Home | History | Annotate | Download | only in scene2
      1 # Copyright 2014 The Android Open Source Project
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #      http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 
     15 import os.path
     16 import its.caps
     17 import its.device
     18 import its.image
     19 import its.objects
     20 
     21 NAME = os.path.basename(__file__).split('.')[0]
     22 NUM_TEST_FRAMES = 20
     23 FD_MODE_OFF = 0
     24 FD_MODE_SIMPLE = 1
     25 FD_MODE_FULL = 2
     26 W, H = 640, 480
     27 
     28 
     29 def main():
     30     """Test face detection.
     31     """
     32 
     33     with its.device.ItsSession() as cam:
     34         props = cam.get_camera_properties()
     35         props = cam.override_with_hidden_physical_camera_props(props)
     36         its.caps.skip_unless(its.caps.face_detect(props))
     37         mono_camera = its.caps.mono_camera(props)
     38         fd_modes = props['android.statistics.info.availableFaceDetectModes']
     39         a = props['android.sensor.info.activeArraySize']
     40         aw, ah = a['right'] - a['left'], a['bottom'] - a['top']
     41         if its.caps.read_3a(props):
     42             gain, exp, _, _, focus = cam.do_3a(get_results=True,
     43                                                mono_camera=mono_camera)
     44             print 'iso = %d' % gain
     45             print 'exp = %.2fms' % (exp*1.0E-6)
     46             if focus == 0.0:
     47                 print 'fd = infinity'
     48             else:
     49                 print 'fd = %.2fcm' % (1.0E2/focus)
     50         for fd_mode in fd_modes:
     51             assert FD_MODE_OFF <= fd_mode <= FD_MODE_FULL
     52             req = its.objects.auto_capture_request()
     53             req['android.statistics.faceDetectMode'] = fd_mode
     54             fmt = {'format': 'yuv', 'width': W, 'height': H}
     55             caps = cam.do_capture([req]*NUM_TEST_FRAMES, fmt)
     56             for i, cap in enumerate(caps):
     57                 md = cap['metadata']
     58                 assert md['android.statistics.faceDetectMode'] == fd_mode
     59                 faces = md['android.statistics.faces']
     60 
     61                 # 0 faces should be returned for OFF mode
     62                 if fd_mode == FD_MODE_OFF:
     63                     assert not faces
     64                     continue
     65                 # Face detection could take several frames to warm up,
     66                 # but it should detect at least one face in last frame
     67                 if i == NUM_TEST_FRAMES - 1:
     68                     img = its.image.convert_capture_to_rgb_image(
     69                             cap, props=props)
     70                     img = its.image.rotate_img_per_argv(img)
     71                     img_name = '%s_fd_mode_%s.jpg' % (NAME, fd_mode)
     72                     its.image.write_image(img, img_name)
     73                     if not faces:
     74                         print 'Error: no face detected in mode', fd_mode
     75                         assert 0
     76                 if not faces:
     77                     continue
     78 
     79                 print 'Frame %d face metadata:' % i
     80                 print '  Faces:', faces
     81                 print ''
     82 
     83                 face_scores = [face['score'] for face in faces]
     84                 face_rectangles = [face['bounds'] for face in faces]
     85                 for score in face_scores:
     86                     assert score >= 1 and score <= 100
     87                 # Face bounds should be within active array
     88                 for j, rect in enumerate(face_rectangles):
     89                     print 'Checking face rectangle %d...' % j
     90                     rect_t = rect['top']
     91                     rect_b = rect['bottom']
     92                     rect_l = rect['left']
     93                     rect_r = rect['right']
     94                     assert rect_t < rect_b
     95                     assert rect_l < rect_r
     96                     l_msg = 'l: %d outside of active W: 0,%d' % (rect_l, aw)
     97                     r_msg = 'r: %d outside of active W: 0,%d' % (rect_r, aw)
     98                     t_msg = 't: %d outside active H: 0,%d' % (rect_t, ah)
     99                     b_msg = 'b: %d outside active H: 0,%d' % (rect_b, ah)
    100                     # Assert same order as face landmarks below
    101                     assert 0 <= rect_l <= aw, l_msg
    102                     assert 0 <= rect_r <= aw, r_msg
    103                     assert 0 <= rect_t <= ah, t_msg
    104                     assert 0 <= rect_b <= ah, b_msg
    105 
    106                 # Face landmarks are reported if and only if fd_mode is FULL
    107                 # Face ID should be -1 for SIMPLE and unique for FULL
    108                 if fd_mode == FD_MODE_SIMPLE:
    109                     for face in faces:
    110                         assert 'leftEye' not in face
    111                         assert 'rightEye' not in face
    112                         assert 'mouth' not in face
    113                         assert face['id'] == -1
    114                 elif fd_mode == FD_MODE_FULL:
    115                     face_ids = [face['id'] for face in faces]
    116                     assert len(face_ids) == len(set(face_ids))
    117                     # Face landmarks should be within face bounds
    118                     for k, face in enumerate(faces):
    119                         print 'Checking landmarks in face %d...' % k
    120                         l_eye = face['leftEye']
    121                         r_eye = face['rightEye']
    122                         mouth = face['mouth']
    123                         l, r = face['bounds']['left'], face['bounds']['right']
    124                         t, b = face['bounds']['top'], face['bounds']['bottom']
    125                         l_eye_x, l_eye_y = l_eye['x'], l_eye['y']
    126                         r_eye_x, r_eye_y = r_eye['x'], r_eye['y']
    127                         mouth_x, mouth_y = mouth['x'], mouth['y']
    128                         lx_msg = 'l: %d, r: %d, x: %d' % (l, r, l_eye_x)
    129                         ly_msg = 't: %d, b: %d, y: %d' % (t, b, l_eye_y)
    130                         rx_msg = 'l: %d, r: %d, x: %d' % (l, r, r_eye_x)
    131                         ry_msg = 't: %d, b: %d, y: %d' % (t, b, r_eye_y)
    132                         mx_msg = 'l: %d, r: %d, x: %d' % (l, r, mouth_x)
    133                         my_msg = 't: %d, b: %d, y: %d' % (t, b, mouth_y)
    134                         assert l <= l_eye_x <= r, lx_msg
    135                         assert t <= l_eye_y <= b, ly_msg
    136                         assert l <= r_eye_x <= r, rx_msg
    137                         assert t <= r_eye_y <= b, ry_msg
    138                         assert l <= mouth_x <= r, mx_msg
    139                         assert t <= mouth_y <= b, my_msg
    140 
    141 if __name__ == '__main__':
    142     main()
    143