Home | History | Annotate | Download | only in aarch32
      1 /*
      2  * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 
      7 #include <arch.h>
      8 #include <arch_helpers.h>
      9 #include <assert.h>
     10 #include <bl_common.h>
     11 #include <context.h>
     12 #include <context_mgmt.h>
     13 #include <platform.h>
     14 #include <platform_def.h>
     15 #include <smcc_helpers.h>
     16 #include <string.h>
     17 #include <utils.h>
     18 
     19 /*******************************************************************************
     20  * Context management library initialisation routine. This library is used by
     21  * runtime services to share pointers to 'cpu_context' structures for the secure
     22  * and non-secure states. Management of the structures and their associated
     23  * memory is not done by the context management library e.g. the PSCI service
     24  * manages the cpu context used for entry from and exit to the non-secure state.
     25  * The Secure payload manages the context(s) corresponding to the secure state.
     26  * It also uses this library to get access to the non-secure
     27  * state cpu context pointers.
     28  ******************************************************************************/
     29 void cm_init(void)
     30 {
     31 	/*
     32 	 * The context management library has only global data to initialize, but
     33 	 * that will be done when the BSS is zeroed out
     34 	 */
     35 }
     36 
     37 /*******************************************************************************
     38  * The following function initializes the cpu_context 'ctx' for
     39  * first use, and sets the initial entrypoint state as specified by the
     40  * entry_point_info structure.
     41  *
     42  * The security state to initialize is determined by the SECURE attribute
     43  * of the entry_point_info. The function returns a pointer to the initialized
     44  * context and sets this as the next context to return to.
     45  *
     46  * The EE and ST attributes are used to configure the endianness and secure
     47  * timer availability for the new execution context.
     48  *
     49  * To prepare the register state for entry call cm_prepare_el3_exit() and
     50  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
     51  * cm_e1_sysreg_context_restore().
     52  ******************************************************************************/
     53 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
     54 {
     55 	unsigned int security_state;
     56 	uint32_t scr, sctlr;
     57 	regs_t *reg_ctx;
     58 
     59 	assert(ctx);
     60 
     61 	security_state = GET_SECURITY_STATE(ep->h.attr);
     62 
     63 	/* Clear any residual register values from the context */
     64 	zeromem(ctx, sizeof(*ctx));
     65 
     66 	reg_ctx = get_regs_ctx(ctx);
     67 
     68 	/*
     69 	 * Base the context SCR on the current value, adjust for entry point
     70 	 * specific requirements
     71 	 */
     72 	scr = read_scr();
     73 	scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);
     74 
     75 	if (security_state != SECURE)
     76 		scr |= SCR_NS_BIT;
     77 
     78 	if (security_state != SECURE) {
     79 		/*
     80 		 * Set up SCTLR for the Non-secure context.
     81 		 *
     82 		 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
     83 		 *
     84 		 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
     85 		 *  required by PSCI specification)
     86 		 *
     87 		 * Set remaining SCTLR fields to their architecturally defined
     88 		 * values. Some fields reset to an IMPLEMENTATION DEFINED value:
     89 		 *
     90 		 * SCTLR.TE: Set to zero so that exceptions to an Exception
     91 		 *  Level executing at PL1 are taken to A32 state.
     92 		 *
     93 		 * SCTLR.V: Set to zero to select the normal exception vectors
     94 		 *  with base address held in VBAR.
     95 		 */
     96 		assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) ==
     97 			(EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT));
     98 
     99 		sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
    100 		sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT));
    101 		write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
    102 	}
    103 
    104 	/*
    105 	 * The target exception level is based on the spsr mode requested. If
    106 	 * execution is requested to hyp mode, HVC is enabled via SCR.HCE.
    107 	 */
    108 	if (GET_M32(ep->spsr) == MODE32_hyp)
    109 		scr |= SCR_HCE_BIT;
    110 
    111 	/*
    112 	 * Store the initialised values for SCTLR and SCR in the cpu_context.
    113 	 * The Hyp mode registers are not part of the saved context and are
    114 	 * set-up in cm_prepare_el3_exit().
    115 	 */
    116 	write_ctx_reg(reg_ctx, CTX_SCR, scr);
    117 	write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
    118 	write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);
    119 
    120 	/*
    121 	 * Store the r0-r3 value from the entrypoint into the context
    122 	 * Use memcpy as we are in control of the layout of the structures
    123 	 */
    124 	memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
    125 }
    126 
    127 /*******************************************************************************
    128  * The following function initializes the cpu_context for a CPU specified by
    129  * its `cpu_idx` for first use, and sets the initial entrypoint state as
    130  * specified by the entry_point_info structure.
    131  ******************************************************************************/
    132 void cm_init_context_by_index(unsigned int cpu_idx,
    133 			      const entry_point_info_t *ep)
    134 {
    135 	cpu_context_t *ctx;
    136 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
    137 	cm_init_context_common(ctx, ep);
    138 }
    139 
    140 /*******************************************************************************
    141  * The following function initializes the cpu_context for the current CPU
    142  * for first use, and sets the initial entrypoint state as specified by the
    143  * entry_point_info structure.
