Home | History | Annotate | Download | only in st_lps22hb
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <atomic.h>
     18 #include <gpio.h>
     19 #include <nanohubPacket.h>
     20 #include <plat/exti.h>
     21 #include <plat/gpio.h>
     22 #include <platform.h>
     23 #include <plat/syscfg.h>
     24 #include <heap.h>
     25 #include <sensors.h>
     26 #include <seos.h>
     27 #include <slab.h>
     28 #include <i2c.h>
     29 #include <timer.h>
     30 #include <stdlib.h>
     31 #include <string.h>
     32 #include <variant/variant.h>
     33 
     34 #define LPS22HB_APP_ID              APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 1)
     35 
     36 /* Sensor defs */
     37 #define LPS22HB_INT_CFG_REG_ADDR        0x0B
     38 #define LPS22HB_LIR_BIT                 0x04
     39 
     40 #define LPS22HB_WAI_REG_ADDR            0x0F
     41 #define LPS22HB_WAI_REG_VAL             0xB1
     42 
     43 #define LPS22HB_SOFT_RESET_REG_ADDR     0x11
     44 #define LPS22HB_SOFT_RESET_BIT          0x04
     45 #define LPS22HB_I2C_DIS                 0x08
     46 #define LPS22HB_IF_ADD_INC              0x10
     47 
     48 #define LPS22HB_ODR_REG_ADDR            0x10
     49 #define LPS22HB_ODR_ONE_SHOT            0x00
     50 #define LPS22HB_ODR_1_HZ                0x10
     51 #define LPS22HB_ODR_10_HZ               0x20
     52 #define LPS22HB_ODR_25_HZ               0x30
     53 #define LPS22HB_ODR_50_HZ               0x40
     54 #define LPS22HB_ODR_75_HZ               0x50
     55 
     56 #define LPS22HB_RPDS_L                  0x18
     57 #define LPS22HB_RPDS_H                  0x19
     58 
     59 #define LPS22HB_PRESS_OUTXL_REG_ADDR    0x28
     60 #define LPS22HB_TEMP_OUTL_REG_ADDR      0x2B
     61 
     62 #define LPS22HB_HECTO_PASCAL(baro_val)  (baro_val/4096)
     63 #define LPS22HB_CENTIGRADES(temp_val)   (temp_val/100)
     64 
     65 #define INFO_PRINT(fmt, ...) \
     66     do { \
     67         osLog(LOG_INFO, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \
     68     } while (0);
     69 
     70 #define DEBUG_PRINT(fmt, ...) \
     71     do { \
     72         if (LPS22HB_DBG_ENABLED) { \
     73             osLog(LOG_DEBUG, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \
     74         } \
     75     } while (0);
     76 
     77 #define ERROR_PRINT(fmt, ...) \
     78     do { \
     79         osLog(LOG_ERROR, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \
     80     } while (0);
     81 
     82 /* DO NOT MODIFY, just to avoid compiler error if not defined using FLAGS */
     83 #ifndef LPS22HB_DBG_ENABLED
     84 #define LPS22HB_DBG_ENABLED                           0
     85 #endif /* LPS22HB_DBG_ENABLED */
     86 
     87 enum lps22hbSensorEvents
     88 {
     89     EVT_COMM_DONE = EVT_APP_START + 1,
     90     EVT_SENSOR_BARO_TIMER,
     91     EVT_SENSOR_TEMP_TIMER,
     92     EVT_TEST,
     93 };
     94 
     95 enum lps22hbSensorState {
     96     SENSOR_BOOT,
     97     SENSOR_VERIFY_ID,
     98     SENSOR_BARO_POWER_UP,
     99     SENSOR_BARO_POWER_DOWN,
    100     SENSOR_BARO_START_CAL,
    101     SENSOR_BARO_READ_CAL_MEAS,
    102     SENSOR_BARO_CAL_DONE,
    103     SENSOR_BARO_SET_OFFSET,
    104     SENSOR_BARO_CFG_DONE,
    105     SENSOR_TEMP_POWER_UP,
