Home | History | Annotate | Download | only in host
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * USB HOST XHCI Controller stack
      4  *
      5  * Based on xHCI host controller driver in linux-kernel
      6  * by Sarah Sharp.
      7  *
      8  * Copyright (C) 2008 Intel Corp.
      9  * Author: Sarah Sharp
     10  *
     11  * Copyright (C) 2013 Samsung Electronics Co.Ltd
     12  * Authors: Vivek Gautam <gautam.vivek (at) samsung.com>
     13  *	    Vikas Sajjan <vikas.sajjan (at) samsung.com>
     14  */
     15 
     16 /**
     17  * This file gives the xhci stack for usb3.0 looking into
     18  * xhci specification Rev1.0 (5/21/10).
     19  * The quirk devices support hasn't been given yet.
     20  */
     21 
     22 #include <common.h>
     23 #include <dm.h>
     24 #include <asm/byteorder.h>
     25 #include <usb.h>
     26 #include <malloc.h>
     27 #include <watchdog.h>
     28 #include <asm/cache.h>
     29 #include <asm/unaligned.h>
     30 #include <linux/errno.h>
     31 #include "xhci.h"
     32 
     33 #ifndef CONFIG_USB_MAX_CONTROLLER_COUNT
     34 #define CONFIG_USB_MAX_CONTROLLER_COUNT 1
     35 #endif
     36 
     37 static struct descriptor {
     38 	struct usb_hub_descriptor hub;
     39 	struct usb_device_descriptor device;
     40 	struct usb_config_descriptor config;
     41 	struct usb_interface_descriptor interface;
     42 	struct usb_endpoint_descriptor endpoint;
     43 	struct usb_ss_ep_comp_descriptor ep_companion;
     44 } __attribute__ ((packed)) descriptor = {
     45 	{
     46 		0xc,		/* bDescLength */
     47 		0x2a,		/* bDescriptorType: hub descriptor */
     48 		2,		/* bNrPorts -- runtime modified */
     49 		cpu_to_le16(0x8), /* wHubCharacteristics */
     50 		10,		/* bPwrOn2PwrGood */
     51 		0,		/* bHubCntrCurrent */
     52 		{		/* Device removable */
     53 		}		/* at most 7 ports! XXX */
     54 	},
     55 	{
     56 		0x12,		/* bLength */
     57 		1,		/* bDescriptorType: UDESC_DEVICE */
     58 		cpu_to_le16(0x0300), /* bcdUSB: v3.0 */
     59 		9,		/* bDeviceClass: UDCLASS_HUB */
     60 		0,		/* bDeviceSubClass: UDSUBCLASS_HUB */
     61 		3,		/* bDeviceProtocol: UDPROTO_SSHUBSTT */
     62 		9,		/* bMaxPacketSize: 512 bytes  2^9 */
     63 		0x0000,		/* idVendor */
     64 		0x0000,		/* idProduct */
     65 		cpu_to_le16(0x0100), /* bcdDevice */
     66 		1,		/* iManufacturer */
     67 		2,		/* iProduct */
     68 		0,		/* iSerialNumber */
     69 		1		/* bNumConfigurations: 1 */
     70 	},
     71 	{
     72 		0x9,
     73 		2,		/* bDescriptorType: UDESC_CONFIG */
     74 		cpu_to_le16(0x1f), /* includes SS endpoint descriptor */
     75 		1,		/* bNumInterface */
     76 		1,		/* bConfigurationValue */
     77 		0,		/* iConfiguration */
     78 		0x40,		/* bmAttributes: UC_SELF_POWER */
     79 		0		/* bMaxPower */
     80 	},
     81 	{
     82 		0x9,		/* bLength */
     83 		4,		/* bDescriptorType: UDESC_INTERFACE */
     84 		0,		/* bInterfaceNumber */
     85 		0,		/* bAlternateSetting */
     86 		1,		/* bNumEndpoints */
     87 		9,		/* bInterfaceClass: UICLASS_HUB */
     88 		0,		/* bInterfaceSubClass: UISUBCLASS_HUB */
     89 		0,		/* bInterfaceProtocol: UIPROTO_HSHUBSTT */
     90 		0		/* iInterface */
     91 	},
     92 	{
     93 		0x7,		/* bLength */
     94 		5,		/* bDescriptorType: UDESC_ENDPOINT */
     95 		0x81,		/* bEndpointAddress: IN endpoint 1 */
     96 		3,		/* bmAttributes: UE_INTERRUPT */
     97 		8,		/* wMaxPacketSize */
     98 		255		/* bInterval */
     99 	},
    100 	{
    101 		0x06,		/* ss_bLength */
    102 		0x30,		/* ss_bDescriptorType: SS EP Companion */
    103 		0x00,		/* ss_bMaxBurst: allows 1 TX between ACKs */
    104 		/* ss_bmAttributes: 1 packet per service interval */
    105 		0x00,
    106 		/* ss_wBytesPerInterval: 15 bits for max 15 ports */
    107 		cpu_to_le16(0x02),
    108 	},
    109 };
    110 
    111 #ifndef CONFIG_DM_USB
    112 static struct xhci_ctrl xhcic[CONFIG_USB_MAX_CONTROLLER_COUNT];
    113 #endif
    114 
    115 struct xhci_ctrl *xhci_get_ctrl(struct usb_device *udev)
    116 {
    117 #ifdef CONFIG_DM_USB
    118 	struct udevice *dev;
    119 
    120 	/* Find the USB controller */
    121 	for (dev = udev->dev;
    122 	     device_get_uclass_id(dev) != UCLASS_USB;
    123 	     dev = dev->parent)
    124 		;
    125 	return dev_get_priv(dev);
    126 #else
    127 	return udev->controller;
    128 #endif
    129 }
    130 
    131 /**
    132  * Waits for as per specified amount of time
    133  * for the "result" to match with "done"
    134  *
    135  * @param ptr	pointer to the register to be read
    136  * @param mask	mask for the value read
    137  * @param done	value to be campared with result
    138  * @param usec	time to wait till
    139  * @return 0 if handshake is success else < 0 on failure
    140  */
    141 static int handshake(uint32_t volatile *ptr, uint32_t mask,
    142 					uint32_t done, int usec)
    143 {
    144 	uint32_t result;
    145 
    146 	do {
    147 		result = xhci_readl(ptr);
    148 		if (result == ~(uint32_t)0)
    149 			return -ENODEV;
    150 		result &= mask;
    151 		if (result == done)
    152 			return 0;
    153 		usec--;
    154 		udelay(1);
    155 	} while (usec > 0);
    156 
    157 	return -ETIMEDOUT;
    158 }
    159 
    160 /**
    161  * Set the run bit and wait for the host to be running.
    162  *
    163  * @param hcor	pointer to host controller operation registers
    164  * @return status of the Handshake
    165  */
    166 static int xhci_start(struct xhci_hcor *hcor)
    167 {
    168 	u32 temp;
    169 	int ret;
    170 
    171 	puts("Starting the controller\n");
    172 	temp = xhci_readl(&hcor->or_usbcmd);
    173 	temp |= (CMD_RUN);
    174 	xhci_writel(&hcor->or_usbcmd, temp);
    175 
    176 	/*
    177 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
    178 	 * running.
