1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 2 <html> 3 4 <head> 5 <title>Lua 5.2 Reference Manual</title> 6 <link rel="stylesheet" type="text/css" href="lua.css"> 7 <link rel="stylesheet" type="text/css" href="manual.css"> 8 <META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1"> 9 </head> 10 11 <body> 12 13 <hr> 14 <h1> 15 <a href="http://www.lua.org/"><img src="logo.gif" alt="" border="0"></a> 16 Lua 5.2 Reference Manual 17 </h1> 18 19 by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes 20 <p> 21 <small> 22 Copyright © 2011–2013 Lua.org, PUC-Rio. 23 Freely available under the terms of the 24 <a href="http://www.lua.org/license.html">Lua license</a>. 25 </small> 26 <hr> 27 <p> 28 29 <a href="contents.html#contents">contents</A> 30 · 31 <a href="contents.html#index">index</A> 32 33 <!-- ====================================================================== --> 34 <p> 35 36 <!-- $Id: manual.of,v 1.103 2013/03/14 18:51:56 roberto Exp $ --> 37 38 39 40 41 <h1>1 – <a name="1">Introduction</a></h1> 42 43 <p> 44 Lua is an extension programming language designed to support 45 general procedural programming with data description 46 facilities. 47 It also offers good support for object-oriented programming, 48 functional programming, and data-driven programming. 49 Lua is intended to be used as a powerful, lightweight, 50 embeddable scripting language for any program that needs one. 51 Lua is implemented as a library, written in <em>clean C</em>, 52 the common subset of Standard C and C++. 53 54 55 <p> 56 Being an extension language, Lua has no notion of a "main" program: 57 it only works <em>embedded</em> in a host client, 58 called the <em>embedding program</em> or simply the <em>host</em>. 59 The host program can invoke functions to execute a piece of Lua code, 60 can write and read Lua variables, 61 and can register C functions to be called by Lua code. 62 Through the use of C functions, Lua can be augmented to cope with 63 a wide range of different domains, 64 thus creating customized programming languages sharing a syntactical framework. 65 The Lua distribution includes a sample host program called <code>lua</code>, 66 which uses the Lua library to offer a complete, standalone Lua interpreter, 67 for interactive or batch use. 68 69 70 <p> 71 Lua is free software, 72 and is provided as usual with no guarantees, 73 as stated in its license. 74 The implementation described in this manual is available 75 at Lua's official web site, <code>www.lua.org</code>. 76 77 78 <p> 79 Like any other reference manual, 80 this document is dry in places. 81 For a discussion of the decisions behind the design of Lua, 82 see the technical papers available at Lua's web site. 83 For a detailed introduction to programming in Lua, 84 see Roberto's book, <em>Programming in Lua</em>. 85 86 87 88 <h1>2 – <a name="2">Basic Concepts</a></h1> 89 90 <p> 91 This section describes the basic concepts of the language. 92 93 94 95 <h2>2.1 – <a name="2.1">Values and Types</a></h2> 96 97 <p> 98 Lua is a <em>dynamically typed language</em>. 99 This means that 100 variables do not have types; only values do. 101 There are no type definitions in the language. 102 All values carry their own type. 103 104 105 <p> 106 All values in Lua are <em>first-class values</em>. 107 This means that all values can be stored in variables, 108 passed as arguments to other functions, and returned as results. 109 110 111 <p> 112 There are eight basic types in Lua: 113 <em>nil</em>, <em>boolean</em>, <em>number</em>, 114 <em>string</em>, <em>function</em>, <em>userdata</em>, 115 <em>thread</em>, and <em>table</em>. 116 <em>Nil</em> is the type of the value <b>nil</b>, 117 whose main property is to be different from any other value; 118 it usually represents the absence of a useful value. 119 <em>Boolean</em> is the type of the values <b>false</b> and <b>true</b>. 120 Both <b>nil</b> and <b>false</b> make a condition false; 121 any other value makes it true. 122 <em>Number</em> represents real (double-precision floating-point) numbers. 