Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "instruction_simplifier.h"
     18 
     19 #include "art_method-inl.h"
     20 #include "class_linker-inl.h"
     21 #include "class_root.h"
     22 #include "data_type-inl.h"
     23 #include "escape.h"
     24 #include "intrinsics.h"
     25 #include "mirror/class-inl.h"
     26 #include "scoped_thread_state_change-inl.h"
     27 #include "sharpening.h"
     28 
     29 namespace art {
     30 
     31 // Whether to run an exhaustive test of individual HInstructions cloning when each instruction
     32 // is replaced with its copy if it is clonable.
     33 static constexpr bool kTestInstructionClonerExhaustively = false;
     34 
     35 class InstructionSimplifierVisitor : public HGraphDelegateVisitor {
     36  public:
     37   InstructionSimplifierVisitor(HGraph* graph,
     38                                CodeGenerator* codegen,
     39                                OptimizingCompilerStats* stats)
     40       : HGraphDelegateVisitor(graph),
     41         codegen_(codegen),
     42         stats_(stats) {}
     43 
     44   bool Run();
     45 
     46  private:
     47   void RecordSimplification() {
     48     simplification_occurred_ = true;
     49     simplifications_at_current_position_++;
     50     MaybeRecordStat(stats_, MethodCompilationStat::kInstructionSimplifications);
     51   }
     52 
     53   bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl);
     54   bool TryReplaceWithRotate(HBinaryOperation* instruction);
     55   bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
     56   bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
     57   bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
     58 
     59   bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop);
     60   // `op` should be either HOr or HAnd.
     61   // De Morgan's laws:
     62   // ~a & ~b = ~(a | b)  and  ~a | ~b = ~(a & b)
     63   bool TryDeMorganNegationFactoring(HBinaryOperation* op);
     64   bool TryHandleAssociativeAndCommutativeOperation(HBinaryOperation* instruction);
     65   bool TrySubtractionChainSimplification(HBinaryOperation* instruction);
     66   bool TryCombineVecMultiplyAccumulate(HVecMul* mul);
     67 
     68   void VisitShift(HBinaryOperation* shift);
     69   void VisitEqual(HEqual* equal) override;
     70   void VisitNotEqual(HNotEqual* equal) override;
     71   void VisitBooleanNot(HBooleanNot* bool_not) override;
     72   void VisitInstanceFieldSet(HInstanceFieldSet* equal) override;
     73   void VisitStaticFieldSet(HStaticFieldSet* equal) override;
     74   void VisitArraySet(HArraySet* equal) override;
     75   void VisitTypeConversion(HTypeConversion* instruction) override;
     76   void VisitNullCheck(HNullCheck* instruction) override;
     77   void VisitArrayLength(HArrayLength* instruction) override;
     78   void VisitCheckCast(HCheckCast* instruction) override;
     79   void VisitAbs(HAbs* instruction) override;
     80   void VisitAdd(HAdd* instruction) override;
     81   void VisitAnd(HAnd* instruction) override;
     82   void VisitCondition(HCondition* instruction) override;
     83   void VisitGreaterThan(HGreaterThan* condition) override;
     84   void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) override;
     85   void VisitLessThan(HLessThan* condition) override;
     86   void VisitLessThanOrEqual(HLessThanOrEqual* condition) override;
     87   void VisitBelow(HBelow* condition) override;
     88   void VisitBelowOrEqual(HBelowOrEqual* condition) override;
     89   void VisitAbove(HAbove* condition) override;
     90   void VisitAboveOrEqual(HAboveOrEqual* condition) override;
     91   void VisitDiv(HDiv* instruction) override;
     92   void VisitMul(HMul* instruction) override;
     93   void VisitNeg(HNeg* instruction) override;
     94   void VisitNot(HNot* instruction) override;
     95   void VisitOr(HOr* instruction) override;
     96   void VisitShl(HShl* instruction) override;
     97   void VisitShr(HShr* instruction) override;
     98   void VisitSub(HSub* instruction) override;
     99   void VisitUShr(HUShr* instruction) override;
    100   void VisitXor(HXor* instruction) override;
    101   void VisitSelect(HSelect* select) override;
    102   void VisitIf(HIf* instruction) override;
    103   void VisitInstanceOf(HInstanceOf* instruction) override;
    104   void VisitInvoke(HInvoke* invoke) override;
    105   void VisitDeoptimize(HDeoptimize* deoptimize) override;
    106   void VisitVecMul(HVecMul* instruction) override;
    107 
    108   bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const;
    109 
    110   void SimplifyRotate(HInvoke* invoke, bool is_left, DataType::Type type);
    111   void SimplifySystemArrayCopy(HInvoke* invoke);
    112   void SimplifyStringEquals(HInvoke* invoke);
    113   void SimplifyCompare(HInvoke* invoke, bool is_signum, DataType::Type type);
    114   void SimplifyIsNaN(HInvoke* invoke);
    115   void SimplifyFP2Int(HInvoke* invoke);
    116   void SimplifyStringCharAt(HInvoke* invoke);
    117   void SimplifyStringIsEmptyOrLength(HInvoke* invoke);
    118   void SimplifyStringIndexOf(HInvoke* invoke);
    119   void SimplifyNPEOnArgN(HInvoke* invoke, size_t);
    120   void SimplifyReturnThis(HInvoke* invoke);
    121   void SimplifyAllocationIntrinsic(HInvoke* invoke);
    122   void SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind);
    123   void SimplifyMin(HInvoke* invoke, DataType::Type type);
    124   void SimplifyMax(HInvoke* invoke, DataType::Type type);
    125   void SimplifyAbs(HInvoke* invoke, DataType::Type type);
    126 
    127   CodeGenerator* codegen_;
    128   OptimizingCompilerStats* stats_;
    129   bool simplification_occurred_ = false;
    130   int simplifications_at_current_position_ = 0;
    131   // We ensure we do not loop infinitely. The value should not be too high, since that
    132   // would allow looping around the same basic block too many times. The value should
    133   // not be too low either, however, since we want to allow revisiting a basic block
    134   // with many statements and simplifications at least once.
    135   static constexpr int kMaxSamePositionSimplifications = 50;
    136 };
    137 
    138 bool InstructionSimplifier::Run() {
    139   if (kTestInstructionClonerExhaustively) {
    140     CloneAndReplaceInstructionVisitor visitor(graph_);
    141     visitor.VisitReversePostOrder();
    142   }
    143 
    144   InstructionSimplifierVisitor visitor(graph_, codegen_, stats_);
    145   return visitor.Run();
    146 }
    147 
    148 bool InstructionSimplifierVisitor::Run() {
    149   bool didSimplify = false;
    150   // Iterate in reverse post order to open up more simplifications to users
    151   // of instructions that got simplified.
    152   for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
    153     // The simplification of an instruction to another instruction may yield
    154     // possibilities for other simplifications. So although we perform a reverse
    155     // post order visit, we sometimes need to revisit an instruction index.
    156     do {
    157       simplification_occurred_ = false;
    158       VisitBasicBlock(block);
    159       if (simplification_occurred_) {
    160         didSimplify = true;
    161       }
    162     } while (simplification_occurred_ &&
    163              (simplifications_at_current_position_ < kMaxSamePositionSimplifications));
    164     simplifications_at_current_position_ = 0;
    165   }
    166   return didSimplify;
    167 }
    168 
    169 namespace {
    170 
    171 bool AreAllBitsSet(HConstant* constant) {
    172   return Int64FromConstant(constant) == -1;
    173 }
    174 
    175 }  // namespace
    176 
    177 // Returns true if the code was simplified to use only one negation operation
    178 // after the binary operation instead of one on each of the inputs.
    179 bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) {
    180   DCHECK(binop->IsAdd() || binop->IsSub());
    181   DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg());
    182   HNeg* left_neg = binop->GetLeft()->AsNeg();
    183   HNeg* right_neg = binop->GetRight()->AsNeg();
    184   if (!left_neg->HasOnlyOneNonEnvironmentUse() ||
    185       !right_neg->HasOnlyOneNonEnvironmentUse()) {
    186     return false;
    187   }
    188   // Replace code looking like
    189   //    NEG tmp1, a
    190   //    NEG tmp2, b
    191   //    ADD dst, tmp1, tmp2
    192   // with
    193   //    ADD tmp, a, b
    194   //    NEG dst, tmp
    195   // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point.
    196   // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`,
    197   // while the later yields `-0.0`.
    198   if (!DataType::IsIntegralType(binop->GetType())) {
    199     return false;
    200   }
    201   binop->ReplaceInput(left_neg->GetInput(), 0);
    202   binop->ReplaceInput(right_neg->GetInput(), 1);
    203   left_neg->GetBlock()->RemoveInstruction(left_neg);
    204   right_neg->GetBlock()->RemoveInstruction(right_neg);
    205   HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(binop->GetType(), binop);
    206   binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext());
    207   binop->ReplaceWithExceptInReplacementAtIndex(neg, 0);
    208   RecordSimplification();
    209   return true;
    210 }
    211 
    212 bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) {
    213   DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName();
    214   DataType::Type type = op->GetType();
    215   HInstruction* left = op->GetLeft();
    216   HInstruction* right = op->GetRight();
    217 
    218   // We can apply De Morgan's laws if both inputs are Not's and are only used
    219   // by `op`.
    220   if (((left->IsNot() && right->IsNot()) ||
    221        (left->IsBooleanNot() && right->IsBooleanNot())) &&
    222       left->HasOnlyOneNonEnvironmentUse() &&
    223       right->HasOnlyOneNonEnvironmentUse()) {
    224     // Replace code looking like
    225     //    NOT nota, a
    226     //    NOT notb, b
    227     //    AND dst, nota, notb (respectively OR)
    228     // with
    229     //    OR or, a, b         (respectively AND)
    230     //    NOT dest, or
    231     HInstruction* src_left = left->InputAt(0);
    232     HInstruction* src_right = right->InputAt(0);
    233     uint32_t dex_pc = op->GetDexPc();
    234 
    235     // Remove the negations on the inputs.
    236     left->ReplaceWith(src_left);
    237     right->ReplaceWith(src_right);
    238     left->GetBlock()->RemoveInstruction(left);
    239     right->GetBlock()->RemoveInstruction(right);
    240 
    241     // Replace the `HAnd` or `HOr`.
    242     HBinaryOperation* hbin;
    243     if (op->IsAnd()) {
    244       hbin = new (GetGraph()->GetAllocator()) HOr(type, src_left, src_right, dex_pc);
    245     } else {
    246       hbin = new (GetGraph()->GetAllocator()) HAnd(type, src_left, src_right, dex_pc);
    247     }
    248     HInstruction* hnot;
    249     if (left->IsBooleanNot()) {
    250       hnot = new (GetGraph()->GetAllocator()) HBooleanNot(hbin, dex_pc);
    251     } else {
    252       hnot = new (GetGraph()->GetAllocator()) HNot(type, hbin, dex_pc);
    253     }
    254 
    255     op->GetBlock()->InsertInstructionBefore(hbin, op);
    256     op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot);
    257 
    258     RecordSimplification();
    259     return true;
    260   }
    261 
    262   return false;
    263 }
    264 
    265 bool InstructionSimplifierVisitor::TryCombineVecMultiplyAccumulate(HVecMul* mul) {
    266   DataType::Type type = mul->GetPackedType();
    267   InstructionSet isa = codegen_->GetInstructionSet();
    268   switch (isa) {
    269     case InstructionSet::kArm64:
    270       if (!(type == DataType::Type::kUint8 ||
    271             type == DataType::Type::kInt8 ||
    272             type == DataType::Type::kUint16 ||
    273             type == DataType::Type::kInt16 ||
    274             type == DataType::Type::kInt32)) {
    275         return false;
    276       }
    277       break;
    278     case InstructionSet::kMips:
    279     case InstructionSet::kMips64:
    280       if (!(type == DataType::Type::kUint8 ||
    281             type == DataType::Type::kInt8 ||
    282             type == DataType::Type::kUint16 ||
    283             type == DataType::Type::kInt16 ||
    284             type == DataType::Type::kInt32 ||
    285             type == DataType::Type::kInt64)) {
    286         return false;
    287       }
    288       break;
    289     default:
    290       return false;
    291   }
    292 
    293   ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
    294 
    295   if (mul->HasOnlyOneNonEnvironmentUse()) {
    296     HInstruction* use = mul->GetUses().front().GetUser();
    297     if (use->IsVecAdd() || use->IsVecSub()) {
    298       // Replace code looking like
    299       //    VECMUL tmp, x, y
    300       //    VECADD/SUB dst, acc, tmp
    301       // with
    302       //    VECMULACC dst, acc, x, y
    303       // Note that we do not want to (unconditionally) perform the merge when the
    304       // multiplication has multiple uses and it can be merged in all of them.
    305       // Multiple uses could happen on the same control-flow path, and we would
    306       // then increase the amount of work. In the future we could try to evaluate
    307       // whether all uses are on different control-flow paths (using dominance and
    308       // reverse-dominance information) and only perform the merge when they are.
    309       HInstruction* accumulator = nullptr;
    310       HVecBinaryOperation* binop = use->AsVecBinaryOperation();
    311       HInstruction* binop_left = binop->GetLeft();
    312       HInstruction* binop_right = binop->GetRight();
    313       // This is always true since the `HVecMul` has only one use (which is checked above).
    314       DCHECK_NE(binop_left, binop_right);
    315       if (binop_right == mul) {
    316         accumulator = binop_left;
    317       } else if (use->IsVecAdd()) {
    318         DCHECK_EQ(binop_left, mul);
    319         accumulator = binop_right;
    320       }
    321 
    322       HInstruction::InstructionKind kind =
    323           use->IsVecAdd() ? HInstruction::kAdd : HInstruction::kSub;
    324       if (accumulator != nullptr) {
    325         HVecMultiplyAccumulate* mulacc =
    326             new (allocator) HVecMultiplyAccumulate(allocator,
    327                                                    kind,
    328                                                    accumulator,
    329                                                    mul->GetLeft(),
    330                                                    mul->GetRight(),
    331                                                    binop->GetPackedType(),
    332                                                    binop->GetVectorLength(),
    333                                                    binop->GetDexPc());
    334 
    335         binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
    336         DCHECK(!mul->HasUses());
    337         mul->GetBlock()->RemoveInstruction(mul);
    338         return true;
    339       }
    340     }
    341   }
    342 
    343   return false;
    344 }
    345 
    346 void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) {
    347   DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
    348   HInstruction* shift_amount = instruction->GetRight();
    349   HInstruction* value = instruction->GetLeft();
    350 
    351   int64_t implicit_mask = (value->GetType() == DataType::Type::kInt64)
    352       ? kMaxLongShiftDistance
    353       : kMaxIntShiftDistance;
    354 
    355   if (shift_amount->IsConstant()) {
    356     int64_t cst = Int64FromConstant(shift_amount->AsConstant());
    357     int64_t masked_cst = cst & implicit_mask;
    358     if (masked_cst == 0) {
    359       // Replace code looking like
    360       //    SHL dst, value, 0
    361       // with
    362       //    value
    363       instruction->ReplaceWith(value);
    364       instruction->GetBlock()->RemoveInstruction(instruction);
    365       RecordSimplification();
    366       return;
    367     } else if (masked_cst != cst) {
    368       // Replace code looking like
    369       //    SHL dst, value, cst
    370       // where cst exceeds maximum distance with the equivalent
    371       //    SHL dst, value, cst & implicit_mask
    372       // (as defined by shift semantics). This ensures other
    373       // optimizations do not need to special case for such situations.
