1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "memcmp16.h" 18 19 #include "gtest/gtest.h" 20 21 class RandGen { 22 public: 23 explicit RandGen(uint32_t seed) : val_(seed) {} 24 25 uint32_t next() { 26 val_ = val_ * 48271 % 2147483647 + 13; 27 return val_; 28 } 29 30 uint32_t val_; 31 }; 32 33 class MemCmp16Test : public testing::Test { 34 }; 35 36 // A simple implementation to compare against. 37 // Note: this version is equivalent to the generic one used when no optimized version is available. 38 int32_t memcmp16_compare(const uint16_t* s0, const uint16_t* s1, size_t count) { 39 for (size_t i = 0; i < count; i++) { 40 if (s0[i] != s1[i]) { 41 return static_cast<int32_t>(s0[i]) - static_cast<int32_t>(s1[i]); 42 } 43 } 44 return 0; 45 } 46 47 static constexpr size_t kMemCmp16Rounds = 100000; 48 49 static void CheckSeparate(size_t max_length, size_t min_length) { 50 RandGen r(0x1234); 51 size_t range_of_tests = 7; // All four (weighted) tests active in the beginning. 52 53 for (size_t round = 0; round < kMemCmp16Rounds; ++round) { 54 size_t type = r.next() % range_of_tests; 55 size_t count1, count2; 56 uint16_t *s1, *s2; // Use raw pointers to simplify using clobbered addresses 57 58 switch (type) { 59 case 0: // random, non-zero lengths of both strings 60 case 1: 61 case 2: 62 case 3: 63 count1 = (r.next() % max_length) + min_length; 64 count2 = (r.next() % max_length) + min_length; 65 break; 66 67 case 4: // random non-zero length of first, second is zero 68 count1 = (r.next() % max_length) + min_length; 69 count2 = 0U; 70 break; 71 72 case 5: // random non-zero length of second, first is zero 73 count1 = 0U; 74 count2 = (r.next() % max_length) + min_length; 75 break; 76 77 case 6: // both zero-length 78 count1 = 0U; 79 count2 = 0U; 80 range_of_tests = 6; // Don't do zero-zero again. 81 break; 82 83 default: 84 ASSERT_TRUE(false) << "Should not get here."; 85 continue; 86 } 87 88 if (count1 > 0U) { 89 s1 = new uint16_t[count1]; 90 } else { 91 // Leave a random pointer, should not be touched. 92 s1 = reinterpret_cast<uint16_t*>(0xebad1001); 93 } 94 95 if (count2 > 0U) { 96 s2 = new uint16_t[count2]; 97 } else { 98 // Leave a random pointer, should not be touched. 99 s2 = reinterpret_cast<uint16_t*>(0xebad2002); 100 } 101 102 size_t min = count1 < count2 ? count1 : count2; 103 bool fill_same = r.next() % 2 == 1; 104 105 if (fill_same) { 106 for (size_t i = 0; i < min; ++i) { 107 s1[i] = static_cast<uint16_t>(r.next() & 0xFFFF); 108 s2[i] = s1[i]; 109 } 110 for (size_t i = min; i < count1; ++i) { 111 s1[i] = static_cast<uint16_t>(r.next() & 0xFFFF); 112 } 113 for (size_t i = min; i < count2; ++i) { 114 s2[i] = static_cast<uint16_t>(r.next() & 0xFFFF); 115 } 116 } else { 117 for (size_t i = 0; i < count1; ++i) { 118 s1[i] = static_cast<uint16_t>(r.next() & 0xFFFF); 119 } 120 for (size_t i = 0; i < count2; ++i) { 121 s2[i] = static_cast<uint16_t>(r.next() & 0xFFFF); 122 } 123 } 124 125 uint16_t* s1_pot_unaligned = s1; 126 uint16_t* s2_pot_unaligned = s2; 127 size_t c1_mod = count1; 128 size_t c2_mod = count2; 129 130 if (!fill_same) { // Don't waste a good "long" test. 131 if (count1 > 1 && r.next() % 10 == 0) { 132 c1_mod--; 133 s1_pot_unaligned++; 134 } 135 if (count2 > 1 && r.next() % 10 == 0) { 136 c2_mod--; 137 s2_pot_unaligned++; 138 } 139 } 140 size_t mod_min = c1_mod < c2_mod ? c1_mod : c2_mod; 141 142 int32_t expected = memcmp16_compare(s1_pot_unaligned, s2_pot_unaligned, mod_min); 143 int32_t computed = art::testing::MemCmp16Testing(s1_pot_unaligned, s2_pot_unaligned, mod_min); 144 145 ASSERT_EQ(expected, computed) << "Run " << round << ", c1=" << count1 << " c2=" << count2; 146 147 if (count1 > 0U) { 148 delete[] s1; 149 } 150 if (count2 > 0U) { 151 delete[] s2; 152 } 153 } 154 } 155 156 TEST_F(MemCmp16Test, RandomSeparateShort) { 157 CheckSeparate(5U, 1U); 158 } 159 160 TEST_F(MemCmp16Test, RandomSeparateLong) { 161 CheckSeparate(64U, 32U); 162 } 163 164 // TODO: What's a good test for overlapping memory. Is it important? 165 // TEST_F(MemCmp16Test, RandomOverlay) { 166 // 167 // } 168