123 Operations on numbers follow the same rules of 124 the underlying C implementation, 125 which, in turn, usually follows the IEEE 754 standard. 126 (It is easy to build Lua interpreters that use other 127 internal representations for numbers, 128 such as single-precision floats or long integers; 129 see file <code>luaconf.h</code>.) 130 <em>String</em> represents immutable sequences of bytes. 131 132 Lua is 8-bit clean: 133 strings can contain any 8-bit value, 134 including embedded zeros ('<code>\0</code>'). 135 136 137 <p> 138 Lua can call (and manipulate) functions written in Lua and 139 functions written in C 140 (see <a href="#3.4.9">§3.4.9</a>). 141 142 143 <p> 144 The type <em>userdata</em> is provided to allow arbitrary C data to 145 be stored in Lua variables. 146 A userdata value is a pointer to a block of raw memory. 147 There are two kinds of userdata: 148 full userdata, where the block of memory is managed by Lua, 149 and light userdata, where the block of memory is managed by the host. 150 Userdata has no predefined operations in Lua, 151 except assignment and identity test. 152 By using <em>metatables</em>, 153 the programmer can define operations for full userdata values 154 (see <a href="#2.4">§2.4</a>). 155 Userdata values cannot be created or modified in Lua, 156 only through the C API. 157 This guarantees the integrity of data owned by the host program. 158 159 160 <p> 161 The type <em>thread</em> represents independent threads of execution 162 and it is used to implement coroutines (see <a href="#2.6">§2.6</a>). 163 Do not confuse Lua threads with operating-system threads. 164 Lua supports coroutines on all systems, 165 even those that do not support threads. 166 167 168 <p> 169 The type <em>table</em> implements associative arrays, 170 that is, arrays that can be indexed not only with numbers, 171 but with any Lua value except <b>nil</b> and NaN 172 (<em>Not a Number</em>, a special numeric value used to represent 173 undefined or unrepresentable results, such as <code>0/0</code>). 174 Tables can be <em>heterogeneous</em>; 175 that is, they can contain values of all types (except <b>nil</b>). 176 Any key with value <b>nil</b> is not considered part of the table. 177 Conversely, any key that is not part of a table has 178 an associated value <b>nil</b>. 179 180 181 <p> 182 Tables are the sole data structuring mechanism in Lua; 183 they can be used to represent ordinary arrays, sequences, 184 symbol tables, sets, records, graphs, trees, etc. 185 To represent records, Lua uses the field name as an index. 186 The language supports this representation by 187 providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>. 188 There are several convenient ways to create tables in Lua 189 (see <a href="#3.4.8">§3.4.8</a>). 190 191 192 <p> 193 We use the term <em>sequence</em> to denote a table where 194 the set of all positive numeric keys is equal to <em>{1..n}</em> 195 for some integer <em>n</em>, 196 which is called the length of the sequence (see <a href="#3.4.6">§3.4.6</a>). 197 198 199 <p> 200 Like indices, 201 the values of table fields can be of any type. 202 In particular, 203 because functions are first-class values, 204 table fields can contain functions. 205 Thus tables can also carry <em>methods</em> (see <a href="#3.4.10">§3.4.10</a>). 206 207 208 <p> 209 The indexing of tables follows 210 the definition of raw equality in the language. 211 The expressions <code>a[i]</code> and <code>a[j]</code> 212 denote the same table element 213 if and only if <code>i</code> and <code>j</code> are raw equal 214 (that is, equal without metamethods). 215 216 217 <p> 218 Tables, functions, threads, and (full) userdata values are <em>objects</em>: 219 variables do not actually <em>contain</em> these values, 220 only <em>references</em> to them. 221 Assignment, parameter passing, and function returns 222 always manipulate references to such values; 223 these operations do not imply any kind of copy. 224 225 226 <p> 227 The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type 228 of a given value (see <a href="#6.1">§6.1</a>). 