Home | History | Annotate | Download | only in yaffs2
      1 /*
      2  * YAFFS: Yet Another Flash File System. A NAND-flash specific file system.
      3  *
      4  * Copyright (C) 2002-2011 Aleph One Ltd.
      5  *   for Toby Churchill Ltd and Brightstar Engineering
      6  *
      7  * Created by Charles Manning <charles (at) aleph1.co.uk>
      8  *
      9  * This program is free software; you can redistribute it and/or modify
     10  * it under the terms of the GNU General Public License version 2 as
     11  * published by the Free Software Foundation.
     12  */
     13 
     14 #include "yportenv.h"
     15 #include "yaffs_trace.h"
     16 
     17 #include "yaffs_guts.h"
     18 #include "yaffs_getblockinfo.h"
     19 #include "yaffs_tagscompat.h"
     20 #include "yaffs_nand.h"
     21 #include "yaffs_yaffs1.h"
     22 #include "yaffs_yaffs2.h"
     23 #include "yaffs_bitmap.h"
     24 #include "yaffs_verify.h"
     25 #include "yaffs_nand.h"
     26 #include "yaffs_packedtags2.h"
     27 #include "yaffs_nameval.h"
     28 #include "yaffs_allocator.h"
     29 #include "yaffs_attribs.h"
     30 #include "yaffs_summary.h"
     31 
     32 /* Note YAFFS_GC_GOOD_ENOUGH must be <= YAFFS_GC_PASSIVE_THRESHOLD */
     33 #define YAFFS_GC_GOOD_ENOUGH 2
     34 #define YAFFS_GC_PASSIVE_THRESHOLD 4
     35 
     36 #include "yaffs_ecc.h"
     37 
     38 /* Forward declarations */
     39 
     40 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
     41 			     const u8 *buffer, int n_bytes, int use_reserve);
     42 
     43 
     44 
     45 /* Function to calculate chunk and offset */
     46 
     47 void yaffs_addr_to_chunk(struct yaffs_dev *dev, loff_t addr,
     48 				int *chunk_out, u32 *offset_out)
     49 {
     50 	int chunk;
     51 	u32 offset;
     52 
     53 	chunk = (u32) (addr >> dev->chunk_shift);
     54 
     55 	if (dev->chunk_div == 1) {
     56 		/* easy power of 2 case */
     57 		offset = (u32) (addr & dev->chunk_mask);
     58 	} else {
     59 		/* Non power-of-2 case */
     60 
     61 		loff_t chunk_base;
     62 
     63 		chunk /= dev->chunk_div;
     64 
     65 		chunk_base = ((loff_t) chunk) * dev->data_bytes_per_chunk;
     66 		offset = (u32) (addr - chunk_base);
     67 	}
     68 
     69 	*chunk_out = chunk;
     70 	*offset_out = offset;
     71 }
     72 
     73 /* Function to return the number of shifts for a power of 2 greater than or
     74  * equal to the given number
     75  * Note we don't try to cater for all possible numbers and this does not have to
     76  * be hellishly efficient.
     77  */
     78 
     79 static inline u32 calc_shifts_ceiling(u32 x)
     80 {
     81 	int extra_bits;
     82 	int shifts;
     83 
     84 	shifts = extra_bits = 0;
     85 
     86 	while (x > 1) {
     87 		if (x & 1)
     88 			extra_bits++;
     89 		x >>= 1;
     90 		shifts++;
     91 	}
     92 
     93 	if (extra_bits)
     94 		shifts++;
     95 
     96 	return shifts;
     97 }
     98 
     99 /* Function to return the number of shifts to get a 1 in bit 0
    100  */
    101 
    102 static inline u32 calc_shifts(u32 x)
    103 {
    104 	u32 shifts;
    105 
    106 	shifts = 0;
    107 
    108 	if (!x)
    109 		return 0;
    110 
    111 	while (!(x & 1)) {
    112 		x >>= 1;
    113 		shifts++;
    114 	}
    115 
    116 	return shifts;
    117 }
    118 
    119 /*
    120  * Temporary buffer manipulations.
    121  */
    122 
    123 static int yaffs_init_tmp_buffers(struct yaffs_dev *dev)
    124 {
    125 	int i;
    126 	u8 *buf = (u8 *) 1;
    127 
    128 	memset(dev->temp_buffer, 0, sizeof(dev->temp_buffer));
    129 
    130 	for (i = 0; buf && i < YAFFS_N_TEMP_BUFFERS; i++) {
    131 		dev->temp_buffer[i].in_use = 0;
    132 		buf = kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
    133 		dev->temp_buffer[i].buffer = buf;
    134 	}
    135 
    136 	return buf ? YAFFS_OK : YAFFS_FAIL;
    137 }
    138 
    139 u8 *yaffs_get_temp_buffer(struct yaffs_dev * dev)
    140 {
    141 	int i;
    142 
    143 	dev->temp_in_use++;
    144 	if (dev->temp_in_use > dev->max_temp)
    145 		dev->max_temp = dev->temp_in_use;
    146 
    147 	for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
    148 		if (dev->temp_buffer[i].in_use == 0) {
    149 			dev->temp_buffer[i].in_use = 1;
    150 			return dev->temp_buffer[i].buffer;
    151 		}
    152 	}
    153 
    154 	yaffs_trace(YAFFS_TRACE_BUFFERS, "Out of temp buffers");
    155 	/*
    156 	 * If we got here then we have to allocate an unmanaged one
    157 	 * This is not good.
    158 	 */
    159 
    160 	dev->unmanaged_buffer_allocs++;
    161 	return kmalloc(dev->data_bytes_per_chunk, GFP_NOFS);
    162 
    163 }
    164 
    165 void yaffs_release_temp_buffer(struct yaffs_dev *dev, u8 *buffer)
    166 {
    167 	int i;
    168 
    169 	dev->temp_in_use--;
    170 
    171 	for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
    172 		if (dev->temp_buffer[i].buffer == buffer) {
    173 			dev->temp_buffer[i].in_use = 0;
    174 			return;
    175 		}
    176 	}
    177 
    178 	if (buffer) {
    179 		/* assume it is an unmanaged one. */
    180 		yaffs_trace(YAFFS_TRACE_BUFFERS,
    181 			"Releasing unmanaged temp buffer");
    182 		kfree(buffer);
    183 		dev->unmanaged_buffer_deallocs++;
    184 	}
    185 
    186 }
    187 
    188 /*
    189  * Determine if we have a managed buffer.
    190  */
    191 int yaffs_is_managed_tmp_buffer(struct yaffs_dev *dev, const u8 *buffer)
    192 {
    193 	int i;
    194 
    195 	for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
    196 		if (dev->temp_buffer[i].buffer == buffer)
    197 			return 1;
    198 	}
    199 
    200 	for (i = 0; i < dev->param.n_caches; i++) {
    201 		if (dev->cache[i].data == buffer)
    202 			return 1;
    203 	}
    204 
    205 	if (buffer == dev->checkpt_buffer)
    206 		return 1;
    207 
    208 	yaffs_trace(YAFFS_TRACE_ALWAYS,
    209 	  "yaffs: unmaged buffer detected.");
    210 	return 0;
    211 }
    212 
    213 /*
    214  * Functions for robustisizing TODO
    215  *
    216  */
    217 
    218 static void yaffs_handle_chunk_wr_ok(struct yaffs_dev *dev, int nand_chunk,
    219 				     const u8 *data,
    220 				     const struct yaffs_ext_tags *tags)
    221 {
    222 }
    223 
    224 static void yaffs_handle_chunk_update(struct yaffs_dev *dev, int nand_chunk,
    225 				      const struct yaffs_ext_tags *tags)
    226 {
    227 }
    228 
    229 void yaffs_handle_chunk_error(struct yaffs_dev *dev,
    230 			      struct yaffs_block_info *bi)
    231 {
    232 	if (!bi->gc_prioritise) {
    233 		bi->gc_prioritise = 1;
    234 		dev->has_pending_prioritised_gc = 1;
    235 		bi->chunk_error_strikes++;
    236 
    237 		if (bi->chunk_error_strikes > 3) {
    238 			bi->needs_retiring = 1;	/* Too many stikes, so retire */
    239 			yaffs_trace(YAFFS_TRACE_ALWAYS,
    240 				"yaffs: Block struck out");
    241 
    242 		}
    243 	}
    244 }
    245 
    246 static void yaffs_handle_chunk_wr_error(struct yaffs_dev *dev, int nand_chunk,
    247 					int erased_ok)
    248 {
    249 	int flash_block = nand_chunk / dev->param.chunks_per_block;
    250 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
    251 
    252 	yaffs_handle_chunk_error(dev, bi);
    253 
    254 	if (erased_ok) {
    255 		/* Was an actual write failure,
    256 		 * so mark the block for retirement.*/
    257 		bi->needs_retiring = 1;
    258 		yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
    259 		  "**>> Block %d needs retiring", flash_block);
    260 	}
    261 
    262 	/* Delete the chunk */
    263 	yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
    264 	yaffs_skip_rest_of_block(dev);
    265 }
    266 
    267 /*
    268  * Verification code
    269  */
    270 
    271 /*
    272  *  Simple hash function. Needs to have a reasonable spread
    273  */
    274 
    275 static inline int yaffs_hash_fn(int n)
    276 {
    277 	if (n < 0)
    278 		n = -n;
    279 	return n % YAFFS_NOBJECT_BUCKETS;
    280 }
    281 
    282 /*
    283  * Access functions to useful fake objects.
    284  * Note that root might have a presence in NAND if permissions are set.
    285  */
    286 
    287 struct yaffs_obj *yaffs_root(struct yaffs_dev *dev)
    288 {
    289 	return dev->root_dir;
    290 }
    291 
    292 struct yaffs_obj *yaffs_lost_n_found(struct yaffs_dev *dev)
    293 {
    294 	return dev->lost_n_found;
    295 }
    296 
    297 /*
    298  *  Erased NAND checking functions
    299  */
    300 
    301 int yaffs_check_ff(u8 *buffer, int n_bytes)
    302 {
    303 	/* Horrible, slow implementation */
    304 	while (n_bytes--) {
    305 		if (*buffer != 0xff)
    306 			return 0;
    307 		buffer++;
    308 	}
    309 	return 1;
    310 }
    311 
    312 static int yaffs_check_chunk_erased(struct yaffs_dev *dev, int nand_chunk)
    313 {
    314 	int retval = YAFFS_OK;
    315 	u8 *data = yaffs_get_temp_buffer(dev);
    316 	struct yaffs_ext_tags tags;
    317 
    318 	yaffs_rd_chunk_tags_nand(dev, nand_chunk, data, &tags);
    319 
    320 	if (tags.ecc_result > YAFFS_ECC_RESULT_NO_ERROR)
    321 		retval = YAFFS_FAIL;
    322 
    323 	if (!yaffs_check_ff(data, dev->data_bytes_per_chunk) ||
    324 		tags.chunk_used) {
    325 		yaffs_trace(YAFFS_TRACE_NANDACCESS,
    326 			"Chunk %d not erased", nand_chunk);
    327 		retval = YAFFS_FAIL;
    328 	}
    329 
    330 	yaffs_release_temp_buffer(dev, data);
    331 
    332 	return retval;
    333 
    334 }
    335 
    336 static int yaffs_verify_chunk_written(struct yaffs_dev *dev,
    337 				      int nand_chunk,
    338 				      const u8 *data,
    339 				      struct yaffs_ext_tags *tags)
    340 {
    341 	int retval = YAFFS_OK;
    342 	struct yaffs_ext_tags temp_tags;
    343 	u8 *buffer = yaffs_get_temp_buffer(dev);
    344 
    345 	yaffs_rd_chunk_tags_nand(dev, nand_chunk, buffer, &temp_tags);
    346 	if (memcmp(buffer, data, dev->data_bytes_per_chunk) ||
    347 	    temp_tags.obj_id != tags->obj_id ||
    348 	    temp_tags.chunk_id != tags->chunk_id ||
    349 	    temp_tags.n_bytes != tags->n_bytes)
    350 		retval = YAFFS_FAIL;
    351 
    352 	yaffs_release_temp_buffer(dev, buffer);
    353 
    354 	return retval;
    355 }
    356 
    357 
    358 int yaffs_check_alloc_available(struct yaffs_dev *dev, int n_chunks)
    359 {
    360 	int reserved_chunks;
    361 	int reserved_blocks = dev->param.n_reserved_blocks;
    362 	int checkpt_blocks;
    363 
    364 	checkpt_blocks = yaffs_calc_checkpt_blocks_required(dev);
    365 
    366 	reserved_chunks =
    367 	    (reserved_blocks + checkpt_blocks) * dev->param.chunks_per_block;
    368 
    369 	return (dev->n_free_chunks > (reserved_chunks + n_chunks));
    370 }
    371 
    372 static int yaffs_find_alloc_block(struct yaffs_dev *dev)
    373 {
    374 	int i;
    375 	struct yaffs_block_info *bi;
    376 
    377 	if (dev->n_erased_blocks < 1) {
    378 		/* Hoosterman we've got a problem.
    379 		 * Can't get space to gc
    380 		 */
    381 		yaffs_trace(YAFFS_TRACE_ERROR,
    382 		  "yaffs tragedy: no more erased blocks");
    383 
    384 		return -1;
    385 	}
    386 
    387 	/* Find an empty block. */
    388 
    389 	for (i = dev->internal_start_block; i <= dev->internal_end_block; i++) {
    390 		dev->alloc_block_finder++;
    391 		if (dev->alloc_block_finder < dev->internal_start_block
    392 		    || dev->alloc_block_finder > dev->internal_end_block) {
    393 			dev->alloc_block_finder = dev->internal_start_block;
    394 		}
    395 
    396 		bi = yaffs_get_block_info(dev, dev->alloc_block_finder);
    397 
    398 		if (bi->block_state == YAFFS_BLOCK_STATE_EMPTY) {
    399 			bi->block_state = YAFFS_BLOCK_STATE_ALLOCATING;
    400 			dev->seq_number++;
    401 			bi->seq_number = dev->seq_number;
    402 			dev->n_erased_blocks--;
    403 			yaffs_trace(YAFFS_TRACE_ALLOCATE,
    404 			  "Allocated block %d, seq  %d, %d left" ,
    405 			   dev->alloc_block_finder, dev->seq_number,
    406 			   dev->n_erased_blocks);
    407 			return dev->alloc_block_finder;
    408 		}
    409 	}
    410 
    411 	yaffs_trace(YAFFS_TRACE_ALWAYS,
    412 		"yaffs tragedy: no more erased blocks, but there should have been %d",
    413 		dev->n_erased_blocks);
    414 
    415 	return -1;
    416 }
    417 
    418 static int yaffs_alloc_chunk(struct yaffs_dev *dev, int use_reserver,
    419 			     struct yaffs_block_info **block_ptr)
    420 {
    421 	int ret_val;
    422 	struct yaffs_block_info *bi;
    423 
    424 	if (dev->alloc_block < 0) {
    425 		/* Get next block to allocate off */
    426 		dev->alloc_block = yaffs_find_alloc_block(dev);
    427 		dev->alloc_page = 0;
    428 	}
    429 
    430 	if (!use_reserver && !yaffs_check_alloc_available(dev, 1)) {
    431 		/* No space unless we're allowed to use the reserve. */
    432 		return -1;
    433 	}
    434 
    435 	if (dev->n_erased_blocks < dev->param.n_reserved_blocks
    436 	    && dev->alloc_page == 0)
    437 		yaffs_trace(YAFFS_TRACE_ALLOCATE, "Allocating reserve");
    438 
    439 	/* Next page please.... */
    440 	if (dev->alloc_block >= 0) {
    441 		bi = yaffs_get_block_info(dev, dev->alloc_block);
    442 
    443 		ret_val = (dev->alloc_block * dev->param.chunks_per_block) +
    444 		    dev->alloc_page;
    445 		bi->pages_in_use++;
    446 		yaffs_set_chunk_bit(dev, dev->alloc_block, dev->alloc_page);
    447 
    448 		dev->alloc_page++;
    449 
    450 		dev->n_free_chunks--;
    451 
    452 		/* If the block is full set the state to full */
    453 		if (dev->alloc_page >= dev->param.chunks_per_block) {
    454 			bi->block_state = YAFFS_BLOCK_STATE_FULL;
    455 			dev->alloc_block = -1;
    456 		}
    457 
    458 		if (block_ptr)
    459 			*block_ptr = bi;
    460 
    461 		return ret_val;
    462 	}
    463 
    464 	yaffs_trace(YAFFS_TRACE_ERROR,
    465 		"!!!!!!!!! Allocator out !!!!!!!!!!!!!!!!!");
    466 
    467 	return -1;
    468 }
    469 
    470 static int yaffs_get_erased_chunks(struct yaffs_dev *dev)
    471 {
    472 	int n;
    473 
    474 	n = dev->n_erased_blocks * dev->param.chunks_per_block;
    475 
    476 	if (dev->alloc_block > 0)
    477 		n += (dev->param.chunks_per_block - dev->alloc_page);
    478 
    479 	return n;
    480 
    481 }
    482 
    483 /*
    484  * yaffs_skip_rest_of_block() skips over the rest of the allocation block
    485  * if we don't want to write to it.
    486  */
    487 void yaffs_skip_rest_of_block(struct yaffs_dev *dev)
    488 {
    489 	struct yaffs_block_info *bi;
    490 
    491 	if (dev->alloc_block > 0) {
    492 		bi = yaffs_get_block_info(dev, dev->alloc_block);
    493 		if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING) {
    494 			bi->block_state = YAFFS_BLOCK_STATE_FULL;
    495 			dev->alloc_block = -1;
    496 		}
    497 	}
    498 }
    499 
    500 static int yaffs_write_new_chunk(struct yaffs_dev *dev,
    501 				 const u8 *data,
    502 				 struct yaffs_ext_tags *tags, int use_reserver)
    503 {
    504 	int attempts = 0;
    505 	int write_ok = 0;
    506 	int chunk;
    507 
    508 	yaffs2_checkpt_invalidate(dev);
    509 
    510 	do {
    511 		struct yaffs_block_info *bi = 0;
    512 		int erased_ok = 0;
    513 
    514 		chunk = yaffs_alloc_chunk(dev, use_reserver, &bi);
    515 		if (chunk < 0) {
    516 			/* no space */
    517 			break;
    518 		}
    519 
    520 		/* First check this chunk is erased, if it needs
    521 		 * checking.  The checking policy (unless forced
    522 		 * always on) is as follows:
    523 		 *
    524 		 * Check the first page we try to write in a block.
    525 		 * If the check passes then we don't need to check any
    526 		 * more.        If the check fails, we check again...
    527 		 * If the block has been erased, we don't need to check.
    528 		 *
    529 		 * However, if the block has been prioritised for gc,
    530 		 * then we think there might be something odd about
    531 		 * this block and stop using it.
    532 		 *
    533 		 * Rationale: We should only ever see chunks that have
    534 		 * not been erased if there was a partially written
    535 		 * chunk due to power loss.  This checking policy should
    536 		 * catch that case with very few checks and thus save a
    537 		 * lot of checks that are most likely not needed.
    538 		 *
    539 		 * Mods to the above
    540 		 * If an erase check fails or the write fails we skip the
    541 		 * rest of the block.
    542 		 */
    543 
    544 		/* let's give it a try */
    545 		attempts++;
    546 
    547 		if (dev->param.always_check_erased)
    548 			bi->skip_erased_check = 0;
    549 
    550 		if (!bi->skip_erased_check) {
    551 			erased_ok = yaffs_check_chunk_erased(dev, chunk);
    552 			if (erased_ok != YAFFS_OK) {
    553 				yaffs_trace(YAFFS_TRACE_ERROR,
    554 				  "**>> yaffs chunk %d was not erased",
    555 				  chunk);
    556 
    557 				/* If not erased, delete this one,
    558 				 * skip rest of block and
    559 				 * try another chunk */
    560 				yaffs_chunk_del(dev, chunk, 1, __LINE__);
    561 				yaffs_skip_rest_of_block(dev);
    562 				continue;
    563 			}
    564 		}
    565 
    566 		write_ok = yaffs_wr_chunk_tags_nand(dev, chunk, data, tags);
    567 
    568 		if (!bi->skip_erased_check)
    569 			write_ok =
    570 			    yaffs_verify_chunk_written(dev, chunk, data, tags);
    571 
    572 		if (write_ok != YAFFS_OK) {
    573 			/* Clean up aborted write, skip to next block and
    574 			 * try another chunk */
    575 			yaffs_handle_chunk_wr_error(dev, chunk, erased_ok);
    576 			continue;
    577 		}
    578 
    579 		bi->skip_erased_check = 1;
    580 
    581 		/* Copy the data into the robustification buffer */
    582 		yaffs_handle_chunk_wr_ok(dev, chunk, data, tags);
    583 
    584 	} while (write_ok != YAFFS_OK &&
    585 		 (yaffs_wr_attempts <= 0 || attempts <= yaffs_wr_attempts));
    586 
    587 	if (!write_ok)
    588 		chunk = -1;
    589 
    590 	if (attempts > 1) {
    591 		yaffs_trace(YAFFS_TRACE_ERROR,
    592 			"**>> yaffs write required %d attempts",
    593 			attempts);
    594 		dev->n_retried_writes += (attempts - 1);
    595 	}
    596 
    597 	return chunk;
    598 }
    599 
    600 /*
    601  * Block retiring for handling a broken block.
    602  */
    603 
    604 static void yaffs_retire_block(struct yaffs_dev *dev, int flash_block)
    605 {
    606 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
    607 
    608 	yaffs2_checkpt_invalidate(dev);
    609 
    610 	yaffs2_clear_oldest_dirty_seq(dev, bi);
    611 
    612 	if (yaffs_mark_bad(dev, flash_block) != YAFFS_OK) {
    613 		if (yaffs_erase_block(dev, flash_block) != YAFFS_OK) {
    614 			yaffs_trace(YAFFS_TRACE_ALWAYS,
    615 				"yaffs: Failed to mark bad and erase block %d",
    616 				flash_block);
    617 		} else {
    618 			struct yaffs_ext_tags tags;
    619 			int chunk_id =
    620 			    flash_block * dev->param.chunks_per_block;
    621 
    622 			u8 *buffer = yaffs_get_temp_buffer(dev);
    623 
    624 			memset(buffer, 0xff, dev->data_bytes_per_chunk);
    625 			memset(&tags, 0, sizeof(tags));
    626 			tags.seq_number = YAFFS_SEQUENCE_BAD_BLOCK;
    627 			if (dev->param.write_chunk_tags_fn(dev, chunk_id -
    628 							   dev->chunk_offset,
    629 							   buffer,
    630 							   &tags) != YAFFS_OK)
    631 				yaffs_trace(YAFFS_TRACE_ALWAYS,
    632 					"yaffs: Failed to write bad block marker to block %d",
    633 					flash_block);
    634 
    635 			yaffs_release_temp_buffer(dev, buffer);
    636 		}
    637 	}
    638 
    639 	bi->block_state = YAFFS_BLOCK_STATE_DEAD;
    640 	bi->gc_prioritise = 0;
    641 	bi->needs_retiring = 0;
    642 
    643 	dev->n_retired_blocks++;
    644 }
    645 
    646 /*---------------- Name handling functions ------------*/
    647 
    648 static u16 yaffs_calc_name_sum(const YCHAR *name)
    649 {
    650 	u16 sum = 0;
    651 	u16 i = 1;
    652 
    653 	if (!name)
    654 		return 0;
    655 
    656 	while ((*name) && i < (YAFFS_MAX_NAME_LENGTH / 2)) {
    657 
    658 		/* 0x1f mask is case insensitive */
    659 		sum += ((*name) & 0x1f) * i;
    660 		i++;
    661 		name++;
    662 	}
    663 	return sum;
    664 }
    665 
    666 void yaffs_set_obj_name(struct yaffs_obj *obj, const YCHAR * name)
    667 {
    668 	memset(obj->short_name, 0, sizeof(obj->short_name));
    669 	if (name &&
    670 		yaffs_strnlen(name, YAFFS_SHORT_NAME_LENGTH + 1) <=
    671 		YAFFS_SHORT_NAME_LENGTH)
    672 		yaffs_strcpy(obj->short_name, name);
    673 	else
    674 		obj->short_name[0] = _Y('\0');
    675 	obj->sum = yaffs_calc_name_sum(name);
    676 }
    677 
    678 void yaffs_set_obj_name_from_oh(struct yaffs_obj *obj,
    679 				const struct yaffs_obj_hdr *oh)
    680 {
    681 #ifdef CONFIG_YAFFS_AUTO_UNICODE
    682 	YCHAR tmp_name[YAFFS_MAX_NAME_LENGTH + 1];
    683 	memset(tmp_name, 0, sizeof(tmp_name));
    684 	yaffs_load_name_from_oh(obj->my_dev, tmp_name, oh->name,
    685 				YAFFS_MAX_NAME_LENGTH + 1);
    686 	yaffs_set_obj_name(obj, tmp_name);
    687 #else
    688 	yaffs_set_obj_name(obj, oh->name);
    689 #endif
    690 }
    691 
    692 loff_t yaffs_max_file_size(struct yaffs_dev *dev)
    693 {
    694 	return ((loff_t) YAFFS_MAX_CHUNK_ID) * dev->data_bytes_per_chunk;
    695 }
    696 
    697 /*-------------------- TNODES -------------------
    698 
    699  * List of spare tnodes
    700  * The list is hooked together using the first pointer
    701  * in the tnode.