    179 	 */
    180 	ret = handshake(&hcor->or_usbsts, STS_HALT, 0, XHCI_MAX_HALT_USEC);
    181 	if (ret)
    182 		debug("Host took too long to start, "
    183 				"waited %u microseconds.\n",
    184 				XHCI_MAX_HALT_USEC);
    185 	return ret;
    186 }
    187 
    188 /**
    189  * Resets the XHCI Controller
    190  *
    191  * @param hcor	pointer to host controller operation registers
    192  * @return -EBUSY if XHCI Controller is not halted else status of handshake
    193  */
    194 static int xhci_reset(struct xhci_hcor *hcor)
    195 {
    196 	u32 cmd;
    197 	u32 state;
    198 	int ret;
    199 
    200 	/* Halting the Host first */
    201 	debug("// Halt the HC: %p\n", hcor);
    202 	state = xhci_readl(&hcor->or_usbsts) & STS_HALT;
    203 	if (!state) {
    204 		cmd = xhci_readl(&hcor->or_usbcmd);
    205 		cmd &= ~CMD_RUN;
    206 		xhci_writel(&hcor->or_usbcmd, cmd);
    207 	}
    208 
    209 	ret = handshake(&hcor->or_usbsts,
    210 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
    211 	if (ret) {
    212 		printf("Host not halted after %u microseconds.\n",
    213 				XHCI_MAX_HALT_USEC);
    214 		return -EBUSY;
    215 	}
    216 
    217 	debug("// Reset the HC\n");
    218 	cmd = xhci_readl(&hcor->or_usbcmd);
    219 	cmd |= CMD_RESET;
    220 	xhci_writel(&hcor->or_usbcmd, cmd);
    221 
    222 	ret = handshake(&hcor->or_usbcmd, CMD_RESET, 0, XHCI_MAX_RESET_USEC);
    223 	if (ret)
    224 		return ret;
    225 
    226 	/*
    227 	 * xHCI cannot write to any doorbells or operational registers other
    228 	 * than status until the "Controller Not Ready" flag is cleared.
    229 	 */
    230 	return handshake(&hcor->or_usbsts, STS_CNR, 0, XHCI_MAX_RESET_USEC);
    231 }
    232 
    233 /**
    234  * Used for passing endpoint bitmasks between the core and HCDs.
    235  * Find the index for an endpoint given its descriptor.
    236  * Use the return value to right shift 1 for the bitmask.
    237  *
    238  * Index  = (epnum * 2) + direction - 1,
    239  * where direction = 0 for OUT, 1 for IN.
    240  * For control endpoints, the IN index is used (OUT index is unused), so
    241  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
    242  *
    243  * @param desc	USB enpdoint Descriptor
    244  * @return index of the Endpoint
    245  */
    246 static unsigned int xhci_get_ep_index(struct usb_endpoint_descriptor *desc)
    247 {
    248 	unsigned int index;
    249 
    250 	if (usb_endpoint_xfer_control(desc))
    251 		index = (unsigned int)(usb_endpoint_num(desc) * 2);
    252 	else
    253 		index = (unsigned int)((usb_endpoint_num(desc) * 2) -
    254 				(usb_endpoint_dir_in(desc) ? 0 : 1));
    255 
    256 	return index;
    257 }
    258 
    259 /*
    260  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
    261  * microframes, rounded down to nearest power of 2.
    262  */
    263 static unsigned int xhci_microframes_to_exponent(unsigned int desc_interval,
    264 						 unsigned int min_exponent,
    265 						 unsigned int max_exponent)
    266 {
    267 	unsigned int interval;
    268 
    269 	interval = fls(desc_interval) - 1;
    270 	interval = clamp_val(interval, min_exponent, max_exponent);
    271 	if ((1 << interval) != desc_interval)
    272 		debug("rounding interval to %d microframes, "\
    273 		      "ep desc says %d microframes\n",
    274 		      1 << interval, desc_interval);
    275 
    276 	return interval;
    277 }
    278 
    279 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
    280 	struct usb_endpoint_descriptor *endpt_desc)
    281 {
    282 	if (endpt_desc->bInterval == 0)
    283 		return 0;
    284 
    285 	return xhci_microframes_to_exponent(endpt_desc->bInterval, 0, 15);
    286 }
    287 
    288 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
    289 	struct usb_endpoint_descriptor *endpt_desc)
    290 {
    291 	return xhci_microframes_to_exponent(endpt_desc->bInterval * 8, 3, 10);
    292 }
    293 
    294 /*
    295  * Convert interval expressed as 2^(bInterval - 1) == interval into
    296  * straight exponent value 2^n == interval.
    297  */
    298 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
    299 	struct usb_endpoint_descriptor *endpt_desc)
    300 {
    301 	unsigned int interval;
    302 
    303 	interval = clamp_val(endpt_desc->bInterval, 1, 16) - 1;
    304 	if (interval != endpt_desc->bInterval - 1)
    305 		debug("ep %#x - rounding interval to %d %sframes\n",
    306 		      endpt_desc->bEndpointAddress, 1 << interval,
    307 		      udev->speed == USB_SPEED_FULL ? "" : "micro");
    308 
    309 	if (udev->speed == USB_SPEED_FULL) {
    310 		/*
    311 		 * Full speed isoc endpoints specify interval in frames,
    312 		 * not microframes. We are using microframes everywhere,
    313 		 * so adjust accordingly.
    314 		 */
    315 		interval += 3;	/* 1 frame = 2^3 uframes */
    316 	}
    317 
    318 	return interval;
    319 }
    320 
    321 /*
    322  * Return the polling or NAK interval.
    323  *
    324  * The polling interval is expressed in "microframes". If xHCI's Interval field
    325  * is set to N, it will service the endpoint every 2^(Interval)*125us.
    326  *
    327  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
    328  * is set to 0.
    329  */
    330 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
    331 	struct usb_endpoint_descriptor *endpt_desc)
    332 {
    333 	unsigned int interval = 0;
    334 
    335 	switch (udev->speed) {
    336 	case USB_SPEED_HIGH:
    337 		/* Max NAK rate */
    338 		if (usb_endpoint_xfer_control(endpt_desc) ||
    339 		    usb_endpoint_xfer_bulk(endpt_desc)) {
    340 			interval = xhci_parse_microframe_interval(udev,
    341 								  endpt_desc);
    342 			break;
    343 		}
    344 		/* Fall through - SS and HS isoc/int have same decoding */
    345 
    346 	case USB_SPEED_SUPER:
    347 		if (usb_endpoint_xfer_int(endpt_desc) ||
    348 		    usb_endpoint_xfer_isoc(endpt_desc)) {
    349 			interval = xhci_parse_exponent_interval(udev,
    350 								endpt_desc);
    351 		}
    352 		break;
    353 
    354 	case USB_SPEED_FULL:
    355 		if (usb_endpoint_xfer_isoc(endpt_desc)) {
    356 			interval = xhci_parse_exponent_interval(udev,
    357 								endpt_desc);
    358 			break;
    359 		}
    360 		/*
    361 		 * Fall through for interrupt endpoint interval decoding
    362 		 * since it uses the same rules as low speed interrupt
    363 		 * endpoints.
    364 		 */
    365 
    366 	case USB_SPEED_LOW:
    367 		if (usb_endpoint_xfer_int(endpt_desc) ||
    368 		    usb_endpoint_xfer_isoc(endpt_desc)) {
    369 			interval = xhci_parse_frame_interval(udev, endpt_desc);
    370 		}
    371 		break;
    372 
    373 	default:
    374 		BUG();
    375 	}
    376 
    377 	return interval;
    378 }
    379 
    380 /*
    381  * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
    382  * High speed endpoint descriptors can define "the number of additional
    383  * transaction opportunities per microframe", but that goes in the Max Burst
    384  * endpoint context field.