229 230 231 232 233 234 <h2>2.2 – <a name="2.2">Environments and the Global Environment</a></h2> 235 236 <p> 237 As will be discussed in <a href="#3.2">§3.2</a> and <a href="#3.3.3">§3.3.3</a>, 238 any reference to a global name <code>var</code> is syntactically translated 239 to <code>_ENV.var</code>. 240 Moreover, every chunk is compiled in the scope of 241 an external local variable called <code>_ENV</code> (see <a href="#3.3.2">§3.3.2</a>), 242 so <code>_ENV</code> itself is never a global name in a chunk. 243 244 245 <p> 246 Despite the existence of this external <code>_ENV</code> variable and 247 the translation of global names, 248 <code>_ENV</code> is a completely regular name. 249 In particular, 250 you can define new variables and parameters with that name. 251 Each reference to a global name uses the <code>_ENV</code> that is 252 visible at that point in the program, 253 following the usual visibility rules of Lua (see <a href="#3.5">§3.5</a>). 254 255 256 <p> 257 Any table used as the value of <code>_ENV</code> is called an <em>environment</em>. 258 259 260 <p> 261 Lua keeps a distinguished environment called the <em>global environment</em>. 262 This value is kept at a special index in the C registry (see <a href="#4.5">§4.5</a>). 263 In Lua, the variable <a href="#pdf-_G"><code>_G</code></a> is initialized with this same value. 264 265 266 <p> 267 When Lua compiles a chunk, 268 it initializes the value of its <code>_ENV</code> upvalue 269 with the global environment (see <a href="#pdf-load"><code>load</code></a>). 270 Therefore, by default, 271 global variables in Lua code refer to entries in the global environment. 272 Moreover, all standard libraries are loaded in the global environment 273 and several functions there operate on that environment. 274 You can use <a href="#pdf-load"><code>load</code></a> (or <a href="#pdf-loadfile"><code>loadfile</code></a>) 275 to load a chunk with a different environment. 276 (In C, you have to load the chunk and then change the value 277 of its first upvalue.) 278 279 280 <p> 281 If you change the global environment in the registry 282 (through C code or the debug library), 283 all chunks loaded after the change will get the new environment. 284 Previously loaded chunks are not affected, however, 285 as each has its own reference to the environment in its <code>_ENV</code> variable. 286 Moreover, the variable <a href="#pdf-_G"><code>_G</code></a> 287 (which is stored in the original global environment) 288 is never updated by Lua. 289 290 291 292 293 294 <h2>2.3 – <a name="2.3">Error Handling</a></h2> 295 296 <p> 297 Because Lua is an embedded extension language, 298 all Lua actions start from C code in the host program 299 calling a function from the Lua library (see <a href="#lua_pcall"><code>lua_pcall</code></a>). 300 Whenever an error occurs during 301 the compilation or execution of a Lua chunk, 302 control returns to the host, 303 which can take appropriate measures 304 (such as printing an error message). 305 306 307 <p> 308 Lua code can explicitly generate an error by calling the 309 <a href="#pdf-error"><code>error</code></a> function. 310 If you need to catch errors in Lua, 311 you can use <a href="#pdf-pcall"><code>pcall</code></a> or <a href="#pdf-xpcall"><code>xpcall</code></a> 312 to call a given function in <em>protected mode</em>. 313 314 315 <p> 316 Whenever there is an error, 317 an <em>error object</em> (also called an <em>error message</em>) 318 is propagated with information about the error. 319 Lua itself only generates errors where the error object is a string, 320 but programs may generate errors with 321 any value for the error object. 322 323 324 <p> 325 When you use <a href="#pdf-xpcall"><code>xpcall</code></a> or <a href="#lua_pcall"><code>lua_pcall</code></a>, 326 you may give a <em>message handler</em> 327 to be called in case of errors. 