    702  */
    703 
    704 struct yaffs_tnode *yaffs_get_tnode(struct yaffs_dev *dev)
    705 {
    706 	struct yaffs_tnode *tn = yaffs_alloc_raw_tnode(dev);
    707 
    708 	if (tn) {
    709 		memset(tn, 0, dev->tnode_size);
    710 		dev->n_tnodes++;
    711 	}
    712 
    713 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
    714 
    715 	return tn;
    716 }
    717 
    718 /* FreeTnode frees up a tnode and puts it back on the free list */
    719 static void yaffs_free_tnode(struct yaffs_dev *dev, struct yaffs_tnode *tn)
    720 {
    721 	yaffs_free_raw_tnode(dev, tn);
    722 	dev->n_tnodes--;
    723 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
    724 }
    725 
    726 static void yaffs_deinit_tnodes_and_objs(struct yaffs_dev *dev)
    727 {
    728 	yaffs_deinit_raw_tnodes_and_objs(dev);
    729 	dev->n_obj = 0;
    730 	dev->n_tnodes = 0;
    731 }
    732 
    733 void yaffs_load_tnode_0(struct yaffs_dev *dev, struct yaffs_tnode *tn,
    734 			unsigned pos, unsigned val)
    735 {
    736 	u32 *map = (u32 *) tn;
    737 	u32 bit_in_map;
    738 	u32 bit_in_word;
    739 	u32 word_in_map;
    740 	u32 mask;
    741 
    742 	pos &= YAFFS_TNODES_LEVEL0_MASK;
    743 	val >>= dev->chunk_grp_bits;
    744 
    745 	bit_in_map = pos * dev->tnode_width;
    746 	word_in_map = bit_in_map / 32;
    747 	bit_in_word = bit_in_map & (32 - 1);
    748 
    749 	mask = dev->tnode_mask << bit_in_word;
    750 
    751 	map[word_in_map] &= ~mask;
    752 	map[word_in_map] |= (mask & (val << bit_in_word));
    753 
    754 	if (dev->tnode_width > (32 - bit_in_word)) {
    755 		bit_in_word = (32 - bit_in_word);
    756 		word_in_map++;
    757 		mask =
    758 		    dev->tnode_mask >> bit_in_word;
    759 		map[word_in_map] &= ~mask;
    760 		map[word_in_map] |= (mask & (val >> bit_in_word));
    761 	}
    762 }
    763 
    764 u32 yaffs_get_group_base(struct yaffs_dev *dev, struct yaffs_tnode *tn,
    765 			 unsigned pos)
    766 {
    767 	u32 *map = (u32 *) tn;
    768 	u32 bit_in_map;
    769 	u32 bit_in_word;
    770 	u32 word_in_map;
    771 	u32 val;
    772 
    773 	pos &= YAFFS_TNODES_LEVEL0_MASK;
    774 
    775 	bit_in_map = pos * dev->tnode_width;
    776 	word_in_map = bit_in_map / 32;
    777 	bit_in_word = bit_in_map & (32 - 1);
    778 
    779 	val = map[word_in_map] >> bit_in_word;
    780 
    781 	if (dev->tnode_width > (32 - bit_in_word)) {
    782 		bit_in_word = (32 - bit_in_word);
    783 		word_in_map++;
    784 		val |= (map[word_in_map] << bit_in_word);
    785 	}
    786 
    787 	val &= dev->tnode_mask;
    788 	val <<= dev->chunk_grp_bits;
    789 
    790 	return val;
    791 }
    792 
    793 /* ------------------- End of individual tnode manipulation -----------------*/
    794 
    795 /* ---------Functions to manipulate the look-up tree (made up of tnodes) ------
    796  * The look up tree is represented by the top tnode and the number of top_level
    797  * in the tree. 0 means only the level 0 tnode is in the tree.
    798  */
    799 
    800 /* FindLevel0Tnode finds the level 0 tnode, if one exists. */
    801 struct yaffs_tnode *yaffs_find_tnode_0(struct yaffs_dev *dev,
    802 				       struct yaffs_file_var *file_struct,
    803 				       u32 chunk_id)
    804 {
    805 	struct yaffs_tnode *tn = file_struct->top;
    806 	u32 i;
    807 	int required_depth;
    808 	int level = file_struct->top_level;
    809 
    810 	/* Check sane level and chunk Id */
    811 	if (level < 0 || level > YAFFS_TNODES_MAX_LEVEL)
    812 		return NULL;
    813 
    814 	if (chunk_id > YAFFS_MAX_CHUNK_ID)
    815 		return NULL;
    816 
    817 	/* First check we're tall enough (ie enough top_level) */
    818 
    819 	i = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
    820 	required_depth = 0;
    821 	while (i) {
    822 		i >>= YAFFS_TNODES_INTERNAL_BITS;
    823 		required_depth++;
    824 	}
    825 
    826 	if (required_depth > file_struct->top_level)
    827 		return NULL;	/* Not tall enough, so we can't find it */
    828 
    829 	/* Traverse down to level 0 */
    830 	while (level > 0 && tn) {
    831 		tn = tn->internal[(chunk_id >>
    832 				   (YAFFS_TNODES_LEVEL0_BITS +
    833 				    (level - 1) *
    834 				    YAFFS_TNODES_INTERNAL_BITS)) &
    835 				  YAFFS_TNODES_INTERNAL_MASK];
    836 		level--;
    837 	}
    838 
    839 	return tn;
    840 }
    841 
    842 /* add_find_tnode_0 finds the level 0 tnode if it exists,
    843  * otherwise first expands the tree.
    844  * This happens in two steps:
    845  *  1. If the tree isn't tall enough, then make it taller.
    846  *  2. Scan down the tree towards the level 0 tnode adding tnodes if required.
    847  *
    848  * Used when modifying the tree.
    849  *
    850  *  If the tn argument is NULL, then a fresh tnode will be added otherwise the
    851  *  specified tn will be plugged into the ttree.
    852  */
    853 
    854 struct yaffs_tnode *yaffs_add_find_tnode_0(struct yaffs_dev *dev,
    855 					   struct yaffs_file_var *file_struct,
    856 					   u32 chunk_id,
    857 					   struct yaffs_tnode *passed_tn)
    858 {
    859 	int required_depth;
    860 	int i;
    861 	int l;
    862 	struct yaffs_tnode *tn;
    863 	u32 x;
    864 
    865 	/* Check sane level and page Id */
    866 	if (file_struct->top_level < 0 ||
    867 	    file_struct->top_level > YAFFS_TNODES_MAX_LEVEL)
    868 		return NULL;
    869 
    870 	if (chunk_id > YAFFS_MAX_CHUNK_ID)
    871 		return NULL;
    872 
    873 	/* First check we're tall enough (ie enough top_level) */
    874 
    875 	x = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
    876 	required_depth = 0;
    877 	while (x) {
    878 		x >>= YAFFS_TNODES_INTERNAL_BITS;
    879 		required_depth++;
    880 	}
    881 
    882 	if (required_depth > file_struct->top_level) {
    883 		/* Not tall enough, gotta make the tree taller */
    884 		for (i = file_struct->top_level; i < required_depth; i++) {
    885 
    886 			tn = yaffs_get_tnode(dev);
    887 
    888 			if (tn) {
    889 				tn->internal[0] = file_struct->top;
    890 				file_struct->top = tn;
    891 				file_struct->top_level++;
    892 			} else {
    893 				yaffs_trace(YAFFS_TRACE_ERROR,
    894 					"yaffs: no more tnodes");
    895 				return NULL;
    896 			}
    897 		}
    898 	}
    899 
    900 	/* Traverse down to level 0, adding anything we need */
    901 
    902 	l = file_struct->top_level;
    903 	tn = file_struct->top;
    904 
    905 	if (l > 0) {
    906 		while (l > 0 && tn) {
    907 			x = (chunk_id >>
    908 			     (YAFFS_TNODES_LEVEL0_BITS +
    909 			      (l - 1) * YAFFS_TNODES_INTERNAL_BITS)) &
    910 			    YAFFS_TNODES_INTERNAL_MASK;
    911 
    912 			if ((l > 1) && !tn->internal[x]) {
    913 				/* Add missing non-level-zero tnode */
    914 				tn->internal[x] = yaffs_get_tnode(dev);
    915 				if (!tn->internal[x])
    916 					return NULL;
    917 			} else if (l == 1) {
    918 				/* Looking from level 1 at level 0 */
    919 				if (passed_tn) {
    920 					/* If we already have one, release it */
    921 					if (tn->internal[x])
    922 						yaffs_free_tnode(dev,
    923 							tn->internal[x]);
    924 					tn->internal[x] = passed_tn;
    925 
    926 				} else if (!tn->internal[x]) {
    927 					/* Don't have one, none passed in */
    928 					tn->internal[x] = yaffs_get_tnode(dev);
    929 					if (!tn->internal[x])
    930 						return NULL;
    931 				}
    932 			}
    933 
    934 			tn = tn->internal[x];
    935 			l--;
    936 		}
    937 	} else {
    938 		/* top is level 0 */
    939 		if (passed_tn) {
    940 			memcpy(tn, passed_tn,
    941 			       (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8);
    942 			yaffs_free_tnode(dev, passed_tn);
    943 		}
    944 	}
    945 
    946 	return tn;
    947 }
    948 
    949 static int yaffs_tags_match(const struct yaffs_ext_tags *tags, int obj_id,
    950 			    int chunk_obj)
    951 {
    952 	return (tags->chunk_id == chunk_obj &&
    953 		tags->obj_id == obj_id &&
    954 		!tags->is_deleted) ? 1 : 0;
    955 
    956 }
    957 
    958 static int yaffs_find_chunk_in_group(struct yaffs_dev *dev, int the_chunk,
    959 					struct yaffs_ext_tags *tags, int obj_id,
    960 					int inode_chunk)
    961 {
    962 	int j;
    963 
    964 	for (j = 0; the_chunk && j < dev->chunk_grp_size; j++) {
    965 		if (yaffs_check_chunk_bit
    966 		    (dev, the_chunk / dev->param.chunks_per_block,
    967 		     the_chunk % dev->param.chunks_per_block)) {
    968 
    969 			if (dev->chunk_grp_size == 1)
    970 				return the_chunk;
    971 			else {
    972 				yaffs_rd_chunk_tags_nand(dev, the_chunk, NULL,
    973 							 tags);
    974 				if (yaffs_tags_match(tags,
    975 							obj_id, inode_chunk)) {
    976 					/* found it; */
    977 					return the_chunk;
    978 				}
    979 			}
    980 		}
    981 		the_chunk++;
    982 	}
    983 	return -1;
    984 }
    985 
    986 static int yaffs_find_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
    987 				    struct yaffs_ext_tags *tags)
    988 {
    989 	/*Get the Tnode, then get the level 0 offset chunk offset */
    990 	struct yaffs_tnode *tn;
    991 	int the_chunk = -1;
    992 	struct yaffs_ext_tags local_tags;
    993 	int ret_val = -1;
    994 	struct yaffs_dev *dev = in->my_dev;
    995 
    996 	if (!tags) {
    997 		/* Passed a NULL, so use our own tags space */
    998 		tags = &local_tags;
    999 	}
   1000 
   1001 	tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
   1002 
   1003 	if (!tn)
   1004 		return ret_val;
   1005 
   1006 	the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
   1007 
   1008 	ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
   1009 					      inode_chunk);
   1010 	return ret_val;
   1011 }
   1012 
   1013 static int yaffs_find_del_file_chunk(struct yaffs_obj *in, int inode_chunk,
   1014 				     struct yaffs_ext_tags *tags)
   1015 {
   1016 	/* Get the Tnode, then get the level 0 offset chunk offset */
   1017 	struct yaffs_tnode *tn;
   1018 	int the_chunk = -1;
   1019 	struct yaffs_ext_tags local_tags;
   1020 	struct yaffs_dev *dev = in->my_dev;
   1021 	int ret_val = -1;
   1022 
   1023 	if (!tags) {
   1024 		/* Passed a NULL, so use our own tags space */
   1025 		tags = &local_tags;
   1026 	}
   1027 
   1028 	tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
   1029 
   1030 	if (!tn)
   1031 		return ret_val;
   1032 
   1033 	the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
   1034 
   1035 	ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
   1036 					      inode_chunk);
   1037 
   1038 	/* Delete the entry in the filestructure (if found) */
   1039 	if (ret_val != -1)
   1040 		yaffs_load_tnode_0(dev, tn, inode_chunk, 0);
   1041 
   1042 	return ret_val;
   1043 }
   1044 
   1045 int yaffs_put_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
   1046 			    int nand_chunk, int in_scan)
   1047 {
   1048 	/* NB in_scan is zero unless scanning.
   1049 	 * For forward scanning, in_scan is > 0;
   1050 	 * for backward scanning in_scan is < 0
   1051 	 *
   1052 	 * nand_chunk = 0 is a dummy insert to make sure the tnodes are there.
   1053 	 */
   1054 
   1055 	struct yaffs_tnode *tn;
   1056 	struct yaffs_dev *dev = in->my_dev;
   1057 	int existing_cunk;
   1058 	struct yaffs_ext_tags existing_tags;
   1059 	struct yaffs_ext_tags new_tags;
   1060 	unsigned existing_serial, new_serial;
   1061 
   1062 	if (in->variant_type != YAFFS_OBJECT_TYPE_FILE) {
   1063 		/* Just ignore an attempt at putting a chunk into a non-file
   1064 		 * during scanning.
   1065 		 * If it is not during Scanning then something went wrong!
   1066 		 */
   1067 		if (!in_scan) {
   1068 			yaffs_trace(YAFFS_TRACE_ERROR,
   1069 				"yaffs tragedy:attempt to put data chunk into a non-file"
   1070 				);
   1071 			BUG();
   1072 		}
   1073 
   1074 		yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
   1075 		return YAFFS_OK;
   1076 	}
   1077 
   1078 	tn = yaffs_add_find_tnode_0(dev,
   1079 				    &in->variant.file_variant,
   1080 				    inode_chunk, NULL);
   1081 	if (!tn)
   1082 		return YAFFS_FAIL;
   1083 
   1084 	if (!nand_chunk)
   1085 		/* Dummy insert, bail now */
   1086 		return YAFFS_OK;
   1087 
   1088 	existing_cunk = yaffs_get_group_base(dev, tn, inode_chunk);
   1089 
   1090 	if (in_scan != 0) {
   1091 		/* If we're scanning then we need to test for duplicates
   1092 		 * NB This does not need to be efficient since it should only
   1093 		 * happen when the power fails during a write, then only one
   1094 		 * chunk should ever be affected.
   1095 		 *
   1096 		 * Correction for YAFFS2: This could happen quite a lot and we
   1097 		 * need to think about efficiency! TODO
   1098 		 * Update: For backward scanning we don't need to re-read tags
   1099 		 * so this is quite cheap.
   1100 		 */
   1101 
   1102 		if (existing_cunk > 0) {
   1103 			/* NB Right now existing chunk will not be real
   1104 			 * chunk_id if the chunk group size > 1
   1105 			 * thus we have to do a FindChunkInFile to get the
   1106 			 * real chunk id.
   1107 			 *
   1108 			 * We have a duplicate now we need to decide which
   1109 			 * one to use:
   1110 			 *
   1111 			 * Backwards scanning YAFFS2: The old one is what
   1112 			 * we use, dump the new one.
   1113 			 * YAFFS1: Get both sets of tags and compare serial
   1114 			 * numbers.
   1115 			 */
   1116 
   1117 			if (in_scan > 0) {
   1118 				/* Only do this for forward scanning */
   1119 				yaffs_rd_chunk_tags_nand(dev,
   1120 							 nand_chunk,
   1121 							 NULL, &new_tags);
   1122 
   1123 				/* Do a proper find */
   1124 				existing_cunk =
   1125 				    yaffs_find_chunk_in_file(in, inode_chunk,
   1126 							     &existing_tags);
   1127 			}
   1128 
   1129 			if (existing_cunk <= 0) {
   1130 				/*Hoosterman - how did this happen? */
   1131 
   1132 				yaffs_trace(YAFFS_TRACE_ERROR,
   1133 					"yaffs tragedy: existing chunk < 0 in scan"
   1134 					);
   1135 
   1136 			}
   1137 
   1138 			/* NB The deleted flags should be false, otherwise
   1139 			 * the chunks will not be loaded during a scan
   1140 			 */
   1141 
   1142 			if (in_scan > 0) {
   1143 				new_serial = new_tags.serial_number;
   1144 				existing_serial = existing_tags.serial_number;
   1145 			}
   1146 
   1147 			if ((in_scan > 0) &&
   1148 			    (existing_cunk <= 0 ||
   1149 			     ((existing_serial + 1) & 3) == new_serial)) {
   1150 				/* Forward scanning.
   1151 				 * Use new
   1152 				 * Delete the old one and drop through to
   1153 				 * update the tnode
   1154 				 */
   1155 				yaffs_chunk_del(dev, existing_cunk, 1,
   1156 						__LINE__);
   1157 			} else {
   1158 				/* Backward scanning or we want to use the
   1159 				 * existing one
   1160 				 * Delete the new one and return early so that
   1161 				 * the tnode isn't changed
   1162 				 */
   1163 				yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
   1164 				return YAFFS_OK;
   1165 			}
   1166 		}
   1167 
   1168 	}
   1169 
   1170 	if (existing_cunk == 0)
   1171 		in->n_data_chunks++;
   1172 
   1173 	yaffs_load_tnode_0(dev, tn, inode_chunk, nand_chunk);
   1174 
   1175 	return YAFFS_OK;
   1176 }
   1177 
   1178 static void yaffs_soft_del_chunk(struct yaffs_dev *dev, int chunk)
   1179 {
   1180 	struct yaffs_block_info *the_block;
   1181 	unsigned block_no;
   1182 
   1183 	yaffs_trace(YAFFS_TRACE_DELETION, "soft delete chunk %d", chunk);
   1184 
   1185 	block_no = chunk / dev->param.chunks_per_block;
   1186 	the_block = yaffs_get_block_info(dev, block_no);
   1187 	if (the_block) {
   1188 		the_block->soft_del_pages++;
   1189 		dev->n_free_chunks++;
   1190 		yaffs2_update_oldest_dirty_seq(dev, block_no, the_block);
   1191 	}
   1192 }
   1193 
   1194 /* SoftDeleteWorker scans backwards through the tnode tree and soft deletes all
   1195  * the chunks in the file.
   1196  * All soft deleting does is increment the block's softdelete count and pulls
   1197  * the chunk out of the tnode.
   1198  * Thus, essentially this is the same as DeleteWorker except that the chunks
   1199  * are soft deleted.
   1200  */
   1201 
   1202 static int yaffs_soft_del_worker(struct yaffs_obj *in, struct yaffs_tnode *tn,
   1203 				 u32 level, int chunk_offset)
   1204 {
   1205 	int i;
   1206 	int the_chunk;
   1207 	int all_done = 1;
   1208 	struct yaffs_dev *dev = in->my_dev;
   1209 
   1210 	if (!tn)
   1211 		return 1;
   1212 
   1213 	if (level > 0) {
   1214 		for (i = YAFFS_NTNODES_INTERNAL - 1;
   1215 			all_done && i >= 0;
   1216 			i--) {
   1217 			if (tn->internal[i]) {
   1218 				all_done =
   1219 				    yaffs_soft_del_worker(in,
   1220 					tn->internal[i],
   1221 					level - 1,
   1222 					(chunk_offset <<
   1223 					YAFFS_TNODES_INTERNAL_BITS)
   1224 					+ i);
   1225 				if (all_done) {
   1226 					yaffs_free_tnode(dev,
   1227 						tn->internal[i]);
   1228 					tn->internal[i] = NULL;
   1229 				} else {
   1230 					/* Can this happen? */
   1231 				}
   1232 			}
   1233 		}
   1234 		return (all_done) ? 1 : 0;
   1235 	}
   1236 
   1237 	/* level 0 */
   1238 	 for (i = YAFFS_NTNODES_LEVEL0 - 1; i >= 0; i--) {
   1239 		the_chunk = yaffs_get_group_base(dev, tn, i);
   1240 		if (the_chunk) {
   1241 			yaffs_soft_del_chunk(dev, the_chunk);
   1242 			yaffs_load_tnode_0(dev, tn, i, 0);
   1243 		}
   1244 	}
   1245 	return 1;
   1246 }
   1247 
   1248 static void yaffs_remove_obj_from_dir(struct yaffs_obj *obj)
   1249 {
   1250 	struct yaffs_dev *dev = obj->my_dev;
   1251 	struct yaffs_obj *parent;
   1252 
   1253 	yaffs_verify_obj_in_dir(obj);
   1254 	parent = obj->parent;
   1255 
   1256 	yaffs_verify_dir(parent);
   1257 
   1258 	if (dev && dev->param.remove_obj_fn)
   1259 		dev->param.remove_obj_fn(obj);
   1260 
   1261 	list_del_init(&obj->siblings);
   1262 	obj->parent = NULL;
   1263 
   1264 	yaffs_verify_dir(parent);
   1265 }
   1266 
   1267 void yaffs_add_obj_to_dir(struct yaffs_obj *directory, struct yaffs_obj *obj)
   1268 {
   1269 	if (!directory) {
   1270 		yaffs_trace(YAFFS_TRACE_ALWAYS,
   1271 			"tragedy: Trying to add an object to a null pointer directory"
   1272 			);
   1273 		BUG();
   1274 		return;
   1275 	}
   1276 	if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
   1277 		yaffs_trace(YAFFS_TRACE_ALWAYS,
   1278 			"tragedy: Trying to add an object to a non-directory"
   1279 			);
   1280 		BUG();
   1281 	}
   1282 
   1283 	if (obj->siblings.prev == NULL) {
   1284 		/* Not initialised */
   1285 		BUG();
   1286 	}
   1287 
   1288 	yaffs_verify_dir(directory);
   1289 
   1290 	yaffs_remove_obj_from_dir(obj);
   1291 
   1292 	/* Now add it */
   1293 	list_add(&obj->siblings, &directory->variant.dir_variant.children);
   1294 	obj->parent = directory;
   1295 
   1296 	if (directory == obj->my_dev->unlinked_dir
   1297 	    || directory == obj->my_dev->del_dir) {
   1298 		obj->unlinked = 1;
   1299 		obj->my_dev->n_unlinked_files++;
   1300 		obj->rename_allowed = 0;
   1301 	}
   1302 
   1303 	yaffs_verify_dir(directory);
   1304 	yaffs_verify_obj_in_dir(obj);
   1305 }
   1306 
   1307 static int yaffs_change_obj_name(struct yaffs_obj *obj,
   1308 				 struct yaffs_obj *new_dir,
   1309 				 const YCHAR *new_name, int force, int shadows)
   1310 {
   1311 	int unlink_op;
   1312 	int del_op;
   1313 	struct yaffs_obj *existing_target;
   1314 
   1315 	if (new_dir == NULL)
   1316 		new_dir = obj->parent;	/* use the old directory */
   1317 
   1318 	if (new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
   1319 		yaffs_trace(YAFFS_TRACE_ALWAYS,
   1320 			"tragedy: yaffs_change_obj_name: new_dir is not a directory"
   1321 			);
   1322 		BUG();
   1323 	}
   1324 
   1325 	unlink_op = (new_dir == obj->my_dev->unlinked_dir);
   1326 	del_op = (new_dir == obj->my_dev->del_dir);
   1327 
   1328 	existing_target = yaffs_find_by_name(new_dir, new_name);
   1329 
   1330 	/* If the object is a file going into the unlinked directory,
   1331 	 *   then it is OK to just stuff it in since duplicate names are OK.
   1332 	 *   else only proceed if the new name does not exist and we're putting
   1333 	 *   it into a directory.
   1334 	 */
   1335 	if (!(unlink_op || del_op || force ||
   1336 	      shadows > 0 || !existing_target) ||
   1337 	      new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
   1338 		return YAFFS_FAIL;
   1339 
   1340 	yaffs_set_obj_name(obj, new_name);
   1341 	obj->dirty = 1;
   1342 	yaffs_add_obj_to_dir(new_dir, obj);
   1343 
   1344 	if (unlink_op)
   1345 		obj->unlinked = 1;
   1346 
   1347 	/* If it is a deletion then we mark it as a shrink for gc  */
   1348 	if (yaffs_update_oh(obj, new_name, 0, del_op, shadows, NULL) >= 0)
   1349 		return YAFFS_OK;
   1350 
   1351 	return YAFFS_FAIL;
   1352 }
   1353 
   1354 /*------------------------ Short Operations Cache ------------------------------
   1355  *   In many situations where there is no high level buffering  a lot of
   1356  *   reads might be short sequential reads, and a lot of writes may be short
   1357  *   sequential writes. eg. scanning/writing a jpeg file.