    374       DCHECK_EQ(shift_amount->GetType(), DataType::Type::kInt32);
    375       instruction->ReplaceInput(GetGraph()->GetIntConstant(masked_cst), /* index= */ 1);
    376       RecordSimplification();
    377       return;
    378     }
    379   }
    380 
    381   // Shift operations implicitly mask the shift amount according to the type width. Get rid of
    382   // unnecessary And/Or/Xor/Add/Sub/TypeConversion operations on the shift amount that do not
    383   // affect the relevant bits.
    384   // Replace code looking like
    385   //    AND adjusted_shift, shift, <superset of implicit mask>
    386   //    [OR/XOR/ADD/SUB adjusted_shift, shift, <value not overlapping with implicit mask>]
    387   //    [<conversion-from-integral-non-64-bit-type> adjusted_shift, shift]
    388   //    SHL dst, value, adjusted_shift
    389   // with
    390   //    SHL dst, value, shift
    391   if (shift_amount->IsAnd() ||
    392       shift_amount->IsOr() ||
    393       shift_amount->IsXor() ||
    394       shift_amount->IsAdd() ||
    395       shift_amount->IsSub()) {
    396     int64_t required_result = shift_amount->IsAnd() ? implicit_mask : 0;
    397     HBinaryOperation* bin_op = shift_amount->AsBinaryOperation();
    398     HConstant* mask = bin_op->GetConstantRight();
    399     if (mask != nullptr && (Int64FromConstant(mask) & implicit_mask) == required_result) {
    400       instruction->ReplaceInput(bin_op->GetLeastConstantLeft(), 1);
    401       RecordSimplification();
    402       return;
    403     }
    404   } else if (shift_amount->IsTypeConversion()) {
    405     DCHECK_NE(shift_amount->GetType(), DataType::Type::kBool);  // We never convert to bool.
    406     DataType::Type source_type = shift_amount->InputAt(0)->GetType();
    407     // Non-integral and 64-bit source types require an explicit type conversion.
    408     if (DataType::IsIntegralType(source_type) && !DataType::Is64BitType(source_type)) {
    409       instruction->ReplaceInput(shift_amount->AsTypeConversion()->GetInput(), 1);
    410       RecordSimplification();
    411       return;
    412     }
    413   }
    414 }
    415 
    416 static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) {
    417   return (sub->GetRight() == other &&
    418           sub->GetLeft()->IsConstant() &&
    419           (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0);
    420 }
    421 
    422 bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op,
    423                                                         HUShr* ushr,
    424                                                         HShl* shl) {
    425   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()) << op->DebugName();
    426   HRor* ror =
    427       new (GetGraph()->GetAllocator()) HRor(ushr->GetType(), ushr->GetLeft(), ushr->GetRight());
    428   op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror);
    429   if (!ushr->HasUses()) {
    430     ushr->GetBlock()->RemoveInstruction(ushr);
    431   }
    432   if (!ushr->GetRight()->HasUses()) {
    433     ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight());
    434   }
    435   if (!shl->HasUses()) {
    436     shl->GetBlock()->RemoveInstruction(shl);
    437   }
    438   if (!shl->GetRight()->HasUses()) {
    439     shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight());
    440   }
    441   RecordSimplification();
    442   return true;
    443 }
    444 
    445 // Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation.
    446 bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) {
    447   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
    448   HInstruction* left = op->GetLeft();
    449   HInstruction* right = op->GetRight();
    450   // If we have an UShr and a Shl (in either order).
    451   if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) {
    452     HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr();
    453     HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl();
    454     DCHECK(DataType::IsIntOrLongType(ushr->GetType()));
    455     if (ushr->GetType() == shl->GetType() &&
    456         ushr->GetLeft() == shl->GetLeft()) {
    457       if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) {
    458         // Shift distances are both constant, try replacing with Ror if they
    459         // add up to the register size.
    460         return TryReplaceWithRotateConstantPattern(op, ushr, shl);
    461       } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) {
    462         // Shift distances are potentially of the form x and (reg_size - x).
    463         return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl);
    464       } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) {
    465         // Shift distances are potentially of the form d and -d.
    466         return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl);
    467       }
    468     }
    469   }
    470   return false;
    471 }
    472 
    473 // Try replacing code looking like (x >>> #rdist OP x << #ldist):
    474 //    UShr dst, x,   #rdist
    475 //    Shl  tmp, x,   #ldist
    476 //    OP   dst, dst, tmp
    477 // or like (x >>> #rdist OP x << #-ldist):
    478 //    UShr dst, x,   #rdist
    479 //    Shl  tmp, x,   #-ldist
    480 //    OP   dst, dst, tmp
    481 // with
    482 //    Ror  dst, x,   #rdist
    483 bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op,
    484                                                                        HUShr* ushr,
    485                                                                        HShl* shl) {
    486   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
    487   size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
    488   size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant());
    489   size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant());
    490   if (((ldist + rdist) & (reg_bits - 1)) == 0) {
    491     ReplaceRotateWithRor(op, ushr, shl);
    492     return true;
    493   }
    494   return false;
    495 }
    496 
    497 // Replace code looking like (x >>> -d OP x << d):
    498 //    Neg  neg, d
    499 //    UShr dst, x,   neg
    500 //    Shl  tmp, x,   d
    501 //    OP   dst, dst, tmp
    502 // with
    503 //    Neg  neg, d
    504 //    Ror  dst, x,   neg
    505 // *** OR ***
    506 // Replace code looking like (x >>> d OP x << -d):
    507 //    UShr dst, x,   d
    508 //    Neg  neg, d
    509 //    Shl  tmp, x,   neg
    510 //    OP   dst, dst, tmp
    511 // with
    512 //    Ror  dst, x,   d
    513 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op,
    514                                                                           HUShr* ushr,
    515                                                                           HShl* shl) {
    516   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
    517   DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg());
    518   bool neg_is_left = shl->GetRight()->IsNeg();
    519   HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg();
    520   // And the shift distance being negated is the distance being shifted the other way.
    521   if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) {
    522     ReplaceRotateWithRor(op, ushr, shl);
    523   }
    524   return false;
    525 }
    526 
    527 // Try replacing code looking like (x >>> d OP x << (#bits - d)):
    528 //    UShr dst, x,     d
    529 //    Sub  ld,  #bits, d
    530 //    Shl  tmp, x,     ld
    531 //    OP   dst, dst,   tmp
    532 // with
    533 //    Ror  dst, x,     d
    534 // *** OR ***
    535 // Replace code looking like (x >>> (#bits - d) OP x << d):
    536 //    Sub  rd,  #bits, d
    537 //    UShr dst, x,     rd
    538 //    Shl  tmp, x,     d
    539 //    OP   dst, dst,   tmp
    540 // with
    541 //    Neg  neg, d
    542 //    Ror  dst, x,     neg
    543 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op,
    544                                                                           HUShr* ushr,
    545                                                                           HShl* shl) {
    546   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
    547   DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub());
    548   size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
    549   HInstruction* shl_shift = shl->GetRight();
    550   HInstruction* ushr_shift = ushr->GetRight();
    551   if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) ||
    552       (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) {
    553     return ReplaceRotateWithRor(op, ushr, shl);
    554   }
    555   return false;
    556 }
    557 
    558 void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) {
    559   HInstruction* obj = null_check->InputAt(0);
    560   if (!obj->CanBeNull()) {
    561     null_check->ReplaceWith(obj);
    562     null_check->GetBlock()->RemoveInstruction(null_check);
    563     if (stats_ != nullptr) {
    564       stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck);
    565     }
    566   }
    567 }
    568 
    569 bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const {
    570   if (!input->CanBeNull()) {
    571     return true;
    572   }
    573 
    574   for (const HUseListNode<HInstruction*>& use : input->GetUses()) {
    575     HInstruction* user = use.GetUser();
    576     if (user->IsNullCheck() && user->StrictlyDominates(at)) {
    577       return true;
    578     }
    579   }
    580 
    581   return false;
    582 }
    583 
    584 // Returns whether doing a type test between the class of `object` against `klass` has
    585 // a statically known outcome. The result of the test is stored in `outcome`.
    586 static bool TypeCheckHasKnownOutcome(ReferenceTypeInfo class_rti,
    587                                      HInstruction* object,
    588                                      /*out*/bool* outcome) {
    589   DCHECK(!object->IsNullConstant()) << "Null constants should be special cased";
    590   ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo();
    591   ScopedObjectAccess soa(Thread::Current());
    592   if (!obj_rti.IsValid()) {
    593     // We run the simplifier before the reference type propagation so type info might not be
    594     // available.
    595     return false;
    596   }
    597 
    598   if (!class_rti.IsValid()) {
    599     // Happens when the loaded class is unresolved.
    600     return false;
    601   }
    602   DCHECK(class_rti.IsExact());
    603   if (class_rti.IsSupertypeOf(obj_rti)) {
    604     *outcome = true;
    605     return true;
    606   } else if (obj_rti.IsExact()) {
    607     // The test failed at compile time so will also fail at runtime.
    608     *outcome = false;
    609     return true;
    610   } else if (!class_rti.IsInterface()
    611              && !obj_rti.IsInterface()
    612              && !obj_rti.IsSupertypeOf(class_rti)) {
    613     // Different type hierarchy. The test will fail.
    614     *outcome = false;
    615     return true;
    616   }
    617   return false;
    618 }
    619 
    620 void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) {
    621   HInstruction* object = check_cast->InputAt(0);
    622   if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck &&
    623       check_cast->GetTargetClass()->NeedsAccessCheck()) {
    624     // If we need to perform an access check we cannot remove the instruction.
    625     return;
    626   }
    627 
    628   if (CanEnsureNotNullAt(object, check_cast)) {
    629     check_cast->ClearMustDoNullCheck();
    630   }
    631 
    632   if (object->IsNullConstant()) {
    633     check_cast->GetBlock()->RemoveInstruction(check_cast);
    634     MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
    635     return;
    636   }
    637 
    638   // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder
    639   // the return value check with the `outcome` check, b/27651442.
    640   bool outcome = false;
    641   if (TypeCheckHasKnownOutcome(check_cast->GetTargetClassRTI(), object, &outcome)) {
    642     if (outcome) {
    643       check_cast->GetBlock()->RemoveInstruction(check_cast);
    644       MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
    645       if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) {
    646         HLoadClass* load_class = check_cast->GetTargetClass();
    647         if (!load_class->HasUses()) {
    648           // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
    649           // However, here we know that it cannot because the checkcast was successfull, hence
    650           // the class was already loaded.
    651           load_class->GetBlock()->RemoveInstruction(load_class);
    652         }
    653       }
    654     } else {
    655       // Don't do anything for exceptional cases for now. Ideally we should remove
    656       // all instructions and blocks this instruction dominates.
    657     }
    658   }
    659 }
    660 
    661 void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) {
    662   HInstruction* object = instruction->InputAt(0);
    663   if (instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck &&
    664       instruction->GetTargetClass()->NeedsAccessCheck()) {
    665     // If we need to perform an access check we cannot remove the instruction.
    666     return;
    667   }
    668 
    669   bool can_be_null = true;
    670   if (CanEnsureNotNullAt(object, instruction)) {
    671     can_be_null = false;
    672     instruction->ClearMustDoNullCheck();
    673   }
    674 
    675   HGraph* graph = GetGraph();
    676   if (object->IsNullConstant()) {
    677     MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
    678     instruction->ReplaceWith(graph->GetIntConstant(0));
    679     instruction->GetBlock()->RemoveInstruction(instruction);
    680     RecordSimplification();
    681     return;
    682   }
    683 
    684   // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder
    685   // the return value check with the `outcome` check, b/27651442.
    686   bool outcome = false;
    687   if (TypeCheckHasKnownOutcome(instruction->GetTargetClassRTI(), object, &outcome)) {
    688     MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
    689     if (outcome && can_be_null) {
    690       // Type test will succeed, we just need a null test.
    691       HNotEqual* test = new (graph->GetAllocator()) HNotEqual(graph->GetNullConstant(), object);
    692       instruction->GetBlock()->InsertInstructionBefore(test, instruction);
    693       instruction->ReplaceWith(test);
    694     } else {
    695       // We've statically determined the result of the instanceof.
    696       instruction->ReplaceWith(graph->GetIntConstant(outcome));
    697     }
    698     RecordSimplification();
    699     instruction->GetBlock()->RemoveInstruction(instruction);
    700     if (outcome && instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) {
    701       HLoadClass* load_class = instruction->GetTargetClass();
    702       if (!load_class->HasUses()) {
    703         // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
    704         // However, here we know that it cannot because the instanceof check was successfull, hence
    705         // the class was already loaded.
    706         load_class->GetBlock()->RemoveInstruction(load_class);
    707       }
    708     }
    709   }
    710 }
    711 
    712 void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
    713   if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
    714       && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
    715     instruction->ClearValueCanBeNull();
    716   }
    717 }
    718 
    719 void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) {
    720   if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
    721       && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
    722     instruction->ClearValueCanBeNull();
    723   }
    724 }
    725 
    726 static HCondition* GetOppositeConditionSwapOps(ArenaAllocator* allocator, HInstruction* cond) {
    727   HInstruction *lhs = cond->InputAt(0);
    728   HInstruction *rhs = cond->InputAt(1);
    729   switch (cond->GetKind()) {
    730     case HInstruction::kEqual:
    731       return new (allocator) HEqual(rhs, lhs);
    732     case HInstruction::kNotEqual:
    733       return new (allocator) HNotEqual(rhs, lhs);
    734     case HInstruction::kLessThan:
    735       return new (allocator) HGreaterThan(rhs, lhs);
    736     case HInstruction::kLessThanOrEqual:
    737       return new (allocator) HGreaterThanOrEqual(rhs, lhs);
    738     case HInstruction::kGreaterThan:
    739       return new (allocator) HLessThan(rhs, lhs);
    740     case HInstruction::kGreaterThanOrEqual:
    741       return new (allocator) HLessThanOrEqual(rhs, lhs);
    742     case HInstruction::kBelow:
    743       return new (allocator) HAbove(rhs, lhs);
    744     case HInstruction::kBelowOrEqual:
    745       return new (allocator) HAboveOrEqual(rhs, lhs);
    746     case HInstruction::kAbove:
    747       return new (allocator) HBelow(rhs, lhs);
    748     case HInstruction::kAboveOrEqual:
    749       return new (allocator) HBelowOrEqual(rhs, lhs);
    750     default:
    751       LOG(FATAL) << "Unknown ConditionType " << cond->GetKind();
    752       UNREACHABLE();
    753   }
    754 }
    755 
    756 void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) {
    757   HInstruction* input_const = equal->GetConstantRight();
    758   if (input_const != nullptr) {
    759     HInstruction* input_value = equal->GetLeastConstantLeft();
    760     if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) {
    761       HBasicBlock* block = equal->GetBlock();
    762       // We are comparing the boolean to a constant which is of type int and can
    763       // be any constant.
