Home | History | Annotate | Download | only in mt6795
      1 /*
      2  * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 #include <arch_helpers.h>
      7 #include <arm_gic.h>
      8 #include <assert.h>
      9 #include <bl_common.h>
     10 #include <cci.h>
     11 #include <common_def.h>
     12 #include <console.h>
     13 #include <context_mgmt.h>
     14 #include <debug.h>
     15 #include <generic_delay_timer.h>
     16 #include <mcucfg.h>
     17 #include <mmio.h>
     18 #include <mt_cpuxgpt.h>
     19 #include <mtk_plat_common.h>
     20 #include <mtk_sip_svc.h>
     21 #include <plat_private.h>
     22 #include <platform.h>
     23 #include <string.h>
     24 #include <xlat_tables.h>
     25 /*******************************************************************************
     26  * Declarations of linker defined symbols which will help us find the layout
     27  * of trusted SRAM
     28  ******************************************************************************/
     29 unsigned long __RO_START__;
     30 unsigned long __RO_END__;
     31 
     32 /*
     33  * The next 2 constants identify the extents of the code & RO data region.
     34  * These addresses are used by the MMU setup code and therefore they must be
     35  * page-aligned.  It is the responsibility of the linker script to ensure that
     36  * __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses.
     37  */
     38 #define BL31_RO_BASE (unsigned long)(&__RO_START__)
     39 #define BL31_RO_LIMIT (unsigned long)(&__RO_END__)
     40 
     41 /*
     42  * Placeholder variables for copying the arguments that have been passed to
     43  * BL3-1 from BL2.
     44  */
     45 static entry_point_info_t bl32_image_ep_info;
     46 static entry_point_info_t bl33_image_ep_info;
     47 
     48 static const int cci_map[] = {
     49 	PLAT_MT_CCI_CLUSTER0_SL_IFACE_IX,
     50 	PLAT_MT_CCI_CLUSTER1_SL_IFACE_IX
     51 };
     52 
     53 static uint32_t cci_map_length = ARRAY_SIZE(cci_map);
     54 
     55 /* Table of regions to map using the MMU.  */
     56 static const mmap_region_t plat_mmap[] = {
     57 	/* for TF text, RO, RW */
     58 	MAP_REGION_FLAT(MTK_DEV_RNG0_BASE, MTK_DEV_RNG0_SIZE,
     59 			MT_DEVICE | MT_RW | MT_SECURE),
     60 	MAP_REGION_FLAT(MTK_DEV_RNG1_BASE, MTK_DEV_RNG1_SIZE,
     61 			MT_DEVICE | MT_RW | MT_SECURE),
     62 	MAP_REGION_FLAT(RAM_CONSOLE_BASE & ~(PAGE_SIZE_MASK), RAM_CONSOLE_SIZE,
     63 						MT_DEVICE | MT_RW | MT_NS),
     64 	{ 0 }
     65 
     66 };
     67 
     68 /*******************************************************************************
     69  * Macro generating the code for the function setting up the pagetables as per
     70  * the platform memory map & initialize the mmu, for the given exception level
     71  ******************************************************************************/
     72 #define DEFINE_CONFIGURE_MMU_EL(_el)					\
     73 	void plat_configure_mmu_el ## _el(unsigned long total_base,	\
     74 				unsigned long total_size,	\
     75 				unsigned long ro_start,	\
     76 				unsigned long ro_limit,	\
     77 				unsigned long coh_start,	\
     78 				unsigned long coh_limit)	\
     79 	{								\
     80 		mmap_add_region(total_base, total_base,			\
     81 				total_size,				\
     82 				MT_MEMORY | MT_RW | MT_SECURE);		\
     83 		mmap_add_region(ro_start, ro_start,			\
     84 				ro_limit - ro_start,			\
     85 				MT_MEMORY | MT_RO | MT_SECURE);		\
     86 		mmap_add_region(coh_start, coh_start,			\
     87 				coh_limit - coh_start,			\
     88 				MT_DEVICE | MT_RW | MT_SECURE);		\
     89 		mmap_add(plat_mmap);					\
     90 		init_xlat_tables();					\
     91 									\
     92 		enable_mmu_el ## _el(0);				\
     93 	}
     94 
     95 /* Define EL3 variants of the function initialising the MMU */
     96 DEFINE_CONFIGURE_MMU_EL(3)
     97 
     98 unsigned int plat_get_syscnt_freq2(void)
     99 {
    100 	return SYS_COUNTER_FREQ_IN_TICKS;
    101 }
    102 
    103 void plat_cci_init(void)
    104 {
    105 	/* Initialize CCI driver */
    106 	cci_init(PLAT_MT_CCI_BASE, cci_map, cci_map_length);
    107 }
    108 
    109 void plat_cci_enable(void)
    110 {
    111 	/*
    112 	 * Enable CCI coherency for this cluster.