   1358  *   In these cases, a short read/write cache can provide a huge perfomance
   1359  *   benefit with dumb-as-a-rock code.
   1360  *   In Linux, the page cache provides read buffering and the short op cache
   1361  *   provides write buffering.
   1362  *
   1363  *   There are a small number (~10) of cache chunks per device so that we don't
   1364  *   need a very intelligent search.
   1365  */
   1366 
   1367 static int yaffs_obj_cache_dirty(struct yaffs_obj *obj)
   1368 {
   1369 	struct yaffs_dev *dev = obj->my_dev;
   1370 	int i;
   1371 	struct yaffs_cache *cache;
   1372 	int n_caches = obj->my_dev->param.n_caches;
   1373 
   1374 	for (i = 0; i < n_caches; i++) {
   1375 		cache = &dev->cache[i];
   1376 		if (cache->object == obj && cache->dirty)
   1377 			return 1;
   1378 	}
   1379 
   1380 	return 0;
   1381 }
   1382 
   1383 static void yaffs_flush_file_cache(struct yaffs_obj *obj)
   1384 {
   1385 	struct yaffs_dev *dev = obj->my_dev;
   1386 	int lowest = -99;	/* Stop compiler whining. */
   1387 	int i;
   1388 	struct yaffs_cache *cache;
   1389 	int chunk_written = 0;
   1390 	int n_caches = obj->my_dev->param.n_caches;
   1391 
   1392 	if (n_caches < 1)
   1393 		return;
   1394 	do {
   1395 		cache = NULL;
   1396 
   1397 		/* Find the lowest dirty chunk for this object */
   1398 		for (i = 0; i < n_caches; i++) {
   1399 			if (dev->cache[i].object == obj &&
   1400 			    dev->cache[i].dirty) {
   1401 				if (!cache ||
   1402 				    dev->cache[i].chunk_id < lowest) {
   1403 					cache = &dev->cache[i];
   1404 					lowest = cache->chunk_id;
   1405 				}
   1406 			}
   1407 		}
   1408 
   1409 		if (cache && !cache->locked) {
   1410 			/* Write it out and free it up */
   1411 			chunk_written =
   1412 			    yaffs_wr_data_obj(cache->object,
   1413 					      cache->chunk_id,
   1414 					      cache->data,
   1415 					      cache->n_bytes, 1);
   1416 			cache->dirty = 0;
   1417 			cache->object = NULL;
   1418 		}
   1419 	} while (cache && chunk_written > 0);
   1420 
   1421 	if (cache)
   1422 		/* Hoosterman, disk full while writing cache out. */
   1423 		yaffs_trace(YAFFS_TRACE_ERROR,
   1424 			"yaffs tragedy: no space during cache write");
   1425 }
   1426 
   1427 /*yaffs_flush_whole_cache(dev)
   1428  *
   1429  *
   1430  */
   1431 
   1432 void yaffs_flush_whole_cache(struct yaffs_dev *dev)
   1433 {
   1434 	struct yaffs_obj *obj;
   1435 	int n_caches = dev->param.n_caches;
   1436 	int i;
   1437 
   1438 	/* Find a dirty object in the cache and flush it...
   1439 	 * until there are no further dirty objects.
   1440 	 */
   1441 	do {
   1442 		obj = NULL;
   1443 		for (i = 0; i < n_caches && !obj; i++) {
   1444 			if (dev->cache[i].object && dev->cache[i].dirty)
   1445 				obj = dev->cache[i].object;
   1446 		}
   1447 		if (obj)
   1448 			yaffs_flush_file_cache(obj);
   1449 	} while (obj);
   1450 
   1451 }
   1452 
   1453 /* Grab us a cache chunk for use.
   1454  * First look for an empty one.
   1455  * Then look for the least recently used non-dirty one.
   1456  * Then look for the least recently used dirty one...., flush and look again.
   1457  */
   1458 static struct yaffs_cache *yaffs_grab_chunk_worker(struct yaffs_dev *dev)
   1459 {
   1460 	int i;
   1461 
   1462 	if (dev->param.n_caches > 0) {
   1463 		for (i = 0; i < dev->param.n_caches; i++) {
   1464 			if (!dev->cache[i].object)
   1465 				return &dev->cache[i];
   1466 		}
   1467 	}
   1468 	return NULL;
   1469 }
   1470 
   1471 static struct yaffs_cache *yaffs_grab_chunk_cache(struct yaffs_dev *dev)
   1472 {
   1473 	struct yaffs_cache *cache;
   1474 	struct yaffs_obj *the_obj;
   1475 	int usage;
   1476 	int i;
   1477 
   1478 	if (dev->param.n_caches < 1)
   1479 		return NULL;
   1480 
   1481 	/* Try find a non-dirty one... */
   1482 
   1483 	cache = yaffs_grab_chunk_worker(dev);
   1484 
   1485 	if (!cache) {
   1486 		/* They were all dirty, find the LRU object and flush
   1487 		 * its cache, then  find again.
   1488 		 * NB what's here is not very accurate,
   1489 		 * we actually flush the object with the LRU chunk.
   1490 		 */
   1491 
   1492 		/* With locking we can't assume we can use entry zero,
   1493 		 * Set the_obj to a valid pointer for Coverity. */
   1494 		the_obj = dev->cache[0].object;
   1495 		usage = -1;
   1496 		cache = NULL;
   1497 
   1498 		for (i = 0; i < dev->param.n_caches; i++) {
   1499 			if (dev->cache[i].object &&
   1500 			    !dev->cache[i].locked &&
   1501 			    (dev->cache[i].last_use < usage ||
   1502 			    !cache)) {
   1503 				usage = dev->cache[i].last_use;
   1504 				the_obj = dev->cache[i].object;
   1505 				cache = &dev->cache[i];
   1506 			}
   1507 		}
   1508 
   1509 		if (!cache || cache->dirty) {
   1510 			/* Flush and try again */
   1511 			yaffs_flush_file_cache(the_obj);
   1512 			cache = yaffs_grab_chunk_worker(dev);
   1513 		}
   1514 	}
   1515 	return cache;
   1516 }
   1517 
   1518 /* Find a cached chunk */
   1519 static struct yaffs_cache *yaffs_find_chunk_cache(const struct yaffs_obj *obj,
   1520 						  int chunk_id)
   1521 {
   1522 	struct yaffs_dev *dev = obj->my_dev;
   1523 	int i;
   1524 
   1525 	if (dev->param.n_caches < 1)
   1526 		return NULL;
   1527 
   1528 	for (i = 0; i < dev->param.n_caches; i++) {
   1529 		if (dev->cache[i].object == obj &&
   1530 		    dev->cache[i].chunk_id == chunk_id) {
   1531 			dev->cache_hits++;
   1532 
   1533 			return &dev->cache[i];
   1534 		}
   1535 	}
   1536 	return NULL;
   1537 }
   1538 
   1539 /* Mark the chunk for the least recently used algorithym */
   1540 static void yaffs_use_cache(struct yaffs_dev *dev, struct yaffs_cache *cache,
   1541 			    int is_write)
   1542 {
   1543 	int i;
   1544 
   1545 	if (dev->param.n_caches < 1)
   1546 		return;
   1547 
   1548 	if (dev->cache_last_use < 0 ||
   1549 		dev->cache_last_use > 100000000) {
   1550 		/* Reset the cache usages */
   1551 		for (i = 1; i < dev->param.n_caches; i++)
   1552 			dev->cache[i].last_use = 0;
   1553 
   1554 		dev->cache_last_use = 0;
   1555 	}
   1556 	dev->cache_last_use++;
   1557 	cache->last_use = dev->cache_last_use;
   1558 
   1559 	if (is_write)
   1560 		cache->dirty = 1;
   1561 }
   1562 
   1563 /* Invalidate a single cache page.
   1564  * Do this when a whole page gets written,
   1565  * ie the short cache for this page is no longer valid.
   1566  */
   1567 static void yaffs_invalidate_chunk_cache(struct yaffs_obj *object, int chunk_id)
   1568 {
   1569 	struct yaffs_cache *cache;
   1570 
   1571 	if (object->my_dev->param.n_caches > 0) {
   1572 		cache = yaffs_find_chunk_cache(object, chunk_id);
   1573 
   1574 		if (cache)
   1575 			cache->object = NULL;
   1576 	}
   1577 }
   1578 
   1579 /* Invalidate all the cache pages associated with this object
   1580  * Do this whenever ther file is deleted or resized.
   1581  */
   1582 static void yaffs_invalidate_whole_cache(struct yaffs_obj *in)
   1583 {
   1584 	int i;
   1585 	struct yaffs_dev *dev = in->my_dev;
   1586 
   1587 	if (dev->param.n_caches > 0) {
   1588 		/* Invalidate it. */
   1589 		for (i = 0; i < dev->param.n_caches; i++) {
   1590 			if (dev->cache[i].object == in)
   1591 				dev->cache[i].object = NULL;
   1592 		}
   1593 	}
   1594 }
   1595 
   1596 static void yaffs_unhash_obj(struct yaffs_obj *obj)
   1597 {
   1598 	int bucket;
   1599 	struct yaffs_dev *dev = obj->my_dev;
   1600 
   1601 	/* If it is still linked into the bucket list, free from the list */
   1602 	if (!list_empty(&obj->hash_link)) {
   1603 		list_del_init(&obj->hash_link);
   1604 		bucket = yaffs_hash_fn(obj->obj_id);
   1605 		dev->obj_bucket[bucket].count--;
   1606 	}
   1607 }
   1608 
   1609 /*  FreeObject frees up a Object and puts it back on the free list */
   1610 static void yaffs_free_obj(struct yaffs_obj *obj)
   1611 {
   1612 	struct yaffs_dev *dev;
   1613 
   1614 	if (!obj) {
   1615 		BUG();
   1616 		return;
   1617 	}
   1618 	dev = obj->my_dev;
   1619 	yaffs_trace(YAFFS_TRACE_OS, "FreeObject %p inode %p",
   1620 		obj, obj->my_inode);
   1621 	if (obj->parent)
   1622 		BUG();
   1623 	if (!list_empty(&obj->siblings))
   1624 		BUG();
   1625 
   1626 	if (obj->my_inode) {
   1627 		/* We're still hooked up to a cached inode.
   1628 		 * Don't delete now, but mark for later deletion
   1629 		 */
   1630 		obj->defered_free = 1;
   1631 		return;
   1632 	}
   1633 
   1634 	yaffs_unhash_obj(obj);
   1635 
   1636 	yaffs_free_raw_obj(dev, obj);
   1637 	dev->n_obj--;
   1638 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
   1639 }
   1640 
   1641 void yaffs_handle_defered_free(struct yaffs_obj *obj)
   1642 {
   1643 	if (obj->defered_free)
   1644 		yaffs_free_obj(obj);
   1645 }
   1646 
   1647 static int yaffs_generic_obj_del(struct yaffs_obj *in)
   1648 {
   1649 	/* Iinvalidate the file's data in the cache, without flushing. */
   1650 	yaffs_invalidate_whole_cache(in);
   1651 
   1652 	if (in->my_dev->param.is_yaffs2 && in->parent != in->my_dev->del_dir) {
   1653 		/* Move to unlinked directory so we have a deletion record */
   1654 		yaffs_change_obj_name(in, in->my_dev->del_dir, _Y("deleted"), 0,
   1655 				      0);
   1656 	}
   1657 
   1658 	yaffs_remove_obj_from_dir(in);
   1659 	yaffs_chunk_del(in->my_dev, in->hdr_chunk, 1, __LINE__);
   1660 	in->hdr_chunk = 0;
   1661 
   1662 	yaffs_free_obj(in);
   1663 	return YAFFS_OK;
   1664 
   1665 }
   1666 
   1667 static void yaffs_soft_del_file(struct yaffs_obj *obj)
   1668 {
   1669 	if (!obj->deleted ||
   1670 	    obj->variant_type != YAFFS_OBJECT_TYPE_FILE ||
   1671 	    obj->soft_del)
   1672 		return;
   1673 
   1674 	if (obj->n_data_chunks <= 0) {
   1675 		/* Empty file with no duplicate object headers,
   1676 		 * just delete it immediately */
   1677 		yaffs_free_tnode(obj->my_dev, obj->variant.file_variant.top);
   1678 		obj->variant.file_variant.top = NULL;
   1679 		yaffs_trace(YAFFS_TRACE_TRACING,
   1680 			"yaffs: Deleting empty file %d",
   1681 			obj->obj_id);
   1682 		yaffs_generic_obj_del(obj);
   1683 	} else {
   1684 		yaffs_soft_del_worker(obj,
   1685 				      obj->variant.file_variant.top,
   1686 				      obj->variant.
   1687 				      file_variant.top_level, 0);
   1688 		obj->soft_del = 1;
   1689 	}
   1690 }
   1691 
   1692 /* Pruning removes any part of the file structure tree that is beyond the
   1693  * bounds of the file (ie that does not point to chunks).
   1694  *
   1695  * A file should only get pruned when its size is reduced.
   1696  *
   1697  * Before pruning, the chunks must be pulled from the tree and the
   1698  * level 0 tnode entries must be zeroed out.
   1699  * Could also use this for file deletion, but that's probably better handled
   1700  * by a special case.
   1701  *
   1702  * This function is recursive. For levels > 0 the function is called again on
   1703  * any sub-tree. For level == 0 we just check if the sub-tree has data.
   1704  * If there is no data in a subtree then it is pruned.
   1705  */
   1706 
   1707 static struct yaffs_tnode *yaffs_prune_worker(struct yaffs_dev *dev,
   1708 					      struct yaffs_tnode *tn, u32 level,
   1709 					      int del0)
   1710 {
   1711 	int i;
   1712 	int has_data;
   1713 
   1714 	if (!tn)
   1715 		return tn;
   1716 
   1717 	has_data = 0;
   1718 
   1719 	if (level > 0) {
   1720 		for (i = 0; i < YAFFS_NTNODES_INTERNAL; i++) {
   1721 			if (tn->internal[i]) {
   1722 				tn->internal[i] =
   1723 				    yaffs_prune_worker(dev,
   1724 						tn->internal[i],
   1725 						level - 1,
   1726 						(i == 0) ? del0 : 1);
   1727 			}
   1728 
   1729 			if (tn->internal[i])
   1730 				has_data++;
   1731 		}
   1732 	} else {
   1733 		int tnode_size_u32 = dev->tnode_size / sizeof(u32);
   1734 		u32 *map = (u32 *) tn;
   1735 
   1736 		for (i = 0; !has_data && i < tnode_size_u32; i++) {
   1737 			if (map[i])
   1738 				has_data++;
   1739 		}
   1740 	}
   1741 
   1742 	if (has_data == 0 && del0) {
   1743 		/* Free and return NULL */
   1744 		yaffs_free_tnode(dev, tn);
   1745 		tn = NULL;
   1746 	}
   1747 	return tn;
   1748 }
   1749 
   1750 static int yaffs_prune_tree(struct yaffs_dev *dev,
   1751 			    struct yaffs_file_var *file_struct)
   1752 {
   1753 	int i;
   1754 	int has_data;
   1755 	int done = 0;
   1756 	struct yaffs_tnode *tn;
   1757 
   1758 	if (file_struct->top_level < 1)
   1759 		return YAFFS_OK;
   1760 
   1761 	file_struct->top =
   1762 	   yaffs_prune_worker(dev, file_struct->top, file_struct->top_level, 0);
   1763 
   1764 	/* Now we have a tree with all the non-zero branches NULL but
   1765 	 * the height is the same as it was.
   1766 	 * Let's see if we can trim internal tnodes to shorten the tree.
   1767 	 * We can do this if only the 0th element in the tnode is in use
   1768 	 * (ie all the non-zero are NULL)
   1769 	 */
   1770 
   1771 	while (file_struct->top_level && !done) {
   1772 		tn = file_struct->top;
   1773 
   1774 		has_data = 0;
   1775 		for (i = 1; i < YAFFS_NTNODES_INTERNAL; i++) {
   1776 			if (tn->internal[i])
   1777 				has_data++;
   1778 		}
   1779 
   1780 		if (!has_data) {
   1781 			file_struct->top = tn->internal[0];
   1782 			file_struct->top_level--;
   1783 			yaffs_free_tnode(dev, tn);
   1784 		} else {
   1785 			done = 1;
   1786 		}
   1787 	}
   1788 
   1789 	return YAFFS_OK;
   1790 }
   1791 
   1792 /*-------------------- End of File Structure functions.-------------------*/
   1793 
   1794 /* alloc_empty_obj gets us a clean Object.*/
   1795 static struct yaffs_obj *yaffs_alloc_empty_obj(struct yaffs_dev *dev)
   1796 {
   1797 	struct yaffs_obj *obj = yaffs_alloc_raw_obj(dev);
   1798 
   1799 	if (!obj)
   1800 		return obj;
   1801 
   1802 	dev->n_obj++;
   1803 
   1804 	/* Now sweeten it up... */
   1805 
   1806 	memset(obj, 0, sizeof(struct yaffs_obj));
   1807 	obj->being_created = 1;
   1808 
   1809 	obj->my_dev = dev;
   1810 	obj->hdr_chunk = 0;
   1811 	obj->variant_type = YAFFS_OBJECT_TYPE_UNKNOWN;
   1812 	INIT_LIST_HEAD(&(obj->hard_links));
   1813 	INIT_LIST_HEAD(&(obj->hash_link));
   1814 	INIT_LIST_HEAD(&obj->siblings);
   1815 
   1816 	/* Now make the directory sane */
   1817 	if (dev->root_dir) {
   1818 		obj->parent = dev->root_dir;
   1819 		list_add(&(obj->siblings),
   1820 			 &dev->root_dir->variant.dir_variant.children);
   1821 	}
   1822 
   1823 	/* Add it to the lost and found directory.
   1824 	 * NB Can't put root or lost-n-found in lost-n-found so
   1825 	 * check if lost-n-found exists first
   1826 	 */
   1827 	if (dev->lost_n_found)
   1828 		yaffs_add_obj_to_dir(dev->lost_n_found, obj);
   1829 
   1830 	obj->being_created = 0;
   1831 
   1832 	dev->checkpoint_blocks_required = 0;	/* force recalculation */
   1833 
   1834 	return obj;
   1835 }
   1836 
   1837 static int yaffs_find_nice_bucket(struct yaffs_dev *dev)
   1838 {
   1839 	int i;
   1840 	int l = 999;
   1841 	int lowest = 999999;
   1842 
   1843 	/* Search for the shortest list or one that
   1844 	 * isn't too long.
   1845 	 */
   1846 
   1847 	for (i = 0; i < 10 && lowest > 4; i++) {
   1848 		dev->bucket_finder++;
   1849 		dev->bucket_finder %= YAFFS_NOBJECT_BUCKETS;
   1850 		if (dev->obj_bucket[dev->bucket_finder].count < lowest) {
   1851 			lowest = dev->obj_bucket[dev->bucket_finder].count;
   1852 			l = dev->bucket_finder;
   1853 		}
   1854 	}
   1855 
   1856 	return l;
   1857 }
   1858 
   1859 static int yaffs_new_obj_id(struct yaffs_dev *dev)
   1860 {
   1861 	int bucket = yaffs_find_nice_bucket(dev);
   1862 	int found = 0;
   1863 	struct list_head *i;
   1864 	u32 n = (u32) bucket;
   1865 
   1866 	/* Now find an object value that has not already been taken
   1867 	 * by scanning the list.
   1868 	 */
   1869 
   1870 	while (!found) {
   1871 		found = 1;
   1872 		n += YAFFS_NOBJECT_BUCKETS;
   1873 		list_for_each(i, &dev->obj_bucket[bucket].list) {
   1874 			/* If there is already one in the list */
   1875 			if (list_entry(i, struct yaffs_obj,
   1876 				       hash_link)->obj_id == n) {
   1877 				found = 0;
   1878 				break;
   1879 			}
   1880 		}
   1881 	}
   1882 	return n;
   1883 }
   1884 
   1885 static void yaffs_hash_obj(struct yaffs_obj *in)
   1886 {
   1887 	int bucket = yaffs_hash_fn(in->obj_id);
   1888 	struct yaffs_dev *dev = in->my_dev;
   1889 
   1890 	list_add(&in->hash_link, &dev->obj_bucket[bucket].list);
   1891 	dev->obj_bucket[bucket].count++;
   1892 }
   1893 
   1894 struct yaffs_obj *yaffs_find_by_number(struct yaffs_dev *dev, u32 number)
   1895 {
   1896 	int bucket = yaffs_hash_fn(number);
   1897 	struct list_head *i;
   1898 	struct yaffs_obj *in;
   1899 
   1900 	list_for_each(i, &dev->obj_bucket[bucket].list) {
   1901 		/* Look if it is in the list */
   1902 		in = list_entry(i, struct yaffs_obj, hash_link);
   1903 		if (in->obj_id == number) {
   1904 			/* Don't show if it is defered free */
   1905 			if (in->defered_free)
   1906 				return NULL;
   1907 			return in;
   1908 		}
   1909 	}
   1910 
   1911 	return NULL;
   1912 }
   1913 
   1914 struct yaffs_obj *yaffs_new_obj(struct yaffs_dev *dev, int number,
   1915 				enum yaffs_obj_type type)
   1916 {
   1917 	struct yaffs_obj *the_obj = NULL;
   1918 	struct yaffs_tnode *tn = NULL;
   1919 
   1920 	if (number < 0)
   1921 		number = yaffs_new_obj_id(dev);
   1922 
   1923 	if (type == YAFFS_OBJECT_TYPE_FILE) {
   1924 		tn = yaffs_get_tnode(dev);
   1925 		if (!tn)
   1926 			return NULL;
   1927 	}
   1928 
   1929 	the_obj = yaffs_alloc_empty_obj(dev);
   1930 	if (!the_obj) {
   1931 		if (tn)
   1932 			yaffs_free_tnode(dev, tn);
   1933 		return NULL;
   1934 	}
   1935 
   1936 	the_obj->fake = 0;
   1937 	the_obj->rename_allowed = 1;
   1938 	the_obj->unlink_allowed = 1;
   1939 	the_obj->obj_id = number;
   1940 	yaffs_hash_obj(the_obj);
   1941 	the_obj->variant_type = type;
   1942 	yaffs_load_current_time(the_obj, 1, 1);
   1943 
   1944 	switch (type) {
   1945 	case YAFFS_OBJECT_TYPE_FILE:
   1946 		the_obj->variant.file_variant.file_size = 0;
   1947 		the_obj->variant.file_variant.scanned_size = 0;
   1948 		the_obj->variant.file_variant.shrink_size =
   1949 						yaffs_max_file_size(dev);
   1950 		the_obj->variant.file_variant.top_level = 0;
   1951 		the_obj->variant.file_variant.top = tn;
   1952 		break;
   1953 	case YAFFS_OBJECT_TYPE_DIRECTORY:
   1954 		INIT_LIST_HEAD(&the_obj->variant.dir_variant.children);
   1955 		INIT_LIST_HEAD(&the_obj->variant.dir_variant.dirty);
   1956 		break;
   1957 	case YAFFS_OBJECT_TYPE_SYMLINK:
   1958 	case YAFFS_OBJECT_TYPE_HARDLINK:
   1959 	case YAFFS_OBJECT_TYPE_SPECIAL:
   1960 		/* No action required */
   1961 		break;
   1962 	case YAFFS_OBJECT_TYPE_UNKNOWN:
   1963 		/* todo this should not happen */
   1964 		break;
   1965 	}
   1966 	return the_obj;
   1967 }
   1968 
   1969 static struct yaffs_obj *yaffs_create_fake_dir(struct yaffs_dev *dev,
   1970 					       int number, u32 mode)
   1971 {
   1972 
   1973 	struct yaffs_obj *obj =
   1974 	    yaffs_new_obj(dev, number, YAFFS_OBJECT_TYPE_DIRECTORY);
   1975 
   1976 	if (!obj)
   1977 		return NULL;
   1978 
   1979 	obj->fake = 1;	/* it is fake so it might not use NAND */
   1980 	obj->rename_allowed = 0;
   1981 	obj->unlink_allowed = 0;
   1982 	obj->deleted = 0;
   1983 	obj->unlinked = 0;
   1984 	obj->yst_mode = mode;
   1985 	obj->my_dev = dev;
   1986 	obj->hdr_chunk = 0;	/* Not a valid chunk. */
   1987 	return obj;
   1988 
   1989 }
   1990 
   1991 
   1992 static void yaffs_init_tnodes_and_objs(struct yaffs_dev *dev)
   1993 {
   1994 	int i;
   1995 
   1996 	dev->n_obj = 0;
   1997 	dev->n_tnodes = 0;
   1998 	yaffs_init_raw_tnodes_and_objs(dev);
   1999 
   2000 	for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
   2001 		INIT_LIST_HEAD(&dev->obj_bucket[i].list);
   2002 		dev->obj_bucket[i].count = 0;
   2003 	}
   2004 }
   2005 
   2006 struct yaffs_obj *yaffs_find_or_create_by_number(struct yaffs_dev *dev,
   2007 						 int number,
   2008 						 enum yaffs_obj_type type)
   2009 {
   2010 	struct yaffs_obj *the_obj = NULL;
   2011 
   2012 	if (number > 0)
   2013 		the_obj = yaffs_find_by_number(dev, number);
   2014 
   2015 	if (!the_obj)
   2016 		the_obj = yaffs_new_obj(dev, number, type);
   2017 
   2018 	return the_obj;
   2019 
   2020 }
   2021 
   2022 YCHAR *yaffs_clone_str(const YCHAR *str)
   2023 {
   2024 	YCHAR *new_str = NULL;
   2025 	int len;
   2026 
   2027 	if (!str)
   2028 		str = _Y("");
   2029 
   2030 	len = yaffs_strnlen(str, YAFFS_MAX_ALIAS_LENGTH);
   2031 	new_str = kmalloc((len + 1) * sizeof(YCHAR), GFP_NOFS);
   2032 	if (new_str) {
   2033 		yaffs_strncpy(new_str, str, len);
   2034 		new_str[len] = 0;
   2035 	}
   2036 	return new_str;
   2037 
   2038 }
   2039 /*
   2040  *yaffs_update_parent() handles fixing a directories mtime and ctime when a new
   2041  * link (ie. name) is created or deleted in the directory.
