaxLengthBits < kMaxInt - kDigitBits); 2168 int needed_length = static_cast<int>((n + kDigitBits - 1) / kDigitBits); 2169 if (x->length() < needed_length) return x; 2170 int bits_in_top_digit = n % kDigitBits; 2171 if (bits_in_top_digit == 0) { 2172 if (x->length() == needed_length) return x; 2173 } else { 2174 digit_t top_digit = x->digit(needed_length - 1); 2175 if ((top_digit >> bits_in_top_digit) == 0) return x; 2176 } 2177 // Otherwise, truncate. 2178 DCHECK_LE(n, kMaxInt); 2179 return MutableBigInt::TruncateToNBits(isolate, static_cast<int>(n), x); 2180 } 2181 2182 Handle<BigInt> MutableBigInt::TruncateToNBits(Isolate* isolate, int n, 2183 Handle<BigInt> x) { 2184 // Only call this when there's something to do. 2185 DCHECK_NE(n, 0); 2186 DCHECK_GT(x->length(), n / kDigitBits); 2187 2188 int needed_digits = (n + (kDigitBits - 1)) / kDigitBits; 2189 DCHECK_LE(needed_digits, x->length()); 2190 Handle<MutableBigInt> result = New(isolate, needed_digits).ToHandleChecked(); 2191 2192 // Copy all digits except the MSD. 2193 int last = needed_digits - 1; 2194 for (int i = 0; i < last; i++) { 2195 result->set_digit(i, x->digit(i)); 2196 } 2197 2198 // The MSD might contain extra bits that we don't want. 2199 digit_t msd = x->digit(last); 2200 if (n % kDigitBits != 0) { 2201 int drop = kDigitBits - (n % kDigitBits); 2202 msd = (msd << drop) >> drop; 2203 } 2204 result->set_digit(last, msd); 2205 result->set_sign(x->sign()); 2206 return MakeImmutable(result); 2207 } 2208 2209 // Subtracts the least significant n bits of abs(x) from 2^n. 2210 Handle<BigInt> MutableBigInt::TruncateAndSubFromPowerOfTwo(Isolate* isolate, 2211 int n, 2212 Handle<BigInt> x, 2213 bool result_sign) { 2214 DCHECK_NE(n, 0); 2215 DCHECK_LE(n, kMaxLengthBits); 2216 2217 int needed_digits = (n + (kDigitBits - 1)) / kDigitBits; 2218 DCHECK_LE(needed_digits, kMaxLength); // Follows from n <= kMaxLengthBits. 2219 Handle<MutableBigInt> result = New(isolate, needed_digits).ToHandleChecked(); 2220 2221 // Process all digits except the MSD. 2222 int i = 0; 2223 int last = needed_digits - 1; 2224 int x_length = x->length(); 2225 digit_t borrow = 0; 2226 // Take digits from {x} unless its length is exhausted. 2227 int limit = Min(last, x_length); 2228 for (; i < limit; i++) { 2229 digit_t new_borrow = 0; 2230 digit_t difference = digit_sub(0, x->digit(i), &new_borrow); 2231 difference = digit_sub(difference, borrow, &new_borrow); 2232 result->set_digit(i, difference); 2233 borrow = new_borrow; 2234 } 2235 // Then simulate leading zeroes in {x} as needed. 2236 for (; i < last; i++) { 2237 digit_t new_borrow = 0; 2238 digit_t difference = digit_sub(0, borrow, &new_borrow); 2239 result->set_digit(i, difference); 2240 borrow = new_borrow; 2241 } 2242 2243 // The MSD might contain extra bits that we don't want. 2244 digit_t msd = last < x_length ? x->digit(last) : 0; 2245 int msd_bits_consumed = n % kDigitBits; 2246 digit_t result_msd; 2247 if (msd_bits_consumed == 0) { 2248 digit_t new_borrow = 0; 2249 result_msd = digit_sub(0, msd, &new_borrow); 2250 result_msd = digit_sub(result_msd, borrow, &new_borrow); 2251 } else { 2252 int drop = kDigitBits - msd_bits_consumed; 2253 msd = (msd << drop) >> drop; 2254 digit_t minuend_msd = static_cast<digit_t>(1) << (kDigitBits - drop); 2255 digit_t new_borrow = 0; 2256 result_msd = digit_sub(minuend_msd, msd, &new_borrow); 2257 result_msd = digit_sub(result_msd, borrow, &new_borrow); 2258 DCHECK_EQ(new_borrow, 0); // result < 2^n. 2259 // If all subtracted bits were zero, we have to get rid of the 2260 // materialized minuend_msd again. 