328 This function is called with the original error message 329 and returns a new error message. 330 It is called before the error unwinds the stack, 331 so that it can gather more information about the error, 332 for instance by inspecting the stack and creating a stack traceback. 333 This message handler is still protected by the protected call; 334 so, an error inside the message handler 335 will call the message handler again. 336 If this loop goes on, Lua breaks it and returns an appropriate message. 337 338 339 340 341 342 <h2>2.4 – <a name="2.4">Metatables and Metamethods</a></h2> 343 344 <p> 345 Every value in Lua can have a <em>metatable</em>. 346 This <em>metatable</em> is an ordinary Lua table 347 that defines the behavior of the original value 348 under certain special operations. 349 You can change several aspects of the behavior 350 of operations over a value by setting specific fields in its metatable. 351 For instance, when a non-numeric value is the operand of an addition, 352 Lua checks for a function in the field "<code>__add</code>" of the value's metatable. 353 If it finds one, 354 Lua calls this function to perform the addition. 355 356 357 <p> 358 The keys in a metatable are derived from the <em>event</em> names; 359 the corresponding values are called <em>metamethods</em>. 360 In the previous example, the event is <code>"add"</code> 361 and the metamethod is the function that performs the addition. 362 363 364 <p> 365 You can query the metatable of any value 366 using the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function. 367 368 369 <p> 370 You can replace the metatable of tables 371 using the <a href="#pdf-setmetatable"><code>setmetatable</code></a> function. 372 You cannot change the metatable of other types from Lua 373 (except by using the debug library); 374 you must use the C API for that. 375 376 377 <p> 378 Tables and full userdata have individual metatables 379 (although multiple tables and userdata can share their metatables). 380 Values of all other types share one single metatable per type; 381 that is, there is one single metatable for all numbers, 382 one for all strings, etc. 383 By default, a value has no metatable, 384 but the string library sets a metatable for the string type (see <a href="#6.4">§6.4</a>). 385 386 387 <p> 388 A metatable controls how an object behaves in arithmetic operations, 389 order comparisons, concatenation, length operation, and indexing. 390 A metatable also can define a function to be called 391 when a userdata or a table is garbage collected. 392 When Lua performs one of these operations over a value, 393 it checks whether this value has a metatable with the corresponding event. 394 If so, the value associated with that key (the metamethod) 395 controls how Lua will perform the operation. 396 397 398 <p> 399 Metatables control the operations listed next. 400 Each operation is identified by its corresponding name. 401 The key for each operation is a string with its name prefixed by 402 two underscores, '<code>__</code>'; 403 for instance, the key for operation "add" is the 404 string "<code>__add</code>". 405 406 407 <p> 408 The semantics of these operations is better explained by a Lua function 409 describing how the interpreter executes the operation. 410 The code shown here in Lua is only illustrative; 411 the real behavior is hard coded in the interpreter 412 and it is much more efficient than this simulation. 413 All functions used in these descriptions 414 (<a href="#pdf-rawget"><code>rawget</code></a>, <a href="#pdf-tonumber"><code>tonumber</code></a>, etc.) 415 are described in <a href="#6.1">§6.1</a>. 416 In particular, to retrieve the metamethod of a given object, 417 we use the expression 418 419 <pre> 420 metatable(obj)[event] 421 </pre><p> 422 This should be read as 423 424 <pre> 425 rawget(getmetatable(obj) or {}, event) 426 </pre><p> 427 This means that the access to a metamethod does not invoke other metamethods, 428 and access to objects with no metatables does not fail 429 (it simply results in <b>nil</b>). 