    106     SENSOR_TEMP_POWER_DOWN,
    107     SENSOR_READ_SAMPLES,
    108 };
    109 
    110 #ifndef LPS22HB_I2C_BUS_ID
    111 #error "LPS22HB_I2C_BUS_ID is not defined; please define in variant.h"
    112 #endif
    113 
    114 #ifndef LPS22HB_I2C_SPEED
    115 #error "LPS22HB_I2C_SPEED is not defined; please define in variant.h"
    116 #endif
    117 
    118 #ifndef LPS22HB_I2C_ADDR
    119 #error "LPS22HB_I2C_ADDR is not defined; please define in variant.h"
    120 #endif
    121 
    122 enum lps22hbSensorIndex {
    123     BARO = 0,
    124     TEMP,
    125     NUM_OF_SENSOR,
    126 };
    127 
    128 //#define NUM_OF_SENSOR 1
    129 
    130 struct lps22hbSensor {
    131     uint32_t handle;
    132 };
    133 
    134 struct CalibrationData {
    135     struct HostHubRawPacket header;
    136     struct SensorAppEventHeader data_header;
    137     float value;
    138 } __attribute__((packed));
    139 
    140 #define LPS22HB_MAX_PENDING_I2C_REQUESTS   4
    141 #define LPS22HB_MAX_I2C_TRANSFER_SIZE      6
    142 #define LPS22HB_MAX_BARO_EVENTS            4
    143 
    144 struct I2cTransfer
    145 {
    146     size_t tx;
    147     size_t rx;
    148     int err;
    149     uint8_t txrxBuf[LPS22HB_MAX_I2C_TRANSFER_SIZE];
    150     uint8_t state;
    151     bool inUse;
    152 };
    153 
    154 /* Task structure */
    155 struct lps22hbTask {
    156     uint32_t tid;
    157 
    158     struct SlabAllocator *baroSlab;
    159 
    160     /* timer */
    161     uint32_t baroTimerHandle;
    162     uint32_t tempTimerHandle;
    163 
    164     /* sensor flags */
    165     bool baroOn;
    166     bool baroReading;
    167     bool baroWantRead;
    168     bool tempOn;
    169     bool tempReading;
    170     bool tempWantRead;
    171 
    172     uint8_t offset_L;
    173     uint8_t offset_H;
    174 
    175     //int sensLastRead;
    176 
    177     struct I2cTransfer transfers[LPS22HB_MAX_PENDING_I2C_REQUESTS];
    178 
    179     /* Communication functions */
    180     bool (*comm_tx)(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state);
    181     bool (*comm_rx)(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state);
    182 
    183     /* sensors */
    184     struct lps22hbSensor sensors[NUM_OF_SENSOR];
    185 };
    186 
    187 static struct lps22hbTask mTask;
    188 
    189 static bool baroAllocateEvt(struct SingleAxisDataEvent **evPtr, float sample, uint64_t time)
    190 {
    191     struct SingleAxisDataEvent *ev;
    192 
    193     ev = *evPtr = slabAllocatorAlloc(mTask.baroSlab);
    194     if (!ev) {
    195         ERROR_PRINT("Failed to allocate baro evt memory");
    196         return false;
    197     }
    198 
    199     memset(&ev->samples[0].firstSample, 0x00, sizeof(struct SensorFirstSample));
    200     ev->referenceTime = time;
    201     ev->samples[0].firstSample.numSamples = 1;
    202     ev->samples[0].fdata = sample;
    203 
    204     return true;
    205 }
    206 
    207 static void baroFreeEvt(void *ptr)
    208 {
    209     slabAllocatorFree(mTask.baroSlab, ptr);
    210 }
    211 
    212 // Allocate a buffer and mark it as in use with the given state, or return NULL
    213 // if no buffers available. Must *not* be called from interrupt context.
