Home | History | Annotate | Download | only in scene1
      1 # Copyright 2014 The Android Open Source Project
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #      http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 
     15 import os.path
     16 import its.caps
     17 import its.device
     18 import its.image
     19 import its.objects
     20 import its.target
     21 import numpy
     22 
     23 NAME = os.path.basename(__file__).split(".")[0]
     24 # A list of 5 regions, specified in normalized (x,y,w,h) coords.
     25 # The regions correspond to: TL, TR, BL, BR, CENT
     26 REGIONS = [(0.0, 0.0, 0.5, 0.5),
     27            (0.5, 0.0, 0.5, 0.5),
     28            (0.0, 0.5, 0.5, 0.5),
     29            (0.5, 0.5, 0.5, 0.5),
     30            (0.25, 0.25, 0.5, 0.5)]
     31 
     32 
     33 def main():
     34     """Test that crop regions work."""
     35 
     36     with its.device.ItsSession() as cam:
     37         props = cam.get_camera_properties()
     38         its.caps.skip_unless(its.caps.compute_target_exposure(props) and
     39                              its.caps.freeform_crop(props) and
     40                              its.caps.per_frame_control(props))
     41 
     42         a = props["android.sensor.info.activeArraySize"]
     43         ax, ay = a["left"], a["top"]
     44         aw, ah = a["right"] - a["left"], a["bottom"] - a["top"]
     45         e, s = its.target.get_target_exposure_combos(cam)["minSensitivity"]
     46         print "Active sensor region (%d,%d %dx%d)" % (ax, ay, aw, ah)
     47 
     48         # Uses a 2x digital zoom.
     49         assert its.objects.get_max_digital_zoom(props) >= 2
     50 
     51         # Capture a full frame.
     52         req = its.objects.manual_capture_request(s, e)
     53         cap_full = cam.do_capture(req)
     54         img_full = its.image.convert_capture_to_rgb_image(cap_full)
     55         wfull, hfull = cap_full["width"], cap_full["height"]
     56         its.image.write_image(
     57                 img_full, "%s_full_%dx%d.jpg" % (NAME, wfull, hfull))
     58 
     59         # Capture a burst of crop region frames.
     60         # Note that each region is 1/2x1/2 of the full frame, and is digitally
     61         # zoomed into the full size output image, so must be downscaled (below)
     62         # by 2x when compared to a tile of the full image.
     63         reqs = []
     64         for x, y, w, h in REGIONS:
     65             req = its.objects.manual_capture_request(s, e)
     66             req["android.scaler.cropRegion"] = {
     67                     "top": int(ah * y),
     68                     "left": int(aw * x),
     69                     "right": int(aw * (x + w)),
     70                     "bottom": int(ah * (y + h))}
     71             reqs.append(req)
     72         caps_regions = cam.do_capture(reqs)
     73         match_failed = False
     74         for i, cap in enumerate(caps_regions):
     75             a = cap["metadata"]["android.scaler.cropRegion"]
     76             ax, ay = a["left"], a["top"]
     77             aw, ah = a["right"] - a["left"], a["bottom"] - a["top"]
     78 
     79             # Match this crop image against each of the five regions of
     80             # the full image, to find the best match (which should be
     81             # the region that corresponds to this crop image).
     82             img_crop = its.image.convert_capture_to_rgb_image(cap)
     83             img_crop = its.image.downscale_image(img_crop, 2)
     84             its.image.write_image(img_crop, "%s_crop%d.jpg" % (NAME, i))
     85             min_diff = None
     86             min_diff_region = None
     87             for j, (x, y, w, h) in enumerate(REGIONS):
     88                 tile_full = its.image.get_image_patch(img_full, x, y, w, h)
     89                 wtest = min(tile_full.shape[1], aw)
     90                 htest = min(tile_full.shape[0], ah)
     91                 tile_full = tile_full[0:htest:, 0:wtest:, ::]
     92                 tile_crop = img_crop[0:htest:, 0:wtest:, ::]
     93                 its.image.write_image(
     94                         tile_full, "%s_fullregion%d.jpg" % (NAME, j))
     95                 diff = numpy.fabs(tile_full - tile_crop).mean()
     96                 if min_diff is None or diff < min_diff:
     97                     min_diff = diff
     98                     min_diff_region = j
     99             if i != min_diff_region:
    100                 match_failed = True
    101             print "Crop image %d (%d,%d %dx%d) best match with region %d"%(
    102                     i, ax, ay, aw, ah, min_diff_region)
    103 
    104         assert not match_failed
    105 
    106 if __name__ == "__main__":
    107     main()
    108 
    109