    764       if (input_const->AsIntConstant()->IsTrue()) {
    765         // Replace (bool_value == true) with bool_value
    766         equal->ReplaceWith(input_value);
    767         block->RemoveInstruction(equal);
    768         RecordSimplification();
    769       } else if (input_const->AsIntConstant()->IsFalse()) {
    770         // Replace (bool_value == false) with !bool_value
    771         equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal));
    772         block->RemoveInstruction(equal);
    773         RecordSimplification();
    774       } else {
    775         // Replace (bool_value == integer_not_zero_nor_one_constant) with false
    776         equal->ReplaceWith(GetGraph()->GetIntConstant(0));
    777         block->RemoveInstruction(equal);
    778         RecordSimplification();
    779       }
    780     } else {
    781       VisitCondition(equal);
    782     }
    783   } else {
    784     VisitCondition(equal);
    785   }
    786 }
    787 
    788 void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) {
    789   HInstruction* input_const = not_equal->GetConstantRight();
    790   if (input_const != nullptr) {
    791     HInstruction* input_value = not_equal->GetLeastConstantLeft();
    792     if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) {
    793       HBasicBlock* block = not_equal->GetBlock();
    794       // We are comparing the boolean to a constant which is of type int and can
    795       // be any constant.
    796       if (input_const->AsIntConstant()->IsTrue()) {
    797         // Replace (bool_value != true) with !bool_value
    798         not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal));
    799         block->RemoveInstruction(not_equal);
    800         RecordSimplification();
    801       } else if (input_const->AsIntConstant()->IsFalse()) {
    802         // Replace (bool_value != false) with bool_value
    803         not_equal->ReplaceWith(input_value);
    804         block->RemoveInstruction(not_equal);
    805         RecordSimplification();
    806       } else {
    807         // Replace (bool_value != integer_not_zero_nor_one_constant) with true
    808         not_equal->ReplaceWith(GetGraph()->GetIntConstant(1));
    809         block->RemoveInstruction(not_equal);
    810         RecordSimplification();
    811       }
    812     } else {
    813       VisitCondition(not_equal);
    814     }
    815   } else {
    816     VisitCondition(not_equal);
    817   }
    818 }
    819 
    820 void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) {
    821   HInstruction* input = bool_not->InputAt(0);
    822   HInstruction* replace_with = nullptr;
    823 
    824   if (input->IsIntConstant()) {
    825     // Replace !(true/false) with false/true.
    826     if (input->AsIntConstant()->IsTrue()) {
    827       replace_with = GetGraph()->GetIntConstant(0);
    828     } else {
    829       DCHECK(input->AsIntConstant()->IsFalse()) << input->AsIntConstant()->GetValue();
    830       replace_with = GetGraph()->GetIntConstant(1);
    831     }
    832   } else if (input->IsBooleanNot()) {
    833     // Replace (!(!bool_value)) with bool_value.
    834     replace_with = input->InputAt(0);
    835   } else if (input->IsCondition() &&
    836              // Don't change FP compares. The definition of compares involving
    837              // NaNs forces the compares to be done as written by the user.
    838              !DataType::IsFloatingPointType(input->InputAt(0)->GetType())) {
    839     // Replace condition with its opposite.
    840     replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not);
    841   }
    842 
    843   if (replace_with != nullptr) {
    844     bool_not->ReplaceWith(replace_with);
    845     bool_not->GetBlock()->RemoveInstruction(bool_not);
    846     RecordSimplification();
    847   }
    848 }
    849 
    850 // Constructs a new ABS(x) node in the HIR.
    851 static HInstruction* NewIntegralAbs(ArenaAllocator* allocator,
    852                                     HInstruction* x,
    853                                     HInstruction* cursor) {
    854   DataType::Type type = DataType::Kind(x->GetType());
    855   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
    856   HAbs* abs = new (allocator) HAbs(type, x, cursor->GetDexPc());
    857   cursor->GetBlock()->InsertInstructionBefore(abs, cursor);
    858   return abs;
    859 }
    860 
    861 // Constructs a new MIN/MAX(x, y) node in the HIR.
    862 static HInstruction* NewIntegralMinMax(ArenaAllocator* allocator,
    863                                        HInstruction* x,
    864                                        HInstruction* y,
    865                                        HInstruction* cursor,
    866                                        bool is_min) {
    867   DataType::Type type = DataType::Kind(x->GetType());
    868   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
    869   HBinaryOperation* minmax = nullptr;
    870   if (is_min) {
    871     minmax = new (allocator) HMin(type, x, y, cursor->GetDexPc());
    872   } else {
    873     minmax = new (allocator) HMax(type, x, y, cursor->GetDexPc());
    874   }
    875   cursor->GetBlock()->InsertInstructionBefore(minmax, cursor);
    876   return minmax;
    877 }
    878 
    879 // Returns true if operands a and b consists of widening type conversions
    880 // (either explicit or implicit) to the given to_type.
    881 static bool AreLowerPrecisionArgs(DataType::Type to_type, HInstruction* a, HInstruction* b) {
    882   if (a->IsTypeConversion() && a->GetType() == to_type) {
    883     a = a->InputAt(0);
    884   }
    885   if (b->IsTypeConversion() && b->GetType() == to_type) {
    886     b = b->InputAt(0);
    887   }
    888   DataType::Type type1 = a->GetType();
    889   DataType::Type type2 = b->GetType();
    890   return (type1 == DataType::Type::kUint8  && type2 == DataType::Type::kUint8) ||
    891          (type1 == DataType::Type::kInt8   && type2 == DataType::Type::kInt8) ||
    892          (type1 == DataType::Type::kInt16  && type2 == DataType::Type::kInt16) ||
    893          (type1 == DataType::Type::kUint16 && type2 == DataType::Type::kUint16) ||
    894          (type1 == DataType::Type::kInt32  && type2 == DataType::Type::kInt32 &&
    895           to_type == DataType::Type::kInt64);
    896 }
    897 
    898 // Returns an acceptable substitution for "a" on the select
    899 // construct "a <cmp> b ? c : .."  during MIN/MAX recognition.
    900 static HInstruction* AllowInMinMax(IfCondition cmp,
    901                                    HInstruction* a,
    902                                    HInstruction* b,
    903                                    HInstruction* c) {
    904   int64_t value = 0;
    905   if (IsInt64AndGet(b, /*out*/ &value) &&
    906       (((cmp == kCondLT || cmp == kCondLE) && c->IsMax()) ||
    907        ((cmp == kCondGT || cmp == kCondGE) && c->IsMin()))) {
    908     HConstant* other = c->AsBinaryOperation()->GetConstantRight();
    909     if (other != nullptr && a == c->AsBinaryOperation()->GetLeastConstantLeft()) {
    910       int64_t other_value = Int64FromConstant(other);
    911       bool is_max = (cmp == kCondLT || cmp == kCondLE);
    912       // Allow the max for a <  100 ? max(a, -100) : ..
    913       //    or the min for a > -100 ? min(a,  100) : ..
    914       if (is_max ? (value >= other_value) : (value <= other_value)) {
    915         return c;
    916       }
    917     }
    918   }
    919   return nullptr;
    920 }
    921 
    922 void InstructionSimplifierVisitor::VisitSelect(HSelect* select) {
    923   HInstruction* replace_with = nullptr;
    924   HInstruction* condition = select->GetCondition();
    925   HInstruction* true_value = select->GetTrueValue();
    926   HInstruction* false_value = select->GetFalseValue();
    927 
    928   if (condition->IsBooleanNot()) {
    929     // Change ((!cond) ? x : y) to (cond ? y : x).
    930     condition = condition->InputAt(0);
    931     std::swap(true_value, false_value);
    932     select->ReplaceInput(false_value, 0);
    933     select->ReplaceInput(true_value, 1);
    934     select->ReplaceInput(condition, 2);
    935     RecordSimplification();
    936   }
    937 
    938   if (true_value == false_value) {
    939     // Replace (cond ? x : x) with (x).
    940     replace_with = true_value;
    941   } else if (condition->IsIntConstant()) {
    942     if (condition->AsIntConstant()->IsTrue()) {
    943       // Replace (true ? x : y) with (x).
    944       replace_with = true_value;
    945     } else {
    946       // Replace (false ? x : y) with (y).
    947       DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
    948       replace_with = false_value;
    949     }
    950   } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) {
    951     if (true_value->AsIntConstant()->IsTrue() && false_value->AsIntConstant()->IsFalse()) {
    952       // Replace (cond ? true : false) with (cond).
    953       replace_with = condition;
    954     } else if (true_value->AsIntConstant()->IsFalse() && false_value->AsIntConstant()->IsTrue()) {
    955       // Replace (cond ? false : true) with (!cond).
    956       replace_with = GetGraph()->InsertOppositeCondition(condition, select);
    957     }
    958   } else if (condition->IsCondition()) {
    959     IfCondition cmp = condition->AsCondition()->GetCondition();
    960     HInstruction* a = condition->InputAt(0);
    961     HInstruction* b = condition->InputAt(1);
    962     DataType::Type t_type = true_value->GetType();
    963     DataType::Type f_type = false_value->GetType();
    964     // Here we have a <cmp> b ? true_value : false_value.
    965     // Test if both values are compatible integral types (resulting MIN/MAX/ABS
    966     // type will be int or long, like the condition). Replacements are general,
    967     // but assume conditions prefer constants on the right.
    968     if (DataType::IsIntegralType(t_type) && DataType::Kind(t_type) == DataType::Kind(f_type)) {
    969       // Allow a <  100 ? max(a, -100) : ..
    970       //    or a > -100 ? min(a,  100) : ..
    971       // to use min/max instead of a to detect nested min/max expressions.
    972       HInstruction* new_a = AllowInMinMax(cmp, a, b, true_value);
    973       if (new_a != nullptr) {
    974         a = new_a;
    975       }
    976       // Try to replace typical integral MIN/MAX/ABS constructs.
    977       if ((cmp == kCondLT || cmp == kCondLE || cmp == kCondGT || cmp == kCondGE) &&
    978           ((a == true_value && b == false_value) ||
    979            (b == true_value && a == false_value))) {
    980         // Found a < b ? a : b (MIN) or a < b ? b : a (MAX)
    981         //    or a > b ? a : b (MAX) or a > b ? b : a (MIN).
    982         bool is_min = (cmp == kCondLT || cmp == kCondLE) == (a == true_value);
    983         replace_with = NewIntegralMinMax(GetGraph()->GetAllocator(), a, b, select, is_min);
    984       } else if (((cmp == kCondLT || cmp == kCondLE) && true_value->IsNeg()) ||
    985                  ((cmp == kCondGT || cmp == kCondGE) && false_value->IsNeg())) {
    986         bool negLeft = (cmp == kCondLT || cmp == kCondLE);
    987         HInstruction* the_negated = negLeft ? true_value->InputAt(0) : false_value->InputAt(0);
    988         HInstruction* not_negated = negLeft ? false_value : true_value;
    989         if (a == the_negated && a == not_negated && IsInt64Value(b, 0)) {
    990           // Found a < 0 ? -a :  a
    991           //    or a > 0 ?  a : -a
    992           // which can be replaced by ABS(a).
    993           replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), a, select);
    994         }
    995       } else if (true_value->IsSub() && false_value->IsSub()) {
    996         HInstruction* true_sub1 = true_value->InputAt(0);
    997         HInstruction* true_sub2 = true_value->InputAt(1);
    998         HInstruction* false_sub1 = false_value->InputAt(0);
    999         HInstruction* false_sub2 = false_value->InputAt(1);
   1000         if ((((cmp == kCondGT || cmp == kCondGE) &&
   1001               (a == true_sub1 && b == true_sub2 && a == false_sub2 && b == false_sub1)) ||
   1002              ((cmp == kCondLT || cmp == kCondLE) &&
   1003               (a == true_sub2 && b == true_sub1 && a == false_sub1 && b == false_sub2))) &&
   1004             AreLowerPrecisionArgs(t_type, a, b)) {
   1005           // Found a > b ? a - b  : b - a
   1006           //    or a < b ? b - a  : a - b
   1007           // which can be replaced by ABS(a - b) for lower precision operands a, b.
   1008           replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), true_value, select);
   1009         }
   1010       }
   1011     }
   1012   }
   1013 
   1014   if (replace_with != nullptr) {
   1015     select->ReplaceWith(replace_with);
   1016     select->GetBlock()->RemoveInstruction(select);
   1017     RecordSimplification();
   1018   }
   1019 }
   1020 
   1021 void InstructionSimplifierVisitor::VisitIf(HIf* instruction) {
   1022   HInstruction* condition = instruction->InputAt(0);
   1023   if (condition->IsBooleanNot()) {
   1024     // Swap successors if input is negated.
   1025     instruction->ReplaceInput(condition->InputAt(0), 0);
   1026     instruction->GetBlock()->SwapSuccessors();
   1027     RecordSimplification();
   1028   }
   1029 }
   1030 
   1031 void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) {
   1032   HInstruction* input = instruction->InputAt(0);
   1033   // If the array is a NewArray with constant size, replace the array length
   1034   // with the constant instruction. This helps the bounds check elimination phase.
   1035   if (input->IsNewArray()) {
   1036     input = input->AsNewArray()->GetLength();
   1037     if (input->IsIntConstant()) {
   1038       instruction->ReplaceWith(input);
   1039     }
   1040   }
   1041 }
   1042 
   1043 void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) {
   1044   HInstruction* value = instruction->GetValue();
   1045   if (value->GetType() != DataType::Type::kReference) {
   1046     return;
   1047   }
   1048 
   1049   if (CanEnsureNotNullAt(value, instruction)) {
   1050     instruction->ClearValueCanBeNull();
   1051   }
   1052 
   1053   if (value->IsArrayGet()) {
   1054     if (value->AsArrayGet()->GetArray() == instruction->GetArray()) {
   1055       // If the code is just swapping elements in the array, no need for a type check.
   1056       instruction->ClearNeedsTypeCheck();
   1057       return;
   1058     }
   1059   }
   1060 
   1061   if (value->IsNullConstant()) {
   1062     instruction->ClearNeedsTypeCheck();
   1063     return;
   1064   }
   1065 
   1066   ScopedObjectAccess soa(Thread::Current());
   1067   ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo();
   1068   ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo();
   1069   if (!array_rti.IsValid()) {
   1070     return;
   1071   }
   1072 
   1073   if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) {
   1074     instruction->ClearNeedsTypeCheck();
   1075     return;
   1076   }
   1077 
   1078   if (array_rti.IsObjectArray()) {
   1079     if (array_rti.IsExact()) {
   1080       instruction->ClearNeedsTypeCheck();
   1081       return;
   1082     }
   1083     instruction->SetStaticTypeOfArrayIsObjectArray();
   1084   }
   1085 }
   1086 
   1087 static bool IsTypeConversionLossless(DataType::Type input_type, DataType::Type result_type) {
   1088   // Make sure all implicit conversions have been simplified and no new ones have been introduced.
   1089   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
   1090       << input_type << "," << result_type;
   1091   // The conversion to a larger type is loss-less with the exception of two cases,
   1092   //   - conversion to the unsigned type Uint16, where we may lose some bits, and
   1093   //   - conversion from float to long, the only FP to integral conversion with smaller FP type.