    214 static struct I2cTransfer *allocXfer(uint8_t state)
    215 {
    216     size_t i;
    217 
    218     for (i = 0; i < ARRAY_SIZE(mTask.transfers); i++) {
    219         if (!mTask.transfers[i].inUse) {
    220             mTask.transfers[i].inUse = true;
    221             mTask.transfers[i].state = state;
    222             return &mTask.transfers[i];
    223         }
    224     }
    225 
    226     ERROR_PRINT("Ran out of i2c buffers!");
    227     return NULL;
    228 }
    229 
    230 static inline void releaseXfer(struct I2cTransfer *xfer)
    231 {
    232     xfer->inUse = false;
    233 }
    234 
    235 static void i2cCallback(void *cookie, size_t tx, size_t rx, int err)
    236 {
    237     struct I2cTransfer *xfer = cookie;
    238 
    239     xfer->tx = tx;
    240     xfer->rx = rx;
    241     xfer->err = err;
    242 
    243     osEnqueuePrivateEvt(EVT_COMM_DONE, cookie, NULL, mTask.tid);
    244     if (err != 0)
    245         ERROR_PRINT("i2c error (tx: %d, rx: %d, err: %d)\n", tx, rx, err);
    246 }
    247 
    248 static bool i2c_read(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state)
    249 {
    250     struct I2cTransfer *xfer = allocXfer(state);
    251     int ret = -1;
    252 
    253     if (xfer != NULL) {
    254         xfer->txrxBuf[0] = 0x80 | addr;
    255         if ((ret = i2cMasterTxRx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 1, xfer->txrxBuf, len, i2cCallback, xfer)) < 0) {
    256             releaseXfer(xfer);
    257             DEBUG_PRINT("i2c_read: i2cMasterTxRx operation failed (ret: %d)\n", ret);
    258             return false;
    259         }
    260     }
    261 
    262     return (ret == -1) ? false : true;
    263 }
    264 
    265 static bool i2c_write(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state)
    266 {
    267     struct I2cTransfer *xfer = allocXfer(state);
    268     int ret = -1;
    269 
    270     if (xfer != NULL) {
    271         xfer->txrxBuf[0] = addr;
    272         xfer->txrxBuf[1] = data;
    273         if ((ret = i2cMasterTx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 2, i2cCallback, xfer)) < 0) {
    274             releaseXfer(xfer);
    275             DEBUG_PRINT("i2c_write: i2cMasterTx operation failed (ret: %d)\n", ret);
    276             return false;
    277         }
    278     }
    279 
    280     return (ret == -1) ? false : true;
    281 }
    282 
    283 static void sendCalibrationResult(uint8_t status, float value)
    284 {
    285     struct CalibrationData *data = heapAlloc(sizeof(struct CalibrationData));
    286     if (!data) {
    287         ERROR_PRINT("Couldn't alloc cal result pkt\n");
    288         return;
    289     }
    290 
    291     data->header.appId = LPS22HB_APP_ID;
    292     data->header.dataLen = (sizeof(struct CalibrationData) - sizeof(struct HostHubRawPacket));
    293     data->data_header.msgId = SENSOR_APP_MSG_ID_CAL_RESULT;
    294     data->data_header.sensorType = SENS_TYPE_BARO;
    295     data->data_header.status = status;
    296 
    297     data->value = value;
    298 
    299     if (!osEnqueueEvtOrFree(EVT_APP_TO_HOST, data, heapFree))
    300         ERROR_PRINT("Couldn't send cal result evt\n");
    301 }
    302 
    303 /* Sensor Info */
    304 static void sensorBaroTimerCallback(uint32_t timerId, void *data)
    305 {
    306     osEnqueuePrivateEvt(EVT_SENSOR_BARO_TIMER, data, NULL, mTask.tid);
    307 }
    308 
    309 static void sensorTempTimerCallback(uint32_t timerId, void *data)
    310 {
    311     osEnqueuePrivateEvt(EVT_SENSOR_TEMP_TIMER, data, NULL, mTask.tid);
    312 }
    313 
    314 #define DEC_INFO(name, type, axis, inter, samples, rates) \
    315     .sensorName = name, \
    316     .sensorType = type, \
    317     .numAxis = axis, \
    318     .interrupt = inter, \
    319     .minSamples = samples, \