    144  ******************************************************************************/
    145 void cm_init_my_context(const entry_point_info_t *ep)
    146 {
    147 	cpu_context_t *ctx;
    148 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
    149 	cm_init_context_common(ctx, ep);
    150 }
    151 
    152 /*******************************************************************************
    153  * Prepare the CPU system registers for first entry into secure or normal world
    154  *
    155  * If execution is requested to hyp mode, HSCTLR is initialized
    156  * If execution is requested to non-secure PL1, and the CPU supports
    157  * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
    158  * registers.
    159  ******************************************************************************/
    160 void cm_prepare_el3_exit(uint32_t security_state)
    161 {
    162 	uint32_t hsctlr, scr;
    163 	cpu_context_t *ctx = cm_get_context(security_state);
    164 
    165 	assert(ctx);
    166 
    167 	if (security_state == NON_SECURE) {
    168 		scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
    169 		if (scr & SCR_HCE_BIT) {
    170 			/* Use SCTLR value to initialize HSCTLR */
    171 			hsctlr = read_ctx_reg(get_regs_ctx(ctx),
    172 						 CTX_NS_SCTLR);
    173 			hsctlr |= HSCTLR_RES1;
    174 			/* Temporarily set the NS bit to access HSCTLR */
    175 			write_scr(read_scr() | SCR_NS_BIT);
    176 			/*
    177 			 * Make sure the write to SCR is complete so that
    178 			 * we can access HSCTLR
    179 			 */
    180 			isb();
    181 			write_hsctlr(hsctlr);
    182 			isb();
    183 
    184 			write_scr(read_scr() & ~SCR_NS_BIT);
    185 			isb();
    186 		} else if (read_id_pfr1() &
    187 			(ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) {
    188 			/*
    189 			 * Set the NS bit to access NS copies of certain banked
    190 			 * registers
    191 			 */
    192 			write_scr(read_scr() | SCR_NS_BIT);
    193 			isb();
    194 
    195 			/*
    196 			 * Hyp / PL2 present but unused, need to disable safely.
    197 			 * HSCTLR can be ignored in this case.
    198 			 *
    199 			 * Set HCR to its architectural reset value so that
    200 			 * Non-secure operations do not trap to Hyp mode.
    201 			 */
    202 			write_hcr(HCR_RESET_VAL);
    203 
    204 			/*
    205 			 * Set HCPTR to its architectural reset value so that
    206 			 * Non-secure access from EL1 or EL0 to trace and to
    207 			 * Advanced SIMD and floating point functionality does
    208 			 * not trap to Hyp mode.
    209 			 */
    210 			write_hcptr(HCPTR_RESET_VAL);
    211 
    212 			/*
    213 			 * Initialise CNTHCTL. All fields are architecturally
    214 			 * UNKNOWN on reset and are set to zero except for
    215 			 * field(s) listed below.
    216 			 *
    217 			 * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of
    218 			 *  Non-secure EL0 and EL1 accessed to the physical
    219 			 *  timer registers.
    220 			 *
    221 			 * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of
    222 			 *  Non-secure EL0 and EL1 accessed to the physical
    223 			 *  counter registers.
    224 			 */
    225 			write_cnthctl(CNTHCTL_RESET_VAL |
    226 					PL1PCEN_BIT | PL1PCTEN_BIT);
    227 
    228 			/*
    229 			 * Initialise CNTVOFF to zero as it resets to an
    230 			 * IMPLEMENTATION DEFINED value.
    231 			 */
    232 			write64_cntvoff(0);
    233 
    234 			/*
    235 			 * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR
    236 			 * respectively.
    237 			 */
    238 			write_vpidr(read_midr());
    239 			write_vmpidr(read_mpidr());
    240 
    241 			/*
    242 			 * Initialise VTTBR, setting all fields rather than
    243 			 * relying on the hw. Some fields are architecturally
    244 			 * UNKNOWN at reset.
    245 			 *
    246 			 * VTTBR.VMID: Set to zero which is the architecturally
    247 			 *  defined reset value. Even though EL1&0 stage 2
    248 			 *  address translation is disabled, cache maintenance
    249 			 *  operations depend on the VMID.
    250 			 *
    251 			 * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address
    252 			 *  translation is disabled.
    253 			 */
    254 			write64_vttbr(VTTBR_RESET_VAL &
    255 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
    256 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
    257 
    258 			/*
    259 			 * Initialise HDCR, setting all the fields rather than
    260 			 * relying on hw.
    261 			 *
    262 			 * HDCR.HPMN: Set to value of PMCR.N which is the
    263 			 *  architecturally-defined reset value.
    264 			 */
    265 			write_hdcr(HDCR_RESET_VAL |
    266 				((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT));
    267 
    268 			/*
    269 			 * Set HSTR to its architectural reset value so that
    270 			 * access to system registers in the cproc=1111
    271 			 * encoding space do not trap to Hyp mode.
    272 			 */
    273 			write_hstr(HSTR_RESET_VAL);
    274 			/*
    275 			 * Set CNTHP_CTL to its architectural reset value to
    276 			 * disable the EL2 physical timer and prevent timer
    277 			 * interrupts. Some fields are architecturally UNKNOWN
    278 			 * on reset and are set to zero.
    279 			 */
    280 			write_cnthp_ctl(CNTHP_CTL_RESET_VAL);
    281 			isb();
    282 
    283 			write_scr(read_scr() & ~SCR_NS_BIT);
    284 			isb();
    285 		}
    286 	}
    287 }
    288