   1094   // For integral to FP conversions this holds because the FP mantissa is large enough.
   1095   // Note: The size check excludes Uint8 as the result type.
   1096   return DataType::Size(result_type) > DataType::Size(input_type) &&
   1097       result_type != DataType::Type::kUint16 &&
   1098       !(result_type == DataType::Type::kInt64 && input_type == DataType::Type::kFloat32);
   1099 }
   1100 
   1101 static inline bool TryReplaceFieldOrArrayGetType(HInstruction* maybe_get, DataType::Type new_type) {
   1102   if (maybe_get->IsInstanceFieldGet()) {
   1103     maybe_get->AsInstanceFieldGet()->SetType(new_type);
   1104     return true;
   1105   } else if (maybe_get->IsStaticFieldGet()) {
   1106     maybe_get->AsStaticFieldGet()->SetType(new_type);
   1107     return true;
   1108   } else if (maybe_get->IsArrayGet() && !maybe_get->AsArrayGet()->IsStringCharAt()) {
   1109     maybe_get->AsArrayGet()->SetType(new_type);
   1110     return true;
   1111   } else {
   1112     return false;
   1113   }
   1114 }
   1115 
   1116 // The type conversion is only used for storing into a field/element of the
   1117 // same/narrower size.
   1118 static bool IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion* type_conversion) {
   1119   if (type_conversion->HasEnvironmentUses()) {
   1120     return false;
   1121   }
   1122   DataType::Type input_type = type_conversion->GetInputType();
   1123   DataType::Type result_type = type_conversion->GetResultType();
   1124   if (!DataType::IsIntegralType(input_type) ||
   1125       !DataType::IsIntegralType(result_type) ||
   1126       input_type == DataType::Type::kInt64 ||
   1127       result_type == DataType::Type::kInt64) {
   1128     // Type conversion is needed if non-integer types are involved, or 64-bit
   1129     // types are involved, which may use different number of registers.
   1130     return false;
   1131   }
   1132   if (DataType::Size(input_type) >= DataType::Size(result_type)) {
   1133     // Type conversion is not necessary when storing to a field/element of the
   1134     // same/smaller size.
   1135   } else {
   1136     // We do not handle this case here.
   1137     return false;
   1138   }
   1139 
   1140   // Check if the converted value is only used for storing into heap.
   1141   for (const HUseListNode<HInstruction*>& use : type_conversion->GetUses()) {
   1142     HInstruction* instruction = use.GetUser();
   1143     if (instruction->IsInstanceFieldSet() &&
   1144         instruction->AsInstanceFieldSet()->GetFieldType() == result_type) {
   1145       DCHECK_EQ(instruction->AsInstanceFieldSet()->GetValue(), type_conversion);
   1146       continue;
   1147     }
   1148     if (instruction->IsStaticFieldSet() &&
   1149         instruction->AsStaticFieldSet()->GetFieldType() == result_type) {
   1150       DCHECK_EQ(instruction->AsStaticFieldSet()->GetValue(), type_conversion);
   1151       continue;
   1152     }
   1153     if (instruction->IsArraySet() &&
   1154         instruction->AsArraySet()->GetComponentType() == result_type &&
   1155         // not index use.
   1156         instruction->AsArraySet()->GetIndex() != type_conversion) {
   1157       DCHECK_EQ(instruction->AsArraySet()->GetValue(), type_conversion);
   1158       continue;
   1159     }
   1160     // The use is not as a store value, or the field/element type is not the
   1161     // same as the result_type, keep the type conversion.
   1162     return false;
   1163   }
   1164   // Codegen automatically handles the type conversion during the store.
   1165   return true;
   1166 }
   1167 
   1168 void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) {
   1169   HInstruction* input = instruction->GetInput();
   1170   DataType::Type input_type = input->GetType();
   1171   DataType::Type result_type = instruction->GetResultType();
   1172   if (instruction->IsImplicitConversion()) {
   1173     instruction->ReplaceWith(input);
   1174     instruction->GetBlock()->RemoveInstruction(instruction);
   1175     RecordSimplification();
   1176     return;
   1177   }
   1178 
   1179   if (input->IsTypeConversion()) {
   1180     HTypeConversion* input_conversion = input->AsTypeConversion();
   1181     HInstruction* original_input = input_conversion->GetInput();
   1182     DataType::Type original_type = original_input->GetType();
   1183 
   1184     // When the first conversion is lossless, a direct conversion from the original type
   1185     // to the final type yields the same result, even for a lossy second conversion, for
   1186     // example float->double->int or int->double->float.
   1187     bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type);
   1188 
   1189     // For integral conversions, see if the first conversion loses only bits that the second
   1190     // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct
   1191     // conversion yields the same result, for example long->int->short or int->char->short.
   1192     bool integral_conversions_with_non_widening_second =
   1193         DataType::IsIntegralType(input_type) &&
   1194         DataType::IsIntegralType(original_type) &&
   1195         DataType::IsIntegralType(result_type) &&
   1196         DataType::Size(result_type) <= DataType::Size(input_type);
   1197 
   1198     if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) {
   1199       // If the merged conversion is implicit, do the simplification unconditionally.
   1200       if (DataType::IsTypeConversionImplicit(original_type, result_type)) {
   1201         instruction->ReplaceWith(original_input);
   1202         instruction->GetBlock()->RemoveInstruction(instruction);
   1203         if (!input_conversion->HasUses()) {
   1204           // Don't wait for DCE.
   1205           input_conversion->GetBlock()->RemoveInstruction(input_conversion);
   1206         }
   1207         RecordSimplification();
   1208         return;
   1209       }
   1210       // Otherwise simplify only if the first conversion has no other use.
   1211       if (input_conversion->HasOnlyOneNonEnvironmentUse()) {
   1212         input_conversion->ReplaceWith(original_input);
   1213         input_conversion->GetBlock()->RemoveInstruction(input_conversion);
   1214         RecordSimplification();
   1215         return;
   1216       }
   1217     }
   1218   } else if (input->IsAnd() && DataType::IsIntegralType(result_type)) {
   1219     DCHECK(DataType::IsIntegralType(input_type));
   1220     HAnd* input_and = input->AsAnd();
   1221     HConstant* constant = input_and->GetConstantRight();
   1222     if (constant != nullptr) {
   1223       int64_t value = Int64FromConstant(constant);
   1224       DCHECK_NE(value, -1);  // "& -1" would have been optimized away in VisitAnd().
   1225       size_t trailing_ones = CTZ(~static_cast<uint64_t>(value));
   1226       if (trailing_ones >= kBitsPerByte * DataType::Size(result_type)) {
   1227         // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it.
   1228         HInstruction* original_input = input_and->GetLeastConstantLeft();
   1229         if (DataType::IsTypeConversionImplicit(original_input->GetType(), result_type)) {
   1230           instruction->ReplaceWith(original_input);
   1231           instruction->GetBlock()->RemoveInstruction(instruction);
   1232           RecordSimplification();
   1233           return;
   1234         } else if (input->HasOnlyOneNonEnvironmentUse()) {
   1235           input_and->ReplaceWith(original_input);
   1236           input_and->GetBlock()->RemoveInstruction(input_and);
   1237           RecordSimplification();
   1238           return;
   1239         }
   1240       }
   1241     }
   1242   } else if (input->HasOnlyOneNonEnvironmentUse() &&
   1243              ((input_type == DataType::Type::kInt8 && result_type == DataType::Type::kUint8) ||
   1244               (input_type == DataType::Type::kUint8 && result_type == DataType::Type::kInt8) ||
   1245               (input_type == DataType::Type::kInt16 && result_type == DataType::Type::kUint16) ||
   1246               (input_type == DataType::Type::kUint16 && result_type == DataType::Type::kInt16))) {
   1247     // Try to modify the type of the load to `result_type` and remove the explicit type conversion.
   1248     if (TryReplaceFieldOrArrayGetType(input, result_type)) {
   1249       instruction->ReplaceWith(input);
   1250       instruction->GetBlock()->RemoveInstruction(instruction);
   1251       RecordSimplification();
   1252       return;
   1253     }
   1254   }
   1255 
   1256   if (IsTypeConversionForStoringIntoNoWiderFieldOnly(instruction)) {
   1257     instruction->ReplaceWith(input);
   1258     instruction->GetBlock()->RemoveInstruction(instruction);
   1259     RecordSimplification();
   1260     return;
   1261   }
   1262 }
   1263 
   1264 void InstructionSimplifierVisitor::VisitAbs(HAbs* instruction) {
   1265   HInstruction* input = instruction->GetInput();
   1266   if (DataType::IsZeroExtension(input->GetType(), instruction->GetResultType())) {
   1267     // Zero extension from narrow to wide can never set sign bit in the wider
   1268     // operand, making the subsequent Abs redundant (e.g., abs(b & 0xff) for byte b).
   1269     instruction->ReplaceWith(input);
   1270     instruction->GetBlock()->RemoveInstruction(instruction);
   1271     RecordSimplification();
   1272   }
   1273 }
   1274 
   1275 void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) {
   1276   HConstant* input_cst = instruction->GetConstantRight();
   1277   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1278   bool integral_type = DataType::IsIntegralType(instruction->GetType());
   1279   if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
   1280     // Replace code looking like
   1281     //    ADD dst, src, 0
   1282     // with
   1283     //    src
   1284     // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When
   1285     // `x` is `-0.0`, the former expression yields `0.0`, while the later
   1286     // yields `-0.0`.
   1287     if (integral_type) {
   1288       instruction->ReplaceWith(input_other);
   1289       instruction->GetBlock()->RemoveInstruction(instruction);
   1290       RecordSimplification();
   1291       return;
   1292     }
   1293   }
   1294 
   1295   HInstruction* left = instruction->GetLeft();
   1296   HInstruction* right = instruction->GetRight();
   1297   bool left_is_neg = left->IsNeg();
   1298   bool right_is_neg = right->IsNeg();
   1299 
   1300   if (left_is_neg && right_is_neg) {
   1301     if (TryMoveNegOnInputsAfterBinop(instruction)) {
   1302       return;
   1303     }
   1304   }
   1305 
   1306   HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg();
   1307   if (left_is_neg != right_is_neg && neg->HasOnlyOneNonEnvironmentUse()) {
   1308     // Replace code looking like
   1309     //    NEG tmp, b
   1310     //    ADD dst, a, tmp
   1311     // with
   1312     //    SUB dst, a, b
   1313     // We do not perform the optimization if the input negation has environment
   1314     // uses or multiple non-environment uses as it could lead to worse code. In
   1315     // particular, we do not want the live range of `b` to be extended if we are
   1316     // not sure the initial 'NEG' instruction can be removed.
   1317     HInstruction* other = left_is_neg ? right : left;
   1318     HSub* sub =
   1319         new(GetGraph()->GetAllocator()) HSub(instruction->GetType(), other, neg->GetInput());
   1320     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub);
   1321     RecordSimplification();
   1322     neg->GetBlock()->RemoveInstruction(neg);
   1323     return;
   1324   }
   1325 
   1326   if (TryReplaceWithRotate(instruction)) {
   1327     return;
   1328   }
   1329 
   1330   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
   1331   // so no need to return.
   1332   TryHandleAssociativeAndCommutativeOperation(instruction);
   1333 
   1334   if ((left->IsSub() || right->IsSub()) &&
   1335       TrySubtractionChainSimplification(instruction)) {
   1336     return;
   1337   }
   1338 
   1339   if (integral_type) {
   1340     // Replace code patterns looking like
   1341     //    SUB dst1, x, y        SUB dst1, x, y
   1342     //    ADD dst2, dst1, y     ADD dst2, y, dst1
   1343     // with
   1344     //    SUB dst1, x, y
   1345     // ADD instruction is not needed in this case, we may use
   1346     // one of inputs of SUB instead.
   1347     if (left->IsSub() && left->InputAt(1) == right) {
   1348       instruction->ReplaceWith(left->InputAt(0));
   1349       RecordSimplification();
   1350       instruction->GetBlock()->RemoveInstruction(instruction);
   1351       return;
   1352     } else if (right->IsSub() && right->InputAt(1) == left) {
   1353       instruction->ReplaceWith(right->InputAt(0));
   1354       RecordSimplification();
   1355       instruction->GetBlock()->RemoveInstruction(instruction);
   1356       return;
   1357     }
   1358   }
   1359 }
   1360 
   1361 void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) {
   1362   DCHECK(DataType::IsIntegralType(instruction->GetType()));
   1363   HConstant* input_cst = instruction->GetConstantRight();
   1364   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1365 
   1366   if (input_cst != nullptr) {
   1367     int64_t value = Int64FromConstant(input_cst);
   1368     if (value == -1 ||
   1369         // Similar cases under zero extension.
   1370         (DataType::IsUnsignedType(input_other->GetType()) &&
   1371          ((DataType::MaxValueOfIntegralType(input_other->GetType()) & ~value) == 0))) {
   1372       // Replace code looking like
   1373       //    AND dst, src, 0xFFF...FF
   1374       // with
   1375       //    src
   1376       instruction->ReplaceWith(input_other);
   1377       instruction->GetBlock()->RemoveInstruction(instruction);
   1378       RecordSimplification();
   1379       return;
   1380     }
   1381     if (input_other->IsTypeConversion() &&
   1382         input_other->GetType() == DataType::Type::kInt64 &&
   1383         DataType::IsIntegralType(input_other->InputAt(0)->GetType()) &&
   1384         IsInt<32>(value) &&
   1385         input_other->HasOnlyOneNonEnvironmentUse()) {
   1386       // The AND can be reordered before the TypeConversion. Replace
   1387       //   LongConstant cst, <32-bit-constant-sign-extended-to-64-bits>
   1388       //   TypeConversion<Int64> tmp, src
   1389       //   AND dst, tmp, cst
   1390       // with
   1391       //   IntConstant cst, <32-bit-constant>
   1392       //   AND tmp, src, cst
   1393       //   TypeConversion<Int64> dst, tmp
   1394       // This helps 32-bit targets and does not hurt 64-bit targets.
   1395       // This also simplifies detection of other patterns, such as Uint8 loads.
   1396       HInstruction* new_and_input = input_other->InputAt(0);
   1397       // Implicit conversion Int64->Int64 would have been removed previously.
   1398       DCHECK_NE(new_and_input->GetType(), DataType::Type::kInt64);
   1399       HConstant* new_const = GetGraph()->GetConstant(DataType::Type::kInt32, value);
   1400       HAnd* new_and =
   1401           new (GetGraph()->GetAllocator()) HAnd(DataType::Type::kInt32, new_and_input, new_const);
   1402       instruction->GetBlock()->InsertInstructionBefore(new_and, instruction);
   1403       HTypeConversion* new_conversion =
   1404           new (GetGraph()->GetAllocator()) HTypeConversion(DataType::Type::kInt64, new_and);
   1405       instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_conversion);
   1406       input_other->GetBlock()->RemoveInstruction(input_other);
   1407       RecordSimplification();
   1408       // Try to process the new And now, do not wait for the next round of simplifications.
   1409       instruction = new_and;
   1410       input_other = new_and_input;
   1411     }
   1412     // Eliminate And from UShr+And if the And-mask contains all the bits that
   1413     // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask
   1414     // precisely clears the shifted-in sign bits.