    320     .supportedRates = rates
    321 
    322 static uint32_t lps22hbRates[] = {
    323     SENSOR_HZ(1.0f),
    324     SENSOR_HZ(10.0f),
    325     SENSOR_HZ(25.0f),
    326     SENSOR_HZ(50.0f),
    327     SENSOR_HZ(75.0f),
    328     0
    329 };
    330 
    331 // should match "supported rates in length" and be the timer length for that rate in nanosecs
    332 static const uint64_t lps22hbRatesRateVals[] =
    333 {
    334     1 * 1000000000ULL,
    335     1000000000ULL / 10,
    336     1000000000ULL / 25,
    337     1000000000ULL / 50,
    338     1000000000ULL / 75,
    339 };
    340 
    341 
    342 static const struct SensorInfo lps22hbSensorInfo[NUM_OF_SENSOR] =
    343 {
    344     { DEC_INFO("Pressure", SENS_TYPE_BARO, NUM_AXIS_ONE, NANOHUB_INT_NONWAKEUP,
    345         300, lps22hbRates) },
    346     { DEC_INFO("Temperature", SENS_TYPE_AMBIENT_TEMP, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP,
    347         20, lps22hbRates) },
    348 };
    349 
    350 /* Sensor Operations */
    351 static bool baroPower(bool on, void *cookie)
    352 {
    353     bool oldMode = mTask.baroOn || mTask.tempOn;
    354     bool newMode = on || mTask.tempOn;
    355     uint32_t state = on ? SENSOR_BARO_POWER_UP : SENSOR_BARO_POWER_DOWN;
    356     bool ret = true;
    357 
    358     INFO_PRINT("baroPower %s\n", on ? "enable" : "disable");
    359     if (!on && mTask.baroTimerHandle) {
    360         timTimerCancel(mTask.baroTimerHandle);
    361         mTask.baroTimerHandle = 0;
    362         mTask.baroReading = false;
    363     }
    364 
    365     if (oldMode != newMode) {
    366         if (on)
    367             ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state);
    368         else
    369             ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state);
    370     } else
    371         sensorSignalInternalEvt(mTask.sensors[BARO].handle,
    372                     SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
    373 
    374     if (!ret) {
    375         DEBUG_PRINT("baroPower comm_tx failed\n");
    376         return(false);
    377     }
    378 
    379     mTask.baroReading = false;
    380     mTask.baroOn = on;
    381     return true;
    382 }
    383 
    384 static bool baroFwUpload(void *cookie)
    385 {
    386     return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
    387 }
    388 
    389 static bool baroSetRate(uint32_t rate, uint64_t latency, void *cookie)
    390 {
    391     INFO_PRINT("baroSetRate %lu Hz - %llu ns\n", rate, latency);
    392 
    393     if (mTask.baroTimerHandle)
    394         timTimerCancel(mTask.baroTimerHandle);
    395 
    396     mTask.baroTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
    397                 lps22hbRatesRateVals, rate), 0, 50, sensorBaroTimerCallback, NULL, false);
    398 
    399     return sensorSignalInternalEvt(mTask.sensors[BARO].handle,
    400                 SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
    401 }
    402 
    403 static bool baroFlush(void *cookie)
    404 {
    405     return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL);
    406 }
    407 
    408 static bool baroCalibrate(void *cookie)
    409 {
    410     INFO_PRINT("baroCalibrate\n");
    411 
    412     if (mTask.baroOn) {
    413         ERROR_PRINT("cannot calibrate while baro is active\n");
    414         sendCalibrationResult(SENSOR_APP_EVT_STATUS_BUSY, 0.0f);
    415         return false;
    416     }
    417 
    418     mTask.comm_tx(LPS22HB_RPDS_L, 0, 0, SENSOR_BARO_START_CAL);
    419     return true;
    420 }
    421 
    422 /*
    423  * Offset data is sent in hPa, and must be transformed in 16th of hPa.
    424  * Since offset is expected to be summed to the out regs but the sensor
    425  * will actually subctract it then we need to invert the sign.
