Home | History | Annotate | Download | only in src
      1 /* s_cbrtf.c -- float version of s_cbrt.c.
      2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian (at) cygnus.com.
      3  * Debugged and optimized by Bruce D. Evans.
      4  */
      5 
      6 /*
      7  * ====================================================
      8  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      9  *
     10  * Developed at SunPro, a Sun Microsystems, Inc. business.
     11  * Permission to use, copy, modify, and distribute this
     12  * software is freely granted, provided that this notice
     13  * is preserved.
     14  * ====================================================
     15  */
     16 
     17 #include <sys/cdefs.h>
     18 __FBSDID("$FreeBSD$");
     19 
     20 #include "math.h"
     21 #include "math_private.h"
     22 
     23 /* cbrtf(x)
     24  * Return cube root of x
     25  */
     26 static const unsigned
     27 	B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
     28 	B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
     29 
     30 float
     31 cbrtf(float x)
     32 {
     33 	double r,T;
     34 	float t;
     35 	int32_t hx;
     36 	u_int32_t sign;
     37 	u_int32_t high;
     38 
     39 	GET_FLOAT_WORD(hx,x);
     40 	sign=hx&0x80000000; 		/* sign= sign(x) */
     41 	hx  ^=sign;
     42 	if(hx>=0x7f800000) return(x+x); /* cbrt(NaN,INF) is itself */
     43 
     44     /* rough cbrt to 5 bits */
     45 	if(hx<0x00800000) { 		/* zero or subnormal? */
     46 	    if(hx==0)
     47 		return(x);		/* cbrt(+-0) is itself */
     48 	    SET_FLOAT_WORD(t,0x4b800000); /* set t= 2**24 */
     49 	    t*=x;
     50 	    GET_FLOAT_WORD(high,t);
     51 	    SET_FLOAT_WORD(t,sign|((high&0x7fffffff)/3+B2));
     52 	} else
     53 	    SET_FLOAT_WORD(t,sign|(hx/3+B1));
     54 
     55     /*
     56      * First step Newton iteration (solving t*t-x/t == 0) to 16 bits.  In
     57      * double precision so that its terms can be arranged for efficiency
     58      * without causing overflow or underflow.
     59      */
     60 	T=t;
     61 	r=T*T*T;
     62 	T=T*((double)x+x+r)/(x+r+r);
     63 
     64     /*
     65      * Second step Newton iteration to 47 bits.  In double precision for
     66      * efficiency and accuracy.
     67      */
     68 	r=T*T*T;
     69 	T=T*((double)x+x+r)/(x+r+r);
     70 
     71     /* rounding to 24 bits is perfect in round-to-nearest mode */
     72 	return(T);
     73 }
     74