    113 	 * No need for locks as no other cpu is active at the moment.
    114 	 */
    115 	cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr()));
    116 }
    117 
    118 void plat_cci_disable(void)
    119 {
    120 	cci_disable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr()));
    121 }
    122 
    123 
    124 static void platform_setup_cpu(void)
    125 {
    126 	/* setup big cores */
    127 	mmio_write_32((uintptr_t)&mt6795_mcucfg->mp1_config_res,
    128 		MP1_DIS_RGU0_WAIT_PD_CPUS_L1_ACK |
    129 		MP1_DIS_RGU1_WAIT_PD_CPUS_L1_ACK |
    130 		MP1_DIS_RGU2_WAIT_PD_CPUS_L1_ACK |
    131 		MP1_DIS_RGU3_WAIT_PD_CPUS_L1_ACK |
    132 		MP1_DIS_RGU_NOCPU_WAIT_PD_CPUS_L1_ACK);
    133 	mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_miscdbg, MP1_AINACTS);
    134 	mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_clkenm_div,
    135 		MP1_SW_CG_GEN);
    136 	mmio_clrbits_32((uintptr_t)&mt6795_mcucfg->mp1_rst_ctl,
    137 		MP1_L2RSTDISABLE);
    138 
    139 	/* set big cores arm64 boot mode */
    140 	mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_cpucfg,
    141 		MP1_CPUCFG_64BIT);
    142 
    143 	/* set LITTLE cores arm64 boot mode */
    144 	mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp0_rv_addr[0].rv_addr_hw,
    145 		MP0_CPUCFG_64BIT);
    146 }
    147 
    148 /*******************************************************************************
    149  * Return a pointer to the 'entry_point_info' structure of the next image for
    150  * the security state specified. BL33 corresponds to the non-secure image type
    151  * while BL32 corresponds to the secure image type. A NULL pointer is returned
    152  * if the image does not exist.
    153  ******************************************************************************/
    154 entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
    155 {
    156 	entry_point_info_t *next_image_info;
    157 
    158 	next_image_info = (type == NON_SECURE) ?
    159 			&bl33_image_ep_info : &bl32_image_ep_info;
    160 
    161 	/* None of the images on this platform can have 0x0 as the entrypoint */
    162 	if (next_image_info->pc)
    163 		return next_image_info;
    164 	else
    165 		return NULL;
    166 }
    167 
    168 /*******************************************************************************
    169  * Perform any BL3-1 early platform setup. Here is an opportunity to copy
    170  * parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they
    171  * are lost (potentially). This needs to be done before the MMU is initialized
    172  * so that the memory layout can be used while creating page tables.
    173  * BL2 has flushed this information to memory, so we are guaranteed to pick up
    174  * good data.