    426  */
    427 static bool baroCfgData(void *data, void *cookie)
    428 {
    429     float offset_f = *((float *)data) * 16;
    430     int32_t offset;
    431     bool ret;
    432 
    433     offset_f = (offset_f > 0) ? offset_f + 0.5f : offset_f - 0.5f;
    434     offset = -(int32_t)offset_f;
    435 
    436     INFO_PRINT("baroCfgData %ld\n", offset);
    437 
    438     mTask.offset_H = (offset >> 8) & 0xff;
    439     mTask.offset_L = (offset & 0xff);
    440 
    441     ret = mTask.comm_tx(LPS22HB_RPDS_L, mTask.offset_L, 0, SENSOR_BARO_SET_OFFSET);
    442     if (!ret)
    443         DEBUG_PRINT("baroCfgData: comm_tx failed\n");
    444 
    445     return ret;
    446 }
    447 
    448 static bool tempPower(bool on, void *cookie)
    449 {
    450     bool oldMode = mTask.baroOn || mTask.tempOn;
    451     bool newMode = on || mTask.baroOn;
    452     uint32_t state = on ? SENSOR_TEMP_POWER_UP : SENSOR_TEMP_POWER_DOWN;
    453     bool ret = true;
    454 
    455     INFO_PRINT("tempPower %s\n", on ? "enable" : "disable");
    456     if (!on && mTask.tempTimerHandle) {
    457         timTimerCancel(mTask.tempTimerHandle);
    458         mTask.tempTimerHandle = 0;
    459         mTask.tempReading = false;
    460     }
    461 
    462     if (oldMode != newMode) {
    463         if (on)
    464             ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state);
    465         else
    466             ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state);
    467     } else
    468         sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
    469                     SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
    470 
    471     if (!ret) {
    472         DEBUG_PRINT("tempPower comm_tx failed\n");
    473         return(false);
    474     }
    475 
    476     mTask.tempReading = false;
    477     mTask.tempOn = on;
    478     return true;
    479 }
    480 
    481 static bool tempFwUpload(void *cookie)
    482 {
    483     return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
    484 }
    485 
    486 static bool tempSetRate(uint32_t rate, uint64_t latency, void *cookie)
    487 {
    488     if (mTask.tempTimerHandle)
    489         timTimerCancel(mTask.tempTimerHandle);
    490 
    491     INFO_PRINT("tempSetRate %lu Hz - %llu ns\n", rate, latency);
    492     mTask.tempTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
    493                 lps22hbRatesRateVals, rate), 0, 50, sensorTempTimerCallback, NULL, false);
    494 
    495     return sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
    496                 SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
    497 }
    498 
    499 static bool tempFlush(void *cookie)
    500 {
    501     return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), SENSOR_DATA_EVENT_FLUSH, NULL);
    502 }
    503 
    504 #define DEC_OPS(power, firmware, rate, flush, cal, cfg) \
    505     .sensorPower = power, \
    506     .sensorFirmwareUpload = firmware, \
    507     .sensorSetRate = rate, \
    508     .sensorFlush = flush, \
    509     .sensorCalibrate = cal, \
    510     .sensorCfgData = cfg
    511 
    512 static const struct SensorOps lps22hbSensorOps[NUM_OF_SENSOR] =
    513 {
    514     { DEC_OPS(baroPower, baroFwUpload, baroSetRate, baroFlush, baroCalibrate, baroCfgData) },
    515     { DEC_OPS(tempPower, tempFwUpload, tempSetRate, tempFlush, NULL, NULL) },
    516 };
    517 
    518 static int handleCommDoneEvt(const void* evtData)
    519 {
    520     uint8_t i;
    521     int baro_val;
    522     short temp_val;
    523     //uint32_t state = (uint32_t)evtData;
    524     struct SingleAxisDataEvent *baroSample;
    525     union EmbeddedDataPoint sample;
    526     struct I2cTransfer *xfer = (struct I2cTransfer *)evtData;
    527     uint8_t *ptr_samples;
    528 