430 431 432 <p> 433 For the unary <code>-</code> and <code>#</code> operators, 434 the metamethod is called with a dummy second argument. 435 This extra argument is only to simplify Lua's internals; 436 it may be removed in future versions and therefore it is not present 437 in the following code. 438 (For most uses this extra argument is irrelevant.) 439 440 441 442 <ul> 443 444 <li><b>"add": </b> 445 the <code>+</code> operation. 446 447 448 449 <p> 450 The function <code>getbinhandler</code> below defines how Lua chooses a handler 451 for a binary operation. 452 First, Lua tries the first operand. 453 If its type does not define a handler for the operation, 454 then Lua tries the second operand. 455 456 <pre> 457 function getbinhandler (op1, op2, event) 458 return metatable(op1)[event] or metatable(op2)[event] 459 end 460 </pre><p> 461 By using this function, 462 the behavior of the <code>op1 + op2</code> is 463 464 <pre> 465 function add_event (op1, op2) 466 local o1, o2 = tonumber(op1), tonumber(op2) 467 if o1 and o2 then -- both operands are numeric? 468 return o1 + o2 -- '+' here is the primitive 'add' 469 else -- at least one of the operands is not numeric 470 local h = getbinhandler(op1, op2, "__add") 471 if h then 472 -- call the handler with both operands 473 return (h(op1, op2)) 474 else -- no handler available: default behavior 475 error(···) 476 end 477 end 478 end 479 </pre><p> 480 </li> 481 482 <li><b>"sub": </b> 483 the <code>-</code> operation. 484 485 Behavior similar to the "add" operation. 486 </li> 487 488 <li><b>"mul": </b> 489 the <code>*</code> operation. 490 491 Behavior similar to the "add" operation. 492 </li> 493 494 <li><b>"div": </b> 495 the <code>/</code> operation. 496 497 Behavior similar to the "add" operation. 498 </li> 499 500 <li><b>"mod": </b> 501 the <code>%</code> operation. 502 503 Behavior similar to the "add" operation, 504 with the operation 505 <code>o1 - floor(o1/o2)*o2</code> as the primitive operation. 506 </li> 507 508 <li><b>"pow": </b> 509 the <code>^</code> (exponentiation) operation. 510 511 Behavior similar to the "add" operation, 512 with the function <code>pow</code> (from the C math library) 513 as the primitive operation. 514 </li> 515 516 <li><b>"unm": </b> 517 the unary <code>-</code> operation. 518 519 520 <pre> 521 function unm_event (op) 522 local o = tonumber(op) 523 if o then -- operand is numeric? 524 return -o -- '-' here is the primitive 'unm' 525 else -- the operand is not numeric. 526 -- Try to get a handler from the operand 527 local h = metatable(op).__unm 528 if h then 529 -- call the handler with the operand 530 return (h(op)) 531 else -- no handler available: default behavior 532 error(···) 533 end 534 end 535 end 536 </pre><p> 537 </li> 538 539 <li><b>"concat": </b> 540 the <code>..</code> (concatenation) operation. 541 542 543 <pre> 544 function concat_event (op1, op2) 545 if (type(op1) == "string" or type(op1) == "number") and 546 (type(op2) == "string" or type(op2) == "number") then 547 return op1 .. op2 -- primitive string concatenation 548 else 549 local h = getbinhandler(op1, op2, "__concat") 550 if h then 551 return (h(op1, op2)) 552 else 553 error(···) 554 end 555 end 556 end 557 </pre><p> 558 </li> 559 560 <li><b>"len": </b> 561 the <code>#</code> operation. 562 563 564 <pre> 565 function len_event (op) 566 if type(op) == "string" then 567 return strlen(op) -- primitive string length 568 else 569 local h = metatable(op).__len 570 if h then 571 return (h(op)) -- call handler with the operand 572 elseif type(op) == "table" then 573 return #op -- primitive table length 574 else -- no handler available: error 575 error(···) 576 end 577 end 578 end 579 </pre><p> 580 See <a href="#3.4.6">§3.4.6</a> for a description of the length of a table. 581 </li> 582 583 <li><b>"eq": </b> 584 the <code>==</code> operation. 585 586 The function <code>getequalhandler</code> defines how Lua chooses a metamethod 587 for equality. 