   2042  *
   2043  * ie.
   2044  *   create dir/a : update dir's mtime/ctime
   2045  *   rm dir/a:   update dir's mtime/ctime
   2046  *   modify dir/a: don't update dir's mtimme/ctime
   2047  *
   2048  * This can be handled immediately or defered. Defering helps reduce the number
   2049  * of updates when many files in a directory are changed within a brief period.
   2050  *
   2051  * If the directory updating is defered then yaffs_update_dirty_dirs must be
   2052  * called periodically.
   2053  */
   2054 
   2055 static void yaffs_update_parent(struct yaffs_obj *obj)
   2056 {
   2057 	struct yaffs_dev *dev;
   2058 
   2059 	if (!obj)
   2060 		return;
   2061 	dev = obj->my_dev;
   2062 	obj->dirty = 1;
   2063 	yaffs_load_current_time(obj, 0, 1);
   2064 	if (dev->param.defered_dir_update) {
   2065 		struct list_head *link = &obj->variant.dir_variant.dirty;
   2066 
   2067 		if (list_empty(link)) {
   2068 			list_add(link, &dev->dirty_dirs);
   2069 			yaffs_trace(YAFFS_TRACE_BACKGROUND,
   2070 			  "Added object %d to dirty directories",
   2071 			   obj->obj_id);
   2072 		}
   2073 
   2074 	} else {
   2075 		yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
   2076 	}
   2077 }
   2078 
   2079 void yaffs_update_dirty_dirs(struct yaffs_dev *dev)
   2080 {
   2081 	struct list_head *link;
   2082 	struct yaffs_obj *obj;
   2083 	struct yaffs_dir_var *d_s;
   2084 	union yaffs_obj_var *o_v;
   2085 
   2086 	yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update dirty directories");
   2087 
   2088 	while (!list_empty(&dev->dirty_dirs)) {
   2089 		link = dev->dirty_dirs.next;
   2090 		list_del_init(link);
   2091 
   2092 		d_s = list_entry(link, struct yaffs_dir_var, dirty);
   2093 		o_v = list_entry(d_s, union yaffs_obj_var, dir_variant);
   2094 		obj = list_entry(o_v, struct yaffs_obj, variant);
   2095 
   2096 		yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update directory %d",
   2097 			obj->obj_id);
   2098 
   2099 		if (obj->dirty)
   2100 			yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
   2101 	}
   2102 }
   2103 
   2104 /*
   2105  * Mknod (create) a new object.
   2106  * equiv_obj only has meaning for a hard link;
   2107  * alias_str only has meaning for a symlink.
   2108  * rdev only has meaning for devices (a subset of special objects)
   2109  */
   2110 
   2111 static struct yaffs_obj *yaffs_create_obj(enum yaffs_obj_type type,
   2112 					  struct yaffs_obj *parent,
   2113 					  const YCHAR *name,
   2114 					  u32 mode,
   2115 					  u32 uid,
   2116 					  u32 gid,
   2117 					  struct yaffs_obj *equiv_obj,
   2118 					  const YCHAR *alias_str, u32 rdev)
   2119 {
   2120 	struct yaffs_obj *in;
   2121 	YCHAR *str = NULL;
   2122 	struct yaffs_dev *dev = parent->my_dev;
   2123 
   2124 	/* Check if the entry exists.
   2125 	 * If it does then fail the call since we don't want a dup. */
   2126 	if (yaffs_find_by_name(parent, name))
   2127 		return NULL;
   2128 
   2129 	if (type == YAFFS_OBJECT_TYPE_SYMLINK) {
   2130 		str = yaffs_clone_str(alias_str);
   2131 		if (!str)
   2132 			return NULL;
   2133 	}
   2134 
   2135 	in = yaffs_new_obj(dev, -1, type);
   2136 
   2137 	if (!in) {
   2138 		kfree(str);
   2139 		return NULL;
   2140 	}
   2141 
   2142 	in->hdr_chunk = 0;
   2143 	in->valid = 1;
   2144 	in->variant_type = type;
   2145 
   2146 	in->yst_mode = mode;
   2147 
   2148 	yaffs_attribs_init(in, gid, uid, rdev);
   2149 
   2150 	in->n_data_chunks = 0;
   2151 
   2152 	yaffs_set_obj_name(in, name);
   2153 	in->dirty = 1;
   2154 
   2155 	yaffs_add_obj_to_dir(parent, in);
   2156 
   2157 	in->my_dev = parent->my_dev;
   2158 
   2159 	switch (type) {
   2160 	case YAFFS_OBJECT_TYPE_SYMLINK:
   2161 		in->variant.symlink_variant.alias = str;
   2162 		break;
   2163 	case YAFFS_OBJECT_TYPE_HARDLINK:
   2164 		in->variant.hardlink_variant.equiv_obj = equiv_obj;
   2165 		in->variant.hardlink_variant.equiv_id = equiv_obj->obj_id;
   2166 		list_add(&in->hard_links, &equiv_obj->hard_links);
   2167 		break;
   2168 	case YAFFS_OBJECT_TYPE_FILE:
   2169 	case YAFFS_OBJECT_TYPE_DIRECTORY:
   2170 	case YAFFS_OBJECT_TYPE_SPECIAL:
   2171 	case YAFFS_OBJECT_TYPE_UNKNOWN:
   2172 		/* do nothing */
   2173 		break;
   2174 	}
   2175 
   2176 	if (yaffs_update_oh(in, name, 0, 0, 0, NULL) < 0) {
   2177 		/* Could not create the object header, fail */
   2178 		yaffs_del_obj(in);
   2179 		in = NULL;
   2180 	}
   2181 
   2182 	if (in)
   2183 		yaffs_update_parent(parent);
   2184 
   2185 	return in;
   2186 }
   2187 
   2188 struct yaffs_obj *yaffs_create_file(struct yaffs_obj *parent,
   2189 				    const YCHAR *name, u32 mode, u32 uid,
   2190 				    u32 gid)
   2191 {
   2192 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_FILE, parent, name, mode,
   2193 				uid, gid, NULL, NULL, 0);
   2194 }
   2195 
   2196 struct yaffs_obj *yaffs_create_dir(struct yaffs_obj *parent, const YCHAR *name,
   2197 				   u32 mode, u32 uid, u32 gid)
   2198 {
   2199 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_DIRECTORY, parent, name,
   2200 				mode, uid, gid, NULL, NULL, 0);
   2201 }
   2202 
   2203 struct yaffs_obj *yaffs_create_special(struct yaffs_obj *parent,
   2204 				       const YCHAR *name, u32 mode, u32 uid,
   2205 				       u32 gid, u32 rdev)
   2206 {
   2207 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_SPECIAL, parent, name, mode,
   2208 				uid, gid, NULL, NULL, rdev);
   2209 }
   2210 
   2211 struct yaffs_obj *yaffs_create_symlink(struct yaffs_obj *parent,
   2212 				       const YCHAR *name, u32 mode, u32 uid,
   2213 				       u32 gid, const YCHAR *alias)
   2214 {
   2215 	return yaffs_create_obj(YAFFS_OBJECT_TYPE_SYMLINK, parent, name, mode,
   2216 				uid, gid, NULL, alias, 0);
   2217 }
   2218 
   2219 /* yaffs_link_obj returns the object id of the equivalent object.*/
   2220 struct yaffs_obj *yaffs_link_obj(struct yaffs_obj *parent, const YCHAR * name,
   2221 				 struct yaffs_obj *equiv_obj)
   2222 {
   2223 	/* Get the real object in case we were fed a hard link obj */
   2224 	equiv_obj = yaffs_get_equivalent_obj(equiv_obj);
   2225 
   2226 	if (yaffs_create_obj(YAFFS_OBJECT_TYPE_HARDLINK,
   2227 			parent, name, 0, 0, 0,
   2228 			equiv_obj, NULL, 0))
   2229 		return equiv_obj;
   2230 
   2231 	return NULL;
   2232 
   2233 }
   2234 
   2235 
   2236 
   2237 /*---------------------- Block Management and Page Allocation -------------*/
   2238 
   2239 static void yaffs_deinit_blocks(struct yaffs_dev *dev)
   2240 {
   2241 	if (dev->block_info_alt && dev->block_info)
   2242 		vfree(dev->block_info);
   2243 	else
   2244 		kfree(dev->block_info);
   2245 
   2246 	dev->block_info_alt = 0;
   2247 
   2248 	dev->block_info = NULL;
   2249 
   2250 	if (dev->chunk_bits_alt && dev->chunk_bits)
   2251 		vfree(dev->chunk_bits);
   2252 	else
   2253 		kfree(dev->chunk_bits);
   2254 	dev->chunk_bits_alt = 0;
   2255 	dev->chunk_bits = NULL;
   2256 }
   2257 
   2258 static int yaffs_init_blocks(struct yaffs_dev *dev)
   2259 {
   2260 	int n_blocks = dev->internal_end_block - dev->internal_start_block + 1;
   2261 
   2262 	dev->block_info = NULL;
   2263 	dev->chunk_bits = NULL;
   2264 	dev->alloc_block = -1;	/* force it to get a new one */
   2265 
   2266 	/* If the first allocation strategy fails, thry the alternate one */
   2267 	dev->block_info =
   2268 		kmalloc(n_blocks * sizeof(struct yaffs_block_info), GFP_NOFS);
   2269 	if (!dev->block_info) {
   2270 		dev->block_info =
   2271 		    vmalloc(n_blocks * sizeof(struct yaffs_block_info));
   2272 		dev->block_info_alt = 1;
   2273 	} else {
   2274 		dev->block_info_alt = 0;
   2275 	}
   2276 
   2277 	if (!dev->block_info)
   2278 		goto alloc_error;
   2279 
   2280 	/* Set up dynamic blockinfo stuff. Round up bytes. */
   2281 	dev->chunk_bit_stride = (dev->param.chunks_per_block + 7) / 8;
   2282 	dev->chunk_bits =
   2283 		kmalloc(dev->chunk_bit_stride * n_blocks, GFP_NOFS);
   2284 	if (!dev->chunk_bits) {
   2285 		dev->chunk_bits =
   2286 		    vmalloc(dev->chunk_bit_stride * n_blocks);
   2287 		dev->chunk_bits_alt = 1;
   2288 	} else {
   2289 		dev->chunk_bits_alt = 0;
   2290 	}
   2291 	if (!dev->chunk_bits)
   2292 		goto alloc_error;
   2293 
   2294 
   2295 	memset(dev->block_info, 0, n_blocks * sizeof(struct yaffs_block_info));
   2296 	memset(dev->chunk_bits, 0, dev->chunk_bit_stride * n_blocks);
   2297 	return YAFFS_OK;
   2298 
   2299 alloc_error:
   2300 	yaffs_deinit_blocks(dev);
   2301 	return YAFFS_FAIL;
   2302 }
   2303 
   2304 
   2305 void yaffs_block_became_dirty(struct yaffs_dev *dev, int block_no)
   2306 {
   2307 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, block_no);
   2308 	int erased_ok = 0;
   2309 	int i;
   2310 
   2311 	/* If the block is still healthy erase it and mark as clean.
   2312 	 * If the block has had a data failure, then retire it.
   2313 	 */
   2314 
   2315 	yaffs_trace(YAFFS_TRACE_GC | YAFFS_TRACE_ERASE,
   2316 		"yaffs_block_became_dirty block %d state %d %s",
   2317 		block_no, bi->block_state,
   2318 		(bi->needs_retiring) ? "needs retiring" : "");
   2319 
   2320 	yaffs2_clear_oldest_dirty_seq(dev, bi);
   2321 
   2322 	bi->block_state = YAFFS_BLOCK_STATE_DIRTY;
   2323 
   2324 	/* If this is the block being garbage collected then stop gc'ing */
   2325 	if (block_no == dev->gc_block)
   2326 		dev->gc_block = 0;
   2327 
   2328 	/* If this block is currently the best candidate for gc
   2329 	 * then drop as a candidate */
   2330 	if (block_no == dev->gc_dirtiest) {
   2331 		dev->gc_dirtiest = 0;
   2332 		dev->gc_pages_in_use = 0;
   2333 	}
   2334 
   2335 	if (!bi->needs_retiring) {
   2336 		yaffs2_checkpt_invalidate(dev);
   2337 		erased_ok = yaffs_erase_block(dev, block_no);
   2338 		if (!erased_ok) {
   2339 			dev->n_erase_failures++;
   2340 			yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
   2341 			  "**>> Erasure failed %d", block_no);
   2342 		}
   2343 	}
   2344 
   2345 	/* Verify erasure if needed */
   2346 	if (erased_ok &&
   2347 	    ((yaffs_trace_mask & YAFFS_TRACE_ERASE) ||
   2348 	     !yaffs_skip_verification(dev))) {
   2349 		for (i = 0; i < dev->param.chunks_per_block; i++) {
   2350 			if (!yaffs_check_chunk_erased(dev,
   2351 				block_no * dev->param.chunks_per_block + i)) {
   2352 				yaffs_trace(YAFFS_TRACE_ERROR,
   2353 					">>Block %d erasure supposedly OK, but chunk %d not erased",
   2354 					block_no, i);
   2355 			}
   2356 		}
   2357 	}
   2358 
   2359 	if (!erased_ok) {
   2360 		/* We lost a block of free space */
   2361 		dev->n_free_chunks -= dev->param.chunks_per_block;
   2362 		yaffs_retire_block(dev, block_no);
   2363 		yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
   2364 			"**>> Block %d retired", block_no);
   2365 		return;
   2366 	}
   2367 
   2368 	/* Clean it up... */
   2369 	bi->block_state = YAFFS_BLOCK_STATE_EMPTY;
   2370 	bi->seq_number = 0;
   2371 	dev->n_erased_blocks++;
   2372 	bi->pages_in_use = 0;
   2373 	bi->soft_del_pages = 0;
   2374 	bi->has_shrink_hdr = 0;
   2375 	bi->skip_erased_check = 1;	/* Clean, so no need to check */
   2376 	bi->gc_prioritise = 0;
   2377 	bi->has_summary = 0;
   2378 
   2379 	yaffs_clear_chunk_bits(dev, block_no);
   2380 
   2381 	yaffs_trace(YAFFS_TRACE_ERASE, "Erased block %d", block_no);
   2382 }
   2383 
   2384 static inline int yaffs_gc_process_chunk(struct yaffs_dev *dev,
   2385 					struct yaffs_block_info *bi,
   2386 					int old_chunk, u8 *buffer)
   2387 {
   2388 	int new_chunk;
   2389 	int mark_flash = 1;
   2390 	struct yaffs_ext_tags tags;
   2391 	struct yaffs_obj *object;
   2392 	int matching_chunk;
   2393 	int ret_val = YAFFS_OK;
   2394 
   2395 	memset(&tags, 0, sizeof(tags));
   2396 	yaffs_rd_chunk_tags_nand(dev, old_chunk,
   2397 				 buffer, &tags);
   2398 	object = yaffs_find_by_number(dev, tags.obj_id);
   2399 
   2400 	yaffs_trace(YAFFS_TRACE_GC_DETAIL,
   2401 		"Collecting chunk in block %d, %d %d %d ",
   2402 		dev->gc_chunk, tags.obj_id,
   2403 		tags.chunk_id, tags.n_bytes);
   2404 
   2405 	if (object && !yaffs_skip_verification(dev)) {
   2406 		if (tags.chunk_id == 0)
   2407 			matching_chunk =
   2408 			    object->hdr_chunk;
   2409 		else if (object->soft_del)
   2410 			/* Defeat the test */
   2411 			matching_chunk = old_chunk;
   2412 		else
   2413 			matching_chunk =
   2414 			    yaffs_find_chunk_in_file
   2415 			    (object, tags.chunk_id,
   2416 			     NULL);
   2417 
   2418 		if (old_chunk != matching_chunk)
   2419 			yaffs_trace(YAFFS_TRACE_ERROR,
   2420 				"gc: page in gc mismatch: %d %d %d %d",
   2421 				old_chunk,
   2422 				matching_chunk,
   2423 				tags.obj_id,
   2424 				tags.chunk_id);
   2425 	}
   2426 
   2427 	if (!object) {
   2428 		yaffs_trace(YAFFS_TRACE_ERROR,
   2429 			"page %d in gc has no object: %d %d %d ",
   2430 			old_chunk,
   2431 			tags.obj_id, tags.chunk_id,
   2432 			tags.n_bytes);
   2433 	}
   2434 
   2435 	if (object &&
   2436 	    object->deleted &&
   2437 	    object->soft_del && tags.chunk_id != 0) {
   2438 		/* Data chunk in a soft deleted file,
   2439 		 * throw it away.
   2440 		 * It's a soft deleted data chunk,
   2441 		 * No need to copy this, just forget
   2442 		 * about it and fix up the object.
   2443 		 */
   2444 
   2445 		/* Free chunks already includes
   2446 		 * softdeleted chunks, how ever this
   2447 		 * chunk is going to soon be really
   2448 		 * deleted which will increment free
   2449 		 * chunks. We have to decrement free
   2450 		 * chunks so this works out properly.
   2451 		 */
   2452 		dev->n_free_chunks--;
   2453 		bi->soft_del_pages--;
   2454 
   2455 		object->n_data_chunks--;
   2456 		if (object->n_data_chunks <= 0) {
   2457 			/* remeber to clean up obj */
   2458 			dev->gc_cleanup_list[dev->n_clean_ups] = tags.obj_id;
   2459 			dev->n_clean_ups++;
   2460 		}
   2461 		mark_flash = 0;
   2462 	} else if (object) {
   2463 		/* It's either a data chunk in a live
   2464 		 * file or an ObjectHeader, so we're
   2465 		 * interested in it.
   2466 		 * NB Need to keep the ObjectHeaders of
   2467 		 * deleted files until the whole file
   2468 		 * has been deleted off
   2469 		 */
   2470 		tags.serial_number++;
   2471 		dev->n_gc_copies++;
   2472 
   2473 		if (tags.chunk_id == 0) {
   2474 			/* It is an object Id,
   2475 			 * We need to nuke the
   2476 			 * shrinkheader flags since its
   2477 			 * work is done.
   2478 			 * Also need to clean up
   2479 			 * shadowing.
   2480 			 */
   2481 			struct yaffs_obj_hdr *oh;
   2482 			oh = (struct yaffs_obj_hdr *) buffer;
   2483 
   2484 			oh->is_shrink = 0;
   2485 			tags.extra_is_shrink = 0;
   2486 			oh->shadows_obj = 0;
   2487 			oh->inband_shadowed_obj_id = 0;
   2488 			tags.extra_shadows = 0;
   2489 
   2490 			/* Update file size */
   2491 			if (object->variant_type == YAFFS_OBJECT_TYPE_FILE) {
   2492 				yaffs_oh_size_load(oh,
   2493 				    object->variant.file_variant.file_size);
   2494 				tags.extra_file_size =
   2495 				    object->variant.file_variant.file_size;
   2496 			}
   2497 
   2498 			yaffs_verify_oh(object, oh, &tags, 1);
   2499 			new_chunk =
   2500 			    yaffs_write_new_chunk(dev, (u8 *) oh, &tags, 1);
   2501 		} else {
   2502 			new_chunk =
   2503 			    yaffs_write_new_chunk(dev, buffer, &tags, 1);
   2504 		}
   2505 
   2506 		if (new_chunk < 0) {
   2507 			ret_val = YAFFS_FAIL;
   2508 		} else {
   2509 
   2510 			/* Now fix up the Tnodes etc. */
   2511 
   2512 			if (tags.chunk_id == 0) {
   2513 				/* It's a header */
   2514 				object->hdr_chunk = new_chunk;
   2515 				object->serial = tags.serial_number;
   2516 			} else {
   2517 				/* It's a data chunk */
   2518 				yaffs_put_chunk_in_file(object, tags.chunk_id,
   2519 							new_chunk, 0);
   2520 			}
   2521 		}
   2522 	}
   2523 	if (ret_val == YAFFS_OK)
   2524 		yaffs_chunk_del(dev, old_chunk, mark_flash, __LINE__);
   2525 	return ret_val;
   2526 }
   2527 
   2528 static int yaffs_gc_block(struct yaffs_dev *dev, int block, int whole_block)
   2529 {
   2530 	int old_chunk;
   2531 	int ret_val = YAFFS_OK;
   2532 	int i;
   2533 	int is_checkpt_block;
   2534 	int max_copies;
   2535 	int chunks_before = yaffs_get_erased_chunks(dev);
   2536 	int chunks_after;
   2537 	struct yaffs_block_info *bi = yaffs_get_block_info(dev, block);
   2538 
   2539 	is_checkpt_block = (bi->block_state == YAFFS_BLOCK_STATE_CHECKPOINT);
   2540 
   2541 	yaffs_trace(YAFFS_TRACE_TRACING,
   2542 		"Collecting block %d, in use %d, shrink %d, whole_block %d",
   2543 		block, bi->pages_in_use, bi->has_shrink_hdr,
   2544 		whole_block);
   2545 
   2546 	/*yaffs_verify_free_chunks(dev); */
   2547 
   2548 	if (bi->block_state == YAFFS_BLOCK_STATE_FULL)
   2549 		bi->block_state = YAFFS_BLOCK_STATE_COLLECTING;
   2550 
   2551 	bi->has_shrink_hdr = 0;	/* clear the flag so that the block can erase */
   2552 
   2553 	dev->gc_disable = 1;
   2554 
   2555 	yaffs_summary_gc(dev, block);
   2556 
   2557 	if (is_checkpt_block || !yaffs_still_some_chunks(dev, block)) {
   2558 		yaffs_trace(YAFFS_TRACE_TRACING,
   2559 			"Collecting block %d that has no chunks in use",
   2560 			block);
   2561 		yaffs_block_became_dirty(dev, block);
   2562 	} else {
   2563 
   2564 		u8 *buffer = yaffs_get_temp_buffer(dev);
   2565 
   2566 		yaffs_verify_blk(dev, bi, block);
   2567 
   2568 		max_copies = (whole_block) ? dev->param.chunks_per_block : 5;
   2569 		old_chunk = block * dev->param.chunks_per_block + dev->gc_chunk;
   2570 
   2571 		for (/* init already done */ ;
   2572 		     ret_val == YAFFS_OK &&
   2573 		     dev->gc_chunk < dev->param.chunks_per_block &&
   2574 		     (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) &&
   2575 		     max_copies > 0;
   2576 		     dev->gc_chunk++, old_chunk++) {
   2577 			if (yaffs_check_chunk_bit(dev, block, dev->gc_chunk)) {
   2578 				/* Page is in use and might need to be copied */
   2579 				max_copies--;
   2580 				ret_val = yaffs_gc_process_chunk(dev, bi,
   2581 							old_chunk, buffer);
   2582 			}
   2583 		}
   2584 		yaffs_release_temp_buffer(dev, buffer);
   2585 	}
   2586 
   2587 	yaffs_verify_collected_blk(dev, bi, block);
   2588 
   2589 	if (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
   2590 		/*
   2591 		 * The gc did not complete. Set block state back to FULL
   2592 		 * because checkpointing does not restore gc.