   1415     if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) {
   1416       size_t reg_bits = (instruction->GetResultType() == DataType::Type::kInt64) ? 64 : 32;
   1417       size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1);
   1418       size_t num_tail_bits_set = CTZ(value + 1);
   1419       if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) {
   1420         // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff".
   1421         instruction->ReplaceWith(input_other);
   1422         instruction->GetBlock()->RemoveInstruction(instruction);
   1423         RecordSimplification();
   1424         return;
   1425       }  else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) &&
   1426           input_other->HasOnlyOneNonEnvironmentUse()) {
   1427         DCHECK(input_other->IsShr());  // For UShr, we would have taken the branch above.
   1428         // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24".
   1429         HUShr* ushr = new (GetGraph()->GetAllocator()) HUShr(instruction->GetType(),
   1430                                                              input_other->InputAt(0),
   1431                                                              input_other->InputAt(1),
   1432                                                              input_other->GetDexPc());
   1433         instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr);
   1434         input_other->GetBlock()->RemoveInstruction(input_other);
   1435         RecordSimplification();
   1436         return;
   1437       }
   1438     }
   1439     if ((value == 0xff || value == 0xffff) && instruction->GetType() != DataType::Type::kInt64) {
   1440       // Transform AND to a type conversion to Uint8/Uint16. If `input_other` is a field
   1441       // or array Get with only a single use, short-circuit the subsequent simplification
   1442       // of the Get+TypeConversion and change the Get's type to `new_type` instead.
   1443       DataType::Type new_type = (value == 0xff) ? DataType::Type::kUint8 : DataType::Type::kUint16;
   1444       DataType::Type find_type = (value == 0xff) ? DataType::Type::kInt8 : DataType::Type::kInt16;
   1445       if (input_other->GetType() == find_type &&
   1446           input_other->HasOnlyOneNonEnvironmentUse() &&
   1447           TryReplaceFieldOrArrayGetType(input_other, new_type)) {
   1448         instruction->ReplaceWith(input_other);
   1449         instruction->GetBlock()->RemoveInstruction(instruction);
   1450       } else if (DataType::IsTypeConversionImplicit(input_other->GetType(), new_type)) {
   1451         instruction->ReplaceWith(input_other);
   1452         instruction->GetBlock()->RemoveInstruction(instruction);
   1453       } else {
   1454         HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
   1455             new_type, input_other, instruction->GetDexPc());
   1456         instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, type_conversion);
   1457       }
   1458       RecordSimplification();
   1459       return;
   1460     }
   1461   }
   1462 
   1463   // We assume that GVN has run before, so we only perform a pointer comparison.
   1464   // If for some reason the values are equal but the pointers are different, we
   1465   // are still correct and only miss an optimization opportunity.
   1466   if (instruction->GetLeft() == instruction->GetRight()) {
   1467     // Replace code looking like
   1468     //    AND dst, src, src
   1469     // with
   1470     //    src
   1471     instruction->ReplaceWith(instruction->GetLeft());
   1472     instruction->GetBlock()->RemoveInstruction(instruction);
   1473     RecordSimplification();
   1474     return;
   1475   }
   1476 
   1477   if (TryDeMorganNegationFactoring(instruction)) {
   1478     return;
   1479   }
   1480 
   1481   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
   1482   // so no need to return.
   1483   TryHandleAssociativeAndCommutativeOperation(instruction);
   1484 }
   1485 
   1486 void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) {
   1487   VisitCondition(condition);
   1488 }
   1489 
   1490 void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) {
   1491   VisitCondition(condition);
   1492 }
   1493 
   1494 void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) {
   1495   VisitCondition(condition);
   1496 }
   1497 
   1498 void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) {
   1499   VisitCondition(condition);
   1500 }
   1501 
   1502 void InstructionSimplifierVisitor::VisitBelow(HBelow* condition) {
   1503   VisitCondition(condition);
   1504 }
   1505 
   1506 void InstructionSimplifierVisitor::VisitBelowOrEqual(HBelowOrEqual* condition) {
   1507   VisitCondition(condition);
   1508 }
   1509 
   1510 void InstructionSimplifierVisitor::VisitAbove(HAbove* condition) {
   1511   VisitCondition(condition);
   1512 }
   1513 
   1514 void InstructionSimplifierVisitor::VisitAboveOrEqual(HAboveOrEqual* condition) {
   1515   VisitCondition(condition);
   1516 }
   1517 
   1518 // Recognize the following pattern:
   1519 // obj.getClass() ==/!= Foo.class
   1520 // And replace it with a constant value if the type of `obj` is statically known.
   1521 static bool RecognizeAndSimplifyClassCheck(HCondition* condition) {
   1522   HInstruction* input_one = condition->InputAt(0);
   1523   HInstruction* input_two = condition->InputAt(1);
   1524   HLoadClass* load_class = input_one->IsLoadClass()
   1525       ? input_one->AsLoadClass()
   1526       : input_two->AsLoadClass();
   1527   if (load_class == nullptr) {
   1528     return false;
   1529   }
   1530 
   1531   ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
   1532   if (!class_rti.IsValid()) {
   1533     // Unresolved class.
   1534     return false;
   1535   }
   1536 
   1537   HInstanceFieldGet* field_get = (load_class == input_one)
   1538       ? input_two->AsInstanceFieldGet()
   1539       : input_one->AsInstanceFieldGet();
   1540   if (field_get == nullptr) {
   1541     return false;
   1542   }
   1543 
   1544   HInstruction* receiver = field_get->InputAt(0);
   1545   ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
   1546   if (!receiver_type.IsExact()) {
   1547     return false;
   1548   }
   1549 
   1550   {
   1551     ScopedObjectAccess soa(Thread::Current());
   1552     ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0);
   1553     DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
   1554     if (field_get->GetFieldInfo().GetField() != field) {
   1555       return false;
   1556     }
   1557 
   1558     // We can replace the compare.
   1559     int value = 0;
   1560     if (receiver_type.IsEqual(class_rti)) {
   1561       value = condition->IsEqual() ? 1 : 0;
   1562     } else {
   1563       value = condition->IsNotEqual() ? 1 : 0;
   1564     }
   1565     condition->ReplaceWith(condition->GetBlock()->GetGraph()->GetIntConstant(value));
   1566     return true;
   1567   }
   1568 }
   1569 
   1570 void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) {
   1571   if (condition->IsEqual() || condition->IsNotEqual()) {
   1572     if (RecognizeAndSimplifyClassCheck(condition)) {
   1573       return;
   1574     }
   1575   }
   1576 
   1577   // Reverse condition if left is constant. Our code generators prefer constant
   1578   // on the right hand side.
   1579   if (condition->GetLeft()->IsConstant() && !condition->GetRight()->IsConstant()) {
   1580     HBasicBlock* block = condition->GetBlock();
   1581     HCondition* replacement =
   1582         GetOppositeConditionSwapOps(block->GetGraph()->GetAllocator(), condition);
   1583     // If it is a fp we must set the opposite bias.
   1584     if (replacement != nullptr) {
   1585       if (condition->IsLtBias()) {
   1586         replacement->SetBias(ComparisonBias::kGtBias);
   1587       } else if (condition->IsGtBias()) {
   1588         replacement->SetBias(ComparisonBias::kLtBias);
   1589       }
   1590       block->ReplaceAndRemoveInstructionWith(condition, replacement);
   1591       RecordSimplification();
   1592 
   1593       condition = replacement;
   1594     }
   1595   }
   1596 
   1597   HInstruction* left = condition->GetLeft();
   1598   HInstruction* right = condition->GetRight();
   1599 
   1600   // Try to fold an HCompare into this HCondition.
   1601 
   1602   // We can only replace an HCondition which compares a Compare to 0.
   1603   // Both 'dx' and 'jack' generate a compare to 0 when compiling a
   1604   // condition with a long, float or double comparison as input.
   1605   if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) {
   1606     // Conversion is not possible.
   1607     return;
   1608   }
   1609 
   1610   // Is the Compare only used for this purpose?
   1611   if (!left->GetUses().HasExactlyOneElement()) {
   1612     // Someone else also wants the result of the compare.
   1613     return;
   1614   }
   1615 
   1616   if (!left->GetEnvUses().empty()) {
   1617     // There is a reference to the compare result in an environment. Do we really need it?
   1618     if (GetGraph()->IsDebuggable()) {
   1619       return;
   1620     }
   1621 
   1622     // We have to ensure that there are no deopt points in the sequence.
   1623     if (left->HasAnyEnvironmentUseBefore(condition)) {
   1624       return;
   1625     }
   1626   }
   1627 
   1628   // Clean up any environment uses from the HCompare, if any.
   1629   left->RemoveEnvironmentUsers();
   1630 
   1631   // We have decided to fold the HCompare into the HCondition. Transfer the information.
   1632   condition->SetBias(left->AsCompare()->GetBias());
   1633 
   1634   // Replace the operands of the HCondition.
   1635   condition->ReplaceInput(left->InputAt(0), 0);
   1636   condition->ReplaceInput(left->InputAt(1), 1);
   1637 
   1638   // Remove the HCompare.
   1639   left->GetBlock()->RemoveInstruction(left);
   1640 
   1641   RecordSimplification();
   1642 }
   1643 
   1644 // Return whether x / divisor == x * (1.0f / divisor), for every float x.
   1645 static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) {
   1646   // True, if the most significant bits of divisor are 0.
   1647   return ((divisor & 0x7fffff) == 0);
   1648 }
   1649 
   1650 // Return whether x / divisor == x * (1.0 / divisor), for every double x.
   1651 static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) {
   1652   // True, if the most significant bits of divisor are 0.
   1653   return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0);
   1654 }
   1655 
   1656 void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) {
   1657   HConstant* input_cst = instruction->GetConstantRight();
   1658   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1659   DataType::Type type = instruction->GetType();
   1660 
   1661   if ((input_cst != nullptr) && input_cst->IsOne()) {
   1662     // Replace code looking like
   1663     //    DIV dst, src, 1
   1664     // with
   1665     //    src
   1666     instruction->ReplaceWith(input_other);
   1667     instruction->GetBlock()->RemoveInstruction(instruction);
   1668     RecordSimplification();
   1669     return;
   1670   }
   1671 
   1672   if ((input_cst != nullptr) && input_cst->IsMinusOne()) {
   1673     // Replace code looking like
   1674     //    DIV dst, src, -1
   1675     // with
   1676     //    NEG dst, src
   1677     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
   1678         instruction, new (GetGraph()->GetAllocator()) HNeg(type, input_other));
   1679     RecordSimplification();
   1680     return;
   1681   }
   1682 
   1683   if ((input_cst != nullptr) && DataType::IsFloatingPointType(type)) {
   1684     // Try replacing code looking like
   1685     //    DIV dst, src, constant
   1686     // with
   1687     //    MUL dst, src, 1 / constant
   1688     HConstant* reciprocal = nullptr;
   1689     if (type == DataType::Type::kFloat64) {
   1690       double value = input_cst->AsDoubleConstant()->GetValue();
   1691       if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) {
   1692         reciprocal = GetGraph()->GetDoubleConstant(1.0 / value);
   1693       }
   1694     } else {
   1695       DCHECK_EQ(type, DataType::Type::kFloat32);
   1696       float value = input_cst->AsFloatConstant()->GetValue();
   1697       if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) {
   1698         reciprocal = GetGraph()->GetFloatConstant(1.0f / value);
   1699       }
   1700     }
   1701 
   1702     if (reciprocal != nullptr) {
   1703       instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
   1704           instruction, new (GetGraph()->GetAllocator()) HMul(type, input_other, reciprocal));
   1705       RecordSimplification();
   1706       return;
   1707     }
   1708   }
   1709 }
   1710 
   1711 void InstructionSimplifierVisitor::VisitMul(HMul* instruction) {
   1712   HConstant* input_cst = instruction->GetConstantRight();
   1713   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1714   DataType::Type type = instruction->GetType();
   1715   HBasicBlock* block = instruction->GetBlock();
   1716   ArenaAllocator* allocator = GetGraph()->GetAllocator();
   1717 
   1718   if (input_cst == nullptr) {
   1719     return;
   1720   }
   1721 
   1722   if (input_cst->IsOne()) {
   1723     // Replace code looking like
   1724     //    MUL dst, src, 1
   1725     // with
   1726     //    src
   1727     instruction->ReplaceWith(input_other);
   1728     instruction->GetBlock()->RemoveInstruction(instruction);
   1729     RecordSimplification();
   1730     return;
   1731   }
   1732 
   1733   if (input_cst->IsMinusOne() &&
   1734       (DataType::IsFloatingPointType(type) || DataType::IsIntOrLongType(type))) {
   1735     // Replace code looking like
   1736     //    MUL dst, src, -1
   1737     // with
   1738     //    NEG dst, src
   1739     HNeg* neg = new (allocator) HNeg(type, input_other);
   1740     block->ReplaceAndRemoveInstructionWith(instruction, neg);
   1741     RecordSimplification();
   1742     return;
   1743   }
   1744 
   1745   if (DataType::IsFloatingPointType(type) &&
   1746       ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) ||
   1747        (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) {
   1748     // Replace code looking like
   1749     //    FP_MUL dst, src, 2.0
   1750     // with
   1751     //    FP_ADD dst, src, src
   1752     // The 'int' and 'long' cases are handled below.
   1753     block->ReplaceAndRemoveInstructionWith(instruction,
   1754                                            new (allocator) HAdd(type, input_other, input_other));
   1755     RecordSimplification();
   1756     return;
   1757   }
   1758 
   1759   if (DataType::IsIntOrLongType(type)) {
   1760     int64_t factor = Int64FromConstant(input_cst);
   1761     // Even though constant propagation also takes care of the zero case, other
   1762     // optimizations can lead to having a zero multiplication.
   1763     if (factor == 0) {
   1764       // Replace code looking like
   1765       //    MUL dst, src, 0
   1766       // with
   1767       //    0
   1768       instruction->ReplaceWith(input_cst);
   1769       instruction->GetBlock()->RemoveInstruction(instruction);
   1770       RecordSimplification();
   1771       return;
   1772     } else if (IsPowerOfTwo(factor)) {
   1773       // Replace code looking like
   1774       //    MUL dst, src, pow_of_2
   1775       // with
   1776       //    SHL dst, src, log2(pow_of_2)
   1777       HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor));
   1778       HShl* shl = new (allocator) HShl(type, input_other, shift);
   1779       block->ReplaceAndRemoveInstructionWith(instruction, shl);
   1780       RecordSimplification();
   1781       return;
   1782     } else if (IsPowerOfTwo(factor - 1)) {
   1783       // Transform code looking like
   1784       //    MUL dst, src, (2^n + 1)
   1785       // into
   1786       //    SHL tmp, src, n
   1787       //    ADD dst, src, tmp
   1788       HShl* shl = new (allocator) HShl(type,
   1789                                        input_other,
   1790                                        GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1)));
   1791       HAdd* add = new (allocator) HAdd(type, input_other, shl);
   1792 
   1793       block->InsertInstructionBefore(shl, instruction);
   1794       block->ReplaceAndRemoveInstructionWith(instruction, add);
   1795       RecordSimplification();
   1796       return;
   1797     } else if (IsPowerOfTwo(factor + 1)) {
   1798       // Transform code looking like
   1799       //    MUL dst, src, (2^n - 1)
   1800       // into
   1801       //    SHL tmp, src, n
   1802       //    SUB dst, tmp, src
   1803       HShl* shl = new (allocator) HShl(type,
   1804                                        input_other,
   1805                                        GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1)));
   1806       HSub* sub = new (allocator) HSub(type, shl, input_other);
   1807 
   1808       block->InsertInstructionBefore(shl, instruction);
   1809       block->ReplaceAndRemoveInstructionWith(instruction, sub);
   1810       RecordSimplification();
   1811       return;
   1812     }
   1813   }
   1814 
   1815   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
   1816   // so no need to return.