    385  */
    386 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
    387 	struct usb_endpoint_descriptor *endpt_desc,
    388 	struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
    389 {
    390 	if (udev->speed < USB_SPEED_SUPER ||
    391 	    !usb_endpoint_xfer_isoc(endpt_desc))
    392 		return 0;
    393 
    394 	return ss_ep_comp_desc->bmAttributes;
    395 }
    396 
    397 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
    398 	struct usb_endpoint_descriptor *endpt_desc,
    399 	struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
    400 {
    401 	/* Super speed and Plus have max burst in ep companion desc */
    402 	if (udev->speed >= USB_SPEED_SUPER)
    403 		return ss_ep_comp_desc->bMaxBurst;
    404 
    405 	if (udev->speed == USB_SPEED_HIGH &&
    406 	    (usb_endpoint_xfer_isoc(endpt_desc) ||
    407 	     usb_endpoint_xfer_int(endpt_desc)))
    408 		return usb_endpoint_maxp_mult(endpt_desc) - 1;
    409 
    410 	return 0;
    411 }
    412 
    413 /*
    414  * Return the maximum endpoint service interval time (ESIT) payload.
    415  * Basically, this is the maxpacket size, multiplied by the burst size
    416  * and mult size.
    417  */
    418 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
    419 	struct usb_endpoint_descriptor *endpt_desc,
    420 	struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
    421 {
    422 	int max_burst;
    423 	int max_packet;
    424 
    425 	/* Only applies for interrupt or isochronous endpoints */
    426 	if (usb_endpoint_xfer_control(endpt_desc) ||
    427 	    usb_endpoint_xfer_bulk(endpt_desc))
    428 		return 0;
    429 
    430 	/* SuperSpeed Isoc ep with less than 48k per esit */
    431 	if (udev->speed >= USB_SPEED_SUPER)
    432 		return le16_to_cpu(ss_ep_comp_desc->wBytesPerInterval);
    433 
    434 	max_packet = usb_endpoint_maxp(endpt_desc);
    435 	max_burst = usb_endpoint_maxp_mult(endpt_desc);
    436 
    437 	/* A 0 in max burst means 1 transfer per ESIT */
    438 	return max_packet * max_burst;
    439 }
    440 
    441 /**
    442  * Issue a configure endpoint command or evaluate context command
    443  * and wait for it to finish.
    444  *
    445  * @param udev	pointer to the Device Data Structure
    446  * @param ctx_change	flag to indicate the Context has changed or NOT
    447  * @return 0 on success, -1 on failure
    448  */
    449 static int xhci_configure_endpoints(struct usb_device *udev, bool ctx_change)
    450 {
    451 	struct xhci_container_ctx *in_ctx;
    452 	struct xhci_virt_device *virt_dev;
    453 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
    454 	union xhci_trb *event;
    455 
    456 	virt_dev = ctrl->devs[udev->slot_id];
    457 	in_ctx = virt_dev->in_ctx;
    458 
    459 	xhci_flush_cache((uintptr_t)in_ctx->bytes, in_ctx->size);
    460 	xhci_queue_command(ctrl, in_ctx->bytes, udev->slot_id, 0,
    461 			   ctx_change ? TRB_EVAL_CONTEXT : TRB_CONFIG_EP);
    462 	event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
    463 	BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags))
    464 		!= udev->slot_id);
    465 
    466 	switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
    467 	case COMP_SUCCESS:
    468 		debug("Successful %s command\n",
    469 			ctx_change ? "Evaluate Context" : "Configure Endpoint");
    470 		break;
    471 	default:
    472 		printf("ERROR: %s command returned completion code %d.\n",
    473 			ctx_change ? "Evaluate Context" : "Configure Endpoint",
    474 			GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
    475 		return -EINVAL;
    476 	}
    477 
    478 	xhci_acknowledge_event(ctrl);
    479 
    480 	return 0;
    481 }
    482 
    483 /**
    484  * Configure the endpoint, programming the device contexts.
    485  *
    486  * @param udev	pointer to the USB device structure
    487  * @return returns the status of the xhci_configure_endpoints
    488  */
    489 static int xhci_set_configuration(struct usb_device *udev)
    490 {
    491 	struct xhci_container_ctx *in_ctx;
    492 	struct xhci_container_ctx *out_ctx;
    493 	struct xhci_input_control_ctx *ctrl_ctx;
    494 	struct xhci_slot_ctx *slot_ctx;
    495 	struct xhci_ep_ctx *ep_ctx[MAX_EP_CTX_NUM];
    496 	int cur_ep;
    497 	int max_ep_flag = 0;
    498 	int ep_index;
    499 	unsigned int dir;
    500 	unsigned int ep_type;
    501 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
    502 	int num_of_ep;
    503 	int ep_flag = 0;
    504 	u64 trb_64 = 0;
    505 	int slot_id = udev->slot_id;
    506 	struct xhci_virt_device *virt_dev = ctrl->devs[slot_id];
    507 	struct usb_interface *ifdesc;
    508 	u32 max_esit_payload;
    509 	unsigned int interval;
    510 	unsigned int mult;
    511 	unsigned int max_burst;
    512 	unsigned int avg_trb_len;
    513 	unsigned int err_count = 0;
    514 
    515 	out_ctx = virt_dev->out_ctx;
    516 	in_ctx = virt_dev->in_ctx;
    517 
    518 	num_of_ep = udev->config.if_desc[0].no_of_ep;
    519 	ifdesc = &udev->config.if_desc[0];
    520 
    521 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
    522 	/* Initialize the input context control */
    523 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
    524 	ctrl_ctx->drop_flags = 0;
    525 
    526 	/* EP_FLAG gives values 1 & 4 for EP1OUT and EP2IN */
    527 	for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
    528 		ep_flag = xhci_get_ep_index(&ifdesc->ep_desc[cur_ep]);
    529 		ctrl_ctx->add_flags |= cpu_to_le32(1 << (ep_flag + 1));
    530 		if (max_ep_flag < ep_flag)
    531 			max_ep_flag = ep_flag;
    532 	}
    533 
    534 	xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
    535 
    536 	/* slot context */
    537 	xhci_slot_copy(ctrl, in_ctx, out_ctx);
    538 	slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
    539 	slot_ctx->dev_info &= ~(cpu_to_le32(LAST_CTX_MASK));
    540 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(max_ep_flag + 1) | 0);
    541 
    542 	xhci_endpoint_copy(ctrl, in_ctx, out_ctx, 0);
    543 
    544 	/* filling up ep contexts */
    545 	for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
    546 		struct usb_endpoint_descriptor *endpt_desc = NULL;
    547 		struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc = NULL;
    548 
    549 		endpt_desc = &ifdesc->ep_desc[cur_ep];
    550 		ss_ep_comp_desc = &ifdesc->ss_ep_comp_desc[cur_ep];
    551 		trb_64 = 0;
    552 
    553 		/*
    554 		 * Get values to fill the endpoint context, mostly from ep
    555 		 * descriptor. The average TRB buffer lengt for bulk endpoints
    556 		 * is unclear as we have no clue on scatter gather list entry
    557 		 * size. For Isoc and Int, set it to max available.
    558 		 * See xHCI 1.1 spec 4.14.1.1 for details.