588 A metamethod is selected only when both values 589 being compared have the same type 590 and the same metamethod for the selected operation, 591 and the values are either tables or full userdata. 592 593 <pre> 594 function getequalhandler (op1, op2) 595 if type(op1) ~= type(op2) or 596 (type(op1) ~= "table" and type(op1) ~= "userdata") then 597 return nil -- different values 598 end 599 local mm1 = metatable(op1).__eq 600 local mm2 = metatable(op2).__eq 601 if mm1 == mm2 then return mm1 else return nil end 602 end 603 </pre><p> 604 The "eq" event is defined as follows: 605 606 <pre> 607 function eq_event (op1, op2) 608 if op1 == op2 then -- primitive equal? 609 return true -- values are equal 610 end 611 -- try metamethod 612 local h = getequalhandler(op1, op2) 613 if h then 614 return not not h(op1, op2) 615 else 616 return false 617 end 618 end 619 </pre><p> 620 Note that the result is always a boolean. 621 </li> 622 623 <li><b>"lt": </b> 624 the <code><</code> operation. 625 626 627 <pre> 628 function lt_event (op1, op2) 629 if type(op1) == "number" and type(op2) == "number" then 630 return op1 < op2 -- numeric comparison 631 elseif type(op1) == "string" and type(op2) == "string" then 632 return op1 < op2 -- lexicographic comparison 633 else 634 local h = getbinhandler(op1, op2, "__lt") 635 if h then 636 return not not h(op1, op2) 637 else 638 error(···) 639 end 640 end 641 end 642 </pre><p> 643 Note that the result is always a boolean. 644 </li> 645 646 <li><b>"le": </b> 647 the <code><=</code> operation. 648 649 650 <pre> 651 function le_event (op1, op2) 652 if type(op1) == "number" and type(op2) == "number" then 653 return op1 <= op2 -- numeric comparison 654 elseif type(op1) == "string" and type(op2) == "string" then 655 return op1 <= op2 -- lexicographic comparison 656 else 657 local h = getbinhandler(op1, op2, "__le") 658 if h then 659 return not not h(op1, op2) 660 else 661 h = getbinhandler(op1, op2, "__lt") 662 if h then 663 return not h(op2, op1) 664 else 665 error(···) 666 end 667 end 668 end 669 end 670 </pre><p> 671 Note that, in the absence of a "le" metamethod, 672 Lua tries the "lt", assuming that <code>a <= b</code> is 673 equivalent to <code>not (b < a)</code>. 674 675 676 <p> 677 As with the other comparison operators, 678 the result is always a boolean. 679 </li> 680 681 <li><b>"index": </b> 682 The indexing access <code>table[key]</code>. 683 Note that the metamethod is tried only 684 when <code>key</code> is not present in <code>table</code>. 685 (When <code>table</code> is not a table, 686 no key is ever present, 687 so the metamethod is always tried.) 688 689 690 <pre> 691 function gettable_event (table, key) 692 local h 693 if type(table) == "table" then 694 local v = rawget(table, key) 695 -- if key is present, return raw value 696 if v ~= nil then return v end 697 h = metatable(table).__index 698 if h == nil then return nil end 699 else 700 h = metatable(table).__index 701 if h == nil then 702 error(···) 703 end 704 end 705 if type(h) == "function" then 706 return (h(table, key)) -- call the handler 707 else return h[key] -- or repeat operation on it 708 end 709 end 710 </pre><p> 711 </li> 712 713 <li><b>"newindex": </b> 714 The indexing assignment <code>table[key] = value</code>. 715 Note that the metamethod is tried only 716 when <code>key</code> is not present in <code>table</code>. 717 718 719 <pre> 720 function settable_event (table, key, value) 721 local h 722 if type(table) == "table" then 723 local v = rawget(table, key) 724 -- if key is present, do raw assignment 725 if v ~= nil then rawset(table, key, value); return end 726 h = metatable(table).__newindex 727 if h == nil then rawset(table, key, value); return end 728 else 729 h = metatable(table).__newindex 730 if h == nil then 731 error(···) 732 end 733 end 734 if type(h) == "function" then 735 h(table, key,value) -- call the handler 736 else h[key] = value -- or repeat operation on it 737 end 738 end 739 </pre><p> 740 </li> 741 742 <li><b>"call": </b> 743 called when Lua calls a value. 