   1817   TryHandleAssociativeAndCommutativeOperation(instruction);
   1818 }
   1819 
   1820 void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) {
   1821   HInstruction* input = instruction->GetInput();
   1822   if (input->IsNeg()) {
   1823     // Replace code looking like
   1824     //    NEG tmp, src
   1825     //    NEG dst, tmp
   1826     // with
   1827     //    src
   1828     HNeg* previous_neg = input->AsNeg();
   1829     instruction->ReplaceWith(previous_neg->GetInput());
   1830     instruction->GetBlock()->RemoveInstruction(instruction);
   1831     // We perform the optimization even if the input negation has environment
   1832     // uses since it allows removing the current instruction. But we only delete
   1833     // the input negation only if it is does not have any uses left.
   1834     if (!previous_neg->HasUses()) {
   1835       previous_neg->GetBlock()->RemoveInstruction(previous_neg);
   1836     }
   1837     RecordSimplification();
   1838     return;
   1839   }
   1840 
   1841   if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() &&
   1842       !DataType::IsFloatingPointType(input->GetType())) {
   1843     // Replace code looking like
   1844     //    SUB tmp, a, b
   1845     //    NEG dst, tmp
   1846     // with
   1847     //    SUB dst, b, a
   1848     // We do not perform the optimization if the input subtraction has
   1849     // environment uses or multiple non-environment uses as it could lead to
   1850     // worse code. In particular, we do not want the live ranges of `a` and `b`
   1851     // to be extended if we are not sure the initial 'SUB' instruction can be
   1852     // removed.
   1853     // We do not perform optimization for fp because we could lose the sign of zero.
   1854     HSub* sub = input->AsSub();
   1855     HSub* new_sub = new (GetGraph()->GetAllocator()) HSub(
   1856         instruction->GetType(), sub->GetRight(), sub->GetLeft());
   1857     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub);
   1858     if (!sub->HasUses()) {
   1859       sub->GetBlock()->RemoveInstruction(sub);
   1860     }
   1861     RecordSimplification();
   1862   }
   1863 }
   1864 
   1865 void InstructionSimplifierVisitor::VisitNot(HNot* instruction) {
   1866   HInstruction* input = instruction->GetInput();
   1867   if (input->IsNot()) {
   1868     // Replace code looking like
   1869     //    NOT tmp, src
   1870     //    NOT dst, tmp
   1871     // with
   1872     //    src
   1873     // We perform the optimization even if the input negation has environment
   1874     // uses since it allows removing the current instruction. But we only delete
   1875     // the input negation only if it is does not have any uses left.
   1876     HNot* previous_not = input->AsNot();
   1877     instruction->ReplaceWith(previous_not->GetInput());
   1878     instruction->GetBlock()->RemoveInstruction(instruction);
   1879     if (!previous_not->HasUses()) {
   1880       previous_not->GetBlock()->RemoveInstruction(previous_not);
   1881     }
   1882     RecordSimplification();
   1883   }
   1884 }
   1885 
   1886 void InstructionSimplifierVisitor::VisitOr(HOr* instruction) {
   1887   HConstant* input_cst = instruction->GetConstantRight();
   1888   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1889 
   1890   if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
   1891     // Replace code looking like
   1892     //    OR dst, src, 0
   1893     // with
   1894     //    src
   1895     instruction->ReplaceWith(input_other);
   1896     instruction->GetBlock()->RemoveInstruction(instruction);
   1897     RecordSimplification();
   1898     return;
   1899   }
   1900 
   1901   // We assume that GVN has run before, so we only perform a pointer comparison.
   1902   // If for some reason the values are equal but the pointers are different, we
   1903   // are still correct and only miss an optimization opportunity.
   1904   if (instruction->GetLeft() == instruction->GetRight()) {
   1905     // Replace code looking like
   1906     //    OR dst, src, src
   1907     // with
   1908     //    src
   1909     instruction->ReplaceWith(instruction->GetLeft());
   1910     instruction->GetBlock()->RemoveInstruction(instruction);
   1911     RecordSimplification();
   1912     return;
   1913   }
   1914 
   1915   if (TryDeMorganNegationFactoring(instruction)) return;
   1916 
   1917   if (TryReplaceWithRotate(instruction)) {
   1918     return;
   1919   }
   1920 
   1921   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
   1922   // so no need to return.
   1923   TryHandleAssociativeAndCommutativeOperation(instruction);
   1924 }
   1925 
   1926 void InstructionSimplifierVisitor::VisitShl(HShl* instruction) {
   1927   VisitShift(instruction);
   1928 }
   1929 
   1930 void InstructionSimplifierVisitor::VisitShr(HShr* instruction) {
   1931   VisitShift(instruction);
   1932 }
   1933 
   1934 void InstructionSimplifierVisitor::VisitSub(HSub* instruction) {
   1935   HConstant* input_cst = instruction->GetConstantRight();
   1936   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1937 
   1938   DataType::Type type = instruction->GetType();
   1939   if (DataType::IsFloatingPointType(type)) {
   1940     return;
   1941   }
   1942 
   1943   if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
   1944     // Replace code looking like
   1945     //    SUB dst, src, 0
   1946     // with
   1947     //    src
   1948     // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When
   1949     // `x` is `-0.0`, the former expression yields `0.0`, while the later
   1950     // yields `-0.0`.
   1951     instruction->ReplaceWith(input_other);
   1952     instruction->GetBlock()->RemoveInstruction(instruction);
   1953     RecordSimplification();
   1954     return;
   1955   }
   1956 
   1957   HBasicBlock* block = instruction->GetBlock();
   1958   ArenaAllocator* allocator = GetGraph()->GetAllocator();
   1959 
   1960   HInstruction* left = instruction->GetLeft();
   1961   HInstruction* right = instruction->GetRight();
   1962   if (left->IsConstant()) {
   1963     if (Int64FromConstant(left->AsConstant()) == 0) {
   1964       // Replace code looking like
   1965       //    SUB dst, 0, src
   1966       // with
   1967       //    NEG dst, src
   1968       // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When
   1969       // `x` is `0.0`, the former expression yields `0.0`, while the later
   1970       // yields `-0.0`.
   1971       HNeg* neg = new (allocator) HNeg(type, right);
   1972       block->ReplaceAndRemoveInstructionWith(instruction, neg);
   1973       RecordSimplification();
   1974       return;
   1975     }
   1976   }
   1977 
   1978   if (left->IsNeg() && right->IsNeg()) {
   1979     if (TryMoveNegOnInputsAfterBinop(instruction)) {
   1980       return;
   1981     }
   1982   }
   1983 
   1984   if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) {
   1985     // Replace code looking like
   1986     //    NEG tmp, b
   1987     //    SUB dst, a, tmp
   1988     // with
   1989     //    ADD dst, a, b
   1990     HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left, right->AsNeg()->GetInput());
   1991     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add);
   1992     RecordSimplification();
   1993     right->GetBlock()->RemoveInstruction(right);
   1994     return;
   1995   }
   1996 
   1997   if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) {
   1998     // Replace code looking like
   1999     //    NEG tmp, a
   2000     //    SUB dst, tmp, b
   2001     // with
   2002     //    ADD tmp, a, b
   2003     //    NEG dst, tmp
   2004     // The second version is not intrinsically better, but enables more
   2005     // transformations.
   2006     HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left->AsNeg()->GetInput(), right);
   2007     instruction->GetBlock()->InsertInstructionBefore(add, instruction);
   2008     HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(instruction->GetType(), add);
   2009     instruction->GetBlock()->InsertInstructionBefore(neg, instruction);
   2010     instruction->ReplaceWith(neg);
   2011     instruction->GetBlock()->RemoveInstruction(instruction);
   2012     RecordSimplification();
   2013     left->GetBlock()->RemoveInstruction(left);
   2014     return;
   2015   }
   2016 
   2017   if (TrySubtractionChainSimplification(instruction)) {
   2018     return;
   2019   }
   2020 
   2021   if (left->IsAdd()) {
   2022     // Replace code patterns looking like
   2023     //    ADD dst1, x, y        ADD dst1, x, y
   2024     //    SUB dst2, dst1, y     SUB dst2, dst1, x
   2025     // with
   2026     //    ADD dst1, x, y
   2027     // SUB instruction is not needed in this case, we may use
   2028     // one of inputs of ADD instead.
   2029     // It is applicable to integral types only.
   2030     DCHECK(DataType::IsIntegralType(type));
   2031     if (left->InputAt(1) == right) {
   2032       instruction->ReplaceWith(left->InputAt(0));
   2033       RecordSimplification();
   2034       instruction->GetBlock()->RemoveInstruction(instruction);
   2035       return;
   2036     } else if (left->InputAt(0) == right) {
   2037       instruction->ReplaceWith(left->InputAt(1));
   2038       RecordSimplification();
   2039       instruction->GetBlock()->RemoveInstruction(instruction);
   2040       return;
   2041     }
   2042   }
   2043 }
   2044 
   2045 void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) {
   2046   VisitShift(instruction);
   2047 }
   2048 
   2049 void InstructionSimplifierVisitor::VisitXor(HXor* instruction) {
   2050   HConstant* input_cst = instruction->GetConstantRight();
   2051   HInstruction* input_other = instruction->GetLeastConstantLeft();
   2052 
   2053   if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
   2054     // Replace code looking like
   2055     //    XOR dst, src, 0
   2056     // with
   2057     //    src
   2058     instruction->ReplaceWith(input_other);
   2059     instruction->GetBlock()->RemoveInstruction(instruction);
   2060     RecordSimplification();
   2061     return;
   2062   }
   2063 
   2064   if ((input_cst != nullptr) && input_cst->IsOne()
   2065       && input_other->GetType() == DataType::Type::kBool) {
   2066     // Replace code looking like
   2067     //    XOR dst, src, 1
   2068     // with
   2069     //    BOOLEAN_NOT dst, src
   2070     HBooleanNot* boolean_not = new (GetGraph()->GetAllocator()) HBooleanNot(input_other);
   2071     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, boolean_not);
   2072     RecordSimplification();
   2073     return;
   2074   }
   2075 
   2076   if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) {
   2077     // Replace code looking like
   2078     //    XOR dst, src, 0xFFF...FF
   2079     // with
   2080     //    NOT dst, src
   2081     HNot* bitwise_not = new (GetGraph()->GetAllocator()) HNot(instruction->GetType(), input_other);
   2082     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not);
   2083     RecordSimplification();
   2084     return;
   2085   }
   2086 
   2087   HInstruction* left = instruction->GetLeft();
   2088   HInstruction* right = instruction->GetRight();
   2089   if (((left->IsNot() && right->IsNot()) ||
   2090        (left->IsBooleanNot() && right->IsBooleanNot())) &&
   2091       left->HasOnlyOneNonEnvironmentUse() &&
   2092       right->HasOnlyOneNonEnvironmentUse()) {
   2093     // Replace code looking like
   2094     //    NOT nota, a
   2095     //    NOT notb, b
   2096     //    XOR dst, nota, notb
   2097     // with
   2098     //    XOR dst, a, b
   2099     instruction->ReplaceInput(left->InputAt(0), 0);
   2100     instruction->ReplaceInput(right->InputAt(0), 1);
   2101     left->GetBlock()->RemoveInstruction(left);
   2102     right->GetBlock()->RemoveInstruction(right);
   2103     RecordSimplification();
   2104     return;
   2105   }
   2106 
   2107   if (TryReplaceWithRotate(instruction)) {
   2108     return;
   2109   }
   2110 
   2111   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
   2112   // so no need to return.
   2113   TryHandleAssociativeAndCommutativeOperation(instruction);
   2114 }
   2115 
   2116 void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) {
   2117   HInstruction* argument = instruction->InputAt(1);
   2118   HInstruction* receiver = instruction->InputAt(0);
   2119   if (receiver == argument) {
   2120     // Because String.equals is an instance call, the receiver is
   2121     // a null check if we don't know it's null. The argument however, will
   2122     // be the actual object. So we cannot end up in a situation where both
   2123     // are equal but could be null.
   2124     DCHECK(CanEnsureNotNullAt(argument, instruction));
   2125     instruction->ReplaceWith(GetGraph()->GetIntConstant(1));
   2126     instruction->GetBlock()->RemoveInstruction(instruction);
   2127   } else {
   2128     StringEqualsOptimizations optimizations(instruction);
   2129     if (CanEnsureNotNullAt(argument, instruction)) {
   2130       optimizations.SetArgumentNotNull();
   2131     }
   2132     ScopedObjectAccess soa(Thread::Current());
   2133     ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo();
   2134     if (argument_rti.IsValid() && argument_rti.IsStringClass()) {
   2135       optimizations.SetArgumentIsString();
   2136     }
   2137   }
   2138 }
   2139 
   2140 void InstructionSimplifierVisitor::SimplifyRotate(HInvoke* invoke,
   2141                                                   bool is_left,
   2142                                                   DataType::Type type) {
   2143   DCHECK(invoke->IsInvokeStaticOrDirect());
   2144   DCHECK_EQ(invoke->GetInvokeType(), InvokeType::kStatic);
   2145   HInstruction* value = invoke->InputAt(0);
   2146   HInstruction* distance = invoke->InputAt(1);
   2147   // Replace the invoke with an HRor.
   2148   if (is_left) {
   2149     // Unconditionally set the type of the negated distance to `int`,
   2150     // as shift and rotate operations expect a 32-bit (or narrower)
   2151     // value for their distance input.
   2152     distance = new (GetGraph()->GetAllocator()) HNeg(DataType::Type::kInt32, distance);
   2153     invoke->GetBlock()->InsertInstructionBefore(distance, invoke);
   2154   }
   2155   HRor* ror = new (GetGraph()->GetAllocator()) HRor(type, value, distance);
   2156   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, ror);
   2157   // Remove ClinitCheck and LoadClass, if possible.
