1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "reference_processor.h" 18 19 #include "art_field-inl.h" 20 #include "base/mutex.h" 21 #include "base/time_utils.h" 22 #include "base/utils.h" 23 #include "class_root.h" 24 #include "collector/garbage_collector.h" 25 #include "jni/java_vm_ext.h" 26 #include "mirror/class-inl.h" 27 #include "mirror/object-inl.h" 28 #include "mirror/reference-inl.h" 29 #include "nativehelper/scoped_local_ref.h" 30 #include "object_callbacks.h" 31 #include "reflection.h" 32 #include "scoped_thread_state_change-inl.h" 33 #include "task_processor.h" 34 #include "thread_pool.h" 35 #include "well_known_classes.h" 36 37 namespace art { 38 namespace gc { 39 40 static constexpr bool kAsyncReferenceQueueAdd = false; 41 42 ReferenceProcessor::ReferenceProcessor() 43 : collector_(nullptr), 44 preserving_references_(false), 45 condition_("reference processor condition", *Locks::reference_processor_lock_) , 46 soft_reference_queue_(Locks::reference_queue_soft_references_lock_), 47 weak_reference_queue_(Locks::reference_queue_weak_references_lock_), 48 finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), 49 phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), 50 cleared_references_(Locks::reference_queue_cleared_references_lock_) { 51 } 52 53 static inline MemberOffset GetSlowPathFlagOffset(ObjPtr<mirror::Class> reference_class) 54 REQUIRES_SHARED(Locks::mutator_lock_) { 55 DCHECK(reference_class == GetClassRoot<mirror::Reference>()); 56 // Second static field 57 ArtField* field = reference_class->GetStaticField(1); 58 DCHECK_STREQ(field->GetName(), "slowPathEnabled"); 59 return field->GetOffset(); 60 } 61 62 static inline void SetSlowPathFlag(bool enabled) REQUIRES_SHARED(Locks::mutator_lock_) { 63 ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>(); 64 MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class); 65 reference_class->SetFieldBoolean</* kTransactionActive= */ false, /* kCheckTransaction= */ false>( 66 slow_path_offset, enabled ? 1 : 0); 67 } 68 69 void ReferenceProcessor::EnableSlowPath() { 70 SetSlowPathFlag(/* enabled= */ true); 71 } 72 73 void ReferenceProcessor::DisableSlowPath(Thread* self) { 74 SetSlowPathFlag(/* enabled= */ false); 75 condition_.Broadcast(self); 76 } 77 78 bool ReferenceProcessor::SlowPathEnabled() { 79 ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>(); 80 MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class); 81 return reference_class->GetFieldBoolean(slow_path_offset); 82 } 83 84 void ReferenceProcessor::BroadcastForSlowPath(Thread* self) { 85 MutexLock mu(self, *Locks::reference_processor_lock_); 86 condition_.Broadcast(self); 87 } 88 89 ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self, 90 ObjPtr<mirror::Reference> reference) { 91 if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) { 92 // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when 93 // weak ref access is disabled as the call includes a read barrier which may push a ref onto the 94 // mark stack and interfere with termination of marking. 95 const ObjPtr<mirror::Object> referent = reference->GetReferent(); 96 // If the referent is null then it is already cleared, we can just return null since there is no 97 // scenario where it becomes non-null during the reference processing phase. 98 if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) { 99 return referent; 100 } 101 } 102 MutexLock mu(self, *Locks::reference_processor_lock_); 103 while ((!kUseReadBarrier && SlowPathEnabled()) || 104 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { 105 ObjPtr<mirror::Object> referent = reference->GetReferent<kWithoutReadBarrier>(); 106 // If the referent became cleared, return it. Don't need barrier since thread roots can't get 107 // updated until after we leave the function due to holding the mutator lock. 108 if (referent == nullptr) { 109 return nullptr; 110 } 111 // Try to see if the referent is already marked by using the is_marked_callback. We can return 112 // it to the mutator as long as the GC is not preserving references. 113 if (LIKELY(collector_ != nullptr)) { 114 // If it's null it means not marked, but it could become marked if the referent is reachable 115 // by finalizer referents. So we cannot return in this case and must block. Otherwise, we 116 // can return it to the mutator as long as the GC is not preserving references, in which 117 // case only black nodes can be safely returned. If the GC is preserving references, the 118 // mutator could take a white field from a grey or white node and move it somewhere else 119 // in the heap causing corruption since this field would get swept. 120 // Use the cached referent instead of calling GetReferent since other threads could call 121 // Reference.clear() after we did the null check resulting in a null pointer being 122 // incorrectly passed to IsMarked. b/33569625 123 ObjPtr<mirror::Object> forwarded_ref = collector_->IsMarked(referent.Ptr()); 124 if (forwarded_ref != nullptr) { 125 // Non null means that it is marked. 