Home | History | Annotate | Download | only in scene1
      1 # Copyright 2014 The Android Open Source Project
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #      http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 
     15 import os.path
     16 import its.caps
     17 import its.device
     18 import its.image
     19 import its.objects
     20 import its.target
     21 
     22 from matplotlib import pylab
     23 import matplotlib.pyplot
     24 import numpy
     25 
     26 BURST_LEN = 50
     27 BURSTS = 5
     28 COLORS = ["R", "G", "B"]
     29 FRAMES = BURST_LEN * BURSTS
     30 NAME = os.path.basename(__file__).split(".")[0]
     31 SPREAD_THRESH = 0.03
     32 
     33 
     34 def main():
     35     """Take long bursts of images and check that they're all identical.
     36 
     37     Assumes a static scene. Can be used to idenfity if there are sporadic
     38     frames that are processed differently or have artifacts. Uses manual
     39     capture settings.
     40     """
     41 
     42     with its.device.ItsSession() as cam:
     43 
     44         # Capture at the smallest resolution.
     45         props = cam.get_camera_properties()
     46         its.caps.skip_unless(its.caps.compute_target_exposure(props) and
     47                              its.caps.per_frame_control(props))
     48         debug = its.caps.debug_mode()
     49 
     50         _, fmt = its.objects.get_fastest_manual_capture_settings(props)
     51         e, s = its.target.get_target_exposure_combos(cam)["minSensitivity"]
     52         req = its.objects.manual_capture_request(s, e)
     53         w, h = fmt["width"], fmt["height"]
     54 
     55         # Capture bursts of YUV shots.
     56         # Get the mean values of a center patch for each.
     57         # Also build a 4D array, which is an array of all RGB images.
     58         r_means = []
     59         g_means = []
     60         b_means = []
     61         imgs = numpy.empty([FRAMES, h, w, 3])
     62         for j in range(BURSTS):
     63             caps = cam.do_capture([req]*BURST_LEN, [fmt])
     64             for i, cap in enumerate(caps):
     65                 n = j*BURST_LEN + i
     66                 imgs[n] = its.image.convert_capture_to_rgb_image(cap)
     67                 tile = its.image.get_image_patch(imgs[n], 0.45, 0.45, 0.1, 0.1)
     68                 means = its.image.compute_image_means(tile)
     69                 r_means.append(means[0])
     70                 g_means.append(means[1])
     71                 b_means.append(means[2])
     72 
     73         # Dump all images if debug
     74         if debug:
     75             print "Dumping images"
     76             for i in range(FRAMES):
     77                 its.image.write_image(imgs[i], "%s_frame%03d.jpg"%(NAME, i))
     78 
     79         # The mean image.
     80         img_mean = imgs.mean(0)
     81         its.image.write_image(img_mean, "%s_mean.jpg"%(NAME))
     82 
     83         # Plot means vs frames
     84         frames = range(FRAMES)
     85         pylab.title(NAME)
     86         pylab.plot(frames, r_means, "-ro")
     87         pylab.plot(frames, g_means, "-go")
     88         pylab.plot(frames, b_means, "-bo")
     89         pylab.ylim([0, 1])
     90         pylab.xlabel("frame number")
     91         pylab.ylabel("RGB avg [0, 1]")
     92         matplotlib.pyplot.savefig("%s_plot_means.png" % (NAME))
     93 
     94         # PASS/FAIL based on center patch similarity.
     95         for plane, means in enumerate([r_means, g_means, b_means]):
     96             spread = max(means) - min(means)
     97             msg = "%s spread: %.5f, SPREAD_THRESH: %.3f" % (
     98                     COLORS[plane], spread, SPREAD_THRESH)
     99             print msg
    100             assert spread < SPREAD_THRESH, msg
    101 
    102 if __name__ == "__main__":
    103     main()
    104 
    105