   2158   HInstruction* clinit = invoke->GetInputs().back();
   2159   if (clinit->IsClinitCheck() && !clinit->HasUses()) {
   2160     clinit->GetBlock()->RemoveInstruction(clinit);
   2161     HInstruction* ldclass = clinit->InputAt(0);
   2162     if (ldclass->IsLoadClass() && !ldclass->HasUses()) {
   2163       ldclass->GetBlock()->RemoveInstruction(ldclass);
   2164     }
   2165   }
   2166 }
   2167 
   2168 static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) {
   2169   if (potential_length->IsArrayLength()) {
   2170     return potential_length->InputAt(0) == potential_array;
   2171   }
   2172 
   2173   if (potential_array->IsNewArray()) {
   2174     return potential_array->AsNewArray()->GetLength() == potential_length;
   2175   }
   2176 
   2177   return false;
   2178 }
   2179 
   2180 void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) {
   2181   HInstruction* source = instruction->InputAt(0);
   2182   HInstruction* destination = instruction->InputAt(2);
   2183   HInstruction* count = instruction->InputAt(4);
   2184   SystemArrayCopyOptimizations optimizations(instruction);
   2185   if (CanEnsureNotNullAt(source, instruction)) {
   2186     optimizations.SetSourceIsNotNull();
   2187   }
   2188   if (CanEnsureNotNullAt(destination, instruction)) {
   2189     optimizations.SetDestinationIsNotNull();
   2190   }
   2191   if (destination == source) {
   2192     optimizations.SetDestinationIsSource();
   2193   }
   2194 
   2195   if (IsArrayLengthOf(count, source)) {
   2196     optimizations.SetCountIsSourceLength();
   2197   }
   2198 
   2199   if (IsArrayLengthOf(count, destination)) {
   2200     optimizations.SetCountIsDestinationLength();
   2201   }
   2202 
   2203   {
   2204     ScopedObjectAccess soa(Thread::Current());
   2205     DataType::Type source_component_type = DataType::Type::kVoid;
   2206     DataType::Type destination_component_type = DataType::Type::kVoid;
   2207     ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo();
   2208     if (destination_rti.IsValid()) {
   2209       if (destination_rti.IsObjectArray()) {
   2210         if (destination_rti.IsExact()) {
   2211           optimizations.SetDoesNotNeedTypeCheck();
   2212         }
   2213         optimizations.SetDestinationIsTypedObjectArray();
   2214       }
   2215       if (destination_rti.IsPrimitiveArrayClass()) {
   2216         destination_component_type = DataTypeFromPrimitive(
   2217             destination_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
   2218         optimizations.SetDestinationIsPrimitiveArray();
   2219       } else if (destination_rti.IsNonPrimitiveArrayClass()) {
   2220         optimizations.SetDestinationIsNonPrimitiveArray();
   2221       }
   2222     }
   2223     ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo();
   2224     if (source_rti.IsValid()) {
   2225       if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) {
   2226         optimizations.SetDoesNotNeedTypeCheck();
   2227       }
   2228       if (source_rti.IsPrimitiveArrayClass()) {
   2229         optimizations.SetSourceIsPrimitiveArray();
   2230         source_component_type = DataTypeFromPrimitive(
   2231             source_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
   2232       } else if (source_rti.IsNonPrimitiveArrayClass()) {
   2233         optimizations.SetSourceIsNonPrimitiveArray();
   2234       }
   2235     }
   2236     // For primitive arrays, use their optimized ArtMethod implementations.
   2237     if ((source_component_type != DataType::Type::kVoid) &&
   2238         (source_component_type == destination_component_type)) {
   2239       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2240       PointerSize image_size = class_linker->GetImagePointerSize();
   2241       HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
   2242       ObjPtr<mirror::Class> system = invoke->GetResolvedMethod()->GetDeclaringClass();
   2243       ArtMethod* method = nullptr;
   2244       switch (source_component_type) {
   2245         case DataType::Type::kBool:
   2246           method = system->FindClassMethod("arraycopy", "([ZI[ZII)V", image_size);
   2247           break;
   2248         case DataType::Type::kInt8:
   2249           method = system->FindClassMethod("arraycopy", "([BI[BII)V", image_size);
   2250           break;
   2251         case DataType::Type::kUint16:
   2252           method = system->FindClassMethod("arraycopy", "([CI[CII)V", image_size);
   2253           break;
   2254         case DataType::Type::kInt16:
   2255           method = system->FindClassMethod("arraycopy", "([SI[SII)V", image_size);
   2256           break;
   2257         case DataType::Type::kInt32:
   2258           method = system->FindClassMethod("arraycopy", "([II[III)V", image_size);
   2259           break;
   2260         case DataType::Type::kFloat32:
   2261           method = system->FindClassMethod("arraycopy", "([FI[FII)V", image_size);
   2262           break;
   2263         case DataType::Type::kInt64:
   2264           method = system->FindClassMethod("arraycopy", "([JI[JII)V", image_size);
   2265           break;
   2266         case DataType::Type::kFloat64:
   2267           method = system->FindClassMethod("arraycopy", "([DI[DII)V", image_size);
   2268           break;
   2269         default:
   2270           LOG(FATAL) << "Unreachable";
   2271       }
   2272       DCHECK(method != nullptr);
   2273       DCHECK(method->IsStatic());
   2274       DCHECK(method->GetDeclaringClass() == system);
   2275       invoke->SetResolvedMethod(method);
   2276       // Sharpen the new invoke. Note that we do not update the dex method index of
   2277       // the invoke, as we would need to look it up in the current dex file, and it
   2278       // is unlikely that it exists. The most usual situation for such typed
   2279       // arraycopy methods is a direct pointer to the boot image.
   2280       invoke->SetDispatchInfo(HSharpening::SharpenInvokeStaticOrDirect(method, codegen_));
   2281     }
   2282   }
   2283 }
   2284 
   2285 void InstructionSimplifierVisitor::SimplifyCompare(HInvoke* invoke,
   2286                                                    bool is_signum,
   2287                                                    DataType::Type type) {
   2288   DCHECK(invoke->IsInvokeStaticOrDirect());
   2289   uint32_t dex_pc = invoke->GetDexPc();
   2290   HInstruction* left = invoke->InputAt(0);
   2291   HInstruction* right;
   2292   if (!is_signum) {
   2293     right = invoke->InputAt(1);
   2294   } else if (type == DataType::Type::kInt64) {
   2295     right = GetGraph()->GetLongConstant(0);
   2296   } else {
   2297     right = GetGraph()->GetIntConstant(0);
   2298   }
   2299   HCompare* compare = new (GetGraph()->GetAllocator())
   2300       HCompare(type, left, right, ComparisonBias::kNoBias, dex_pc);
   2301   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, compare);
   2302 }
   2303 
   2304 void InstructionSimplifierVisitor::SimplifyIsNaN(HInvoke* invoke) {
   2305   DCHECK(invoke->IsInvokeStaticOrDirect());
   2306   uint32_t dex_pc = invoke->GetDexPc();
   2307   // IsNaN(x) is the same as x != x.
   2308   HInstruction* x = invoke->InputAt(0);
   2309   HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
   2310   condition->SetBias(ComparisonBias::kLtBias);
   2311   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, condition);
   2312 }
   2313 
   2314 void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) {
   2315   DCHECK(invoke->IsInvokeStaticOrDirect());
   2316   uint32_t dex_pc = invoke->GetDexPc();
   2317   HInstruction* x = invoke->InputAt(0);
   2318   DataType::Type type = x->GetType();
   2319   // Set proper bit pattern for NaN and replace intrinsic with raw version.
   2320   HInstruction* nan;
   2321   if (type == DataType::Type::kFloat64) {
   2322     nan = GetGraph()->GetLongConstant(0x7ff8000000000000L);
   2323     invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits,
   2324                          kNeedsEnvironmentOrCache,
   2325                          kNoSideEffects,
   2326                          kNoThrow);
   2327   } else {
   2328     DCHECK_EQ(type, DataType::Type::kFloat32);
   2329     nan = GetGraph()->GetIntConstant(0x7fc00000);
   2330     invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits,
   2331                          kNeedsEnvironmentOrCache,
   2332                          kNoSideEffects,
   2333                          kNoThrow);
   2334   }
   2335   // Test IsNaN(x), which is the same as x != x.
   2336   HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
   2337   condition->SetBias(ComparisonBias::kLtBias);
   2338   invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext());
   2339   // Select between the two.
   2340   HInstruction* select = new (GetGraph()->GetAllocator()) HSelect(condition, nan, invoke, dex_pc);
   2341   invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext());
   2342   invoke->ReplaceWithExceptInReplacementAtIndex(select, 0);  // false at index 0
   2343 }
   2344 
   2345 void InstructionSimplifierVisitor::SimplifyStringCharAt(HInvoke* invoke) {
   2346   HInstruction* str = invoke->InputAt(0);
   2347   HInstruction* index = invoke->InputAt(1);
   2348   uint32_t dex_pc = invoke->GetDexPc();
   2349   ArenaAllocator* allocator = GetGraph()->GetAllocator();
   2350   // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
   2351   // so create the HArrayLength, HBoundsCheck and HArrayGet.
   2352   HArrayLength* length = new (allocator) HArrayLength(str, dex_pc, /* is_string_length= */ true);
   2353   invoke->GetBlock()->InsertInstructionBefore(length, invoke);
   2354   HBoundsCheck* bounds_check = new (allocator) HBoundsCheck(
   2355       index, length, dex_pc, /* is_string_char_at= */ true);
   2356   invoke->GetBlock()->InsertInstructionBefore(bounds_check, invoke);
   2357   HArrayGet* array_get = new (allocator) HArrayGet(str,
   2358                                                    bounds_check,
   2359                                                    DataType::Type::kUint16,
   2360                                                    SideEffects::None(),  // Strings are immutable.
   2361                                                    dex_pc,
   2362                                                    /* is_string_char_at= */ true);
   2363   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, array_get);
   2364   bounds_check->CopyEnvironmentFrom(invoke->GetEnvironment());
   2365   GetGraph()->SetHasBoundsChecks(true);
   2366 }
   2367 
   2368 void InstructionSimplifierVisitor::SimplifyStringIsEmptyOrLength(HInvoke* invoke) {
   2369   HInstruction* str = invoke->InputAt(0);
   2370   uint32_t dex_pc = invoke->GetDexPc();
   2371   // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
   2372   // so create the HArrayLength.
   2373   HArrayLength* length =
   2374       new (GetGraph()->GetAllocator()) HArrayLength(str, dex_pc, /* is_string_length= */ true);
   2375   HInstruction* replacement;
   2376   if (invoke->GetIntrinsic() == Intrinsics::kStringIsEmpty) {
   2377     // For String.isEmpty(), create the `HEqual` representing the `length == 0`.
   2378     invoke->GetBlock()->InsertInstructionBefore(length, invoke);
   2379     HIntConstant* zero = GetGraph()->GetIntConstant(0);
   2380     HEqual* equal = new (GetGraph()->GetAllocator()) HEqual(length, zero, dex_pc);
   2381     replacement = equal;
   2382   } else {
   2383     DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringLength);
   2384     replacement = length;
   2385   }
   2386   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, replacement);
   2387 }
   2388 
   2389 void InstructionSimplifierVisitor::SimplifyStringIndexOf(HInvoke* invoke) {
   2390   DCHECK(invoke->GetIntrinsic() == Intrinsics::kStringIndexOf ||
   2391          invoke->GetIntrinsic() == Intrinsics::kStringIndexOfAfter);
   2392   if (invoke->InputAt(0)->IsLoadString()) {
   2393     HLoadString* load_string = invoke->InputAt(0)->AsLoadString();
   2394     const DexFile& dex_file = load_string->GetDexFile();
   2395     uint32_t utf16_length;
   2396     const char* data =
   2397         dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), &utf16_length);
   2398     if (utf16_length == 0) {
   2399       invoke->ReplaceWith(GetGraph()->GetIntConstant(-1));
   2400       invoke->GetBlock()->RemoveInstruction(invoke);
   2401       RecordSimplification();
   2402       return;
   2403     }
   2404     if (utf16_length == 1 && invoke->GetIntrinsic() == Intrinsics::kStringIndexOf) {
   2405       // Simplify to HSelect(HEquals(., load_string.charAt(0)), 0, -1).
   2406       // If the sought character is supplementary, this gives the correct result, i.e. -1.
   2407       uint32_t c = GetUtf16FromUtf8(&data);
   2408       DCHECK_EQ(GetTrailingUtf16Char(c), 0u);
   2409       DCHECK_EQ(GetLeadingUtf16Char(c), c);
   2410       uint32_t dex_pc = invoke->GetDexPc();
   2411       ArenaAllocator* allocator = GetGraph()->GetAllocator();
   2412       HEqual* equal =
   2413           new (allocator) HEqual(invoke->InputAt(1), GetGraph()->GetIntConstant(c), dex_pc);
   2414       invoke->GetBlock()->InsertInstructionBefore(equal, invoke);
   2415       HSelect* result = new (allocator) HSelect(equal,
   2416                                                 GetGraph()->GetIntConstant(0),
   2417                                                 GetGraph()->GetIntConstant(-1),
   2418                                                 dex_pc);
   2419       invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, result);
   2420       RecordSimplification();
   2421       return;
   2422     }
   2423   }
   2424 }
   2425 
   2426 // This method should only be used on intrinsics whose sole way of throwing an
   2427 // exception is raising a NPE when the nth argument is null. If that argument
   2428 // is provably non-null, we can clear the flag.
   2429 void InstructionSimplifierVisitor::SimplifyNPEOnArgN(HInvoke* invoke, size_t n) {
   2430   HInstruction* arg = invoke->InputAt(n);
   2431   if (invoke->CanThrow() && !arg->CanBeNull()) {
   2432     invoke->SetCanThrow(false);
   2433   }
   2434 }
   2435 
   2436 // Methods that return "this" can replace the returned value with the receiver.
   2437 void InstructionSimplifierVisitor::SimplifyReturnThis(HInvoke* invoke) {
   2438   if (invoke->HasUses()) {
   2439     HInstruction* receiver = invoke->InputAt(0);
   2440     invoke->ReplaceWith(receiver);
   2441     RecordSimplification();
   2442   }
   2443 }
   2444 
   2445 // Helper method for StringBuffer escape analysis.
   2446 static bool NoEscapeForStringBufferReference(HInstruction* reference, HInstruction* user) {
   2447   if (user->IsInvokeStaticOrDirect()) {
   2448     // Any constructor on StringBuffer is okay.
   2449     return user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
   2450            user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
   2451            user->InputAt(0) == reference;
   2452   } else if (user->IsInvokeVirtual()) {
   2453     switch (user->AsInvokeVirtual()->GetIntrinsic()) {
   2454       case Intrinsics::kStringBufferLength:
   2455       case Intrinsics::kStringBufferToString:
   2456         DCHECK_EQ(user->InputAt(0), reference);
   2457         return true;
   2458       case Intrinsics::kStringBufferAppend:
   2459         // Returns "this", so only okay if no further uses.
   2460         DCHECK_EQ(user->InputAt(0), reference);
   2461         DCHECK_NE(user->InputAt(1), reference);
   2462         return !user->HasUses();
   2463       default:
   2464         break;
   2465     }
   2466   }
   2467   return false;
   2468 }
   2469 
   2470 // Certain allocation intrinsics are not removed by dead code elimination
   2471 // because of potentially throwing an OOM exception or other side effects.
   2472 // This method removes such intrinsics when special circumstances allow.
   2473 void InstructionSimplifierVisitor::SimplifyAllocationIntrinsic(HInvoke* invoke) {
   2474   if (!invoke->HasUses()) {
   2475     // Instruction has no uses. If unsynchronized, we can remove right away, safely ignoring
   2476     // the potential OOM of course. Otherwise, we must ensure the receiver object of this
   2477     // call does not escape since only thread-local synchronization may be removed.