126 if (!preserving_references_ || 127 (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) { 128 return forwarded_ref; 129 } 130 } 131 } 132 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the 133 // presence of threads blocking for weak ref access. 134 self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); 135 condition_.WaitHoldingLocks(self); 136 } 137 return reference->GetReferent(); 138 } 139 140 void ReferenceProcessor::StartPreservingReferences(Thread* self) { 141 MutexLock mu(self, *Locks::reference_processor_lock_); 142 preserving_references_ = true; 143 } 144 145 void ReferenceProcessor::StopPreservingReferences(Thread* self) { 146 MutexLock mu(self, *Locks::reference_processor_lock_); 147 preserving_references_ = false; 148 // We are done preserving references, some people who are blocked may see a marked referent. 149 condition_.Broadcast(self); 150 } 151 152 // Process reference class instances and schedule finalizations. 153 void ReferenceProcessor::ProcessReferences(bool concurrent, 154 TimingLogger* timings, 155 bool clear_soft_references, 156 collector::GarbageCollector* collector) { 157 TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings); 158 Thread* self = Thread::Current(); 159 { 160 MutexLock mu(self, *Locks::reference_processor_lock_); 161 collector_ = collector; 162 if (!kUseReadBarrier) { 163 CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent"; 164 } else { 165 // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false). 166 CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent); 167 } 168 } 169 if (kIsDebugBuild && collector->IsTransactionActive()) { 170 // In transaction mode, we shouldn't enqueue any Reference to the queues. 171 // See DelayReferenceReferent(). 172 DCHECK(soft_reference_queue_.IsEmpty()); 173 DCHECK(weak_reference_queue_.IsEmpty()); 174 DCHECK(finalizer_reference_queue_.IsEmpty()); 175 DCHECK(phantom_reference_queue_.IsEmpty()); 176 } 177 // Unless required to clear soft references with white references, preserve some white referents. 178 if (!clear_soft_references) { 179 TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" : 180 "(Paused)ForwardSoftReferences", timings); 181 if (concurrent) { 182 StartPreservingReferences(self); 183 } 184 // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional 185 // mark if the SoftReference is supposed to be preserved. 186 soft_reference_queue_.ForwardSoftReferences(collector); 187 collector->ProcessMarkStack(); 188 if (concurrent) { 189 StopPreservingReferences(self); 190 } 191 } 192 // Clear all remaining soft and weak references with white referents. 193 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 194 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 195 { 196 TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" : 197 "(Paused)EnqueueFinalizerReferences", timings); 198 if (concurrent) { 199 StartPreservingReferences(self); 200 } 201 // Preserve all white objects with finalize methods and schedule them for finalization. 202 finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector); 203 collector->ProcessMarkStack(); 204 if (concurrent) { 205 StopPreservingReferences(self); 206 } 207 } 208 // Clear all finalizer referent reachable soft and weak references with white referents. 209 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 210 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 211 // Clear all phantom references with white referents. 212 phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 213 // At this point all reference queues other than the cleared references should be empty. 214 DCHECK(soft_reference_queue_.IsEmpty()); 215 DCHECK(weak_reference_queue_.IsEmpty()); 216 DCHECK(finalizer_reference_queue_.IsEmpty()); 217 DCHECK(phantom_reference_queue_.IsEmpty()); 218 { 219 MutexLock mu(self, *Locks::reference_processor_lock_); 220 // Need to always do this since the next GC may be concurrent. Doing this for only concurrent 221 // could result in a stale is_marked_callback_ being called before the reference processing 222 // starts since there is a small window of time where slow_path_enabled_ is enabled but the 223 // callback isn't yet set. 224 collector_ = nullptr; 225 if (!kUseReadBarrier && concurrent) { 226 // Done processing, disable the slow path and broadcast to the waiters. 227 DisableSlowPath(self); 228 } 229 } 230 } 231 232 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 233 // marked, put it on the appropriate list in the heap for later processing. 234 void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass, 235 ObjPtr<mirror::Reference> ref, 236 collector::GarbageCollector* collector) { 237 // klass can be the class of the old object if the visitor already updated the class of ref. 238 DCHECK(klass != nullptr); 239 DCHECK(klass->IsTypeOfReferenceClass()); 240 mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr(); 241 // do_atomic_update needs to be true because this happens outside of the reference processing 242 // phase. 243 if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update=*/true)) { 244 if (UNLIKELY(collector->IsTransactionActive())) { 245 // In transaction mode, keep the referent alive and avoid any reference processing to avoid the 246 // issue of rolling back reference processing. do_atomic_update needs to be true because this 247 // happens outside of the reference processing phase. 