2261 result_msd &= (minuend_msd - 1); 2262 } 2263 result->set_digit(last, result_msd); 2264 result->set_sign(result_sign); 2265 return MakeImmutable(result); 2266 } 2267 2268 Handle<BigInt> BigInt::FromInt64(Isolate* isolate, int64_t n) { 2269 if (n == 0) return MutableBigInt::Zero(isolate); 2270 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); 2271 int length = 64 / kDigitBits; 2272 Handle<MutableBigInt> result = 2273 MutableBigInt::Cast(isolate->factory()->NewBigInt(length)); 2274 bool sign = n < 0; 2275 result->initialize_bitfield(sign, length); 2276 uint64_t absolute; 2277 if (!sign) { 2278 absolute = static_cast<uint64_t>(n); 2279 } else { 2280 if (n == std::numeric_limits<int64_t>::min()) { 2281 absolute = static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1; 2282 } else { 2283 absolute = static_cast<uint64_t>(-n); 2284 } 2285 } 2286 result->set_64_bits(absolute); 2287 return MutableBigInt::MakeImmutable(result); 2288 } 2289 2290 Handle<BigInt> BigInt::FromUint64(Isolate* isolate, uint64_t n) { 2291 if (n == 0) return MutableBigInt::Zero(isolate); 2292 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); 2293 int length = 64 / kDigitBits; 2294 Handle<MutableBigInt> result = 2295 MutableBigInt::Cast(isolate->factory()->NewBigInt(length)); 2296 result->initialize_bitfield(false, length); 2297 result->set_64_bits(n); 2298 return MutableBigInt::MakeImmutable(result); 2299 } 2300 2301 MaybeHandle<BigInt> BigInt::FromWords64(Isolate* isolate, int sign_bit, 2302 int words64_count, 2303 const uint64_t* words) { 2304 if (words64_count < 0 || words64_count > kMaxLength / (64 / kDigitBits)) { 2305 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), 2306 BigInt); 2307 } 2308 if (words64_count == 0) return MutableBigInt::Zero(isolate); 2309 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); 2310 int length = (64 / kDigitBits) * words64_count; 2311 DCHECK_GT(length, 0); 2312 if (kDigitBits == 32 && words[words64_count - 1] <= (1ULL << 32)) length--; 2313 2314 Handle<MutableBigInt> result; 2315 if (!MutableBigInt::New(isolate, length).ToHandle(&result)) { 2316 return MaybeHandle<BigInt>(); 2317 } 2318 2319 result->set_sign(sign_bit); 2320 if (kDigitBits == 64) { 2321 for (int i = 0; i < length; ++i) { 2322 result->set_digit(i, static_cast<digit_t>(words[i])); 2323 } 2324 } else { 2325 for (int i = 0; i < length; i += 2) { 2326 digit_t lo = static_cast<digit_t>(words[i / 2]); 2327 digit_t hi = static_cast<digit_t>(words[i / 2] >> 32); 2328 result->set_digit(i, lo); 2329 if (i + 1 < length) result->set_digit(i + 1, hi); 2330 } 2331 } 2332 2333 return MutableBigInt::MakeImmutable(result); 2334 } 2335 2336 int BigInt::Words64Count() { 2337 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); 2338 return length() / (64 / kDigitBits) + 2339 (kDigitBits == 32 && length() % 2 == 1 ? 1 : 0); 2340 } 2341 2342 void BigInt::ToWordsArray64(int* sign_bit, int* words64_count, 2343 uint64_t* words) { 2344 DCHECK_NE(sign_bit, nullptr); 2345 DCHECK_NE(words64_count, nullptr); 2346 *sign_bit = sign(); 2347 int available_words = *words64_count; 2348 *words64_count = Words64Count(); 2349 if (available_words == 0) return; 2350 DCHECK_NE(words, nullptr); 2351 2352 int len = length(); 2353 if (kDigitBits == 64) { 2354 for (int i = 0; i < len && i < available_words; ++i) words[i] = digit(i); 2355 } else { 2356 for (int i = 0; i < len && available_words > 0; i += 2) { 2357 uint64_t lo = digit(i); 2358 uint64_t hi = (i + 1) < len ? digit(i + 1) : 0; 2359 words[i / 2] = lo | (hi << 32); 2360 available_words--; 2361 } 2362 } 2363 } 2364 2365 uint64_t MutableBigInt::GetRawBits(BigIntBase* x, bool* lossless) { 2366 if (lossless != nullptr) *lossless = true; 2367 if (x->is_zero()) return 0; 2368 int len = x->length(); 2369 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); 2370 if (lossless != nullptr && len > 64 / kDigitBits) *lossless = false; 2371 uint64_t raw = static_cast<uint64_t>(x->digit(0)); 2372 if (kDigitBits == 32 && len > 1) { 2373 raw |= static_cast<uint64_t>(x->digit(1)) << 32; 2374 } 2375 // Simulate two's complement. MSVC dislikes "-raw". 