    529     switch (xfer->state) {
    530     case SENSOR_BOOT:
    531         if (!mTask.comm_rx(LPS22HB_WAI_REG_ADDR, 1, 1, SENSOR_VERIFY_ID)) {
    532             DEBUG_PRINT("Not able to read WAI\n");
    533             return -1;
    534         }
    535         break;
    536 
    537     case SENSOR_VERIFY_ID:
    538         /* Check the sensor ID */
    539         if (xfer->err != 0 || xfer->txrxBuf[0] != LPS22HB_WAI_REG_VAL) {
    540             DEBUG_PRINT("WAI returned is: %02x\n", xfer->txrxBuf[0]);
    541             break;
    542         }
    543 
    544 
    545         INFO_PRINT("Device ID is correct! (%02x)\n", xfer->txrxBuf[0]);
    546         for (i = 0; i < NUM_OF_SENSOR; i++)
    547             sensorRegisterInitComplete(mTask.sensors[i].handle);
    548 
    549         /* TEST the environment in standalone mode */
    550         //osEnqueuePrivateEvt(EVT_TEST, NULL, NULL, mTask.tid);
    551         break;
    552 
    553     case SENSOR_BARO_POWER_UP:
    554         sensorSignalInternalEvt(mTask.sensors[BARO].handle,
    555                     SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
    556         break;
    557 
    558     case SENSOR_BARO_POWER_DOWN:
    559         sensorSignalInternalEvt(mTask.sensors[BARO].handle,
    560                     SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
    561         break;
    562 
    563     case SENSOR_TEMP_POWER_UP:
    564         sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
    565                     SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
    566         break;
    567 
    568     case SENSOR_TEMP_POWER_DOWN:
    569         sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
    570                     SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
    571         break;
    572 
    573     case SENSOR_BARO_START_CAL:
    574         mTask.comm_tx(LPS22HB_RPDS_H, 0, 0, SENSOR_BARO_READ_CAL_MEAS);
    575         break;
    576 
    577     case SENSOR_BARO_READ_CAL_MEAS:
    578         mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 3, 1, SENSOR_BARO_CAL_DONE);
    579         break;
    580 
    581     case SENSOR_BARO_CAL_DONE:
    582         ptr_samples = xfer->txrxBuf;
    583 
    584         baro_val = ((ptr_samples[2] << 16) & 0xff0000) |
    585                    ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]);
    586 
    587         sendCalibrationResult(SENSOR_APP_EVT_STATUS_SUCCESS, LPS22HB_HECTO_PASCAL((float)baro_val));
    588         break;
    589 
    590     case SENSOR_BARO_SET_OFFSET:
    591         mTask.comm_tx(LPS22HB_RPDS_H, mTask.offset_H, 0, SENSOR_BARO_CFG_DONE);
    592         break;
    593 
    594     case SENSOR_BARO_CFG_DONE:
    595         break;
    596 
    597     case SENSOR_READ_SAMPLES:
    598         if (mTask.baroOn && mTask.baroWantRead) {
    599             float pressure_hPa;
    600 
    601             mTask.baroWantRead = false;
    602             ptr_samples = xfer->txrxBuf;
    603 
    604             baro_val = ((ptr_samples[2] << 16) & 0xff0000) |
    605                        ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]);
    606 
    607             mTask.baroReading = false;
    608             pressure_hPa = LPS22HB_HECTO_PASCAL((float)baro_val);
    609             //osLog(LOG_INFO, "baro: %p\n", sample.vptr);
    610             if (baroAllocateEvt(&baroSample, pressure_hPa, sensorGetTime())) {
    611                 osEnqueueEvtOrFree(sensorGetMyEventType(SENS_TYPE_BARO), baroSample, baroFreeEvt);
    612             }
    613         }
    614 
    615         if (mTask.tempOn && mTask.tempWantRead) {
    616             mTask.tempWantRead = false;
    617             ptr_samples = &xfer->txrxBuf[3];
    618 
    619             temp_val  = ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]);
    620 