    175  ******************************************************************************/
    176 void bl31_early_platform_setup(bl31_params_t *from_bl2,
    177 						 void *plat_params_from_bl2)
    178 {
    179 	struct mtk_bl_param_t *pmtk_bl_param =
    180 	(struct mtk_bl_param_t *)from_bl2;
    181 	struct atf_arg_t *teearg;
    182 	unsigned long long normal_base;
    183 	unsigned long long atf_base;
    184 
    185 	assert(from_bl2 != NULL);
    186 	/*
    187 	 * Mediatek preloader(i.e, BL2) is in 32 bit state, high 32bits
    188 	 * of 64 bit GP registers are UNKNOWN if CPU warm reset from 32 bit
    189 	 * to 64 bit state. So we need to clear high 32bit,
    190 	 * which may be random value.
    191 	 */
    192 	pmtk_bl_param =
    193 	(struct mtk_bl_param_t *)((uint64_t)pmtk_bl_param & 0x00000000ffffffff);
    194 	plat_params_from_bl2 =
    195 	(void *)((uint64_t)plat_params_from_bl2 & 0x00000000ffffffff);
    196 
    197 	teearg  = (struct atf_arg_t *)pmtk_bl_param->tee_info_addr;
    198 
    199 	console_init(teearg->atf_log_port, UART_CLOCK, UART_BAUDRATE);
    200 	memcpy((void *)&gteearg, (void *)teearg, sizeof(struct atf_arg_t));
    201 
    202 	normal_base = 0;
    203     /* in ATF boot time, timer for cntpct_el0 is not initialized
    204      * so it will not count now.
    205      */
    206 	atf_base = read_cntpct_el0();
    207 	sched_clock_init(normal_base, atf_base);
    208 
    209 	VERBOSE("bl31_setup\n");
    210 
    211 	/* Populate entry point information for BL3-2 and BL3-3 */
    212 	SET_PARAM_HEAD(&bl32_image_ep_info,
    213 				PARAM_EP,
    214 				VERSION_1,
    215 				0);
    216 	SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
    217 	bl32_image_ep_info.pc = BL32_BASE;
    218 
    219 	SET_PARAM_HEAD(&bl33_image_ep_info,
    220 				PARAM_EP,
    221 				VERSION_1,
    222 				0);
    223 	/*
    224 	 * Tell BL3-1 where the non-trusted software image
    225 	 * is located and the entry state information
    226 	 */
    227 	/* BL33_START_ADDRESS */
    228 	bl33_image_ep_info.pc = pmtk_bl_param->bl33_start_addr;
    229 	bl33_image_ep_info.spsr = plat_get_spsr_for_bl33_entry();
    230 	bl33_image_ep_info.args.arg4 =  pmtk_bl_param->bootarg_loc;
    231 	bl33_image_ep_info.args.arg5 =  pmtk_bl_param->bootarg_size;
    232 	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
    233 }
    234 /*******************************************************************************
    235  * Perform any BL3-1 platform setup code
    236  ******************************************************************************/
    237 
    238 void bl31_platform_setup(void)
    239 {
    240 	platform_setup_cpu();
    241 
    242 	generic_delay_timer_init();
    243 
    244 	plat_mt_gic_driver_init();
    245 	/* Initialize the gic cpu and distributor interfaces */
    246 	plat_mt_gic_init();
    247 
    248 	/* Topologies are best known to the platform. */
    249 	mt_setup_topology();
    250 }
    251 /*******************************************************************************
    252  * Perform the very early platform specific architectural setup here. At the
    253  * moment this is only intializes the mmu in a quick and dirty way.
    254  * Init MTK propiartary log buffer control field.