2376 return x->sign() ? ((~raw) + 1u) : raw; 2377 } 2378 2379 int64_t BigInt::AsInt64(bool* lossless) { 2380 uint64_t raw = MutableBigInt::GetRawBits(this, lossless); 2381 int64_t result = static_cast<int64_t>(raw); 2382 if (lossless != nullptr && (result < 0) != sign()) *lossless = false; 2383 return result; 2384 } 2385 2386 uint64_t BigInt::AsUint64(bool* lossless) { 2387 uint64_t result = MutableBigInt::GetRawBits(this, lossless); 2388 if (lossless != nullptr && sign()) *lossless = false; 2389 return result; 2390 } 2391 2392 // Digit arithmetic helpers. 2393 2394 #if V8_TARGET_ARCH_32_BIT 2395 #define HAVE_TWODIGIT_T 1 2396 typedef uint64_t twodigit_t; 2397 #elif defined(__SIZEOF_INT128__) 2398 // Both Clang and GCC support this on x64. 2399 #define HAVE_TWODIGIT_T 1 2400 typedef __uint128_t twodigit_t; 2401 #endif 2402 2403 // {carry} must point to an initialized digit_t and will either be incremented 2404 // by one or left alone. 2405 inline BigInt::digit_t MutableBigInt::digit_add(digit_t a, digit_t b, 2406 digit_t* carry) { 2407 #if HAVE_TWODIGIT_T 2408 twodigit_t result = static_cast<twodigit_t>(a) + static_cast<twodigit_t>(b); 2409 *carry += result >> kDigitBits; 2410 return static_cast<digit_t>(result); 2411 #else 2412 digit_t result = a + b; 2413 if (result < a) *carry += 1; 2414 return result; 2415 #endif 2416 } 2417 2418 // {borrow} must point to an initialized digit_t and will either be incremented 2419 // by one or left alone. 2420 inline BigInt::digit_t MutableBigInt::digit_sub(digit_t a, digit_t b, 2421 digit_t* borrow) { 2422 #if HAVE_TWODIGIT_T 2423 twodigit_t result = static_cast<twodigit_t>(a) - static_cast<twodigit_t>(b); 2424 *borrow += (result >> kDigitBits) & 1; 2425 return static_cast<digit_t>(result); 2426 #else 2427 digit_t result = a - b; 2428 if (result > a) *borrow += 1; 2429 return static_cast<digit_t>(result); 2430 #endif 2431 } 2432 2433 // Returns the low half of the result. High half is in {high}. 2434 inline BigInt::digit_t MutableBigInt::digit_mul(digit_t a, digit_t b, 2435 digit_t* high) { 2436 #if HAVE_TWODIGIT_T 2437 twodigit_t result = static_cast<twodigit_t>(a) * static_cast<twodigit_t>(b); 2438 *high = result >> kDigitBits; 2439 return static_cast<digit_t>(result); 2440 #else 2441 // Multiply in half-pointer-sized chunks. 2442 // For inputs [AH AL]*[BH BL], the result is: 2443 // 2444 // [AL*BL] // r_low 2445 // + [AL*BH] // r_mid1 2446 // + [AH*BL] // r_mid2 2447 // + [AH*BH] // r_high 2448 // = [R4 R3 R2 R1] // high = [R4 R3], low = [R2 R1] 2449 // 2450 // Where of course we must be careful with carries between the columns. 2451 digit_t a_low = a & kHalfDigitMask; 2452 digit_t a_high = a >> kHalfDigitBits; 2453 digit_t b_low = b & kHalfDigitMask; 2454 digit_t b_high = b >> kHalfDigitBits; 2455 2456 digit_t r_low = a_low * b_low; 2457 digit_t r_mid1 = a_low * b_high; 2458 digit_t r_mid2 = a_high * b_low; 2459 digit_t r_high = a_high * b_high; 2460 2461 digit_t carry = 0; 2462 digit_t low = digit_add(r_low, r_mid1 << kHalfDigitBits, &carry); 2463 low = digit_add(low, r_mid2 << kHalfDigitBits, &carry); 2464 *high = 2465 (r_mid1 >> kHalfDigitBits) + (r_mid2 >> kHalfDigitBits) + r_high + carry; 2466 return low; 2467 #endif 2468 } 2469 2470 // Returns the quotient. 