    559 		 */
    560 		max_esit_payload = xhci_get_max_esit_payload(udev, endpt_desc,
    561 							     ss_ep_comp_desc);
    562 		interval = xhci_get_endpoint_interval(udev, endpt_desc);
    563 		mult = xhci_get_endpoint_mult(udev, endpt_desc,
    564 					      ss_ep_comp_desc);
    565 		max_burst = xhci_get_endpoint_max_burst(udev, endpt_desc,
    566 							ss_ep_comp_desc);
    567 		avg_trb_len = max_esit_payload;
    568 
    569 		ep_index = xhci_get_ep_index(endpt_desc);
    570 		ep_ctx[ep_index] = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
    571 
    572 		/* Allocate the ep rings */
    573 		virt_dev->eps[ep_index].ring = xhci_ring_alloc(1, true);
    574 		if (!virt_dev->eps[ep_index].ring)
    575 			return -ENOMEM;
    576 
    577 		/*NOTE: ep_desc[0] actually represents EP1 and so on */
    578 		dir = (((endpt_desc->bEndpointAddress) & (0x80)) >> 7);
    579 		ep_type = (((endpt_desc->bmAttributes) & (0x3)) | (dir << 2));
    580 
    581 		ep_ctx[ep_index]->ep_info =
    582 			cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
    583 			EP_INTERVAL(interval) | EP_MULT(mult));
    584 
    585 		ep_ctx[ep_index]->ep_info2 =
    586 			cpu_to_le32(ep_type << EP_TYPE_SHIFT);
    587 		ep_ctx[ep_index]->ep_info2 |=
    588 			cpu_to_le32(MAX_PACKET
    589 			(get_unaligned(&endpt_desc->wMaxPacketSize)));
    590 
    591 		/* Allow 3 retries for everything but isoc, set CErr = 3 */
    592 		if (!usb_endpoint_xfer_isoc(endpt_desc))
    593 			err_count = 3;
    594 		ep_ctx[ep_index]->ep_info2 |=
    595 			cpu_to_le32(MAX_BURST(max_burst) |
    596 			ERROR_COUNT(err_count));
    597 
    598 		trb_64 = (uintptr_t)
    599 				virt_dev->eps[ep_index].ring->enqueue;
    600 		ep_ctx[ep_index]->deq = cpu_to_le64(trb_64 |
    601 				virt_dev->eps[ep_index].ring->cycle_state);
    602 
    603 		/*
    604 		 * xHCI spec 6.2.3:
    605 		 * 'Average TRB Length' should be 8 for control endpoints.
    606 		 */
    607 		if (usb_endpoint_xfer_control(endpt_desc))
    608 			avg_trb_len = 8;
    609 		ep_ctx[ep_index]->tx_info =
    610 			cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
    611 			EP_AVG_TRB_LENGTH(avg_trb_len));
    612 	}
    613 
    614 	return xhci_configure_endpoints(udev, false);
    615 }
    616 
    617 /**
    618  * Issue an Address Device command (which will issue a SetAddress request to
    619  * the device).
    620  *
    621  * @param udev pointer to the Device Data Structure
    622  * @return 0 if successful else error code on failure
    623  */
    624 static int xhci_address_device(struct usb_device *udev, int root_portnr)
    625 {
    626 	int ret = 0;
    627 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
    628 	struct xhci_slot_ctx *slot_ctx;
    629 	struct xhci_input_control_ctx *ctrl_ctx;
    630 	struct xhci_virt_device *virt_dev;
    631 	int slot_id = udev->slot_id;
    632 	union xhci_trb *event;
    633 
    634 	virt_dev = ctrl->devs[slot_id];
    635 
    636 	/*
    637 	 * This is the first Set Address since device plug-in
    638 	 * so setting up the slot context.
    639 	 */
    640 	debug("Setting up addressable devices %p\n", ctrl->dcbaa);
    641 	xhci_setup_addressable_virt_dev(ctrl, udev, root_portnr);
    642 
    643 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
    644 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
    645 	ctrl_ctx->drop_flags = 0;
    646 
    647 	xhci_queue_command(ctrl, (void *)ctrl_ctx, slot_id, 0, TRB_ADDR_DEV);
    648 	event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
    649 	BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) != slot_id);
    650 
    651 	switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
    652 	case COMP_CTX_STATE:
    653 	case COMP_EBADSLT:
    654 		printf("Setup ERROR: address device command for slot %d.\n",
    655 								slot_id);
    656 		ret = -EINVAL;
    657 		break;
    658 	case COMP_TX_ERR:
    659 		puts("Device not responding to set address.\n");
    660 		ret = -EPROTO;
    661 		break;
    662 	case COMP_DEV_ERR:
    663 		puts("ERROR: Incompatible device"
    664 					"for address device command.\n");
    665 		ret = -ENODEV;
    666 		break;
    667 	case COMP_SUCCESS:
    668 		debug("Successful Address Device command\n");
    669 		udev->status = 0;
    670 		break;
    671 	default:
    672 		printf("ERROR: unexpected command completion code 0x%x.\n",
    673 			GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
    674 		ret = -EINVAL;
    675 		break;
    676 	}
    677 
    678 	xhci_acknowledge_event(ctrl);
    679 
    680 	if (ret < 0)
    681 		/*
    682 		 * TODO: Unsuccessful Address Device command shall leave the
    683 		 * slot in default state. So, issue Disable Slot command now.
    684 		 */
    685 		return ret;
    686 
    687 	xhci_inval_cache((uintptr_t)virt_dev->out_ctx->bytes,
    688 			 virt_dev->out_ctx->size);
    689 	slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->out_ctx);
    690 
    691 	debug("xHC internal address is: %d\n",
    692 		le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
    693 
    694 	return 0;
    695 }
    696 
    697 /**
    698  * Issue Enable slot command to the controller to allocate
    699  * device slot and assign the slot id. It fails if the xHC
    700  * ran out of device slots, the Enable Slot command timed out,
    701  * or allocating memory failed.
    702  *
    703  * @param udev	pointer to the Device Data Structure
    704  * @return Returns 0 on succes else return error code on failure
    705  */
    706 static int _xhci_alloc_device(struct usb_device *udev)
    707 {
    708 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
    709 	union xhci_trb *event;
    710 	int ret;
    711 
    712 	/*
    713 	 * Root hub will be first device to be initailized.
    714 	 * If this device is root-hub, don't do any xHC related
    715 	 * stuff.
    716 	 */
    717 	if (ctrl->rootdev == 0) {
    718 		udev->speed = USB_SPEED_SUPER;
    719 		return 0;
    720 	}
    721 
    722 	xhci_queue_command(ctrl, NULL, 0, 0, TRB_ENABLE_SLOT);
    723 	event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
    724 	BUG_ON(GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))
    725 		!= COMP_SUCCESS);
    726 
    727 	udev->slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags));
    728 
    729 	xhci_acknowledge_event(ctrl);
    730 
    731 	ret = xhci_alloc_virt_device(ctrl, udev->slot_id);
    732 	if (ret < 0) {
    733 		/*
    734 		 * TODO: Unsuccessful Address Device command shall leave
    735 		 * the slot in default. So, issue Disable Slot command now.
    736 		 */
    737 		puts("Could not allocate xHCI USB device data structures\n");
    738 		return ret;
    739 	}
    740 
    741 	return 0;
    742 }
    743 
    744 #ifndef CONFIG_DM_USB
    745 int usb_alloc_device(struct usb_device *udev)
    746 {
    747 	return _xhci_alloc_device(udev);
    748 }
    749 #endif
    750 
    751 /*
    752  * Full speed devices may have a max packet size greater than 8 bytes, but the
    753  * USB core doesn't know that until it reads the first 8 bytes of the
    754  * descriptor.  If the usb_device's max packet size changes after that point,
    755  * we need to issue an evaluate context command and wait on it.