   2593 		 */
   2594 		bi->block_state = YAFFS_BLOCK_STATE_FULL;
   2595 	} else {
   2596 		/* The gc completed. */
   2597 		/* Do any required cleanups */
   2598 		for (i = 0; i < dev->n_clean_ups; i++) {
   2599 			/* Time to delete the file too */
   2600 			struct yaffs_obj *object =
   2601 			    yaffs_find_by_number(dev, dev->gc_cleanup_list[i]);
   2602 			if (object) {
   2603 				yaffs_free_tnode(dev,
   2604 					  object->variant.file_variant.top);
   2605 				object->variant.file_variant.top = NULL;
   2606 				yaffs_trace(YAFFS_TRACE_GC,
   2607 					"yaffs: About to finally delete object %d",
   2608 					object->obj_id);
   2609 				yaffs_generic_obj_del(object);
   2610 				object->my_dev->n_deleted_files--;
   2611 			}
   2612 
   2613 		}
   2614 		chunks_after = yaffs_get_erased_chunks(dev);
   2615 		if (chunks_before >= chunks_after)
   2616 			yaffs_trace(YAFFS_TRACE_GC,
   2617 				"gc did not increase free chunks before %d after %d",
   2618 				chunks_before, chunks_after);
   2619 		dev->gc_block = 0;
   2620 		dev->gc_chunk = 0;
   2621 		dev->n_clean_ups = 0;
   2622 	}
   2623 
   2624 	dev->gc_disable = 0;
   2625 
   2626 	return ret_val;
   2627 }
   2628 
   2629 /*
   2630  * find_gc_block() selects the dirtiest block (or close enough)
   2631  * for garbage collection.
   2632  */
   2633 
   2634 static unsigned yaffs_find_gc_block(struct yaffs_dev *dev,
   2635 				    int aggressive, int background)
   2636 {
   2637 	int i;
   2638 	int iterations;
   2639 	unsigned selected = 0;
   2640 	int prioritised = 0;
   2641 	int prioritised_exist = 0;
   2642 	struct yaffs_block_info *bi;
   2643 	int threshold;
   2644 
   2645 	/* First let's see if we need to grab a prioritised block */
   2646 	if (dev->has_pending_prioritised_gc && !aggressive) {
   2647 		dev->gc_dirtiest = 0;
   2648 		bi = dev->block_info;
   2649 		for (i = dev->internal_start_block;
   2650 		     i <= dev->internal_end_block && !selected; i++) {
   2651 
   2652 			if (bi->gc_prioritise) {
   2653 				prioritised_exist = 1;
   2654 				if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
   2655 				    yaffs_block_ok_for_gc(dev, bi)) {
   2656 					selected = i;
   2657 					prioritised = 1;
   2658 				}
   2659 			}
   2660 			bi++;
   2661 		}
   2662 
   2663 		/*
   2664 		 * If there is a prioritised block and none was selected then
   2665 		 * this happened because there is at least one old dirty block
   2666 		 * gumming up the works. Let's gc the oldest dirty block.
   2667 		 */
   2668 
   2669 		if (prioritised_exist &&
   2670 		    !selected && dev->oldest_dirty_block > 0)
   2671 			selected = dev->oldest_dirty_block;
   2672 
   2673 		if (!prioritised_exist)	/* None found, so we can clear this */
   2674 			dev->has_pending_prioritised_gc = 0;
   2675 	}
   2676 
   2677 	/* If we're doing aggressive GC then we are happy to take a less-dirty
   2678 	 * block, and search harder.
   2679 	 * else (leasurely gc), then we only bother to do this if the
   2680 	 * block has only a few pages in use.
   2681 	 */
   2682 
   2683 	if (!selected) {
   2684 		int pages_used;
   2685 		int n_blocks =
   2686 		    dev->internal_end_block - dev->internal_start_block + 1;
   2687 		if (aggressive) {
   2688 			threshold = dev->param.chunks_per_block;
   2689 			iterations = n_blocks;
   2690 		} else {
   2691 			int max_threshold;
   2692 
   2693 			if (background)
   2694 				max_threshold = dev->param.chunks_per_block / 2;
   2695 			else
   2696 				max_threshold = dev->param.chunks_per_block / 8;
   2697 
   2698 			if (max_threshold < YAFFS_GC_PASSIVE_THRESHOLD)
   2699 				max_threshold = YAFFS_GC_PASSIVE_THRESHOLD;
   2700 
   2701 			threshold = background ? (dev->gc_not_done + 2) * 2 : 0;
   2702 			if (threshold < YAFFS_GC_PASSIVE_THRESHOLD)
   2703 				threshold = YAFFS_GC_PASSIVE_THRESHOLD;
   2704 			if (threshold > max_threshold)
   2705 				threshold = max_threshold;
   2706 
   2707 			iterations = n_blocks / 16 + 1;
   2708 			if (iterations > 100)
   2709 				iterations = 100;
   2710 		}
   2711 
   2712 		for (i = 0;
   2713 		     i < iterations &&
   2714 		     (dev->gc_dirtiest < 1 ||
   2715 		      dev->gc_pages_in_use > YAFFS_GC_GOOD_ENOUGH);
   2716 		     i++) {
   2717 			dev->gc_block_finder++;
   2718 			if (dev->gc_block_finder < dev->internal_start_block ||
   2719 			    dev->gc_block_finder > dev->internal_end_block)
   2720 				dev->gc_block_finder =
   2721 				    dev->internal_start_block;
   2722 
   2723 			bi = yaffs_get_block_info(dev, dev->gc_block_finder);
   2724 
   2725 			pages_used = bi->pages_in_use - bi->soft_del_pages;
   2726 
   2727 			if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
   2728 			    pages_used < dev->param.chunks_per_block &&
   2729 			    (dev->gc_dirtiest < 1 ||
   2730 			     pages_used < dev->gc_pages_in_use) &&
   2731 			    yaffs_block_ok_for_gc(dev, bi)) {
   2732 				dev->gc_dirtiest = dev->gc_block_finder;
   2733 				dev->gc_pages_in_use = pages_used;
   2734 			}
   2735 		}
   2736 
   2737 		if (dev->gc_dirtiest > 0 && dev->gc_pages_in_use <= threshold)
   2738 			selected = dev->gc_dirtiest;
   2739 	}
   2740 
   2741 	/*
   2742 	 * If nothing has been selected for a while, try the oldest dirty
   2743 	 * because that's gumming up the works.
   2744 	 */
   2745 
   2746 	if (!selected && dev->param.is_yaffs2 &&
   2747 	    dev->gc_not_done >= (background ? 10 : 20)) {
   2748 		yaffs2_find_oldest_dirty_seq(dev);
   2749 		if (dev->oldest_dirty_block > 0) {
   2750 			selected = dev->oldest_dirty_block;
   2751 			dev->gc_dirtiest = selected;
   2752 			dev->oldest_dirty_gc_count++;
   2753 			bi = yaffs_get_block_info(dev, selected);
   2754 			dev->gc_pages_in_use =
   2755 			    bi->pages_in_use - bi->soft_del_pages;
   2756 		} else {
   2757 			dev->gc_not_done = 0;
   2758 		}
   2759 	}
   2760 
   2761 	if (selected) {
   2762 		yaffs_trace(YAFFS_TRACE_GC,
   2763 			"GC Selected block %d with %d free, prioritised:%d",
   2764 			selected,
   2765 			dev->param.chunks_per_block - dev->gc_pages_in_use,
   2766 			prioritised);
   2767 
   2768 		dev->n_gc_blocks++;
   2769 		if (background)
   2770 			dev->bg_gcs++;
   2771 
   2772 		dev->gc_dirtiest = 0;
   2773 		dev->gc_pages_in_use = 0;
   2774 		dev->gc_not_done = 0;
   2775 		if (dev->refresh_skip > 0)
   2776 			dev->refresh_skip--;
   2777 	} else {
   2778 		dev->gc_not_done++;
   2779 		yaffs_trace(YAFFS_TRACE_GC,
   2780 			"GC none: finder %d skip %d threshold %d dirtiest %d using %d oldest %d%s",
   2781 			dev->gc_block_finder, dev->gc_not_done, threshold,
   2782 			dev->gc_dirtiest, dev->gc_pages_in_use,
   2783 			dev->oldest_dirty_block, background ? " bg" : "");
   2784 	}
   2785 
   2786 	return selected;
   2787 }
   2788 
   2789 /* New garbage collector
   2790  * If we're very low on erased blocks then we do aggressive garbage collection
   2791  * otherwise we do "leasurely" garbage collection.
   2792  * Aggressive gc looks further (whole array) and will accept less dirty blocks.
   2793  * Passive gc only inspects smaller areas and only accepts more dirty blocks.
   2794  *
   2795  * The idea is to help clear out space in a more spread-out manner.
   2796  * Dunno if it really does anything useful.
   2797  */
   2798 static int yaffs_check_gc(struct yaffs_dev *dev, int background)
   2799 {
   2800 	int aggressive = 0;
   2801 	int gc_ok = YAFFS_OK;
   2802 	int max_tries = 0;
   2803 	int min_erased;
   2804 	int erased_chunks;
   2805 	int checkpt_block_adjust;
   2806 
   2807 	if (dev->param.gc_control && (dev->param.gc_control(dev) & 1) == 0)
   2808 		return YAFFS_OK;
   2809 
   2810 	if (dev->gc_disable)
   2811 		/* Bail out so we don't get recursive gc */
   2812 		return YAFFS_OK;
   2813 
   2814 	/* This loop should pass the first time.
   2815 	 * Only loops here if the collection does not increase space.
   2816 	 */
   2817 
   2818 	do {
   2819 		max_tries++;
   2820 
   2821 		checkpt_block_adjust = yaffs_calc_checkpt_blocks_required(dev);
   2822 
   2823 		min_erased =
   2824 		    dev->param.n_reserved_blocks + checkpt_block_adjust + 1;
   2825 		erased_chunks =
   2826 		    dev->n_erased_blocks * dev->param.chunks_per_block;
   2827 
   2828 		/* If we need a block soon then do aggressive gc. */
   2829 		if (dev->n_erased_blocks < min_erased)
   2830 			aggressive = 1;
   2831 		else {
   2832 			if (!background
   2833 			    && erased_chunks > (dev->n_free_chunks / 4))
   2834 				break;
   2835 
   2836 			if (dev->gc_skip > 20)
   2837 				dev->gc_skip = 20;
   2838 			if (erased_chunks < dev->n_free_chunks / 2 ||
   2839 			    dev->gc_skip < 1 || background)
   2840 				aggressive = 0;
   2841 			else {
   2842 				dev->gc_skip--;
   2843 				break;
   2844 			}
   2845 		}
   2846 
   2847 		dev->gc_skip = 5;
   2848 
   2849 		/* If we don't already have a block being gc'd then see if we
   2850 		 * should start another */
   2851 
   2852 		if (dev->gc_block < 1 && !aggressive) {
   2853 			dev->gc_block = yaffs2_find_refresh_block(dev);
   2854 			dev->gc_chunk = 0;
   2855 			dev->n_clean_ups = 0;
   2856 		}
   2857 		if (dev->gc_block < 1) {
   2858 			dev->gc_block =
   2859 			    yaffs_find_gc_block(dev, aggressive, background);
   2860 			dev->gc_chunk = 0;
   2861 			dev->n_clean_ups = 0;
   2862 		}
   2863 
   2864 		if (dev->gc_block > 0) {
   2865 			dev->all_gcs++;
   2866 			if (!aggressive)
   2867 				dev->passive_gc_count++;
   2868 
   2869 			yaffs_trace(YAFFS_TRACE_GC,
   2870 				"yaffs: GC n_erased_blocks %d aggressive %d",
   2871 				dev->n_erased_blocks, aggressive);
   2872 
   2873 			gc_ok = yaffs_gc_block(dev, dev->gc_block, aggressive);
   2874 		}
   2875 
   2876 		if (dev->n_erased_blocks < (dev->param.n_reserved_blocks) &&
   2877 		    dev->gc_block > 0) {
   2878 			yaffs_trace(YAFFS_TRACE_GC,
   2879 				"yaffs: GC !!!no reclaim!!! n_erased_blocks %d after try %d block %d",
   2880 				dev->n_erased_blocks, max_tries,
   2881 				dev->gc_block);
   2882 		}
   2883 	} while ((dev->n_erased_blocks < dev->param.n_reserved_blocks) &&
   2884 		 (dev->gc_block > 0) && (max_tries < 2));
   2885 
   2886 	return aggressive ? gc_ok : YAFFS_OK;
   2887 }
   2888 
   2889 /*
   2890  * yaffs_bg_gc()
   2891  * Garbage collects. Intended to be called from a background thread.
   2892  * Returns non-zero if at least half the free chunks are erased.
   2893  */
   2894 int yaffs_bg_gc(struct yaffs_dev *dev, unsigned urgency)
   2895 {
   2896 	int erased_chunks = dev->n_erased_blocks * dev->param.chunks_per_block;
   2897 
   2898 	yaffs_trace(YAFFS_TRACE_BACKGROUND, "Background gc %u", urgency);
   2899 
   2900 	yaffs_check_gc(dev, 1);
   2901 	return erased_chunks > dev->n_free_chunks / 2;
   2902 }
   2903 
   2904 /*-------------------- Data file manipulation -----------------*/
   2905 
   2906 static int yaffs_rd_data_obj(struct yaffs_obj *in, int inode_chunk, u8 * buffer)
   2907 {
   2908 	int nand_chunk = yaffs_find_chunk_in_file(in, inode_chunk, NULL);
   2909 
   2910 	if (nand_chunk >= 0)
   2911 		return yaffs_rd_chunk_tags_nand(in->my_dev, nand_chunk,
   2912 						buffer, NULL);
   2913 	else {
   2914 		yaffs_trace(YAFFS_TRACE_NANDACCESS,
   2915 			"Chunk %d not found zero instead",
   2916 			nand_chunk);
   2917 		/* get sane (zero) data if you read a hole */
   2918 		memset(buffer, 0, in->my_dev->data_bytes_per_chunk);
   2919 		return 0;
   2920 	}
   2921 
   2922 }
   2923 
   2924 void yaffs_chunk_del(struct yaffs_dev *dev, int chunk_id, int mark_flash,
   2925 		     int lyn)
   2926 {
   2927 	int block;
   2928 	int page;
   2929 	struct yaffs_ext_tags tags;
   2930 	struct yaffs_block_info *bi;
   2931 
   2932 	if (chunk_id <= 0)
   2933 		return;
   2934 
   2935 	dev->n_deletions++;
   2936 	block = chunk_id / dev->param.chunks_per_block;
   2937 	page = chunk_id % dev->param.chunks_per_block;
   2938 
   2939 	if (!yaffs_check_chunk_bit(dev, block, page))
   2940 		yaffs_trace(YAFFS_TRACE_VERIFY,
   2941 			"Deleting invalid chunk %d", chunk_id);
   2942 
   2943 	bi = yaffs_get_block_info(dev, block);
   2944 
   2945 	yaffs2_update_oldest_dirty_seq(dev, block, bi);
   2946 
   2947 	yaffs_trace(YAFFS_TRACE_DELETION,
   2948 		"line %d delete of chunk %d",
   2949 		lyn, chunk_id);
   2950 
   2951 	if (!dev->param.is_yaffs2 && mark_flash &&
   2952 	    bi->block_state != YAFFS_BLOCK_STATE_COLLECTING) {
   2953 
   2954 		memset(&tags, 0, sizeof(tags));
   2955 		tags.is_deleted = 1;
   2956 		yaffs_wr_chunk_tags_nand(dev, chunk_id, NULL, &tags);
   2957 		yaffs_handle_chunk_update(dev, chunk_id, &tags);
   2958 	} else {
   2959 		dev->n_unmarked_deletions++;
   2960 	}
   2961 
   2962 	/* Pull out of the management area.
   2963 	 * If the whole block became dirty, this will kick off an erasure.
   2964 	 */
   2965 	if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING ||
   2966 	    bi->block_state == YAFFS_BLOCK_STATE_FULL ||
   2967 	    bi->block_state == YAFFS_BLOCK_STATE_NEEDS_SCAN ||
   2968 	    bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
   2969 		dev->n_free_chunks++;
   2970 		yaffs_clear_chunk_bit(dev, block, page);
   2971 		bi->pages_in_use--;
   2972 
   2973 		if (bi->pages_in_use == 0 &&
   2974 		    !bi->has_shrink_hdr &&
   2975 		    bi->block_state != YAFFS_BLOCK_STATE_ALLOCATING &&
   2976 		    bi->block_state != YAFFS_BLOCK_STATE_NEEDS_SCAN) {
   2977 			yaffs_block_became_dirty(dev, block);
   2978 		}
   2979 	}
   2980 }
   2981 
   2982 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
   2983 			     const u8 *buffer, int n_bytes, int use_reserve)
   2984 {
   2985 	/* Find old chunk Need to do this to get serial number
   2986 	 * Write new one and patch into tree.
   2987 	 * Invalidate old tags.
   2988 	 */
   2989 
   2990 	int prev_chunk_id;
   2991 	struct yaffs_ext_tags prev_tags;
   2992 	int new_chunk_id;
   2993 	struct yaffs_ext_tags new_tags;
   2994 	struct yaffs_dev *dev = in->my_dev;
   2995 
   2996 	yaffs_check_gc(dev, 0);
   2997 
   2998 	/* Get the previous chunk at this location in the file if it exists.
   2999 	 * If it does not exist then put a zero into the tree. This creates
   3000 	 * the tnode now, rather than later when it is harder to clean up.
   3001 	 */
   3002 	prev_chunk_id = yaffs_find_chunk_in_file(in, inode_chunk, &prev_tags);
   3003 	if (prev_chunk_id < 1 &&
   3004 	    !yaffs_put_chunk_in_file(in, inode_chunk, 0, 0))
   3005 		return 0;
   3006 
   3007 	/* Set up new tags */
   3008 	memset(&new_tags, 0, sizeof(new_tags));
   3009 
   3010 	new_tags.chunk_id = inode_chunk;
   3011 	new_tags.obj_id = in->obj_id;
   3012 	new_tags.serial_number =
   3013 	    (prev_chunk_id > 0) ? prev_tags.serial_number + 1 : 1;
   3014 	new_tags.n_bytes = n_bytes;
   3015 
   3016 	if (n_bytes < 1 || n_bytes > dev->param.total_bytes_per_chunk) {
   3017 		yaffs_trace(YAFFS_TRACE_ERROR,
   3018 		  "Writing %d bytes to chunk!!!!!!!!!",
   3019 		   n_bytes);
   3020 		BUG();
   3021 	}
   3022 
   3023 	new_chunk_id =
   3024 	    yaffs_write_new_chunk(dev, buffer, &new_tags, use_reserve);
   3025 
   3026 	if (new_chunk_id > 0) {
   3027 		yaffs_put_chunk_in_file(in, inode_chunk, new_chunk_id, 0);
   3028 
   3029 		if (prev_chunk_id > 0)
   3030 			yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
   3031 
   3032 		yaffs_verify_file_sane(in);
   3033 	}
   3034 	return new_chunk_id;
   3035 
   3036 }
   3037 
   3038 
   3039 
   3040 static int yaffs_do_xattrib_mod(struct yaffs_obj *obj, int set,
   3041 				const YCHAR *name, const void *value, int size,
   3042 				int flags)
   3043 {
   3044 	struct yaffs_xattr_mod xmod;
   3045 	int result;
   3046 
   3047 	xmod.set = set;
   3048 	xmod.name = name;
   3049 	xmod.data = value;
   3050 	xmod.size = size;
   3051 	xmod.flags = flags;
   3052 	xmod.result = -ENOSPC;
   3053 
   3054 	result = yaffs_update_oh(obj, NULL, 0, 0, 0, &xmod);
   3055 
   3056 	if (result > 0)
   3057 		return xmod.result;
   3058 	else
   3059 		return -ENOSPC;
   3060 }
   3061 
   3062 static int yaffs_apply_xattrib_mod(struct yaffs_obj *obj, char *buffer,
   3063 				   struct yaffs_xattr_mod *xmod)
   3064 {
   3065 	int retval = 0;
   3066 	int x_offs = sizeof(struct yaffs_obj_hdr);
   3067 	struct yaffs_dev *dev = obj->my_dev;
   3068 	int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
   3069 	char *x_buffer = buffer + x_offs;
   3070 
   3071 	if (xmod->set)
   3072 		retval =
   3073 		    nval_set(x_buffer, x_size, xmod->name, xmod->data,
   3074 			     xmod->size, xmod->flags);
   3075 	else
   3076 		retval = nval_del(x_buffer, x_size, xmod->name);
   3077 
   3078 	obj->has_xattr = nval_hasvalues(x_buffer, x_size);
   3079 	obj->xattr_known = 1;
   3080 	xmod->result = retval;
   3081 
   3082 	return retval;
   3083 }
   3084 
   3085 static int yaffs_do_xattrib_fetch(struct yaffs_obj *obj, const YCHAR *name,
   3086 				  void *value, int size)
   3087 {
   3088 	char *buffer = NULL;
   3089 	int result;
   3090 	struct yaffs_ext_tags tags;
   3091 	struct yaffs_dev *dev = obj->my_dev;
   3092 	int x_offs = sizeof(struct yaffs_obj_hdr);
   3093 	int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
   3094 	char *x_buffer;
   3095 	int retval = 0;
   3096 
   3097 	if (obj->hdr_chunk < 1)
   3098 		return -ENODATA;
   3099 
   3100 	/* If we know that the object has no xattribs then don't do all the
   3101 	 * reading and parsing.
   3102 	 */
   3103 	if (obj->xattr_known && !obj->has_xattr) {
   3104 		if (name)
   3105 			return -ENODATA;
   3106 		else
   3107 			return 0;
   3108 	}
   3109 
   3110 	buffer = (char *)yaffs_get_temp_buffer(dev);
   3111 	if (!buffer)
   3112 		return -ENOMEM;
   3113 
   3114 	result =
   3115 	    yaffs_rd_chunk_tags_nand(dev, obj->hdr_chunk, (u8 *) buffer, &tags);
   3116 
   3117 	if (result != YAFFS_OK)
   3118 		retval = -ENOENT;
   3119 	else {
   3120 		x_buffer = buffer + x_offs;
   3121 
   3122 		if (!obj->xattr_known) {
   3123 			obj->has_xattr = nval_hasvalues(x_buffer, x_size);
   3124 			obj->xattr_known = 1;
   3125 		}
   3126 
   3127 		if (name)
   3128 			retval = nval_get(x_buffer, x_size, name, value, size);
   3129 		else
   3130 			retval = nval_list(x_buffer, x_size, value, size);
   3131 	}
   3132 	yaffs_release_temp_buffer(dev, (u8 *) buffer);
   3133 	return retval;
   3134 }
   3135 
   3136 int yaffs_set_xattrib(struct yaffs_obj *obj, const YCHAR * name,
   3137 		      const void *value, int size, int flags)
   3138 {
   3139 	return yaffs_do_xattrib_mod(obj, 1, name, value, size, flags);
   3140 }
   3141 
   3142 int yaffs_remove_xattrib(struct yaffs_obj *obj, const YCHAR * name)
   3143 {
   3144 	return yaffs_do_xattrib_mod(obj, 0, name, NULL, 0, 0);
   3145 }
   3146 
   3147 int yaffs_get_xattrib(struct yaffs_obj *obj, const YCHAR * name, void *value,
   3148 		      int size)
   3149 {
   3150 	return yaffs_do_xattrib_fetch(obj, name, value, size);
   3151 }
   3152 
   3153 int yaffs_list_xattrib(struct yaffs_obj *obj, char *buffer, int size)
   3154 {
   3155 	return yaffs_do_xattrib_fetch(obj, NULL, buffer, size);
   3156 }
   3157 
   3158 static void yaffs_check_obj_details_loaded(struct yaffs_obj *in)
   3159 {
   3160 	u8 *buf;
   3161 	struct yaffs_obj_hdr *oh;
   3162 	struct yaffs_dev *dev;
   3163 	struct yaffs_ext_tags tags;
   3164 
   3165 	if (!in || !in->lazy_loaded || in->hdr_chunk < 1)
   3166 		return;
   3167 
   3168 	dev = in->my_dev;
   3169 	in->lazy_loaded = 0;
   3170 	buf = yaffs_get_temp_buffer(dev);
   3171 
   3172 	yaffs_rd_chunk_tags_nand(dev, in->hdr_chunk, buf, &tags);
   3173 	oh = (struct yaffs_obj_hdr *)buf;
   3174 
   3175 	in->yst_mode = oh->yst_mode;
   3176 	yaffs_load_attribs(in, oh);
   3177 	yaffs_set_obj_name_from_oh(in, oh);
   3178 
   3179 	if (in->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
   3180 		in->variant.symlink_variant.alias =
   3181 		    yaffs_clone_str(oh->alias);
   3182 	}
   3183 	yaffs_release_temp_buffer(dev, buf);
   3184 }
   3185 
   3186 static void yaffs_load_name_from_oh(struct yaffs_dev *dev, YCHAR *name,
   3187 				    const YCHAR *oh_name, int buff_size)
   3188 {
   3189 #ifdef CONFIG_YAFFS_AUTO_UNICODE
   3190 	if (dev->param.auto_unicode) {
   3191 		if (*oh_name) {
   3192 			/* It is an ASCII name, do an ASCII to
   3193 			 * unicode conversion */
   3194 			const char *ascii_oh_name = (const char *)oh_name;
   3195 			int n = buff_size - 1;
   3196 			while (n > 0 && *ascii_oh_name) {
   3197 				*name = *ascii_oh_name;
   3198 				name++;
   3199 				ascii_oh_name++;
   3200 				n--;
   3201 			}
   3202 		} else {
   3203 			yaffs_strncpy(name, oh_name + 1, buff_size - 1);
   3204 		}
   3205 
   3206 		return;
   3207 	}
   3208 #endif
   3209 
   3210 	yaffs_strncpy(name, oh_name, buff_size - 1);
   3211 }
   3212 
   3213 static void yaffs_load_oh_from_name(struct yaffs_dev *dev, YCHAR *oh_name,
   3214 				    const YCHAR *name)
   3215 {
   3216 #ifdef CONFIG_YAFFS_AUTO_UNICODE
   3217 	int is_ascii;
   3218 	YCHAR *w;
   3219 
   3220 	if (dev->param.auto_unicode) {
   3221 
   3222 		is_ascii = 1;
   3223 		w = name;
   3224 
   3225 		/* Figure out if the name will fit in ascii character set */
   3226 		while (is_ascii && *w) {
   3227 			if ((*w) & 0xff00)
   3228 				is_ascii = 0;
   3229 			w++;
   3230 		}
   3231 
   3232 		if (is_ascii) {
   3233 			/* It is an ASCII name, so convert unicode to ascii */
   3234 			char *ascii_oh_name = (char *)oh_name;
   3235 			int n = YAFFS_MAX_NAME_LENGTH - 1;
   3236 			while (n > 0 && *name) {
   3237 				*ascii_oh_name = *name;
   3238 				name++;
   3239 				ascii_oh_name++;
   3240 				n--;
   3241 			}
   3242 		} else {
   3243 			/* Unicode name, so save starting at the second YCHAR */
   3244 			*oh_name = 0;
   3245 			yaffs_strncpy(oh_name + 1, name, YAFFS_MAX_NAME_LENGTH - 2);
   3246 		}
   3247 
   3248 		return;
   3249 	}
   3250 #endif
   3251 
   3252 	yaffs_strncpy(oh_name, name, YAFFS_MAX_NAME_LENGTH - 1);
   3253 }
   3254 
   3255 /* UpdateObjectHeader updates the header on NAND for an object.