2471 // quotient = (high << kDigitBits + low - remainder) / divisor 2472 BigInt::digit_t MutableBigInt::digit_div(digit_t high, digit_t low, 2473 digit_t divisor, digit_t* remainder) { 2474 DCHECK(high < divisor); 2475 #if V8_TARGET_ARCH_X64 && (__GNUC__ || __clang__) 2476 digit_t quotient; 2477 digit_t rem; 2478 __asm__("divq %[divisor]" 2479 // Outputs: {quotient} will be in rax, {rem} in rdx. 2480 : "=a"(quotient), "=d"(rem) 2481 // Inputs: put {high} into rdx, {low} into rax, and {divisor} into 2482 // any register or stack slot. 2483 : "d"(high), "a"(low), [divisor] "rm"(divisor)); 2484 *remainder = rem; 2485 return quotient; 2486 #elif V8_TARGET_ARCH_IA32 && (__GNUC__ || __clang__) 2487 digit_t quotient; 2488 digit_t rem; 2489 __asm__("divl %[divisor]" 2490 // Outputs: {quotient} will be in eax, {rem} in edx. 2491 : "=a"(quotient), "=d"(rem) 2492 // Inputs: put {high} into edx, {low} into eax, and {divisor} into 2493 // any register or stack slot. 2494 : "d"(high), "a"(low), [divisor] "rm"(divisor)); 2495 *remainder = rem; 2496 return quotient; 2497 #else 2498 static const digit_t kHalfDigitBase = 1ull << kHalfDigitBits; 2499 // Adapted from Warren, Hacker's Delight, p. 152. 2500 int s = base::bits::CountLeadingZeros(divisor); 2501 DCHECK_NE(s, kDigitBits); // {divisor} is not 0. 2502 divisor <<= s; 2503 2504 digit_t vn1 = divisor >> kHalfDigitBits; 2505 digit_t vn0 = divisor & kHalfDigitMask; 2506 // {s} can be 0. {low >> kDigitBits} would be undefined behavior, so 2507 // we mask the shift amount with {kShiftMask}, and the result with 2508 // {s_zero_mask} which is 0 if s == 0 and all 1-bits otherwise. 2509 STATIC_ASSERT(sizeof(intptr_t) == sizeof(digit_t)); 2510 const int kShiftMask = kDigitBits - 1; 2511 digit_t s_zero_mask = 2512 static_cast<digit_t>(static_cast<intptr_t>(-s) >> (kDigitBits - 1)); 2513 digit_t un32 = 2514 (high << s) | ((low >> ((kDigitBits - s) & kShiftMask)) & s_zero_mask); 2515 digit_t un10 = low << s; 2516 digit_t un1 = un10 >> kHalfDigitBits; 2517 digit_t un0 = un10 & kHalfDigitMask; 2518 digit_t q1 = un32 / vn1; 2519 digit_t rhat = un32 - q1 * vn1; 2520 2521 while (q1 >= kHalfDigitBase || q1 * vn0 > rhat * kHalfDigitBase + un1) { 2522 q1--; 2523 rhat += vn1; 2524 if (rhat >= kHalfDigitBase) break; 2525 } 2526 2527 digit_t un21 = un32 * kHalfDigitBase + un1 - q1 * divisor; 2528 digit_t q0 = un21 / vn1; 2529 rhat = un21 - q0 * vn1; 2530 2531 while (q0 >= kHalfDigitBase || q0 * vn0 > rhat * kHalfDigitBase + un0) { 2532 q0--; 2533 rhat += vn1; 2534 if (rhat >= kHalfDigitBase) break; 2535 } 2536 2537 *remainder = (un21 * kHalfDigitBase + un0 - q0 * divisor) >> s; 2538 return q1 * kHalfDigitBase + q0; 2539 #endif 2540 } 2541 2542 // Raises {base} to the power of {exponent}. Does not check for overflow. 2543 BigInt::digit_t MutableBigInt::digit_pow(digit_t base, digit_t exponent) { 2544 digit_t result = 1ull; 2545 while (exponent > 0) { 2546 if (exponent & 1) { 2547 result *= base; 2548 } 2549 exponent >>= 1; 2550 base *= base; 2551 } 2552 return result; 2553 } 2554 2555 #undef HAVE_TWODIGIT_T 2556 2557 void MutableBigInt::set_64_bits(uint64_t bits) { 2558 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32); 2559 if (kDigitBits == 64) { 2560 set_digit(0, static_cast<digit_t>(bits)); 2561 } else { 2562 set_digit(0, static_cast<digit_t>(bits & 0xFFFFFFFFu)); 2563 set_digit(1, static_cast<digit_t>(bits >> 32)); 2564 } 2565 } 2566 2567 #ifdef OBJECT_PRINT 2568 void BigInt::BigIntPrint(std::ostream& os) { 2569 DisallowHeapAllocation no_gc; 2570 HeapObject::PrintHeader(os, "BigInt"); 2571 int len = length(); 2572 os << "\n- length: " << len; 2573 os << "\n- sign: " << sign(); 2574 if (len > 0) { 2575 os << "\n- digits:"; 2576 for (int i = 0; i < len; i++) { 2577 os << "\n 0x" << std::hex << digit(i); 2578 } 2579 } 2580 os << std::dec << "\n"; 2581 } 2582 #endif // OBJECT_PRINT 2583 2584 } // namespace internal 2585 } // namespace v8 2586