    756  *
    757  * @param udev	pointer to the Device Data Structure
    758  * @return returns the status of the xhci_configure_endpoints
    759  */
    760 int xhci_check_maxpacket(struct usb_device *udev)
    761 {
    762 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
    763 	unsigned int slot_id = udev->slot_id;
    764 	int ep_index = 0;	/* control endpoint */
    765 	struct xhci_container_ctx *in_ctx;
    766 	struct xhci_container_ctx *out_ctx;
    767 	struct xhci_input_control_ctx *ctrl_ctx;
    768 	struct xhci_ep_ctx *ep_ctx;
    769 	int max_packet_size;
    770 	int hw_max_packet_size;
    771 	int ret = 0;
    772 
    773 	out_ctx = ctrl->devs[slot_id]->out_ctx;
    774 	xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
    775 
    776 	ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
    777 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
    778 	max_packet_size = udev->epmaxpacketin[0];
    779 	if (hw_max_packet_size != max_packet_size) {
    780 		debug("Max Packet Size for ep 0 changed.\n");
    781 		debug("Max packet size in usb_device = %d\n", max_packet_size);
    782 		debug("Max packet size in xHCI HW = %d\n", hw_max_packet_size);
    783 		debug("Issuing evaluate context command.\n");
    784 
    785 		/* Set up the modified control endpoint 0 */
    786 		xhci_endpoint_copy(ctrl, ctrl->devs[slot_id]->in_ctx,
    787 				ctrl->devs[slot_id]->out_ctx, ep_index);
    788 		in_ctx = ctrl->devs[slot_id]->in_ctx;
    789 		ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
    790 		ep_ctx->ep_info2 &= cpu_to_le32(~((0xffff & MAX_PACKET_MASK)
    791 						<< MAX_PACKET_SHIFT));
    792 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
    793 
    794 		/*
    795 		 * Set up the input context flags for the command
    796 		 * FIXME: This won't work if a non-default control endpoint
    797 		 * changes max packet sizes.
    798 		 */
    799 		ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
    800 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
    801 		ctrl_ctx->drop_flags = 0;
    802 
    803 		ret = xhci_configure_endpoints(udev, true);
    804 	}
    805 	return ret;
    806 }
    807 
    808 /**
    809  * Clears the Change bits of the Port Status Register
    810  *
    811  * @param wValue	request value
    812  * @param wIndex	request index
    813  * @param addr		address of posrt status register
    814  * @param port_status	state of port status register
    815  * @return none
    816  */
    817 static void xhci_clear_port_change_bit(u16 wValue,
    818 		u16 wIndex, volatile uint32_t *addr, u32 port_status)
    819 {
    820 	char *port_change_bit;
    821 	u32 status;
    822 
    823 	switch (wValue) {
    824 	case USB_PORT_FEAT_C_RESET:
    825 		status = PORT_RC;
    826 		port_change_bit = "reset";
    827 		break;
    828 	case USB_PORT_FEAT_C_CONNECTION:
    829 		status = PORT_CSC;
    830 		port_change_bit = "connect";
    831 		break;
    832 	case USB_PORT_FEAT_C_OVER_CURRENT:
    833 		status = PORT_OCC;
    834 		port_change_bit = "over-current";
    835 		break;
    836 	case USB_PORT_FEAT_C_ENABLE:
    837 		status = PORT_PEC;
    838 		port_change_bit = "enable/disable";
    839 		break;
    840 	case USB_PORT_FEAT_C_SUSPEND:
    841 		status = PORT_PLC;
    842 		port_change_bit = "suspend/resume";
    843 		break;
    844 	default:
    845 		/* Should never happen */
    846 		return;
    847 	}
    848 
    849 	/* Change bits are all write 1 to clear */
    850 	xhci_writel(addr, port_status | status);
    851 
    852 	port_status = xhci_readl(addr);
    853 	debug("clear port %s change, actual port %d status  = 0x%x\n",
    854 			port_change_bit, wIndex, port_status);
    855 }
    856 
    857 /**
    858  * Save Read Only (RO) bits and save read/write bits where
    859  * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
    860  * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
    861  *
    862  * @param state	state of the Port Status and Control Regsiter
    863  * @return a value that would result in the port being in the
    864  *	   same state, if the value was written to the port
    865  *	   status control register.
    866  */
    867 static u32 xhci_port_state_to_neutral(u32 state)
    868 {
    869 	/* Save read-only status and port state */
    870 	return (state & XHCI_PORT_RO) | (state & XHCI_PORT_RWS);
    871 }
    872 
    873 /**
    874  * Submits the Requests to the XHCI Host Controller
    875  *
    876  * @param udev pointer to the USB device structure
    877  * @param pipe contains the DIR_IN or OUT , devnum
    878  * @param buffer buffer to be read/written based on the request
    879  * @return returns 0 if successful else -1 on failure
    880  */
    881 static int xhci_submit_root(struct usb_device *udev, unsigned long pipe,
    882 			void *buffer, struct devrequest *req)
    883 {
    884 	uint8_t tmpbuf[4];
    885 	u16 typeReq;
    886 	void *srcptr = NULL;
    887 	int len, srclen;
    888 	uint32_t reg;
    889 	volatile uint32_t *status_reg;
    890 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
    891 	struct xhci_hccr *hccr = ctrl->hccr;
    892 	struct xhci_hcor *hcor = ctrl->hcor;
    893 	int max_ports = HCS_MAX_PORTS(xhci_readl(&hccr->cr_hcsparams1));
    894 
    895 	if ((req->requesttype & USB_RT_PORT) &&
    896 	    le16_to_cpu(req->index) > max_ports) {
    897 		printf("The request port(%d) exceeds maximum port number\n",
    898 		       le16_to_cpu(req->index) - 1);
    899 		return -EINVAL;
    900 	}
    901 
    902 	status_reg = (volatile uint32_t *)
    903 		     (&hcor->portregs[le16_to_cpu(req->index) - 1].or_portsc);
    904 	srclen = 0;
    905 
    906 	typeReq = req->request | req->requesttype << 8;
    907 
    908 	switch (typeReq) {
    909 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
    910 		switch (le16_to_cpu(req->value) >> 8) {
    911 		case USB_DT_DEVICE:
    912 			debug("USB_DT_DEVICE request\n");
    913 			srcptr = &descriptor.device;
    914 			srclen = 0x12;
    915 			break;
    916 		case USB_DT_CONFIG:
    917 			debug("USB_DT_CONFIG config\n");
    918 			srcptr = &descriptor.config;
    919 			srclen = 0x19;
    920 			break;
    921 		case USB_DT_STRING:
    922 			debug("USB_DT_STRING config\n");
    923 			switch (le16_to_cpu(req->value) & 0xff) {
    924 			case 0:	/* Language */
    925 				srcptr = "\4\3\11\4";
    926 				srclen = 4;
    927 				break;
    928 			case 1:	/* Vendor String  */
    929 				srcptr = "\16\3U\0-\0B\0o\0o\0t\0";
    930 				srclen = 14;
    931 				break;
    932 			case 2:	/* Product Name */