   3256  * If name is not NULL, then that new name is used.
   3257  */
   3258 int yaffs_update_oh(struct yaffs_obj *in, const YCHAR *name, int force,
   3259 		    int is_shrink, int shadows, struct yaffs_xattr_mod *xmod)
   3260 {
   3261 
   3262 	struct yaffs_block_info *bi;
   3263 	struct yaffs_dev *dev = in->my_dev;
   3264 	int prev_chunk_id;
   3265 	int ret_val = 0;
   3266 	int new_chunk_id;
   3267 	struct yaffs_ext_tags new_tags;
   3268 	struct yaffs_ext_tags old_tags;
   3269 	const YCHAR *alias = NULL;
   3270 	u8 *buffer = NULL;
   3271 	YCHAR old_name[YAFFS_MAX_NAME_LENGTH + 1];
   3272 	struct yaffs_obj_hdr *oh = NULL;
   3273 	loff_t file_size = 0;
   3274 
   3275 	yaffs_strcpy(old_name, _Y("silly old name"));
   3276 
   3277 	if (in->fake && in != dev->root_dir && !force && !xmod)
   3278 		return ret_val;
   3279 
   3280 	yaffs_check_gc(dev, 0);
   3281 	yaffs_check_obj_details_loaded(in);
   3282 
   3283 	buffer = yaffs_get_temp_buffer(in->my_dev);
   3284 	oh = (struct yaffs_obj_hdr *)buffer;
   3285 
   3286 	prev_chunk_id = in->hdr_chunk;
   3287 
   3288 	if (prev_chunk_id > 0) {
   3289 		yaffs_rd_chunk_tags_nand(dev, prev_chunk_id,
   3290 					  buffer, &old_tags);
   3291 
   3292 		yaffs_verify_oh(in, oh, &old_tags, 0);
   3293 		memcpy(old_name, oh->name, sizeof(oh->name));
   3294 		memset(buffer, 0xff, sizeof(struct yaffs_obj_hdr));
   3295 	} else {
   3296 		memset(buffer, 0xff, dev->data_bytes_per_chunk);
   3297 	}
   3298 
   3299 	oh->type = in->variant_type;
   3300 	oh->yst_mode = in->yst_mode;
   3301 	oh->shadows_obj = oh->inband_shadowed_obj_id = shadows;
   3302 
   3303 	yaffs_load_attribs_oh(oh, in);
   3304 
   3305 	if (in->parent)
   3306 		oh->parent_obj_id = in->parent->obj_id;
   3307 	else
   3308 		oh->parent_obj_id = 0;
   3309 
   3310 	if (name && *name) {
   3311 		memset(oh->name, 0, sizeof(oh->name));
   3312 		yaffs_load_oh_from_name(dev, oh->name, name);
   3313 	} else if (prev_chunk_id > 0) {
   3314 		memcpy(oh->name, old_name, sizeof(oh->name));
   3315 	} else {
   3316 		memset(oh->name, 0, sizeof(oh->name));
   3317 	}
   3318 
   3319 	oh->is_shrink = is_shrink;
   3320 
   3321 	switch (in->variant_type) {
   3322 	case YAFFS_OBJECT_TYPE_UNKNOWN:
   3323 		/* Should not happen */
   3324 		break;
   3325 	case YAFFS_OBJECT_TYPE_FILE:
   3326 		if (oh->parent_obj_id != YAFFS_OBJECTID_DELETED &&
   3327 		    oh->parent_obj_id != YAFFS_OBJECTID_UNLINKED)
   3328 			file_size = in->variant.file_variant.file_size;
   3329 		yaffs_oh_size_load(oh, file_size);
   3330 		break;
   3331 	case YAFFS_OBJECT_TYPE_HARDLINK:
   3332 		oh->equiv_id = in->variant.hardlink_variant.equiv_id;
   3333 		break;
   3334 	case YAFFS_OBJECT_TYPE_SPECIAL:
   3335 		/* Do nothing */
   3336 		break;
   3337 	case YAFFS_OBJECT_TYPE_DIRECTORY:
   3338 		/* Do nothing */
   3339 		break;
   3340 	case YAFFS_OBJECT_TYPE_SYMLINK:
   3341 		alias = in->variant.symlink_variant.alias;
   3342 		if (!alias)
   3343 			alias = _Y("no alias");
   3344 		yaffs_strncpy(oh->alias, alias, YAFFS_MAX_ALIAS_LENGTH);
   3345 		oh->alias[YAFFS_MAX_ALIAS_LENGTH] = 0;
   3346 		break;
   3347 	}
   3348 
   3349 	/* process any xattrib modifications */
   3350 	if (xmod)
   3351 		yaffs_apply_xattrib_mod(in, (char *)buffer, xmod);
   3352 
   3353 	/* Tags */
   3354 	memset(&new_tags, 0, sizeof(new_tags));
   3355 	in->serial++;
   3356 	new_tags.chunk_id = 0;
   3357 	new_tags.obj_id = in->obj_id;
   3358 	new_tags.serial_number = in->serial;
   3359 
   3360 	/* Add extra info for file header */
   3361 	new_tags.extra_available = 1;
   3362 	new_tags.extra_parent_id = oh->parent_obj_id;
   3363 	new_tags.extra_file_size = file_size;
   3364 	new_tags.extra_is_shrink = oh->is_shrink;
   3365 	new_tags.extra_equiv_id = oh->equiv_id;
   3366 	new_tags.extra_shadows = (oh->shadows_obj > 0) ? 1 : 0;
   3367 	new_tags.extra_obj_type = in->variant_type;
   3368 	yaffs_verify_oh(in, oh, &new_tags, 1);
   3369 
   3370 	/* Create new chunk in NAND */
   3371 	new_chunk_id =
   3372 	    yaffs_write_new_chunk(dev, buffer, &new_tags,
   3373 				  (prev_chunk_id > 0) ? 1 : 0);
   3374 
   3375 	if (buffer)
   3376 		yaffs_release_temp_buffer(dev, buffer);
   3377 
   3378 	if (new_chunk_id < 0)
   3379 		return new_chunk_id;
   3380 
   3381 	in->hdr_chunk = new_chunk_id;
   3382 
   3383 	if (prev_chunk_id > 0)
   3384 		yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
   3385 
   3386 	if (!yaffs_obj_cache_dirty(in))
   3387 		in->dirty = 0;
   3388 
   3389 	/* If this was a shrink, then mark the block
   3390 	 * that the chunk lives on */
   3391 	if (is_shrink) {
   3392 		bi = yaffs_get_block_info(in->my_dev,
   3393 					  new_chunk_id /
   3394 					  in->my_dev->param.chunks_per_block);
   3395 		bi->has_shrink_hdr = 1;
   3396 	}
   3397 
   3398 
   3399 	return new_chunk_id;
   3400 }
   3401 
   3402 /*--------------------- File read/write ------------------------
   3403  * Read and write have very similar structures.
   3404  * In general the read/write has three parts to it
   3405  * An incomplete chunk to start with (if the read/write is not chunk-aligned)
   3406  * Some complete chunks
   3407  * An incomplete chunk to end off with
   3408  *
   3409  * Curve-balls: the first chunk might also be the last chunk.
   3410  */
   3411 
   3412 int yaffs_file_rd(struct yaffs_obj *in, u8 * buffer, loff_t offset, int n_bytes)
   3413 {
   3414 	int chunk;
   3415 	u32 start;
   3416 	int n_copy;
   3417 	int n = n_bytes;
   3418 	int n_done = 0;
   3419 	struct yaffs_cache *cache;
   3420 	struct yaffs_dev *dev;
   3421 
   3422 	dev = in->my_dev;
   3423 
   3424 	while (n > 0) {
   3425 		yaffs_addr_to_chunk(dev, offset, &chunk, &start);
   3426 		chunk++;
   3427 
   3428 		/* OK now check for the curveball where the start and end are in
   3429 		 * the same chunk.
   3430 		 */
   3431 		if ((start + n) < dev->data_bytes_per_chunk)
   3432 			n_copy = n;
   3433 		else
   3434 			n_copy = dev->data_bytes_per_chunk - start;
   3435 
   3436 		cache = yaffs_find_chunk_cache(in, chunk);
   3437 
   3438 		/* If the chunk is already in the cache or it is less than
   3439 		 * a whole chunk or we're using inband tags then use the cache
   3440 		 * (if there is caching) else bypass the cache.
   3441 		 */
   3442 		if (cache || n_copy != dev->data_bytes_per_chunk ||
   3443 		    dev->param.inband_tags) {
   3444 			if (dev->param.n_caches > 0) {
   3445 
   3446 				/* If we can't find the data in the cache,
   3447 				 * then load it up. */
   3448 
   3449 				if (!cache) {
   3450 					cache =
   3451 					    yaffs_grab_chunk_cache(in->my_dev);
   3452 					cache->object = in;
   3453 					cache->chunk_id = chunk;
   3454 					cache->dirty = 0;
   3455 					cache->locked = 0;
   3456 					yaffs_rd_data_obj(in, chunk,
   3457 							  cache->data);
   3458 					cache->n_bytes = 0;
   3459 				}
   3460 
   3461 				yaffs_use_cache(dev, cache, 0);
   3462 
   3463 				cache->locked = 1;
   3464 
   3465 				memcpy(buffer, &cache->data[start], n_copy);
   3466 
   3467 				cache->locked = 0;
   3468 			} else {
   3469 				/* Read into the local buffer then copy.. */
   3470 
   3471 				u8 *local_buffer =
   3472 				    yaffs_get_temp_buffer(dev);
   3473 				yaffs_rd_data_obj(in, chunk, local_buffer);
   3474 
   3475 				memcpy(buffer, &local_buffer[start], n_copy);
   3476 
   3477 				yaffs_release_temp_buffer(dev, local_buffer);
   3478 			}
   3479 		} else {
   3480 			/* A full chunk. Read directly into the buffer. */
   3481 			yaffs_rd_data_obj(in, chunk, buffer);
   3482 		}
   3483 		n -= n_copy;
   3484 		offset += n_copy;
   3485 		buffer += n_copy;
   3486 		n_done += n_copy;
   3487 	}
   3488 	return n_done;
   3489 }
   3490 
   3491 int yaffs_do_file_wr(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
   3492 		     int n_bytes, int write_through)
   3493 {
   3494 
   3495 	int chunk;
   3496 	u32 start;
   3497 	int n_copy;
   3498 	int n = n_bytes;
   3499 	int n_done = 0;
   3500 	int n_writeback;
   3501 	loff_t start_write = offset;
   3502 	int chunk_written = 0;
   3503 	u32 n_bytes_read;
   3504 	loff_t chunk_start;
   3505 	struct yaffs_dev *dev;
   3506 
   3507 	dev = in->my_dev;
   3508 
   3509 	while (n > 0 && chunk_written >= 0) {
   3510 		yaffs_addr_to_chunk(dev, offset, &chunk, &start);
   3511 
   3512 		if (((loff_t)chunk) *
   3513 		    dev->data_bytes_per_chunk + start != offset ||
   3514 		    start >= dev->data_bytes_per_chunk) {
   3515 			yaffs_trace(YAFFS_TRACE_ERROR,
   3516 				"AddrToChunk of offset %lld gives chunk %d start %d",
   3517 				offset, chunk, start);
   3518 		}
   3519 		chunk++;	/* File pos to chunk in file offset */
   3520 
   3521 		/* OK now check for the curveball where the start and end are in
   3522 		 * the same chunk.
   3523 		 */
   3524 
   3525 		if ((start + n) < dev->data_bytes_per_chunk) {
   3526 			n_copy = n;
   3527 
   3528 			/* Now calculate how many bytes to write back....
   3529 			 * If we're overwriting and not writing to then end of
   3530 			 * file then we need to write back as much as was there
   3531 			 * before.
   3532 			 */
   3533 
   3534 			chunk_start = (((loff_t)(chunk - 1)) *
   3535 					dev->data_bytes_per_chunk);
   3536 
   3537 			if (chunk_start > in->variant.file_variant.file_size)
   3538 				n_bytes_read = 0;	/* Past end of file */
   3539 			else
   3540 				n_bytes_read =
   3541 				    in->variant.file_variant.file_size -
   3542 				    chunk_start;
   3543 
   3544 			if (n_bytes_read > dev->data_bytes_per_chunk)
   3545 				n_bytes_read = dev->data_bytes_per_chunk;
   3546 
   3547 			n_writeback =
   3548 			    (n_bytes_read >
   3549 			     (start + n)) ? n_bytes_read : (start + n);
   3550 
   3551 			if (n_writeback < 0 ||
   3552 			    n_writeback > dev->data_bytes_per_chunk)
   3553 				BUG();
   3554 
   3555 		} else {
   3556 			n_copy = dev->data_bytes_per_chunk - start;
   3557 			n_writeback = dev->data_bytes_per_chunk;
   3558 		}
   3559 
   3560 		if (n_copy != dev->data_bytes_per_chunk ||
   3561 		    dev->param.inband_tags) {
   3562 			/* An incomplete start or end chunk (or maybe both
   3563 			 * start and end chunk), or we're using inband tags,
   3564 			 * so we want to use the cache buffers.
   3565 			 */
   3566 			if (dev->param.n_caches > 0) {
   3567 				struct yaffs_cache *cache;
   3568 
   3569 				/* If we can't find the data in the cache, then
   3570 				 * load the cache */
   3571 				cache = yaffs_find_chunk_cache(in, chunk);
   3572 
   3573 				if (!cache &&
   3574 				    yaffs_check_alloc_available(dev, 1)) {
   3575 					cache = yaffs_grab_chunk_cache(dev);
   3576 					cache->object = in;
   3577 					cache->chunk_id = chunk;
   3578 					cache->dirty = 0;
   3579 					cache->locked = 0;
   3580 					yaffs_rd_data_obj(in, chunk,
   3581 							  cache->data);
   3582 				} else if (cache &&
   3583 					   !cache->dirty &&
   3584 					   !yaffs_check_alloc_available(dev,
   3585 									1)) {
   3586 					/* Drop the cache if it was a read cache
   3587 					 * item and no space check has been made
   3588 					 * for it.
   3589 					 */
   3590 					cache = NULL;
   3591 				}
   3592 
   3593 				if (cache) {
   3594 					yaffs_use_cache(dev, cache, 1);
   3595 					cache->locked = 1;
   3596 
   3597 					memcpy(&cache->data[start], buffer,
   3598 					       n_copy);
   3599 
   3600 					cache->locked = 0;
   3601 					cache->n_bytes = n_writeback;
   3602 
   3603 					if (write_through) {
   3604 						chunk_written =
   3605 						    yaffs_wr_data_obj
   3606 						    (cache->object,
   3607 						     cache->chunk_id,
   3608 						     cache->data,
   3609 						     cache->n_bytes, 1);
   3610 						cache->dirty = 0;
   3611 					}
   3612 				} else {
   3613 					chunk_written = -1;	/* fail write */
   3614 				}
   3615 			} else {
   3616 				/* An incomplete start or end chunk (or maybe
   3617 				 * both start and end chunk). Read into the
   3618 				 * local buffer then copy over and write back.
   3619 				 */
   3620 
   3621 				u8 *local_buffer = yaffs_get_temp_buffer(dev);
   3622 
   3623 				yaffs_rd_data_obj(in, chunk, local_buffer);
   3624 				memcpy(&local_buffer[start], buffer, n_copy);
   3625 
   3626 				chunk_written =
   3627 				    yaffs_wr_data_obj(in, chunk,
   3628 						      local_buffer,
   3629 						      n_writeback, 0);
   3630 
   3631 				yaffs_release_temp_buffer(dev, local_buffer);
   3632 			}
   3633 		} else {
   3634 			/* A full chunk. Write directly from the buffer. */
   3635 
   3636 			chunk_written =
   3637 			    yaffs_wr_data_obj(in, chunk, buffer,
   3638 					      dev->data_bytes_per_chunk, 0);
   3639 
   3640 			/* Since we've overwritten the cached data,
   3641 			 * we better invalidate it. */
   3642 			yaffs_invalidate_chunk_cache(in, chunk);
   3643 		}
   3644 
   3645 		if (chunk_written >= 0) {
   3646 			n -= n_copy;
   3647 			offset += n_copy;
   3648 			buffer += n_copy;
   3649 			n_done += n_copy;
   3650 		}
   3651 	}
   3652 
   3653 	/* Update file object */
   3654 
   3655 	if ((start_write + n_done) > in->variant.file_variant.file_size)
   3656 		in->variant.file_variant.file_size = (start_write + n_done);
   3657 
   3658 	in->dirty = 1;
   3659 	return n_done;
   3660 }
   3661 
   3662 int yaffs_wr_file(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
   3663 		  int n_bytes, int write_through)
   3664 {
   3665 	yaffs2_handle_hole(in, offset);
   3666 	return yaffs_do_file_wr(in, buffer, offset, n_bytes, write_through);
   3667 }
   3668 
   3669 /* ---------------------- File resizing stuff ------------------ */
   3670 
   3671 static void yaffs_prune_chunks(struct yaffs_obj *in, loff_t new_size)
   3672 {
   3673 
   3674 	struct yaffs_dev *dev = in->my_dev;
   3675 	loff_t old_size = in->variant.file_variant.file_size;
   3676 	int i;
   3677 	int chunk_id;
   3678 	u32 dummy;
   3679 	int last_del;
   3680 	int start_del;
   3681 
   3682 	if (old_size > 0)
   3683 		yaffs_addr_to_chunk(dev, old_size - 1, &last_del, &dummy);
   3684 	else
   3685 		last_del = 0;
   3686 
   3687 	yaffs_addr_to_chunk(dev, new_size + dev->data_bytes_per_chunk - 1,
   3688 				&start_del, &dummy);
   3689 	last_del++;
   3690 	start_del++;
   3691 
   3692 	/* Delete backwards so that we don't end up with holes if
   3693 	 * power is lost part-way through the operation.
   3694 	 */
   3695 	for (i = last_del; i >= start_del; i--) {
   3696 		/* NB this could be optimised somewhat,
   3697 		 * eg. could retrieve the tags and write them without
   3698 		 * using yaffs_chunk_del
   3699 		 */
   3700 
   3701 		chunk_id = yaffs_find_del_file_chunk(in, i, NULL);
   3702 
   3703 		if (chunk_id < 1)
   3704 			continue;
   3705 
   3706 		if (chunk_id <
   3707 		    (dev->internal_start_block * dev->param.chunks_per_block) ||
   3708 		    chunk_id >=
   3709 		    ((dev->internal_end_block + 1) *
   3710 		      dev->param.chunks_per_block)) {
   3711 			yaffs_trace(YAFFS_TRACE_ALWAYS,
   3712 				"Found daft chunk_id %d for %d",
   3713 				chunk_id, i);
   3714 		} else {
   3715 			in->n_data_chunks--;
   3716 			yaffs_chunk_del(dev, chunk_id, 1, __LINE__);
   3717 		}
   3718 	}
   3719 }
   3720 
   3721 void yaffs_resize_file_down(struct yaffs_obj *obj, loff_t new_size)
   3722 {
   3723 	int new_full;
   3724 	u32 new_partial;
   3725 	struct yaffs_dev *dev = obj->my_dev;
   3726 
   3727 	yaffs_addr_to_chunk(dev, new_size, &new_full, &new_partial);
   3728 
   3729 	yaffs_prune_chunks(obj, new_size);
   3730 
   3731 	if (new_partial != 0) {
   3732 		int last_chunk = 1 + new_full;
   3733 		u8 *local_buffer = yaffs_get_temp_buffer(dev);
   3734 
   3735 		/* Rewrite the last chunk with its new size and zero pad */
   3736 		yaffs_rd_data_obj(obj, last_chunk, local_buffer);
   3737 		memset(local_buffer + new_partial, 0,
   3738 		       dev->data_bytes_per_chunk - new_partial);
   3739 
   3740 		yaffs_wr_data_obj(obj, last_chunk, local_buffer,
   3741 				  new_partial, 1);
   3742 
   3743 		yaffs_release_temp_buffer(dev, local_buffer);
   3744 	}
   3745 
   3746 	obj->variant.file_variant.file_size = new_size;
   3747 
   3748 	yaffs_prune_tree(dev, &obj->variant.file_variant);
   3749 }
   3750 
   3751 int yaffs_resize_file(struct yaffs_obj *in, loff_t new_size)
   3752 {
   3753 	struct yaffs_dev *dev = in->my_dev;
   3754 	loff_t old_size = in->variant.file_variant.file_size;
   3755 
   3756 	yaffs_flush_file_cache(in);
   3757 	yaffs_invalidate_whole_cache(in);
   3758 
   3759 	yaffs_check_gc(dev, 0);
   3760 
   3761 	if (in->variant_type != YAFFS_OBJECT_TYPE_FILE)
   3762 		return YAFFS_FAIL;
   3763 
   3764 	if (new_size == old_size)
   3765 		return YAFFS_OK;
   3766 
   3767 	if (new_size > old_size) {
   3768 		yaffs2_handle_hole(in, new_size);
   3769 		in->variant.file_variant.file_size = new_size;
   3770 	} else {
   3771 		/* new_size < old_size */
   3772 		yaffs_resize_file_down(in, new_size);
   3773 	}
   3774 
   3775 	/* Write a new object header to reflect the resize.
   3776 	 * show we've shrunk the file, if need be
   3777 	 * Do this only if the file is not in the deleted directories
   3778 	 * and is not shadowed.
   3779 	 */
   3780 	if (in->parent &&
   3781 	    !in->is_shadowed &&
   3782 	    in->parent->obj_id != YAFFS_OBJECTID_UNLINKED &&
   3783 	    in->parent->obj_id != YAFFS_OBJECTID_DELETED)
   3784 		yaffs_update_oh(in, NULL, 0, 0, 0, NULL);
   3785 
   3786 	return YAFFS_OK;
   3787 }
   3788 
   3789 int yaffs_flush_file(struct yaffs_obj *in, int update_time, int data_sync)
   3790 {
   3791 	if (!in->dirty)
   3792 		return YAFFS_OK;
   3793 
   3794 	yaffs_flush_file_cache(in);
   3795 
   3796 	if (data_sync)
   3797 		return YAFFS_OK;
   3798 
   3799 	if (update_time)
   3800 		yaffs_load_current_time(in, 0, 0);
   3801 
   3802 	return (yaffs_update_oh(in, NULL, 0, 0, 0, NULL) >= 0) ?
   3803 				YAFFS_OK : YAFFS_FAIL;
   3804 }
   3805 
   3806 
   3807 /* yaffs_del_file deletes the whole file data
   3808  * and the inode associated with the file.