    621             mTask.tempReading = false;
    622             sample.fdata = LPS22HB_CENTIGRADES((float)temp_val);
    623             //osLog(LOG_INFO, "temp: %p\n", sample.vptr);
    624             osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), sample.vptr, NULL);
    625         }
    626 
    627         break;
    628 
    629     default:
    630         break;
    631     }
    632 
    633     releaseXfer(xfer);
    634     return (0);
    635 }
    636 
    637 static void handleEvent(uint32_t evtType, const void* evtData)
    638 {
    639     switch (evtType) {
    640     case EVT_APP_START:
    641         INFO_PRINT("EVT_APP_START\n");
    642         osEventUnsubscribe(mTask.tid, EVT_APP_START);
    643 
    644         mTask.comm_tx(LPS22HB_SOFT_RESET_REG_ADDR,
    645                     LPS22HB_SOFT_RESET_BIT, 0, SENSOR_BOOT);
    646         break;
    647 
    648     case EVT_COMM_DONE:
    649         //INFO_PRINT("EVT_COMM_DONE %d\n", (int)evtData);
    650         handleCommDoneEvt(evtData);
    651         break;
    652 
    653     case EVT_SENSOR_BARO_TIMER:
    654         //INFO_PRINT("EVT_SENSOR_BARO_TIMER\n");
    655 
    656         mTask.baroWantRead = true;
    657 
    658         /* Start sampling for a value */
    659         if (!mTask.baroReading && !mTask.tempReading) {
    660             mTask.baroReading = true;
    661 
    662             mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES);
    663         }
    664 
    665         break;
    666 
    667     case EVT_SENSOR_TEMP_TIMER:
    668         //INFO_PRINT("EVT_SENSOR_TEMP_TIMER\n");
    669 
    670         mTask.tempWantRead = true;
    671 
    672         /* Start sampling for a value */
    673         if (!mTask.baroReading && !mTask.tempReading) {
    674             mTask.tempReading = true;
    675 
    676             mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES);
    677         }
    678 
    679         break;
    680 
    681     case EVT_TEST:
    682         INFO_PRINT("EVT_TEST\n");
    683 
    684         baroPower(true, NULL);
    685         tempPower(true, NULL);
    686         baroSetRate(SENSOR_HZ(1), 0, NULL);
    687         tempSetRate(SENSOR_HZ(1), 0, NULL);
    688         break;
    689 
    690     default:
    691         break;
    692     }
    693 
    694 }
    695 
    696 static bool startTask(uint32_t task_id)
    697 {
    698     uint8_t i;
    699     size_t slabSize;
    700 
    701     mTask.tid = task_id;
    702 
    703     INFO_PRINT("task started\n");
    704 
    705     mTask.baroOn = mTask.tempOn = false;
    706     mTask.baroReading = mTask.tempReading = false;
    707 
    708     mTask.offset_H = 0;
    709     mTask.offset_L = 0;
    710 
    711     slabSize = sizeof(struct SingleAxisDataEvent) + sizeof(struct SingleAxisDataPoint);
    712 
    713     mTask.baroSlab = slabAllocatorNew(slabSize, 4, LPS22HB_MAX_BARO_EVENTS);
    714     if (!mTask.baroSlab) {
    715         ERROR_PRINT("Failed to allocate baroSlab memory\n");
    716         return false;
    717     }
    718 
    719     /* Init the communication part */
    720     i2cMasterRequest(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_SPEED);
    721 
    722     mTask.comm_tx = i2c_write;
    723     mTask.comm_rx = i2c_read;
    724 
    725     for (i = 0; i < NUM_OF_SENSOR; i++) {
    726         mTask.sensors[i].handle =
    727             sensorRegister(&lps22hbSensorInfo[i], &lps22hbSensorOps[i], NULL, false);
    728     }
    729 
    730     osEventSubscribe(mTask.tid, EVT_APP_START);
    731 
    732     return true;
    733 }
    734 
    735 static void endTask(void)
    736 {
    737     INFO_PRINT("task ended\n");
    738     slabAllocatorDestroy(mTask.baroSlab);
    739 }
    740 
    741 INTERNAL_APP_INIT(LPS22HB_APP_ID, 0, startTask, endTask, handleEvent);
    742