    933 				srcptr = "\52\3X\0H\0C\0I\0 "
    934 					 "\0H\0o\0s\0t\0 "
    935 					 "\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0";
    936 				srclen = 42;
    937 				break;
    938 			default:
    939 				printf("unknown value DT_STRING %x\n",
    940 					le16_to_cpu(req->value));
    941 				goto unknown;
    942 			}
    943 			break;
    944 		default:
    945 			printf("unknown value %x\n", le16_to_cpu(req->value));
    946 			goto unknown;
    947 		}
    948 		break;
    949 	case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8):
    950 		switch (le16_to_cpu(req->value) >> 8) {
    951 		case USB_DT_HUB:
    952 		case USB_DT_SS_HUB:
    953 			debug("USB_DT_HUB config\n");
    954 			srcptr = &descriptor.hub;
    955 			srclen = 0x8;
    956 			break;
    957 		default:
    958 			printf("unknown value %x\n", le16_to_cpu(req->value));
    959 			goto unknown;
    960 		}
    961 		break;
    962 	case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8):
    963 		debug("USB_REQ_SET_ADDRESS\n");
    964 		ctrl->rootdev = le16_to_cpu(req->value);
    965 		break;
    966 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
    967 		/* Do nothing */
    968 		break;
    969 	case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8):
    970 		tmpbuf[0] = 1;	/* USB_STATUS_SELFPOWERED */
    971 		tmpbuf[1] = 0;
    972 		srcptr = tmpbuf;
    973 		srclen = 2;
    974 		break;
    975 	case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
    976 		memset(tmpbuf, 0, 4);
    977 		reg = xhci_readl(status_reg);
    978 		if (reg & PORT_CONNECT) {
    979 			tmpbuf[0] |= USB_PORT_STAT_CONNECTION;
    980 			switch (reg & DEV_SPEED_MASK) {
    981 			case XDEV_FS:
    982 				debug("SPEED = FULLSPEED\n");
    983 				break;
    984 			case XDEV_LS:
    985 				debug("SPEED = LOWSPEED\n");
    986 				tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8;
    987 				break;
    988 			case XDEV_HS:
    989 				debug("SPEED = HIGHSPEED\n");
    990 				tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
    991 				break;
    992 			case XDEV_SS:
    993 				debug("SPEED = SUPERSPEED\n");
    994 				tmpbuf[1] |= USB_PORT_STAT_SUPER_SPEED >> 8;
    995 				break;
    996 			}
    997 		}
    998 		if (reg & PORT_PE)
    999 			tmpbuf[0] |= USB_PORT_STAT_ENABLE;
   1000 		if ((reg & PORT_PLS_MASK) == XDEV_U3)
   1001 			tmpbuf[0] |= USB_PORT_STAT_SUSPEND;
   1002 		if (reg & PORT_OC)
   1003 			tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT;
   1004 		if (reg & PORT_RESET)
   1005 			tmpbuf[0] |= USB_PORT_STAT_RESET;
   1006 		if (reg & PORT_POWER)
   1007 			/*
   1008 			 * XXX: This Port power bit (for USB 3.0 hub)
   1009 			 * we are faking in USB 2.0 hub port status;
   1010 			 * since there's a change in bit positions in
   1011 			 * two:
   1012 			 * USB 2.0 port status PP is at position[8]
   1013 			 * USB 3.0 port status PP is at position[9]
   1014 			 * So, we are still keeping it at position [8]
   1015 			 */
   1016 			tmpbuf[1] |= USB_PORT_STAT_POWER >> 8;
   1017 		if (reg & PORT_CSC)
   1018 			tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION;
   1019 		if (reg & PORT_PEC)
   1020 			tmpbuf[2] |= USB_PORT_STAT_C_ENABLE;
   1021 		if (reg & PORT_OCC)
   1022 			tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT;
   1023 		if (reg & PORT_RC)
   1024 			tmpbuf[2] |= USB_PORT_STAT_C_RESET;
   1025 
   1026 		srcptr = tmpbuf;
   1027 		srclen = 4;
   1028 		break;
   1029 	case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
   1030 		reg = xhci_readl(status_reg);
   1031 		reg = xhci_port_state_to_neutral(reg);
   1032 		switch (le16_to_cpu(req->value)) {
   1033 		case USB_PORT_FEAT_ENABLE:
   1034 			reg |= PORT_PE;
   1035 			xhci_writel(status_reg, reg);
   1036 			break;
   1037 		case USB_PORT_FEAT_POWER:
   1038 			reg |= PORT_POWER;
   1039 			xhci_writel(status_reg, reg);
   1040 			break;
   1041 		case USB_PORT_FEAT_RESET:
   1042 			reg |= PORT_RESET;
   1043 			xhci_writel(status_reg, reg);
   1044 			break;
   1045 		default:
   1046 			printf("unknown feature %x\n", le16_to_cpu(req->value));
   1047 			goto unknown;
   1048 		}
   1049 		break;
   1050 	case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
   1051 		reg = xhci_readl(status_reg);
   1052 		reg = xhci_port_state_to_neutral(reg);
   1053 		switch (le16_to_cpu(req->value)) {
   1054 		case USB_PORT_FEAT_ENABLE:
   1055 			reg &= ~PORT_PE;
   1056 			break;
   1057 		case USB_PORT_FEAT_POWER:
   1058 			reg &= ~PORT_POWER;
   1059 			break;
   1060 		case USB_PORT_FEAT_C_RESET:
   1061 		case USB_PORT_FEAT_C_CONNECTION:
   1062 		case USB_PORT_FEAT_C_OVER_CURRENT:
   1063 		case USB_PORT_FEAT_C_ENABLE:
   1064 			xhci_clear_port_change_bit((le16_to_cpu(req->value)),
   1065 							le16_to_cpu(req->index),
   1066 							status_reg, reg);
   1067 			break;
   1068 		default:
   1069 			printf("unknown feature %x\n", le16_to_cpu(req->value));
   1070 			goto unknown;
   1071 		}
   1072 		xhci_writel(status_reg, reg);
   1073 		break;
   1074 	default:
   1075 		puts("Unknown request\n");
   1076 		goto unknown;
   1077 	}
   1078 
   1079 	debug("scrlen = %d\n req->length = %d\n",
   1080 		srclen, le16_to_cpu(req->length));
   1081 
   1082 	len = min(srclen, (int)le16_to_cpu(req->length));
   1083 
   1084 	if (srcptr != NULL && len > 0)
   1085 		memcpy(buffer, srcptr, len);
   1086 	else
   1087 		debug("Len is 0\n");
   1088 
   1089 	udev->act_len = len;
   1090 	udev->status = 0;
   1091 
   1092 	return 0;
   1093 
   1094 unknown:
   1095 	udev->act_len = 0;
   1096 	udev->status = USB_ST_STALLED;
   1097 
   1098 	return -ENODEV;
   1099 }
   1100 
   1101 /**
   1102  * Submits the INT request to XHCI Host cotroller
   1103  *
   1104  * @param udev	pointer to the USB device
   1105  * @param pipe		contains the DIR_IN or OUT , devnum
   1106  * @param buffer	buffer to be read/written based on the request
   1107  * @param length	length of the buffer
   1108  * @param interval	interval of the interrupt
   1109  * @return 0
   1110  */
   1111 static int _xhci_submit_int_msg(struct usb_device *udev, unsigned long pipe,
   1112 				void *buffer, int length, int interval)
   1113 {
   1114 	if (usb_pipetype(pipe) != PIPE_INTERRUPT) {
   1115 		printf("non-interrupt pipe (type=%lu)", usb_pipetype(pipe));
   1116 		return -EINVAL;
   1117 	}
   1118 
   1119 	/*
   1120 	 * xHCI uses normal TRBs for both bulk and interrupt. When the
   1121 	 * interrupt endpoint is to be serviced, the xHC will consume
   1122 	 * (at most) one TD. A TD (comprised of sg list entries) can
   1123 	 * take several service intervals to transmit.