744 745 746 <pre> 747 function function_event (func, ...) 748 if type(func) == "function" then 749 return func(...) -- primitive call 750 else 751 local h = metatable(func).__call 752 if h then 753 return h(func, ...) 754 else 755 error(···) 756 end 757 end 758 end 759 </pre><p> 760 </li> 761 762 </ul> 763 764 765 766 767 <h2>2.5 – <a name="2.5">Garbage Collection</a></h2> 768 769 <p> 770 Lua performs automatic memory management. 771 This means that 772 you have to worry neither about allocating memory for new objects 773 nor about freeing it when the objects are no longer needed. 774 Lua manages memory automatically by running 775 a <em>garbage collector</em> to collect all <em>dead objects</em> 776 (that is, objects that are no longer accessible from Lua). 777 All memory used by Lua is subject to automatic management: 778 strings, tables, userdata, functions, threads, internal structures, etc. 779 780 781 <p> 782 Lua implements an incremental mark-and-sweep collector. 783 It uses two numbers to control its garbage-collection cycles: 784 the <em>garbage-collector pause</em> and 785 the <em>garbage-collector step multiplier</em>. 786 Both use percentage points as units 787 (e.g., a value of 100 means an internal value of 1). 788 789 790 <p> 791 The garbage-collector pause 792 controls how long the collector waits before starting a new cycle. 793 Larger values make the collector less aggressive. 794 Values smaller than 100 mean the collector will not wait to 795 start a new cycle. 796 A value of 200 means that the collector waits for the total memory in use 797 to double before starting a new cycle. 798 799 800 <p> 801 The garbage-collector step multiplier 802 controls the relative speed of the collector relative to 803 memory allocation. 804 Larger values make the collector more aggressive but also increase 805 the size of each incremental step. 806 Values smaller than 100 make the collector too slow and 807 can result in the collector never finishing a cycle. 808 The default is 200, 809 which means that the collector runs at "twice" 810 the speed of memory allocation. 811 812 813 <p> 814 If you set the step multiplier to a very large number 815 (larger than 10% of the maximum number of 816 bytes that the program may use), 817 the collector behaves like a stop-the-world collector. 818 If you then set the pause to 200, 819 the collector behaves as in old Lua versions, 820 doing a complete collection every time Lua doubles its 821 memory usage. 822 823 824 <p> 825 You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C 826 or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua. 827 You can also use these functions to control 828 the collector directly (e.g., stop and restart it). 829 830 831 <p> 832 As an experimental feature in Lua 5.2, 833 you can change the collector's operation mode 834 from incremental to <em>generational</em>. 835 A <em>generational collector</em> assumes that most objects die young, 836 and therefore it traverses only young (recently created) objects. 837 This behavior can reduce the time used by the collector, 838 but also increases memory usage (as old dead objects may accumulate). 839 To mitigate this second problem, 840 from time to time the generational collector performs a full collection. 841 Remember that this is an experimental feature; 842 you are welcome to try it, 843 but check your gains. 844 845 846 847 <h3>2.5.1 – <a name="2.5.1">Garbage-Collection Metamethods</a></h3> 848 849 <p> 850 You can set garbage-collector metamethods for tables 851 and, using the C API, 852 for full userdata (see <a href="#2.4">§2.4</a>). 853 These metamethods are also called <em>finalizers</em>. 854 Finalizers allow you to coordinate Lua's garbage collection 855 with external resource management 856 (such as closing files, network or database connections, 857 or freeing your own memory). 858 859 860 <p> 861 For an object (table or userdata) to be finalized when collected, 862 you must <em>mark</em> it for finalization. 