    255  ******************************************************************************/
    256 void bl31_plat_arch_setup(void)
    257 {
    258 	/* Enable non-secure access to CCI-400 registers */
    259 	mmio_write_32(CCI400_BASE + CCI_SEC_ACCESS_OFFSET, 0x1);
    260 
    261 	plat_cci_init();
    262 	plat_cci_enable();
    263 
    264 	if (gteearg.atf_log_buf_size != 0) {
    265 		INFO("mmap atf buffer : 0x%x, 0x%x\n\r",
    266 			gteearg.atf_log_buf_start,
    267 			gteearg.atf_log_buf_size);
    268 
    269 		mmap_add_region(
    270 			gteearg.atf_log_buf_start &
    271 			~(PAGE_SIZE_2MB_MASK),
    272 			gteearg.atf_log_buf_start &
    273 			~(PAGE_SIZE_2MB_MASK),
    274 			PAGE_SIZE_2MB,
    275 			MT_DEVICE | MT_RW | MT_NS);
    276 
    277 		INFO("mmap atf buffer (force 2MB aligned):0x%x, 0x%x\n",
    278 			(gteearg.atf_log_buf_start & ~(PAGE_SIZE_2MB_MASK)),
    279 		PAGE_SIZE_2MB);
    280 	}
    281 	/*
    282 	 * add TZRAM_BASE to memory map
    283 	 * then set RO and COHERENT to different attribute
    284 	 */
    285 	plat_configure_mmu_el3(
    286 		(TZRAM_BASE & ~(PAGE_SIZE_MASK)),
    287 		(TZRAM_SIZE & ~(PAGE_SIZE_MASK)),
    288 		(BL31_RO_BASE & ~(PAGE_SIZE_MASK)),
    289 		BL31_RO_LIMIT,
    290 		BL_COHERENT_RAM_BASE,
    291 		BL_COHERENT_RAM_END);
    292 	/* Initialize for ATF log buffer */
    293 	if (gteearg.atf_log_buf_size != 0) {
    294 		gteearg.atf_aee_debug_buf_size = ATF_AEE_BUFFER_SIZE;
    295 		gteearg.atf_aee_debug_buf_start =
    296 			gteearg.atf_log_buf_start +
    297 			gteearg.atf_log_buf_size - ATF_AEE_BUFFER_SIZE;
    298 		INFO("ATF log service is registered (0x%x, aee:0x%x)\n",
    299 			gteearg.atf_log_buf_start,
    300 			gteearg.atf_aee_debug_buf_start);
    301 	} else{
    302 		gteearg.atf_aee_debug_buf_size = 0;
    303 		gteearg.atf_aee_debug_buf_start = 0;
    304 	}
    305 
    306 	/* Platform code before bl31_main */
    307 	/* compatible to the earlier chipset */
    308 
    309 	/* Show to ATF log buffer & UART */
    310 	INFO("BL3-1: %s\n", version_string);
    311 	INFO("BL3-1: %s\n", build_message);
    312 
    313 }
    314 #if 0
    315 /* MTK Define */
    316 #define ACTLR_CPUECTLR_BIT    (1 << 1)
    317 
    318 void enable_ns_access_to_cpuectlr(void)
    319 {
    320 	unsigned int next_actlr;
    321 
    322 
    323 	/* ACTLR_EL1 do not implement CUPECTLR  */
    324 	next_actlr = read_actlr_el2();
    325 	next_actlr |= ACTLR_CPUECTLR_BIT;
    326 	write_actlr_el2(next_actlr);
    327 
    328 	next_actlr = read_actlr_el3();
    329 	next_actlr |= ACTLR_CPUECTLR_BIT;
    330 	write_actlr_el3(next_actlr);
    331 }
    332 #endif
    333 /*******************************************************************************
    334  * This function prepare boot argument for 64 bit kernel entry
    335  ******************************************************************************/
    336 static entry_point_info_t *bl31_plat_get_next_kernel64_ep_info(void)
    337 {
    338 	entry_point_info_t *next_image_info;
    339 	unsigned int mode;
    340 
    341 	mode = 0;
    342 
    343 	/* Kernel image is always non-secured */
    344 	next_image_info = &bl33_image_ep_info;
    345 
    346 	/* Figure out what mode we enter the non-secure world in */
    347 	if (EL_IMPLEMENTED(2)) {
    348 		INFO("Kernel_EL2\n");
    349 		mode = MODE_EL2;
    350 	} else{
    351 		INFO("Kernel_EL1\n");
    352 		mode = MODE_EL1;
    353 	}
    354 
    355 	INFO("Kernel is 64Bit\n");
    356 	next_image_info->spsr =
    357 		SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
    358 	next_image_info->pc = get_kernel_info_pc();
