1 # Copyright 2013 The Android Open Source Project 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 15 import os.path 16 17 import its.caps 18 import its.device 19 import its.image 20 import its.objects 21 import its.target 22 23 import matplotlib 24 from matplotlib import pylab 25 26 NAME = os.path.basename(__file__).split('.')[0] 27 NUM_STEPS = 5 28 29 30 def main(): 31 """Test that the android.sensor.sensitivity parameter is applied.""" 32 33 sensitivities = None 34 r_means = [] 35 g_means = [] 36 b_means = [] 37 38 with its.device.ItsSession() as cam: 39 props = cam.get_camera_properties() 40 its.caps.skip_unless(its.caps.compute_target_exposure(props)) 41 sync_latency = its.caps.sync_latency(props) 42 43 debug = its.caps.debug_mode() 44 largest_yuv = its.objects.get_largest_yuv_format(props) 45 if debug: 46 fmt = largest_yuv 47 else: 48 match_ar = (largest_yuv['width'], largest_yuv['height']) 49 fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) 50 51 expt, _ = its.target.get_target_exposure_combos(cam)['midSensitivity'] 52 sens_range = props['android.sensor.info.sensitivityRange'] 53 sens_step = (sens_range[1] - sens_range[0]) / float(NUM_STEPS-1) 54 sensitivities = [ 55 sens_range[0] + i * sens_step for i in range(NUM_STEPS)] 56 57 for s in sensitivities: 58 req = its.objects.manual_capture_request(s, expt) 59 cap = its.device.do_capture_with_latency( 60 cam, req, sync_latency, fmt) 61 img = its.image.convert_capture_to_rgb_image(cap) 62 its.image.write_image(img, '%s_iso=%04d.jpg' % (NAME, s)) 63 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) 64 rgb_means = its.image.compute_image_means(tile) 65 r_means.append(rgb_means[0]) 66 g_means.append(rgb_means[1]) 67 b_means.append(rgb_means[2]) 68 69 # Draw a plot. 70 pylab.plot(sensitivities, r_means, '-ro') 71 pylab.plot(sensitivities, g_means, '-go') 72 pylab.plot(sensitivities, b_means, '-bo') 73 pylab.ylim([0, 1]) 74 pylab.title(NAME) 75 pylab.xlabel('Gain (ISO)') 76 pylab.ylabel('RGB means') 77 matplotlib.pyplot.savefig('%s_plot_means.png' % (NAME)) 78 79 # Test for pass/fail: check that each shot is brighter than the previous. 80 for means in [r_means, g_means, b_means]: 81 for i in range(len(means)-1): 82 assert means[i+1] > means[i] 83 84 if __name__ == '__main__': 85 main() 86 87