   2478     bool is_synchronized = invoke->GetIntrinsic() == Intrinsics::kStringBufferToString;
   2479     HInstruction* receiver = invoke->InputAt(0);
   2480     if (!is_synchronized || DoesNotEscape(receiver, NoEscapeForStringBufferReference)) {
   2481       invoke->GetBlock()->RemoveInstruction(invoke);
   2482       RecordSimplification();
   2483     }
   2484   }
   2485 }
   2486 
   2487 void InstructionSimplifierVisitor::SimplifyMemBarrier(HInvoke* invoke,
   2488                                                       MemBarrierKind barrier_kind) {
   2489   uint32_t dex_pc = invoke->GetDexPc();
   2490   HMemoryBarrier* mem_barrier =
   2491       new (GetGraph()->GetAllocator()) HMemoryBarrier(barrier_kind, dex_pc);
   2492   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, mem_barrier);
   2493 }
   2494 
   2495 void InstructionSimplifierVisitor::SimplifyMin(HInvoke* invoke, DataType::Type type) {
   2496   DCHECK(invoke->IsInvokeStaticOrDirect());
   2497   HMin* min = new (GetGraph()->GetAllocator())
   2498       HMin(type, invoke->InputAt(0), invoke->InputAt(1), invoke->GetDexPc());
   2499   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, min);
   2500 }
   2501 
   2502 void InstructionSimplifierVisitor::SimplifyMax(HInvoke* invoke, DataType::Type type) {
   2503   DCHECK(invoke->IsInvokeStaticOrDirect());
   2504   HMax* max = new (GetGraph()->GetAllocator())
   2505       HMax(type, invoke->InputAt(0), invoke->InputAt(1), invoke->GetDexPc());
   2506   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, max);
   2507 }
   2508 
   2509 void InstructionSimplifierVisitor::SimplifyAbs(HInvoke* invoke, DataType::Type type) {
   2510   DCHECK(invoke->IsInvokeStaticOrDirect());
   2511   HAbs* abs = new (GetGraph()->GetAllocator())
   2512       HAbs(type, invoke->InputAt(0), invoke->GetDexPc());
   2513   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, abs);
   2514 }
   2515 
   2516 void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) {
   2517   switch (instruction->GetIntrinsic()) {
   2518     case Intrinsics::kStringEquals:
   2519       SimplifyStringEquals(instruction);
   2520       break;
   2521     case Intrinsics::kSystemArrayCopy:
   2522       SimplifySystemArrayCopy(instruction);
   2523       break;
   2524     case Intrinsics::kIntegerRotateRight:
   2525       SimplifyRotate(instruction, /* is_left= */ false, DataType::Type::kInt32);
   2526       break;
   2527     case Intrinsics::kLongRotateRight:
   2528       SimplifyRotate(instruction, /* is_left= */ false, DataType::Type::kInt64);
   2529       break;
   2530     case Intrinsics::kIntegerRotateLeft:
   2531       SimplifyRotate(instruction, /* is_left= */ true, DataType::Type::kInt32);
   2532       break;
   2533     case Intrinsics::kLongRotateLeft:
   2534       SimplifyRotate(instruction, /* is_left= */ true, DataType::Type::kInt64);
   2535       break;
   2536     case Intrinsics::kIntegerCompare:
   2537       SimplifyCompare(instruction, /* is_signum= */ false, DataType::Type::kInt32);
   2538       break;
   2539     case Intrinsics::kLongCompare:
   2540       SimplifyCompare(instruction, /* is_signum= */ false, DataType::Type::kInt64);
   2541       break;
   2542     case Intrinsics::kIntegerSignum:
   2543       SimplifyCompare(instruction, /* is_signum= */ true, DataType::Type::kInt32);
   2544       break;
   2545     case Intrinsics::kLongSignum:
   2546       SimplifyCompare(instruction, /* is_signum= */ true, DataType::Type::kInt64);
   2547       break;
   2548     case Intrinsics::kFloatIsNaN:
   2549     case Intrinsics::kDoubleIsNaN:
   2550       SimplifyIsNaN(instruction);
   2551       break;
   2552     case Intrinsics::kFloatFloatToIntBits:
   2553     case Intrinsics::kDoubleDoubleToLongBits:
   2554       SimplifyFP2Int(instruction);
   2555       break;
   2556     case Intrinsics::kStringCharAt:
   2557       SimplifyStringCharAt(instruction);
   2558       break;
   2559     case Intrinsics::kStringIsEmpty:
   2560     case Intrinsics::kStringLength:
   2561       SimplifyStringIsEmptyOrLength(instruction);
   2562       break;
   2563     case Intrinsics::kStringIndexOf:
   2564     case Intrinsics::kStringIndexOfAfter:
   2565       SimplifyStringIndexOf(instruction);
   2566       break;
   2567     case Intrinsics::kStringStringIndexOf:
   2568     case Intrinsics::kStringStringIndexOfAfter:
   2569       SimplifyNPEOnArgN(instruction, 1);  // 0th has own NullCheck
   2570       break;
   2571     case Intrinsics::kStringBufferAppend:
   2572     case Intrinsics::kStringBuilderAppend:
   2573       SimplifyReturnThis(instruction);
   2574       break;
   2575     case Intrinsics::kStringBufferToString:
   2576     case Intrinsics::kStringBuilderToString:
   2577       SimplifyAllocationIntrinsic(instruction);
   2578       break;
   2579     case Intrinsics::kUnsafeLoadFence:
   2580       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
   2581       break;
   2582     case Intrinsics::kUnsafeStoreFence:
   2583       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
   2584       break;
   2585     case Intrinsics::kUnsafeFullFence:
   2586       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
   2587       break;
   2588     case Intrinsics::kVarHandleFullFence:
   2589       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
   2590       break;
   2591     case Intrinsics::kVarHandleAcquireFence:
   2592       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
   2593       break;
   2594     case Intrinsics::kVarHandleReleaseFence:
   2595       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
   2596       break;
   2597     case Intrinsics::kVarHandleLoadLoadFence:
   2598       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
   2599       break;
   2600     case Intrinsics::kVarHandleStoreStoreFence:
   2601       SimplifyMemBarrier(instruction, MemBarrierKind::kStoreStore);
   2602       break;
   2603     case Intrinsics::kMathMinIntInt:
   2604       SimplifyMin(instruction, DataType::Type::kInt32);
   2605       break;
   2606     case Intrinsics::kMathMinLongLong:
   2607       SimplifyMin(instruction, DataType::Type::kInt64);
   2608       break;
   2609     case Intrinsics::kMathMinFloatFloat:
   2610       SimplifyMin(instruction, DataType::Type::kFloat32);
   2611       break;
   2612     case Intrinsics::kMathMinDoubleDouble:
   2613       SimplifyMin(instruction, DataType::Type::kFloat64);
   2614       break;
   2615     case Intrinsics::kMathMaxIntInt:
   2616       SimplifyMax(instruction, DataType::Type::kInt32);
   2617       break;
   2618     case Intrinsics::kMathMaxLongLong:
   2619       SimplifyMax(instruction, DataType::Type::kInt64);
   2620       break;
   2621     case Intrinsics::kMathMaxFloatFloat:
   2622       SimplifyMax(instruction, DataType::Type::kFloat32);
   2623       break;
   2624     case Intrinsics::kMathMaxDoubleDouble:
   2625       SimplifyMax(instruction, DataType::Type::kFloat64);
   2626       break;
   2627     case Intrinsics::kMathAbsInt:
   2628       SimplifyAbs(instruction, DataType::Type::kInt32);
   2629       break;
   2630     case Intrinsics::kMathAbsLong:
   2631       SimplifyAbs(instruction, DataType::Type::kInt64);
   2632       break;
   2633     case Intrinsics::kMathAbsFloat:
   2634       SimplifyAbs(instruction, DataType::Type::kFloat32);
   2635       break;
   2636     case Intrinsics::kMathAbsDouble:
   2637       SimplifyAbs(instruction, DataType::Type::kFloat64);
   2638       break;
   2639     default:
   2640       break;
   2641   }
   2642 }
   2643 
   2644 void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) {
   2645   HInstruction* cond = deoptimize->InputAt(0);
   2646   if (cond->IsConstant()) {
   2647     if (cond->AsIntConstant()->IsFalse()) {
   2648       // Never deopt: instruction can be removed.
   2649       if (deoptimize->GuardsAnInput()) {
   2650         deoptimize->ReplaceWith(deoptimize->GuardedInput());
   2651       }
   2652       deoptimize->GetBlock()->RemoveInstruction(deoptimize);
   2653     } else {
   2654       // Always deopt.
   2655     }
   2656   }
   2657 }
   2658 
   2659 // Replace code looking like
   2660 //    OP y, x, const1
   2661 //    OP z, y, const2
   2662 // with
   2663 //    OP z, x, const3
   2664 // where OP is both an associative and a commutative operation.
   2665 bool InstructionSimplifierVisitor::TryHandleAssociativeAndCommutativeOperation(
   2666     HBinaryOperation* instruction) {
   2667   DCHECK(instruction->IsCommutative());
   2668 
   2669   if (!DataType::IsIntegralType(instruction->GetType())) {
   2670     return false;
   2671   }
   2672 
   2673   HInstruction* left = instruction->GetLeft();
   2674   HInstruction* right = instruction->GetRight();
   2675   // Variable names as described above.
   2676   HConstant* const2;
   2677   HBinaryOperation* y;
   2678 
   2679   if (instruction->GetKind() == left->GetKind() && right->IsConstant()) {
   2680     const2 = right->AsConstant();
   2681     y = left->AsBinaryOperation();
   2682   } else if (left->IsConstant() && instruction->GetKind() == right->GetKind()) {
   2683     const2 = left->AsConstant();
   2684     y = right->AsBinaryOperation();
   2685   } else {
   2686     // The node does not match the pattern.
   2687     return false;
   2688   }
   2689 
   2690   // If `y` has more than one use, we do not perform the optimization
   2691   // because it might increase code size (e.g. if the new constant is
   2692   // no longer encodable as an immediate operand in the target ISA).
   2693   if (!y->HasOnlyOneNonEnvironmentUse()) {
   2694     return false;
   2695   }
   2696 
   2697   // GetConstantRight() can return both left and right constants
   2698   // for commutative operations.
   2699   HConstant* const1 = y->GetConstantRight();
   2700   if (const1 == nullptr) {
   2701     return false;
   2702   }
   2703 
   2704   instruction->ReplaceInput(const1, 0);
   2705   instruction->ReplaceInput(const2, 1);
   2706   HConstant* const3 = instruction->TryStaticEvaluation();
   2707   DCHECK(const3 != nullptr);
   2708   instruction->ReplaceInput(y->GetLeastConstantLeft(), 0);
   2709   instruction->ReplaceInput(const3, 1);
   2710   RecordSimplification();
   2711   return true;
   2712 }
   2713 
   2714 static HBinaryOperation* AsAddOrSub(HInstruction* binop) {
   2715   return (binop->IsAdd() || binop->IsSub()) ? binop->AsBinaryOperation() : nullptr;
   2716 }
   2717 
   2718 // Helper function that performs addition statically, considering the result type.
   2719 static int64_t ComputeAddition(DataType::Type type, int64_t x, int64_t y) {
   2720   // Use the Compute() method for consistency with TryStaticEvaluation().
   2721   if (type == DataType::Type::kInt32) {
   2722     return HAdd::Compute<int32_t>(x, y);
   2723   } else {
   2724     DCHECK_EQ(type, DataType::Type::kInt64);
   2725     return HAdd::Compute<int64_t>(x, y);
   2726   }
   2727 }
   2728 
   2729 // Helper function that handles the child classes of HConstant
   2730 // and returns an integer with the appropriate sign.
   2731 static int64_t GetValue(HConstant* constant, bool is_negated) {
   2732   int64_t ret = Int64FromConstant(constant);
   2733   return is_negated ? -ret : ret;
   2734 }
   2735 
   2736 // Replace code looking like
   2737 //    OP1 y, x, const1
   2738 //    OP2 z, y, const2
   2739 // with
   2740 //    OP3 z, x, const3
   2741 // where OPx is either ADD or SUB, and at least one of OP{1,2} is SUB.
   2742 bool InstructionSimplifierVisitor::TrySubtractionChainSimplification(
   2743     HBinaryOperation* instruction) {
   2744   DCHECK(instruction->IsAdd() || instruction->IsSub()) << instruction->DebugName();
   2745 
   2746   DataType::Type type = instruction->GetType();
   2747   if (!DataType::IsIntegralType(type)) {
   2748     return false;
   2749   }
   2750 
   2751   HInstruction* left = instruction->GetLeft();
   2752   HInstruction* right = instruction->GetRight();
   2753   // Variable names as described above.
   2754   HConstant* const2 = right->IsConstant() ? right->AsConstant() : left->AsConstant();
   2755   if (const2 == nullptr) {
   2756     return false;
   2757   }
   2758 
   2759   HBinaryOperation* y = (AsAddOrSub(left) != nullptr)
   2760       ? left->AsBinaryOperation()
   2761       : AsAddOrSub(right);
   2762   // If y has more than one use, we do not perform the optimization because
   2763   // it might increase code size (e.g. if the new constant is no longer
   2764   // encodable as an immediate operand in the target ISA).
   2765   if ((y == nullptr) || !y->HasOnlyOneNonEnvironmentUse()) {
   2766     return false;
   2767   }
   2768 
   2769   left = y->GetLeft();
   2770   HConstant* const1 = left->IsConstant() ? left->AsConstant() : y->GetRight()->AsConstant();
   2771   if (const1 == nullptr) {
   2772     return false;
   2773   }
   2774 
   2775   HInstruction* x = (const1 == left) ? y->GetRight() : left;
   2776   // If both inputs are constants, let the constant folding pass deal with it.
   2777   if (x->IsConstant()) {
   2778     return false;
   2779   }
   2780 
   2781   bool is_const2_negated = (const2 == right) && instruction->IsSub();
   2782   int64_t const2_val = GetValue(const2, is_const2_negated);
   2783   bool is_y_negated = (y == right) && instruction->IsSub();
   2784   right = y->GetRight();
   2785   bool is_const1_negated = is_y_negated ^ ((const1 == right) && y->IsSub());
   2786   int64_t const1_val = GetValue(const1, is_const1_negated);
   2787   bool is_x_negated = is_y_negated ^ ((x == right) && y->IsSub());
   2788   int64_t const3_val = ComputeAddition(type, const1_val, const2_val);
   2789   HBasicBlock* block = instruction->GetBlock();
   2790   HConstant* const3 = block->GetGraph()->GetConstant(type, const3_val);
   2791   ArenaAllocator* allocator = instruction->GetAllocator();
   2792   HInstruction* z;
   2793 
   2794   if (is_x_negated) {
   2795     z = new (allocator) HSub(type, const3, x, instruction->GetDexPc());
   2796   } else {
   2797     z = new (allocator) HAdd(type, x, const3, instruction->GetDexPc());
   2798   }
   2799 
   2800   block->ReplaceAndRemoveInstructionWith(instruction, z);
   2801   RecordSimplification();
   2802   return true;
   2803 }
   2804 
   2805 void InstructionSimplifierVisitor::VisitVecMul(HVecMul* instruction) {
   2806   if (TryCombineVecMultiplyAccumulate(instruction)) {
   2807     RecordSimplification();
   2808   }
   2809 }
   2810 
   2811 }  // namespace art
   2812