248 if (!referent->IsNull()) { 249 collector->MarkHeapReference(referent, /*do_atomic_update=*/ true); 250 } 251 return; 252 } 253 Thread* self = Thread::Current(); 254 // TODO: Remove these locks, and use atomic stacks for storing references? 255 // We need to check that the references haven't already been enqueued since we can end up 256 // scanning the same reference multiple times due to dirty cards. 257 if (klass->IsSoftReferenceClass()) { 258 soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 259 } else if (klass->IsWeakReferenceClass()) { 260 weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 261 } else if (klass->IsFinalizerReferenceClass()) { 262 finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 263 } else if (klass->IsPhantomReferenceClass()) { 264 phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 265 } else { 266 LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex 267 << klass->GetAccessFlags(); 268 } 269 } 270 } 271 272 void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) { 273 cleared_references_.UpdateRoots(visitor); 274 } 275 276 class ClearedReferenceTask : public HeapTask { 277 public: 278 explicit ClearedReferenceTask(jobject cleared_references) 279 : HeapTask(NanoTime()), cleared_references_(cleared_references) { 280 } 281 void Run(Thread* thread) override { 282 ScopedObjectAccess soa(thread); 283 jvalue args[1]; 284 args[0].l = cleared_references_; 285 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args); 286 soa.Env()->DeleteGlobalRef(cleared_references_); 287 } 288 289 private: 290 const jobject cleared_references_; 291 }; 292 293 SelfDeletingTask* ReferenceProcessor::CollectClearedReferences(Thread* self) { 294 Locks::mutator_lock_->AssertNotHeld(self); 295 // By default we don't actually need to do anything. Just return this no-op task to avoid having 296 // to put in ifs. 297 std::unique_ptr<SelfDeletingTask> result(new FunctionTask([](Thread*) {})); 298 // When a runtime isn't started there are no reference queues to care about so ignore. 299 if (!cleared_references_.IsEmpty()) { 300 if (LIKELY(Runtime::Current()->IsStarted())) { 301 jobject cleared_references; 302 { 303 ReaderMutexLock mu(self, *Locks::mutator_lock_); 304 cleared_references = self->GetJniEnv()->GetVm()->AddGlobalRef( 305 self, cleared_references_.GetList()); 306 } 307 if (kAsyncReferenceQueueAdd) { 308 // TODO: This can cause RunFinalization to terminate before newly freed objects are 309 // finalized since they may not be enqueued by the time RunFinalization starts. 310 Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask( 311 self, new ClearedReferenceTask(cleared_references)); 312 } else { 313 result.reset(new ClearedReferenceTask(cleared_references)); 314 } 315 } 316 cleared_references_.Clear(); 317 } 318 return result.release(); 319 } 320 321 void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) { 322 Thread* self = Thread::Current(); 323 MutexLock mu(self, *Locks::reference_processor_lock_); 324 // Need to wait until reference processing is done since IsMarkedHeapReference does not have a 325 // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions. 326 // This also handles the race where the referent gets cleared after a null check but before 327 // IsMarkedHeapReference is called. 328 WaitUntilDoneProcessingReferences(self); 329 if (Runtime::Current()->IsActiveTransaction()) { 330 ref->ClearReferent<true>(); 331 } else { 332 ref->ClearReferent<false>(); 333 } 334 } 335 336 void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) { 337 // Wait until we are done processing reference. 338 while ((!kUseReadBarrier && SlowPathEnabled()) || 339 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { 340 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the 341 // presence of threads blocking for weak ref access. 342 self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); 343 condition_.WaitHoldingLocks(self); 344 } 345 } 346 347 bool ReferenceProcessor::MakeCircularListIfUnenqueued( 348 ObjPtr<mirror::FinalizerReference> reference) { 349 Thread* self = Thread::Current(); 350 MutexLock mu(self, *Locks::reference_processor_lock_); 351 WaitUntilDoneProcessingReferences(self); 352 // At this point, since the sentinel of the reference is live, it is guaranteed to not be 353 // enqueued if we just finished processing references. Otherwise, we may be doing the main GC 354 // phase. Since we are holding the reference processor lock, it guarantees that reference 355 // processing can't begin. The GC could have just enqueued the reference one one of the internal 356 // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this 357 // race. 358 MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); 359 if (reference->IsUnprocessed()) { 360 CHECK(reference->IsFinalizerReferenceInstance()); 361 reference->SetPendingNext(reference); 362 return true; 363 } 364 return false; 365 } 366 367 } // namespace gc 368 } // namespace art 369