   1124 	 */
   1125 	return xhci_bulk_tx(udev, pipe, length, buffer);
   1126 }
   1127 
   1128 /**
   1129  * submit the BULK type of request to the USB Device
   1130  *
   1131  * @param udev	pointer to the USB device
   1132  * @param pipe		contains the DIR_IN or OUT , devnum
   1133  * @param buffer	buffer to be read/written based on the request
   1134  * @param length	length of the buffer
   1135  * @return returns 0 if successful else -1 on failure
   1136  */
   1137 static int _xhci_submit_bulk_msg(struct usb_device *udev, unsigned long pipe,
   1138 				 void *buffer, int length)
   1139 {
   1140 	if (usb_pipetype(pipe) != PIPE_BULK) {
   1141 		printf("non-bulk pipe (type=%lu)", usb_pipetype(pipe));
   1142 		return -EINVAL;
   1143 	}
   1144 
   1145 	return xhci_bulk_tx(udev, pipe, length, buffer);
   1146 }
   1147 
   1148 /**
   1149  * submit the control type of request to the Root hub/Device based on the devnum
   1150  *
   1151  * @param udev	pointer to the USB device
   1152  * @param pipe		contains the DIR_IN or OUT , devnum
   1153  * @param buffer	buffer to be read/written based on the request
   1154  * @param length	length of the buffer
   1155  * @param setup		Request type
   1156  * @param root_portnr	Root port number that this device is on
   1157  * @return returns 0 if successful else -1 on failure
   1158  */
   1159 static int _xhci_submit_control_msg(struct usb_device *udev, unsigned long pipe,
   1160 				    void *buffer, int length,
   1161 				    struct devrequest *setup, int root_portnr)
   1162 {
   1163 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
   1164 	int ret = 0;
   1165 
   1166 	if (usb_pipetype(pipe) != PIPE_CONTROL) {
   1167 		printf("non-control pipe (type=%lu)", usb_pipetype(pipe));
   1168 		return -EINVAL;
   1169 	}
   1170 
   1171 	if (usb_pipedevice(pipe) == ctrl->rootdev)
   1172 		return xhci_submit_root(udev, pipe, buffer, setup);
   1173 
   1174 	if (setup->request == USB_REQ_SET_ADDRESS &&
   1175 	   (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD)
   1176 		return xhci_address_device(udev, root_portnr);
   1177 
   1178 	if (setup->request == USB_REQ_SET_CONFIGURATION &&
   1179 	   (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
   1180 		ret = xhci_set_configuration(udev);
   1181 		if (ret) {
   1182 			puts("Failed to configure xHCI endpoint\n");
   1183 			return ret;
   1184 		}
   1185 	}
   1186 
   1187 	return xhci_ctrl_tx(udev, pipe, setup, length, buffer);
   1188 }
   1189 
   1190 static int xhci_lowlevel_init(struct xhci_ctrl *ctrl)
   1191 {
   1192 	struct xhci_hccr *hccr;
   1193 	struct xhci_hcor *hcor;
   1194 	uint32_t val;
   1195 	uint32_t val2;
   1196 	uint32_t reg;
   1197 
   1198 	hccr = ctrl->hccr;
   1199 	hcor = ctrl->hcor;
   1200 	/*
   1201 	 * Program the Number of Device Slots Enabled field in the CONFIG
   1202 	 * register with the max value of slots the HC can handle.
   1203 	 */
   1204 	val = (xhci_readl(&hccr->cr_hcsparams1) & HCS_SLOTS_MASK);
   1205 	val2 = xhci_readl(&hcor->or_config);
   1206 	val |= (val2 & ~HCS_SLOTS_MASK);
   1207 	xhci_writel(&hcor->or_config, val);
   1208 
   1209 	/* initializing xhci data structures */
   1210 	if (xhci_mem_init(ctrl, hccr, hcor) < 0)
   1211 		return -ENOMEM;
   1212 
   1213 	reg = xhci_readl(&hccr->cr_hcsparams1);
   1214 	descriptor.hub.bNbrPorts = ((reg & HCS_MAX_PORTS_MASK) >>
   1215 						HCS_MAX_PORTS_SHIFT);
   1216 	printf("Register %x NbrPorts %d\n", reg, descriptor.hub.bNbrPorts);
   1217 
   1218 	/* Port Indicators */
   1219 	reg = xhci_readl(&hccr->cr_hccparams);
   1220 	if (HCS_INDICATOR(reg))
   1221 		put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
   1222 				| 0x80, &descriptor.hub.wHubCharacteristics);
   1223 
   1224 	/* Port Power Control */
   1225 	if (HCC_PPC(reg))
   1226 		put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
   1227 				| 0x01, &descriptor.hub.wHubCharacteristics);
   1228 
   1229 	if (xhci_start(hcor)) {
   1230 		xhci_reset(hcor);
   1231 		return -ENODEV;
   1232 	}
   1233 
   1234 	/* Zero'ing IRQ control register and IRQ pending register */
   1235 	xhci_writel(&ctrl->ir_set->irq_control, 0x0);
   1236 	xhci_writel(&ctrl->ir_set->irq_pending, 0x0);
   1237 
   1238 	reg = HC_VERSION(xhci_readl(&hccr->cr_capbase));
   1239 	printf("USB XHCI %x.%02x\n", reg >> 8, reg & 0xff);
   1240 
   1241 	return 0;
   1242 }
   1243 
   1244 static int xhci_lowlevel_stop(struct xhci_ctrl *ctrl)
   1245 {
   1246 	u32 temp;
   1247 
   1248 	xhci_reset(ctrl->hcor);
   1249 
   1250 	debug("// Disabling event ring interrupts\n");
   1251 	temp = xhci_readl(&ctrl->hcor->or_usbsts);
   1252 	xhci_writel(&ctrl->hcor->or_usbsts, temp & ~STS_EINT);
   1253 	temp = xhci_readl(&ctrl->ir_set->irq_pending);
   1254 	xhci_writel(&ctrl->ir_set->irq_pending, ER_IRQ_DISABLE(temp));
   1255 
   1256 	return 0;
   1257 }
   1258 
   1259 #ifndef CONFIG_DM_USB
   1260 int submit_control_msg(struct usb_device *udev, unsigned long pipe,
   1261 		       void *buffer, int length, struct devrequest *setup)
   1262 {
   1263 	struct usb_device *hop = udev;
   1264 
   1265 	if (hop->parent)
   1266 		while (hop->parent->parent)
   1267 			hop = hop->parent;
   1268 
   1269 	return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
   1270 					hop->portnr);
   1271 }
   1272 
   1273 int submit_bulk_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
   1274 		    int length)
   1275 {
   1276 	return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
   1277 }
   1278 
   1279 int submit_int_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
   1280 		   int length, int interval)
   1281 {
   1282 	return _xhci_submit_int_msg(udev, pipe, buffer, length, interval);
   1283 }
   1284 
   1285 /**
   1286  * Intialises the XHCI host controller
   1287  * and allocates the necessary data structures
   1288  *
   1289  * @param index	index to the host controller data structure
   1290  * @return pointer to the intialised controller
   1291  */
   1292 int usb_lowlevel_init(int index, enum usb_init_type init, void **controller)
   1293 {
   1294 	struct xhci_hccr *hccr;
   1295 	struct xhci_hcor *hcor;
   1296 	struct xhci_ctrl *ctrl;
   1297 	int ret;
   1298 
   1299 	*controller = NULL;
   1300 
   1301 	if (xhci_hcd_init(index, &hccr, (struct xhci_hcor **)&hcor) != 0)
   1302 		return -ENODEV;
   1303 
   1304 	if (xhci_reset(hcor) != 0)
   1305 		return -ENODEV;
   1306 
   1307 	ctrl = &xhcic[index];
   1308 
   1309 	ctrl->hccr = hccr;
   1310 	ctrl->hcor = hcor;
   1311 
   1312 	ret = xhci_lowlevel_init(ctrl);
   1313 
   1314 	if (ret) {
   1315 		ctrl->hccr = NULL;
   1316 		ctrl->hcor = NULL;
   1317 	} else {
   1318 		*controller = &xhcic[index];
   1319 	}
   1320 
   1321 	return ret;
   1322 }
   1323 
   1324 /**
   1325  * Stops the XHCI host controller
   1326  * and cleans up all the related data structures
   1327  *
   1328  * @param index	index to the host controller data structure
   1329  * @return none
   1330  */
   1331 int usb_lowlevel_stop(int index)
   1332 {
   1333 	struct xhci_ctrl *ctrl = (xhcic + index);
   1334 