   3809  * It does not delete the links associated with the file.
   3810  */
   3811 static int yaffs_unlink_file_if_needed(struct yaffs_obj *in)
   3812 {
   3813 	int ret_val;
   3814 	int del_now = 0;
   3815 	struct yaffs_dev *dev = in->my_dev;
   3816 
   3817 	if (!in->my_inode)
   3818 		del_now = 1;
   3819 
   3820 	if (del_now) {
   3821 		ret_val =
   3822 		    yaffs_change_obj_name(in, in->my_dev->del_dir,
   3823 					  _Y("deleted"), 0, 0);
   3824 		yaffs_trace(YAFFS_TRACE_TRACING,
   3825 			"yaffs: immediate deletion of file %d",
   3826 			in->obj_id);
   3827 		in->deleted = 1;
   3828 		in->my_dev->n_deleted_files++;
   3829 		if (dev->param.disable_soft_del || dev->param.is_yaffs2)
   3830 			yaffs_resize_file(in, 0);
   3831 		yaffs_soft_del_file(in);
   3832 	} else {
   3833 		ret_val =
   3834 		    yaffs_change_obj_name(in, in->my_dev->unlinked_dir,
   3835 					  _Y("unlinked"), 0, 0);
   3836 	}
   3837 	return ret_val;
   3838 }
   3839 
   3840 int yaffs_del_file(struct yaffs_obj *in)
   3841 {
   3842 	int ret_val = YAFFS_OK;
   3843 	int deleted;	/* Need to cache value on stack if in is freed */
   3844 	struct yaffs_dev *dev = in->my_dev;
   3845 
   3846 	if (dev->param.disable_soft_del || dev->param.is_yaffs2)
   3847 		yaffs_resize_file(in, 0);
   3848 
   3849 	if (in->n_data_chunks > 0) {
   3850 		/* Use soft deletion if there is data in the file.
   3851 		 * That won't be the case if it has been resized to zero.
   3852 		 */
   3853 		if (!in->unlinked)
   3854 			ret_val = yaffs_unlink_file_if_needed(in);
   3855 
   3856 		deleted = in->deleted;
   3857 
   3858 		if (ret_val == YAFFS_OK && in->unlinked && !in->deleted) {
   3859 			in->deleted = 1;
   3860 			deleted = 1;
   3861 			in->my_dev->n_deleted_files++;
   3862 			yaffs_soft_del_file(in);
   3863 		}
   3864 		return deleted ? YAFFS_OK : YAFFS_FAIL;
   3865 	} else {
   3866 		/* The file has no data chunks so we toss it immediately */
   3867 		yaffs_free_tnode(in->my_dev, in->variant.file_variant.top);
   3868 		in->variant.file_variant.top = NULL;
   3869 		yaffs_generic_obj_del(in);
   3870 
   3871 		return YAFFS_OK;
   3872 	}
   3873 }
   3874 
   3875 int yaffs_is_non_empty_dir(struct yaffs_obj *obj)
   3876 {
   3877 	return (obj &&
   3878 		obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY) &&
   3879 		!(list_empty(&obj->variant.dir_variant.children));
   3880 }
   3881 
   3882 static int yaffs_del_dir(struct yaffs_obj *obj)
   3883 {
   3884 	/* First check that the directory is empty. */
   3885 	if (yaffs_is_non_empty_dir(obj))
   3886 		return YAFFS_FAIL;
   3887 
   3888 	return yaffs_generic_obj_del(obj);
   3889 }
   3890 
   3891 static int yaffs_del_symlink(struct yaffs_obj *in)
   3892 {
   3893 	kfree(in->variant.symlink_variant.alias);
   3894 	in->variant.symlink_variant.alias = NULL;
   3895 
   3896 	return yaffs_generic_obj_del(in);
   3897 }
   3898 
   3899 static int yaffs_del_link(struct yaffs_obj *in)
   3900 {
   3901 	/* remove this hardlink from the list associated with the equivalent
   3902 	 * object
   3903 	 */
   3904 	list_del_init(&in->hard_links);
   3905 	return yaffs_generic_obj_del(in);
   3906 }
   3907 
   3908 int yaffs_del_obj(struct yaffs_obj *obj)
   3909 {
   3910 	int ret_val = -1;
   3911 
   3912 	switch (obj->variant_type) {
   3913 	case YAFFS_OBJECT_TYPE_FILE:
   3914 		ret_val = yaffs_del_file(obj);
   3915 		break;
   3916 	case YAFFS_OBJECT_TYPE_DIRECTORY:
   3917 		if (!list_empty(&obj->variant.dir_variant.dirty)) {
   3918 			yaffs_trace(YAFFS_TRACE_BACKGROUND,
   3919 				"Remove object %d from dirty directories",
   3920 				obj->obj_id);
   3921 			list_del_init(&obj->variant.dir_variant.dirty);
   3922 		}
   3923 		return yaffs_del_dir(obj);
   3924 		break;
   3925 	case YAFFS_OBJECT_TYPE_SYMLINK:
   3926 		ret_val = yaffs_del_symlink(obj);
   3927 		break;
   3928 	case YAFFS_OBJECT_TYPE_HARDLINK:
   3929 		ret_val = yaffs_del_link(obj);
   3930 		break;
   3931 	case YAFFS_OBJECT_TYPE_SPECIAL:
   3932 		ret_val = yaffs_generic_obj_del(obj);
   3933 		break;
   3934 	case YAFFS_OBJECT_TYPE_UNKNOWN:
   3935 		ret_val = 0;
   3936 		break;		/* should not happen. */
   3937 	}
   3938 	return ret_val;
   3939 }
   3940 
   3941 static int yaffs_unlink_worker(struct yaffs_obj *obj)
   3942 {
   3943 	int del_now = 0;
   3944 
   3945 	if (!obj)
   3946 		return YAFFS_FAIL;
   3947 
   3948 	if (!obj->my_inode)
   3949 		del_now = 1;
   3950 
   3951 	yaffs_update_parent(obj->parent);
   3952 
   3953 	if (obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
   3954 		return yaffs_del_link(obj);
   3955 	} else if (!list_empty(&obj->hard_links)) {
   3956 		/* Curve ball: We're unlinking an object that has a hardlink.
   3957 		 *
   3958 		 * This problem arises because we are not strictly following
   3959 		 * The Linux link/inode model.
   3960 		 *
   3961 		 * We can't really delete the object.
   3962 		 * Instead, we do the following:
   3963 		 * - Select a hardlink.
   3964 		 * - Unhook it from the hard links
   3965 		 * - Move it from its parent directory so that the rename works.
   3966 		 * - Rename the object to the hardlink's name.
   3967 		 * - Delete the hardlink
   3968 		 */
   3969 
   3970 		struct yaffs_obj *hl;
   3971 		struct yaffs_obj *parent;
   3972 		int ret_val;
   3973 		YCHAR name[YAFFS_MAX_NAME_LENGTH + 1];
   3974 
   3975 		hl = list_entry(obj->hard_links.next, struct yaffs_obj,
   3976 				hard_links);
   3977 
   3978 		yaffs_get_obj_name(hl, name, YAFFS_MAX_NAME_LENGTH + 1);
   3979 		parent = hl->parent;
   3980 
   3981 		list_del_init(&hl->hard_links);
   3982 
   3983 		yaffs_add_obj_to_dir(obj->my_dev->unlinked_dir, hl);
   3984 
   3985 		ret_val = yaffs_change_obj_name(obj, parent, name, 0, 0);
   3986 
   3987 		if (ret_val == YAFFS_OK)
   3988 			ret_val = yaffs_generic_obj_del(hl);
   3989 
   3990 		return ret_val;
   3991 
   3992 	} else if (del_now) {
   3993 		switch (obj->variant_type) {
   3994 		case YAFFS_OBJECT_TYPE_FILE:
   3995 			return yaffs_del_file(obj);
   3996 			break;
   3997 		case YAFFS_OBJECT_TYPE_DIRECTORY:
   3998 			list_del_init(&obj->variant.dir_variant.dirty);
   3999 			return yaffs_del_dir(obj);
   4000 			break;
   4001 		case YAFFS_OBJECT_TYPE_SYMLINK:
   4002 			return yaffs_del_symlink(obj);
   4003 			break;
   4004 		case YAFFS_OBJECT_TYPE_SPECIAL:
   4005 			return yaffs_generic_obj_del(obj);
   4006 			break;
   4007 		case YAFFS_OBJECT_TYPE_HARDLINK:
   4008 		case YAFFS_OBJECT_TYPE_UNKNOWN:
   4009 		default:
   4010 			return YAFFS_FAIL;
   4011 		}
   4012 	} else if (yaffs_is_non_empty_dir(obj)) {
   4013 		return YAFFS_FAIL;
   4014 	} else {
   4015 		return yaffs_change_obj_name(obj, obj->my_dev->unlinked_dir,
   4016 						_Y("unlinked"), 0, 0);
   4017 	}
   4018 }
   4019 
   4020 static int yaffs_unlink_obj(struct yaffs_obj *obj)
   4021 {
   4022 	if (obj && obj->unlink_allowed)
   4023 		return yaffs_unlink_worker(obj);
   4024 
   4025 	return YAFFS_FAIL;
   4026 }
   4027 
   4028 int yaffs_unlinker(struct yaffs_obj *dir, const YCHAR *name)
   4029 {
   4030 	struct yaffs_obj *obj;
   4031 
   4032 	obj = yaffs_find_by_name(dir, name);
   4033 	return yaffs_unlink_obj(obj);
   4034 }
   4035 
   4036 /* Note:
   4037  * If old_name is NULL then we take old_dir as the object to be renamed.
   4038  */
   4039 int yaffs_rename_obj(struct yaffs_obj *old_dir, const YCHAR *old_name,
   4040 		     struct yaffs_obj *new_dir, const YCHAR *new_name)
   4041 {
   4042 	struct yaffs_obj *obj = NULL;
   4043 	struct yaffs_obj *existing_target = NULL;
   4044 	int force = 0;
   4045 	int result;
   4046 	struct yaffs_dev *dev;
   4047 
   4048 	if (!old_dir || old_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
   4049 		BUG();
   4050 		return YAFFS_FAIL;
   4051 	}
   4052 	if (!new_dir || new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
   4053 		BUG();
   4054 		return YAFFS_FAIL;
   4055 	}
   4056 
   4057 	dev = old_dir->my_dev;
   4058 
   4059 #ifdef CONFIG_YAFFS_CASE_INSENSITIVE
   4060 	/* Special case for case insemsitive systems.
   4061 	 * While look-up is case insensitive, the name isn't.
   4062 	 * Therefore we might want to change x.txt to X.txt
   4063 	 */
   4064 	if (old_dir == new_dir &&
   4065 		old_name && new_name &&
   4066 		yaffs_strcmp(old_name, new_name) == 0)
   4067 		force = 1;
   4068 #endif
   4069 
   4070 	if (yaffs_strnlen(new_name, YAFFS_MAX_NAME_LENGTH + 1) >
   4071 	    YAFFS_MAX_NAME_LENGTH)
   4072 		/* ENAMETOOLONG */
   4073 		return YAFFS_FAIL;
   4074 
   4075 	if (old_name)
   4076 		obj = yaffs_find_by_name(old_dir, old_name);
   4077 	else{
   4078 		obj = old_dir;
   4079 		old_dir = obj->parent;
   4080 	}
   4081 
   4082 	if (obj && obj->rename_allowed) {
   4083 		/* Now handle an existing target, if there is one */
   4084 		existing_target = yaffs_find_by_name(new_dir, new_name);
   4085 		if (yaffs_is_non_empty_dir(existing_target)) {
   4086 			return YAFFS_FAIL;	/* ENOTEMPTY */
   4087 		} else if (existing_target && existing_target != obj) {
   4088 			/* Nuke the target first, using shadowing,
   4089 			 * but only if it isn't the same object.
   4090 			 *
   4091 			 * Note we must disable gc here otherwise it can mess
   4092 			 * up the shadowing.
   4093 			 *
   4094 			 */
   4095 			dev->gc_disable = 1;
   4096 			yaffs_change_obj_name(obj, new_dir, new_name, force,
   4097 					      existing_target->obj_id);
   4098 			existing_target->is_shadowed = 1;
   4099 			yaffs_unlink_obj(existing_target);
   4100 			dev->gc_disable = 0;
   4101 		}
   4102 
   4103 		result = yaffs_change_obj_name(obj, new_dir, new_name, 1, 0);
   4104 
   4105 		yaffs_update_parent(old_dir);
   4106 		if (new_dir != old_dir)
   4107 			yaffs_update_parent(new_dir);
   4108 
   4109 		return result;
   4110 	}
   4111 	return YAFFS_FAIL;
   4112 }
   4113 
   4114 /*----------------------- Initialisation Scanning ---------------------- */
   4115 
   4116 void yaffs_handle_shadowed_obj(struct yaffs_dev *dev, int obj_id,
   4117 			       int backward_scanning)
   4118 {
   4119 	struct yaffs_obj *obj;
   4120 
   4121 	if (backward_scanning) {
   4122 		/* Handle YAFFS2 case (backward scanning)
   4123 		 * If the shadowed object exists then ignore.
   4124 		 */
   4125 		obj = yaffs_find_by_number(dev, obj_id);
   4126 		if (obj)
   4127 			return;
   4128 	}
   4129 
   4130 	/* Let's create it (if it does not exist) assuming it is a file so that
   4131 	 * it can do shrinking etc.
   4132 	 * We put it in unlinked dir to be cleaned up after the scanning
   4133 	 */
   4134 	obj =
   4135 	    yaffs_find_or_create_by_number(dev, obj_id, YAFFS_OBJECT_TYPE_FILE);
   4136 	if (!obj)
   4137 		return;
   4138 	obj->is_shadowed = 1;
   4139 	yaffs_add_obj_to_dir(dev->unlinked_dir, obj);
   4140 	obj->variant.file_variant.shrink_size = 0;
   4141 	obj->valid = 1;		/* So that we don't read any other info. */
   4142 }
   4143 
   4144 void yaffs_link_fixup(struct yaffs_dev *dev, struct list_head *hard_list)
   4145 {
   4146 	struct list_head *lh;
   4147 	struct list_head *save;
   4148 	struct yaffs_obj *hl;
   4149 	struct yaffs_obj *in;
   4150 
   4151 	list_for_each_safe(lh, save, hard_list) {
   4152 		hl = list_entry(lh, struct yaffs_obj, hard_links);
   4153 		in = yaffs_find_by_number(dev,
   4154 					hl->variant.hardlink_variant.equiv_id);
   4155 
   4156 		if (in) {
   4157 			/* Add the hardlink pointers */
   4158 			hl->variant.hardlink_variant.equiv_obj = in;
   4159 			list_add(&hl->hard_links, &in->hard_links);
   4160 		} else {
   4161 			/* Todo Need to report/handle this better.
   4162 			 * Got a problem... hardlink to a non-existant object
   4163 			 */
   4164 			hl->variant.hardlink_variant.equiv_obj = NULL;
   4165 			INIT_LIST_HEAD(&hl->hard_links);
   4166 		}
   4167 	}
   4168 }
   4169 
   4170 static void yaffs_strip_deleted_objs(struct yaffs_dev *dev)
   4171 {
   4172 	/*
   4173 	 *  Sort out state of unlinked and deleted objects after scanning.
   4174 	 */
   4175 	struct list_head *i;
   4176 	struct list_head *n;
   4177 	struct yaffs_obj *l;
   4178 
   4179 	if (dev->read_only)
   4180 		return;
   4181 
   4182 	/* Soft delete all the unlinked files */
   4183 	list_for_each_safe(i, n,
   4184 			   &dev->unlinked_dir->variant.dir_variant.children) {
   4185 		l = list_entry(i, struct yaffs_obj, siblings);
   4186 		yaffs_del_obj(l);
   4187 	}
   4188 
   4189 	list_for_each_safe(i, n, &dev->del_dir->variant.dir_variant.children) {
   4190 		l = list_entry(i, struct yaffs_obj, siblings);
   4191 		yaffs_del_obj(l);
   4192 	}
   4193 }
   4194 
   4195 /*
   4196  * This code iterates through all the objects making sure that they are rooted.
   4197  * Any unrooted objects are re-rooted in lost+found.
   4198  * An object needs to be in one of:
   4199  * - Directly under deleted, unlinked
   4200  * - Directly or indirectly under root.
   4201  *
   4202  * Note:
   4203  *  This code assumes that we don't ever change the current relationships
   4204  *  between directories:
   4205  *   root_dir->parent == unlinked_dir->parent == del_dir->parent == NULL
   4206  *   lost-n-found->parent == root_dir
   4207  *
   4208  * This fixes the problem where directories might have inadvertently been
   4209  * deleted leaving the object "hanging" without being rooted in the
   4210  * directory tree.
   4211  */
   4212 
   4213 static int yaffs_has_null_parent(struct yaffs_dev *dev, struct yaffs_obj *obj)
   4214 {
   4215 	return (obj == dev->del_dir ||
   4216 		obj == dev->unlinked_dir || obj == dev->root_dir);
   4217 }
   4218 
   4219 static void yaffs_fix_hanging_objs(struct yaffs_dev *dev)
   4220 {
   4221 	struct yaffs_obj *obj;
   4222 	struct yaffs_obj *parent;
   4223 	int i;
   4224 	struct list_head *lh;
   4225 	struct list_head *n;
   4226 	int depth_limit;
   4227 	int hanging;
   4228 
   4229 	if (dev->read_only)
   4230 		return;
   4231 
   4232 	/* Iterate through the objects in each hash entry,
   4233 	 * looking at each object.
   4234 	 * Make sure it is rooted.
   4235 	 */
   4236 
   4237 	for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
   4238 		list_for_each_safe(lh, n, &dev->obj_bucket[i].list) {
   4239 			obj = list_entry(lh, struct yaffs_obj, hash_link);
   4240 			parent = obj->parent;
   4241 
   4242 			if (yaffs_has_null_parent(dev, obj)) {
   4243 				/* These directories are not hanging */
   4244 				hanging = 0;
   4245 			} else if (!parent ||
   4246 				   parent->variant_type !=
   4247 				   YAFFS_OBJECT_TYPE_DIRECTORY) {
   4248 				hanging = 1;
   4249 			} else if (yaffs_has_null_parent(dev, parent)) {
   4250 				hanging = 0;
   4251 			} else {
   4252 				/*
   4253 				 * Need to follow the parent chain to
   4254 				 * see if it is hanging.
   4255 				 */
   4256 				hanging = 0;
   4257 				depth_limit = 100;
   4258 
   4259 				while (parent != dev->root_dir &&
   4260 				       parent->parent &&
   4261 				       parent->parent->variant_type ==
   4262 				       YAFFS_OBJECT_TYPE_DIRECTORY &&
   4263 				       depth_limit > 0) {
   4264 					parent = parent->parent;
   4265 					depth_limit--;
   4266 				}
   4267 				if (parent != dev->root_dir)
   4268 					hanging = 1;
   4269 			}
   4270 			if (hanging) {
   4271 				yaffs_trace(YAFFS_TRACE_SCAN,
   4272 					"Hanging object %d moved to lost and found",
   4273 					obj->obj_id);
   4274 				yaffs_add_obj_to_dir(dev->lost_n_found, obj);
   4275 			}
   4276 		}
   4277 	}
   4278 }
   4279 
   4280 /*
   4281  * Delete directory contents for cleaning up lost and found.
   4282  */
   4283 static void yaffs_del_dir_contents(struct yaffs_obj *dir)
   4284 {
   4285 	struct yaffs_obj *obj;
   4286 	struct list_head *lh;
   4287 	struct list_head *n;
   4288 
   4289 	if (dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
   4290 		BUG();
   4291 
   4292 	list_for_each_safe(lh, n, &dir->variant.dir_variant.children) {
   4293 		obj = list_entry(lh, struct yaffs_obj, siblings);
   4294 		if (obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY)
   4295 			yaffs_del_dir_contents(obj);
   4296 		yaffs_trace(YAFFS_TRACE_SCAN,
   4297 			"Deleting lost_found object %d",
   4298 			obj->obj_id);
   4299 		yaffs_unlink_obj(obj);
   4300 	}
   4301 }
   4302 
   4303 static void yaffs_empty_l_n_f(struct yaffs_dev *dev)
   4304 {
   4305 	yaffs_del_dir_contents(dev->lost_n_found);
   4306 }
   4307 
   4308 
   4309 struct yaffs_obj *yaffs_find_by_name(struct yaffs_obj *directory,
   4310 				     const YCHAR *name)
   4311 {
   4312 	int sum;
   4313 	struct list_head *i;
   4314 	YCHAR buffer[YAFFS_MAX_NAME_LENGTH + 1];
   4315 	struct yaffs_obj *l;
   4316 
   4317 	if (!name)
   4318 		return NULL;
   4319 
   4320 	if (!directory) {
   4321 		yaffs_trace(YAFFS_TRACE_ALWAYS,
   4322 			"tragedy: yaffs_find_by_name: null pointer directory"
   4323 			);
   4324 		BUG();
   4325 		return NULL;
   4326 	}
   4327 	if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
   4328 		yaffs_trace(YAFFS_TRACE_ALWAYS,
   4329 			"tragedy: yaffs_find_by_name: non-directory"
   4330 			);
   4331 		BUG();
   4332 	}
   4333 
   4334 	sum = yaffs_calc_name_sum(name);
   4335 
   4336 	list_for_each(i, &directory->variant.dir_variant.children) {
   4337 		l = list_entry(i, struct yaffs_obj, siblings);
   4338 
   4339 		if (l->parent != directory)
   4340 			BUG();
   4341 
   4342 		yaffs_check_obj_details_loaded(l);
   4343 
   4344 		/* Special case for lost-n-found */
   4345 		if (l->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
   4346 			if (!yaffs_strcmp(name, YAFFS_LOSTNFOUND_NAME))
   4347 				return l;
   4348 		} else if (l->sum == sum || l->hdr_chunk <= 0) {
   4349 			/* LostnFound chunk called Objxxx
   4350 			 * Do a real check
   4351 			 */
   4352 			yaffs_get_obj_name(l, buffer,
   4353 				YAFFS_MAX_NAME_LENGTH + 1);
   4354 			if (!yaffs_strncmp(name, buffer, YAFFS_MAX_NAME_LENGTH))
   4355 				return l;
   4356 		}
   4357 	}
   4358 	return NULL;
   4359 }
   4360 
   4361 /* GetEquivalentObject dereferences any hard links to get to the
   4362  * actual object.
   4363  */
   4364 
   4365 struct yaffs_obj *yaffs_get_equivalent_obj(struct yaffs_obj *obj)
   4366 {
   4367 	if (obj && obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
   4368 		obj = obj->variant.hardlink_variant.equiv_obj;
   4369 		yaffs_check_obj_details_loaded(obj);
   4370 	}
   4371 	return obj;
   4372 }
   4373 
   4374 /*
   4375  *  A note or two on object names.
   4376  *  * If the object name is missing, we then make one up in the form objnnn
   4377  *
   4378  *  * ASCII names are stored in the object header's name field from byte zero
   4379  *  * Unicode names are historically stored starting from byte zero.
   4380  *
   4381  * Then there are automatic Unicode names...
   4382  * The purpose of these is to save names in a way that can be read as
   4383  * ASCII or Unicode names as appropriate, thus allowing a Unicode and ASCII
   4384  * system to share files.
   4385  *
   4386  * These automatic unicode are stored slightly differently...
   4387  *  - If the name can fit in the ASCII character space then they are saved as
   4388  *    ascii names as per above.
   4389  *  - If the name needs Unicode then the name is saved in Unicode
   4390  *    starting at oh->name[1].