    359 	next_image_info->args.arg0 = get_kernel_info_r0();
    360 	next_image_info->args.arg1 = get_kernel_info_r1();
    361 
    362 	INFO("pc=0x%lx, r0=0x%lx, r1=0x%lx\n",
    363 				 next_image_info->pc,
    364 				 next_image_info->args.arg0,
    365 				 next_image_info->args.arg1);
    366 
    367 
    368 	SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE);
    369 
    370 	/* None of the images on this platform can have 0x0 as the entrypoint */
    371 	if (next_image_info->pc)
    372 		return next_image_info;
    373 	else
    374 		return NULL;
    375 }
    376 
    377 /*******************************************************************************
    378  * This function prepare boot argument for 32 bit kernel entry
    379  ******************************************************************************/
    380 static entry_point_info_t *bl31_plat_get_next_kernel32_ep_info(void)
    381 {
    382 	entry_point_info_t *next_image_info;
    383 	unsigned int mode;
    384 
    385 	mode = 0;
    386 
    387 	/* Kernel image is always non-secured */
    388 	next_image_info = &bl33_image_ep_info;
    389 
    390 	/* Figure out what mode we enter the non-secure world in */
    391 	mode = MODE32_hyp;
    392 	/*
    393 	* TODO: Consider the possibility of specifying the SPSR in
    394 	* the FIP ToC and allowing the platform to have a say as
    395 	* well.
    396 	*/
    397 
    398 	INFO("Kernel is 32Bit\n");
    399 	next_image_info->spsr =
    400 		SPSR_MODE32(mode, SPSR_T_ARM, SPSR_E_LITTLE,
    401 		(DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT));
    402 	next_image_info->pc = get_kernel_info_pc();
    403 	next_image_info->args.arg0 = get_kernel_info_r0();
    404 	next_image_info->args.arg1 = get_kernel_info_r1();
    405 	next_image_info->args.arg2 = get_kernel_info_r2();
    406 
    407 	INFO("pc=0x%lx, r0=0x%lx, r1=0x%lx, r2=0x%lx\n",
    408 				 next_image_info->pc,
    409 				 next_image_info->args.arg0,
    410 				 next_image_info->args.arg1,
    411 				 next_image_info->args.arg2);
    412 
    413 
    414 	SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE);
    415 
    416 	/* None of the images on this platform can have 0x0 as the entrypoint */
    417 	if (next_image_info->pc)
    418 		return next_image_info;
    419 	else
    420 		return NULL;
    421 }
    422 
    423 /*******************************************************************************
    424  * This function prepare boot argument for kernel entrypoint
    425  ******************************************************************************/
    426 void bl31_prepare_kernel_entry(uint64_t k32_64)
    427 {
    428 	entry_point_info_t *next_image_info;
    429 	uint32_t image_type;
    430 
    431 	/* Determine which image to execute next */
    432 	/* image_type = bl31_get_next_image_type(); */
    433 	image_type = NON_SECURE;
    434 
    435 	/* Program EL3 registers to enable entry into the next EL */
    436 	if (k32_64 == 0)
    437 		next_image_info = bl31_plat_get_next_kernel32_ep_info();
    438 	else
    439 		next_image_info = bl31_plat_get_next_kernel64_ep_info();
    440 
    441 	assert(next_image_info);
    442 	assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));
    443 
    444 	INFO("BL3-1: Preparing for EL3 exit to %s world, Kernel\n",
    445 		(image_type == SECURE) ? "secure" : "normal");
    446 	INFO("BL3-1: Next image address = 0x%llx\n",
    447 		(unsigned long long) next_image_info->pc);
    448 	INFO("BL3-1: Next image spsr = 0x%x\n", next_image_info->spsr);
    449 	cm_init_context(read_mpidr_el1(), next_image_info);
    450 	cm_prepare_el3_exit(image_type);
    451 }
    452