   1335 	if (ctrl->hcor) {
   1336 		xhci_lowlevel_stop(ctrl);
   1337 		xhci_hcd_stop(index);
   1338 		xhci_cleanup(ctrl);
   1339 	}
   1340 
   1341 	return 0;
   1342 }
   1343 #endif /* CONFIG_DM_USB */
   1344 
   1345 #ifdef CONFIG_DM_USB
   1346 
   1347 static int xhci_submit_control_msg(struct udevice *dev, struct usb_device *udev,
   1348 				   unsigned long pipe, void *buffer, int length,
   1349 				   struct devrequest *setup)
   1350 {
   1351 	struct usb_device *uhop;
   1352 	struct udevice *hub;
   1353 	int root_portnr = 0;
   1354 
   1355 	debug("%s: dev='%s', udev=%p, udev->dev='%s', portnr=%d\n", __func__,
   1356 	      dev->name, udev, udev->dev->name, udev->portnr);
   1357 	hub = udev->dev;
   1358 	if (device_get_uclass_id(hub) == UCLASS_USB_HUB) {
   1359 		/* Figure out our port number on the root hub */
   1360 		if (usb_hub_is_root_hub(hub)) {
   1361 			root_portnr = udev->portnr;
   1362 		} else {
   1363 			while (!usb_hub_is_root_hub(hub->parent))
   1364 				hub = hub->parent;
   1365 			uhop = dev_get_parent_priv(hub);
   1366 			root_portnr = uhop->portnr;
   1367 		}
   1368 	}
   1369 /*
   1370 	struct usb_device *hop = udev;
   1371 
   1372 	if (hop->parent)
   1373 		while (hop->parent->parent)
   1374 			hop = hop->parent;
   1375 */
   1376 	return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
   1377 					root_portnr);
   1378 }
   1379 
   1380 static int xhci_submit_bulk_msg(struct udevice *dev, struct usb_device *udev,
   1381 				unsigned long pipe, void *buffer, int length)
   1382 {
   1383 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
   1384 	return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
   1385 }
   1386 
   1387 static int xhci_submit_int_msg(struct udevice *dev, struct usb_device *udev,
   1388 			       unsigned long pipe, void *buffer, int length,
   1389 			       int interval)
   1390 {
   1391 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
   1392 	return _xhci_submit_int_msg(udev, pipe, buffer, length, interval);
   1393 }
   1394 
   1395 static int xhci_alloc_device(struct udevice *dev, struct usb_device *udev)
   1396 {
   1397 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
   1398 	return _xhci_alloc_device(udev);
   1399 }
   1400 
   1401 static int xhci_update_hub_device(struct udevice *dev, struct usb_device *udev)
   1402 {
   1403 	struct xhci_ctrl *ctrl = dev_get_priv(dev);
   1404 	struct usb_hub_device *hub = dev_get_uclass_priv(udev->dev);
   1405 	struct xhci_virt_device *virt_dev;
   1406 	struct xhci_input_control_ctx *ctrl_ctx;
   1407 	struct xhci_container_ctx *out_ctx;
   1408 	struct xhci_container_ctx *in_ctx;
   1409 	struct xhci_slot_ctx *slot_ctx;
   1410 	int slot_id = udev->slot_id;
   1411 	unsigned think_time;
   1412 
   1413 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
   1414 
   1415 	/* Ignore root hubs */
   1416 	if (usb_hub_is_root_hub(udev->dev))
   1417 		return 0;
   1418 
   1419 	virt_dev = ctrl->devs[slot_id];
   1420 	BUG_ON(!virt_dev);
   1421 
   1422 	out_ctx = virt_dev->out_ctx;
   1423 	in_ctx = virt_dev->in_ctx;
   1424 
   1425 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
   1426 	/* Initialize the input context control */
   1427 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
   1428 	ctrl_ctx->drop_flags = 0;
   1429 
   1430 	xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
   1431 
   1432 	/* slot context */
   1433 	xhci_slot_copy(ctrl, in_ctx, out_ctx);
   1434 	slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
   1435 
   1436 	/* Update hub related fields */
   1437 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
   1438 	/*
   1439 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
   1440 	 * but it may be already set to 1 when setup an xHCI virtual
   1441 	 * device, so clear it anyway.
   1442 	 */
   1443 	if (hub->tt.multi)
   1444 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
   1445 	else if (udev->speed == USB_SPEED_FULL)
   1446 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
   1447 	slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(udev->maxchild));
   1448 	/*
   1449 	 * Set TT think time - convert from ns to FS bit times.
   1450 	 * Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns
   1451 	 *
   1452 	 * 0 =  8 FS bit times, 1 = 16 FS bit times,
   1453 	 * 2 = 24 FS bit times, 3 = 32 FS bit times.
   1454 	 *
   1455 	 * This field shall be 0 if the device is not a high-spped hub.
   1456 	 */
   1457 	think_time = hub->tt.think_time;
   1458 	if (think_time != 0)
   1459 		think_time = (think_time / 666) - 1;
   1460 	if (udev->speed == USB_SPEED_HIGH)
   1461 		slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time));
   1462 	slot_ctx->dev_state = 0;
   1463 
   1464 	return xhci_configure_endpoints(udev, false);
   1465 }
   1466 
   1467 static int xhci_get_max_xfer_size(struct udevice *dev, size_t *size)
   1468 {
   1469 	/*
   1470 	 * xHCD allocates one segment which includes 64 TRBs for each endpoint
   1471 	 * and the last TRB in this segment is configured as a link TRB to form
   1472 	 * a TRB ring. Each TRB can transfer up to 64K bytes, however data
   1473 	 * buffers referenced by transfer TRBs shall not span 64KB boundaries.
   1474 	 * Hence the maximum number of TRBs we can use in one transfer is 62.
   1475 	 */
   1476 	*size = (TRBS_PER_SEGMENT - 2) * TRB_MAX_BUFF_SIZE;
   1477 
   1478 	return 0;
   1479 }
   1480 
   1481 int xhci_register(struct udevice *dev, struct xhci_hccr *hccr,
   1482 		  struct xhci_hcor *hcor)
   1483 {
   1484 	struct xhci_ctrl *ctrl = dev_get_priv(dev);
   1485 	struct usb_bus_priv *priv = dev_get_uclass_priv(dev);
   1486 	int ret;
   1487 
   1488 	debug("%s: dev='%s', ctrl=%p, hccr=%p, hcor=%p\n", __func__, dev->name,
   1489 	      ctrl, hccr, hcor);
   1490 
   1491 	ctrl->dev = dev;
   1492 
   1493 	/*
   1494 	 * XHCI needs to issue a Address device command to setup
   1495 	 * proper device context structures, before it can interact
   1496 	 * with the device. So a get_descriptor will fail before any
   1497 	 * of that is done for XHCI unlike EHCI.
   1498 	 */
   1499 	priv->desc_before_addr = false;
   1500 
   1501 	ret = xhci_reset(hcor);
   1502 	if (ret)
   1503 		goto err;
   1504 
   1505 	ctrl->hccr = hccr;
   1506 	ctrl->hcor = hcor;
   1507 	ret = xhci_lowlevel_init(ctrl);
   1508 	if (ret)
   1509 		goto err;
   1510 
   1511 	return 0;
   1512 err:
   1513 	free(ctrl);
   1514 	debug("%s: failed, ret=%d\n", __func__, ret);
   1515 	return ret;
   1516 }
   1517 
   1518 int xhci_deregister(struct udevice *dev)
   1519 {
   1520 	struct xhci_ctrl *ctrl = dev_get_priv(dev);
   1521 
   1522 	xhci_lowlevel_stop(ctrl);
   1523 	xhci_cleanup(ctrl);
   1524 
   1525 	return 0;
   1526 }
   1527 
   1528 struct dm_usb_ops xhci_usb_ops = {
   1529 	.control = xhci_submit_control_msg,
   1530 	.bulk = xhci_submit_bulk_msg,
   1531 	.interrupt = xhci_submit_int_msg,
   1532 	.alloc_device = xhci_alloc_device,
   1533 	.update_hub_device = xhci_update_hub_device,
   1534 	.get_max_xfer_size  = xhci_get_max_xfer_size,
   1535 };
   1536 
   1537 #endif
   1538