   4391 
   4392  */
   4393 static void yaffs_fix_null_name(struct yaffs_obj *obj, YCHAR *name,
   4394 				int buffer_size)
   4395 {
   4396 	/* Create an object name if we could not find one. */
   4397 	if (yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH) == 0) {
   4398 		YCHAR local_name[20];
   4399 		YCHAR num_string[20];
   4400 		YCHAR *x = &num_string[19];
   4401 		unsigned v = obj->obj_id;
   4402 		num_string[19] = 0;
   4403 		while (v > 0) {
   4404 			x--;
   4405 			*x = '0' + (v % 10);
   4406 			v /= 10;
   4407 		}
   4408 		/* make up a name */
   4409 		yaffs_strcpy(local_name, YAFFS_LOSTNFOUND_PREFIX);
   4410 		yaffs_strcat(local_name, x);
   4411 		yaffs_strncpy(name, local_name, buffer_size - 1);
   4412 	}
   4413 }
   4414 
   4415 int yaffs_get_obj_name(struct yaffs_obj *obj, YCHAR *name, int buffer_size)
   4416 {
   4417 	memset(name, 0, buffer_size * sizeof(YCHAR));
   4418 	yaffs_check_obj_details_loaded(obj);
   4419 	if (obj->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
   4420 		yaffs_strncpy(name, YAFFS_LOSTNFOUND_NAME, buffer_size - 1);
   4421 	} else if (obj->short_name[0]) {
   4422 		yaffs_strcpy(name, obj->short_name);
   4423 	} else if (obj->hdr_chunk > 0) {
   4424 		u8 *buffer = yaffs_get_temp_buffer(obj->my_dev);
   4425 
   4426 		struct yaffs_obj_hdr *oh = (struct yaffs_obj_hdr *)buffer;
   4427 
   4428 		memset(buffer, 0, obj->my_dev->data_bytes_per_chunk);
   4429 
   4430 		if (obj->hdr_chunk > 0) {
   4431 			yaffs_rd_chunk_tags_nand(obj->my_dev,
   4432 						 obj->hdr_chunk,
   4433 						 buffer, NULL);
   4434 		}
   4435 		yaffs_load_name_from_oh(obj->my_dev, name, oh->name,
   4436 					buffer_size);
   4437 
   4438 		yaffs_release_temp_buffer(obj->my_dev, buffer);
   4439 	}
   4440 
   4441 	yaffs_fix_null_name(obj, name, buffer_size);
   4442 
   4443 	return yaffs_strnlen(name, YAFFS_MAX_NAME_LENGTH);
   4444 }
   4445 
   4446 loff_t yaffs_get_obj_length(struct yaffs_obj *obj)
   4447 {
   4448 	/* Dereference any hard linking */
   4449 	obj = yaffs_get_equivalent_obj(obj);
   4450 
   4451 	if (obj->variant_type == YAFFS_OBJECT_TYPE_FILE)
   4452 		return obj->variant.file_variant.file_size;
   4453 	if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
   4454 		if (!obj->variant.symlink_variant.alias)
   4455 			return 0;
   4456 		return yaffs_strnlen(obj->variant.symlink_variant.alias,
   4457 				     YAFFS_MAX_ALIAS_LENGTH);
   4458 	} else {
   4459 		/* Only a directory should drop through to here */
   4460 		return obj->my_dev->data_bytes_per_chunk;
   4461 	}
   4462 }
   4463 
   4464 int yaffs_get_obj_link_count(struct yaffs_obj *obj)
   4465 {
   4466 	int count = 0;
   4467 	struct list_head *i;
   4468 
   4469 	if (!obj->unlinked)
   4470 		count++;	/* the object itself */
   4471 
   4472 	list_for_each(i, &obj->hard_links)
   4473 	    count++;		/* add the hard links; */
   4474 
   4475 	return count;
   4476 }
   4477 
   4478 int yaffs_get_obj_inode(struct yaffs_obj *obj)
   4479 {
   4480 	obj = yaffs_get_equivalent_obj(obj);
   4481 
   4482 	return obj->obj_id;
   4483 }
   4484 
   4485 unsigned yaffs_get_obj_type(struct yaffs_obj *obj)
   4486 {
   4487 	obj = yaffs_get_equivalent_obj(obj);
   4488 
   4489 	switch (obj->variant_type) {
   4490 	case YAFFS_OBJECT_TYPE_FILE:
   4491 		return DT_REG;
   4492 		break;
   4493 	case YAFFS_OBJECT_TYPE_DIRECTORY:
   4494 		return DT_DIR;
   4495 		break;
   4496 	case YAFFS_OBJECT_TYPE_SYMLINK:
   4497 		return DT_LNK;
   4498 		break;
   4499 	case YAFFS_OBJECT_TYPE_HARDLINK:
   4500 		return DT_REG;
   4501 		break;
   4502 	case YAFFS_OBJECT_TYPE_SPECIAL:
   4503 		if (S_ISFIFO(obj->yst_mode))
   4504 			return DT_FIFO;
   4505 		if (S_ISCHR(obj->yst_mode))
   4506 			return DT_CHR;
   4507 		if (S_ISBLK(obj->yst_mode))
   4508 			return DT_BLK;
   4509 		if (S_ISSOCK(obj->yst_mode))
   4510 			return DT_SOCK;
   4511 		return DT_REG;
   4512 		break;
   4513 	default:
   4514 		return DT_REG;
   4515 		break;
   4516 	}
   4517 }
   4518 
   4519 YCHAR *yaffs_get_symlink_alias(struct yaffs_obj *obj)
   4520 {
   4521 	obj = yaffs_get_equivalent_obj(obj);
   4522 	if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK)
   4523 		return yaffs_clone_str(obj->variant.symlink_variant.alias);
   4524 	else
   4525 		return yaffs_clone_str(_Y(""));
   4526 }
   4527 
   4528 /*--------------------------- Initialisation code -------------------------- */
   4529 
   4530 static int yaffs_check_dev_fns(const struct yaffs_dev *dev)
   4531 {
   4532 	/* Common functions, gotta have */
   4533 	if (!dev->param.erase_fn || !dev->param.initialise_flash_fn)
   4534 		return 0;
   4535 
   4536 	/* Can use the "with tags" style interface for yaffs1 or yaffs2 */
   4537 	if (dev->param.write_chunk_tags_fn &&
   4538 	    dev->param.read_chunk_tags_fn &&
   4539 	    !dev->param.write_chunk_fn &&
   4540 	    !dev->param.read_chunk_fn &&
   4541 	    dev->param.bad_block_fn && dev->param.query_block_fn)
   4542 		return 1;
   4543 
   4544 	/* Can use the "spare" style interface for yaffs1 */
   4545 	if (!dev->param.is_yaffs2 &&
   4546 	    !dev->param.write_chunk_tags_fn &&
   4547 	    !dev->param.read_chunk_tags_fn &&
   4548 	    dev->param.write_chunk_fn &&
   4549 	    dev->param.read_chunk_fn &&
   4550 	    !dev->param.bad_block_fn && !dev->param.query_block_fn)
   4551 		return 1;
   4552 
   4553 	return 0;		/* bad */
   4554 }
   4555 
   4556 static int yaffs_create_initial_dir(struct yaffs_dev *dev)
   4557 {
   4558 	/* Initialise the unlinked, deleted, root and lost+found directories */
   4559 	dev->lost_n_found = dev->root_dir = NULL;
   4560 	dev->unlinked_dir = dev->del_dir = NULL;
   4561 	dev->unlinked_dir =
   4562 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_UNLINKED, S_IFDIR);
   4563 	dev->del_dir =
   4564 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_DELETED, S_IFDIR);
   4565 	dev->root_dir =
   4566 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_ROOT,
   4567 				  YAFFS_ROOT_MODE | S_IFDIR);
   4568 	dev->lost_n_found =
   4569 	    yaffs_create_fake_dir(dev, YAFFS_OBJECTID_LOSTNFOUND,
   4570 				  YAFFS_LOSTNFOUND_MODE | S_IFDIR);
   4571 
   4572 	if (dev->lost_n_found && dev->root_dir && dev->unlinked_dir
   4573 	    && dev->del_dir) {
   4574 		yaffs_add_obj_to_dir(dev->root_dir, dev->lost_n_found);
   4575 		return YAFFS_OK;
   4576 	}
   4577 	return YAFFS_FAIL;
   4578 }
   4579 
   4580 int yaffs_guts_initialise(struct yaffs_dev *dev)
   4581 {
   4582 	int init_failed = 0;
   4583 	unsigned x;
   4584 	int bits;
   4585 
   4586 	yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: yaffs_guts_initialise()");
   4587 
   4588 	/* Check stuff that must be set */
   4589 
   4590 	if (!dev) {
   4591 		yaffs_trace(YAFFS_TRACE_ALWAYS,
   4592 			"yaffs: Need a device"
   4593 			);
   4594 		return YAFFS_FAIL;
   4595 	}
   4596 
   4597 	if (dev->is_mounted) {
   4598 		yaffs_trace(YAFFS_TRACE_ALWAYS, "device already mounted");
   4599 		return YAFFS_FAIL;
   4600 	}
   4601 
   4602 	dev->internal_start_block = dev->param.start_block;
   4603 	dev->internal_end_block = dev->param.end_block;
   4604 	dev->block_offset = 0;
   4605 	dev->chunk_offset = 0;
   4606 	dev->n_free_chunks = 0;
   4607 
   4608 	dev->gc_block = 0;
   4609 
   4610 	if (dev->param.start_block == 0) {
   4611 		dev->internal_start_block = dev->param.start_block + 1;
   4612 		dev->internal_end_block = dev->param.end_block + 1;
   4613 		dev->block_offset = 1;
   4614 		dev->chunk_offset = dev->param.chunks_per_block;
   4615 	}
   4616 
   4617 	/* Check geometry parameters. */
   4618 
   4619 	if ((!dev->param.inband_tags && dev->param.is_yaffs2 &&
   4620 		dev->param.total_bytes_per_chunk < 1024) ||
   4621 		(!dev->param.is_yaffs2 &&
   4622 			dev->param.total_bytes_per_chunk < 512) ||
   4623 		(dev->param.inband_tags && !dev->param.is_yaffs2) ||
   4624 		 dev->param.chunks_per_block < 2 ||
   4625 		 dev->param.n_reserved_blocks < 2 ||
   4626 		dev->internal_start_block <= 0 ||
   4627 		dev->internal_end_block <= 0 ||
   4628 		dev->internal_end_block <=
   4629 		(dev->internal_start_block + dev->param.n_reserved_blocks + 2)
   4630 		) {
   4631 		/* otherwise it is too small */
   4632 		yaffs_trace(YAFFS_TRACE_ALWAYS,
   4633 			"NAND geometry problems: chunk size %d, type is yaffs%s, inband_tags %d ",
   4634 			dev->param.total_bytes_per_chunk,
   4635 			dev->param.is_yaffs2 ? "2" : "",
   4636 			dev->param.inband_tags);
   4637 		return YAFFS_FAIL;
   4638 	}
   4639 
   4640 	if (yaffs_init_nand(dev) != YAFFS_OK) {
   4641 		yaffs_trace(YAFFS_TRACE_ALWAYS, "InitialiseNAND failed");
   4642 		return YAFFS_FAIL;
   4643 	}
   4644 
   4645 	/* Sort out space for inband tags, if required */
   4646 	if (dev->param.inband_tags)
   4647 		dev->data_bytes_per_chunk =
   4648 		    dev->param.total_bytes_per_chunk -
   4649 		    sizeof(struct yaffs_packed_tags2_tags_only);
   4650 	else
   4651 		dev->data_bytes_per_chunk = dev->param.total_bytes_per_chunk;
   4652 
   4653 	/* Got the right mix of functions? */
   4654 	if (!yaffs_check_dev_fns(dev)) {
   4655 		/* Function missing */
   4656 		yaffs_trace(YAFFS_TRACE_ALWAYS,
   4657 			"device function(s) missing or wrong");
   4658 
   4659 		return YAFFS_FAIL;
   4660 	}
   4661 
   4662 	/* Finished with most checks. Further checks happen later on too. */
   4663 
   4664 	dev->is_mounted = 1;
   4665 
   4666 	/* OK now calculate a few things for the device */
   4667 
   4668 	/*
   4669 	 *  Calculate all the chunk size manipulation numbers:
   4670 	 */
   4671 	x = dev->data_bytes_per_chunk;
   4672 	/* We always use dev->chunk_shift and dev->chunk_div */
   4673 	dev->chunk_shift = calc_shifts(x);
   4674 	x >>= dev->chunk_shift;
   4675 	dev->chunk_div = x;
   4676 	/* We only use chunk mask if chunk_div is 1 */
   4677 	dev->chunk_mask = (1 << dev->chunk_shift) - 1;
   4678 
   4679 	/*
   4680 	 * Calculate chunk_grp_bits.
   4681 	 * We need to find the next power of 2 > than internal_end_block
   4682 	 */
   4683 
   4684 	x = dev->param.chunks_per_block * (dev->internal_end_block + 1);
   4685 
   4686 	bits = calc_shifts_ceiling(x);
   4687 
   4688 	/* Set up tnode width if wide tnodes are enabled. */
   4689 	if (!dev->param.wide_tnodes_disabled) {
   4690 		/* bits must be even so that we end up with 32-bit words */
   4691 		if (bits & 1)
   4692 			bits++;
   4693 		if (bits < 16)
   4694 			dev->tnode_width = 16;
   4695 		else
   4696 			dev->tnode_width = bits;
   4697 	} else {
   4698 		dev->tnode_width = 16;
   4699 	}
   4700 
   4701 	dev->tnode_mask = (1 << dev->tnode_width) - 1;
   4702 
   4703 	/* Level0 Tnodes are 16 bits or wider (if wide tnodes are enabled),
   4704 	 * so if the bitwidth of the
   4705 	 * chunk range we're using is greater than 16 we need
   4706 	 * to figure out chunk shift and chunk_grp_size
   4707 	 */
   4708 
   4709 	if (bits <= dev->tnode_width)
   4710 		dev->chunk_grp_bits = 0;
   4711 	else
   4712 		dev->chunk_grp_bits = bits - dev->tnode_width;
   4713 
   4714 	dev->tnode_size = (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8;
   4715 	if (dev->tnode_size < sizeof(struct yaffs_tnode))
   4716 		dev->tnode_size = sizeof(struct yaffs_tnode);
   4717 
   4718 	dev->chunk_grp_size = 1 << dev->chunk_grp_bits;
   4719 
   4720 	if (dev->param.chunks_per_block < dev->chunk_grp_size) {
   4721 		/* We have a problem because the soft delete won't work if
   4722 		 * the chunk group size > chunks per block.
   4723 		 * This can be remedied by using larger "virtual blocks".
   4724 		 */
   4725 		yaffs_trace(YAFFS_TRACE_ALWAYS, "chunk group too large");
   4726 
   4727 		return YAFFS_FAIL;
   4728 	}
   4729 
   4730 	/* Finished verifying the device, continue with initialisation */
   4731 
   4732 	/* More device initialisation */
   4733 	dev->all_gcs = 0;
   4734 	dev->passive_gc_count = 0;
   4735 	dev->oldest_dirty_gc_count = 0;
   4736 	dev->bg_gcs = 0;
   4737 	dev->gc_block_finder = 0;
   4738 	dev->buffered_block = -1;
   4739 	dev->doing_buffered_block_rewrite = 0;
   4740 	dev->n_deleted_files = 0;
   4741 	dev->n_bg_deletions = 0;
   4742 	dev->n_unlinked_files = 0;
   4743 	dev->n_ecc_fixed = 0;
   4744 	dev->n_ecc_unfixed = 0;
   4745 	dev->n_tags_ecc_fixed = 0;
   4746 	dev->n_tags_ecc_unfixed = 0;
   4747 	dev->n_erase_failures = 0;
   4748 	dev->n_erased_blocks = 0;
   4749 	dev->gc_disable = 0;
   4750 	dev->has_pending_prioritised_gc = 1;
   4751 		/* Assume the worst for now, will get fixed on first GC */
   4752 	INIT_LIST_HEAD(&dev->dirty_dirs);
   4753 	dev->oldest_dirty_seq = 0;
   4754 	dev->oldest_dirty_block = 0;
   4755 
   4756 	/* Initialise temporary buffers and caches. */
   4757 	if (!yaffs_init_tmp_buffers(dev))
   4758 		init_failed = 1;
   4759 
   4760 	dev->cache = NULL;
   4761 	dev->gc_cleanup_list = NULL;
   4762 
   4763 	if (!init_failed && dev->param.n_caches > 0) {
   4764 		int i;
   4765 		void *buf;
   4766 		int cache_bytes =
   4767 		    dev->param.n_caches * sizeof(struct yaffs_cache);
   4768 
   4769 		if (dev->param.n_caches > YAFFS_MAX_SHORT_OP_CACHES)
   4770 			dev->param.n_caches = YAFFS_MAX_SHORT_OP_CACHES;
   4771 
   4772 		dev->cache = kmalloc(cache_bytes, GFP_NOFS);
   4773 
   4774 		buf = (u8 *) dev->cache;
   4775 
   4776 		if (dev->cache)
   4777 			memset(dev->cache, 0, cache_bytes);
   4778 
   4779 		for (i = 0; i < dev->param.n_caches && buf; i++) {
   4780 			dev->cache[i].object = NULL;
   4781 			dev->cache[i].last_use = 0;
   4782 			dev->cache[i].dirty = 0;
   4783 			dev->cache[i].data = buf =
   4784 			    kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
   4785 		}
   4786 		if (!buf)
   4787 			init_failed = 1;
   4788 
   4789 		dev->cache_last_use = 0;
   4790 	}
   4791 
   4792 	dev->cache_hits = 0;
   4793 
   4794 	if (!init_failed) {
   4795 		dev->gc_cleanup_list =
   4796 		    kmalloc(dev->param.chunks_per_block * sizeof(u32),
   4797 					GFP_NOFS);
   4798 		if (!dev->gc_cleanup_list)
   4799 			init_failed = 1;
   4800 	}
   4801 
   4802 	if (dev->param.is_yaffs2)
   4803 		dev->param.use_header_file_size = 1;
   4804 
   4805 	if (!init_failed && !yaffs_init_blocks(dev))
   4806 		init_failed = 1;
   4807 
   4808 	yaffs_init_tnodes_and_objs(dev);
   4809 
   4810 	if (!init_failed && !yaffs_create_initial_dir(dev))
   4811 		init_failed = 1;
   4812 
   4813 	if (!init_failed && dev->param.is_yaffs2 &&
   4814 		!dev->param.disable_summary &&
   4815 		!yaffs_summary_init(dev))
   4816 		init_failed = 1;
   4817 
   4818 	if (!init_failed) {
   4819 		/* Now scan the flash. */
   4820 		if (dev->param.is_yaffs2) {
   4821 			if (yaffs2_checkpt_restore(dev)) {
   4822 				yaffs_check_obj_details_loaded(dev->root_dir);
   4823 				yaffs_trace(YAFFS_TRACE_CHECKPOINT |
   4824 					YAFFS_TRACE_MOUNT,
   4825 					"yaffs: restored from checkpoint"
   4826 					);
   4827 			} else {
   4828 
   4829 				/* Clean up the mess caused by an aborted
   4830 				 * checkpoint load then scan backwards.
   4831 				 */
   4832 				yaffs_deinit_blocks(dev);
   4833 
   4834 				yaffs_deinit_tnodes_and_objs(dev);
   4835 
   4836 				dev->n_erased_blocks = 0;
   4837 				dev->n_free_chunks = 0;
   4838 				dev->alloc_block = -1;
   4839 				dev->alloc_page = -1;
   4840 				dev->n_deleted_files = 0;
   4841 				dev->n_unlinked_files = 0;
   4842 				dev->n_bg_deletions = 0;
   4843 
   4844 				if (!init_failed && !yaffs_init_blocks(dev))
   4845 					init_failed = 1;
   4846 
   4847 				yaffs_init_tnodes_and_objs(dev);
   4848 
   4849 				if (!init_failed
   4850 				    && !yaffs_create_initial_dir(dev))
   4851 					init_failed = 1;
   4852 
   4853 				if (!init_failed && !yaffs2_scan_backwards(dev))
   4854 					init_failed = 1;
   4855 			}
   4856 		} else if (!yaffs1_scan(dev)) {
   4857 			init_failed = 1;
   4858 		}
   4859 
   4860 		yaffs_strip_deleted_objs(dev);
   4861 		yaffs_fix_hanging_objs(dev);
   4862 		if (dev->param.empty_lost_n_found)
   4863 			yaffs_empty_l_n_f(dev);
   4864 	}
   4865 
   4866 	if (init_failed) {
   4867 		/* Clean up the mess */
   4868 		yaffs_trace(YAFFS_TRACE_TRACING,
   4869 		  "yaffs: yaffs_guts_initialise() aborted.");
   4870 
   4871 		yaffs_deinitialise(dev);
   4872 		return YAFFS_FAIL;
   4873 	}
   4874 
   4875 	/* Zero out stats */
   4876 	dev->n_page_reads = 0;
   4877 	dev->n_page_writes = 0;
   4878 	dev->n_erasures = 0;
   4879 	dev->n_gc_copies = 0;
   4880 	dev->n_retried_writes = 0;
   4881 
   4882 	dev->n_retired_blocks = 0;
   4883 
   4884 	yaffs_verify_free_chunks(dev);
   4885 	yaffs_verify_blocks(dev);
   4886 
   4887 	/* Clean up any aborted checkpoint data */
   4888 	if (!dev->is_checkpointed && dev->blocks_in_checkpt > 0)
   4889 		yaffs2_checkpt_invalidate(dev);
   4890 
   4891 	yaffs_trace(YAFFS_TRACE_TRACING,
   4892 	  "yaffs: yaffs_guts_initialise() done.");
   4893 	return YAFFS_OK;
   4894 }
   4895 
   4896 void yaffs_deinitialise(struct yaffs_dev *dev)
   4897 {
   4898 	if (dev->is_mounted) {
   4899 		int i;
   4900 
   4901 		yaffs_deinit_blocks(dev);
   4902 		yaffs_deinit_tnodes_and_objs(dev);
   4903 		yaffs_summary_deinit(dev);
   4904 
   4905 		if (dev->param.n_caches > 0 && dev->cache) {
   4906 
   4907 			for (i = 0; i < dev->param.n_caches; i++) {
   4908 				kfree(dev->cache[i].data);
   4909 				dev->cache[i].data = NULL;
   4910 			}
   4911 
   4912 			kfree(dev->cache);
   4913 			dev->cache = NULL;
   4914 		}
   4915 
   4916 		kfree(dev->gc_cleanup_list);
   4917 
   4918 		for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++)
   4919 			kfree(dev->temp_buffer[i].buffer);
   4920 
   4921 		dev->is_mounted = 0;
   4922 
   4923 		if (dev->param.deinitialise_flash_fn)
   4924 			dev->param.deinitialise_flash_fn(dev);
   4925 	}
   4926 }
   4927 
   4928 int yaffs_count_free_chunks(struct yaffs_dev *dev)
   4929 {
   4930 	int n_free = 0;
   4931 	int b;
   4932 	struct yaffs_block_info *blk;
   4933 
   4934 	blk = dev->block_info;
   4935 	for (b = dev->internal_start_block; b <= dev->internal_end_block; b++) {
   4936 		switch (blk->block_state) {
   4937 		case YAFFS_BLOCK_STATE_EMPTY:
   4938 		case YAFFS_BLOCK_STATE_ALLOCATING:
   4939 		case YAFFS_BLOCK_STATE_COLLECTING:
   4940 		case YAFFS_BLOCK_STATE_FULL:
   4941 			n_free +=
   4942 			    (dev->param.chunks_per_block - blk->pages_in_use +
   4943 			     blk->soft_del_pages);
   4944 			break;
   4945 		default:
   4946 			break;
   4947 		}
   4948 		blk++;
   4949 	}
   4950 	return n_free;
   4951 }
   4952 
   4953 int yaffs_get_n_free_chunks(struct yaffs_dev *dev)
   4954 {
   4955 	/* This is what we report to the outside world */
   4956 	int n_free;
   4957 	int n_dirty_caches;
   4958 	int blocks_for_checkpt;
   4959 	int i;
   4960 
   4961 	n_free = dev->n_free_chunks;
   4962 	n_free += dev->n_deleted_files;
   4963 
   4964 	/* Now count and subtract the number of dirty chunks in the cache. */
   4965 
   4966 	for (n_dirty_caches = 0, i = 0; i < dev->param.n_caches; i++) {
   4967 		if (dev->cache[i].dirty)
   4968 			n_dirty_caches++;
   4969 	}
   4970 
   4971 	n_free -= n_dirty_caches;
   4972 
   4973 	n_free -=
   4974 	    ((dev->param.n_reserved_blocks + 1) * dev->param.chunks_per_block);
   4975 
   4976 	/* Now figure checkpoint space and report that... */
   4977 	blocks_for_checkpt = yaffs_calc_checkpt_blocks_required(dev);
   4978 
   4979 	n_free -= (blocks_for_checkpt * dev->param.chunks_per_block);
   4980 
   4981 	if (n_free < 0)
   4982 		n_free = 0;
   4983 
   4984 	return n_free;
   4985 }
   4986 
   4987 /*\
   4988  * Marshalling functions to get loff_t file sizes into aand out of
   4989  * object headers.
   4990  */
   4991 void yaffs_oh_size_load(struct yaffs_obj_hdr *oh, loff_t fsize)
   4992 {
   4993 	oh->file_size_low = (fsize & 0xFFFFFFFF);
   4994 	oh->file_size_high = ((fsize >> 32) & 0xFFFFFFFF);
   4995 }
   4996 
   4997 loff_t yaffs_oh_to_size(struct yaffs_obj_hdr *oh)
   4998 {
   4999 	loff_t retval;
   5000 
   5001 	if (~(oh->file_size_high))
   5002 		retval = (((loff_t) oh->file_size_high) << 32) |
   5003 			(((loff_t) oh->file_size_low) & 0xFFFFFFFF);
   5004 	else
   5005 		retval = (loff_t) oh->file_size_low;
   5006 
   5007 	return retval;
   5008 }
   5009