863 864 You mark an object for finalization when you set its metatable 865 and the metatable has a field indexed by the string "<code>__gc</code>". 866 Note that if you set a metatable without a <code>__gc</code> field 867 and later create that field in the metatable, 868 the object will not be marked for finalization. 869 However, after an object is marked, 870 you can freely change the <code>__gc</code> field of its metatable. 871 872 873 <p> 874 When a marked object becomes garbage, 875 it is not collected immediately by the garbage collector. 876 Instead, Lua puts it in a list. 877 After the collection, 878 Lua does the equivalent of the following function 879 for each object in that list: 880 881 <pre> 882 function gc_event (obj) 883 local h = metatable(obj).__gc 884 if type(h) == "function" then 885 h(obj) 886 end 887 end 888 </pre> 889 890 <p> 891 At the end of each garbage-collection cycle, 892 the finalizers for objects are called in 893 the reverse order that they were marked for collection, 894 among those collected in that cycle; 895 that is, the first finalizer to be called is the one associated 896 with the object marked last in the program. 897 The execution of each finalizer may occur at any point during 898 the execution of the regular code. 899 900 901 <p> 902 Because the object being collected must still be used by the finalizer, 903 it (and other objects accessible only through it) 904 must be <em>resurrected</em> by Lua. 905 Usually, this resurrection is transient, 906 and the object memory is freed in the next garbage-collection cycle. 907 However, if the finalizer stores the object in some global place 908 (e.g., a global variable), 909 then there is a permanent resurrection. 910 In any case, 911 the object memory is freed only when it becomes completely inaccessible; 912 its finalizer will never be called twice. 913 914 915 <p> 916 When you close a state (see <a href="#lua_close"><code>lua_close</code></a>), 917 Lua calls the finalizers of all objects marked for finalization, 918 following the reverse order that they were marked. 919 If any finalizer marks new objects for collection during that phase, 920 these new objects will not be finalized. 921 922 923 924 925 926 <h3>2.5.2 – <a name="2.5.2">Weak Tables</a></h3> 927 928 <p> 929 A <em>weak table</em> is a table whose elements are 930 <em>weak references</em>. 931 A weak reference is ignored by the garbage collector. 932 In other words, 933 if the only references to an object are weak references, 934 then the garbage collector will collect that object. 935 936 937 <p> 938 A weak table can have weak keys, weak values, or both. 939 A table with weak keys allows the collection of its keys, 940 but prevents the collection of its values. 941 A table with both weak keys and weak values allows the collection of 942 both keys and values. 943 In any case, if either the key or the value is collected, 944 the whole pair is removed from the table. 945 The weakness of a table is controlled by the 946 <code>__mode</code> field of its metatable. 947 If the <code>__mode</code> field is a string containing the character '<code>k</code>', 948 the keys in the table are weak. 949 If <code>__mode</code> contains '<code>v</code>', 950 the values in the table are weak. 951 952 953 <p> 954 A table with weak keys and strong values 955 is also called an <em>ephemeron table</em>. 956 In an ephemeron table, 957 a value is considered reachable only if its key is reachable. 958 In particular, 959 if the only reference to a key comes through its value, 960 the pair is removed. 961 962 963 <p> 964 Any change in the weakness of a table may take effect only 965 at the next collect cycle. 966 In particular, if you change the weakness to a stronger mode, 967 Lua may still collect some items from that table 968 before the change takes effect. 969 970 971 <p> 972 Only objects that have an explicit construction 973 are removed from weak tables. 974 Values, such as numbers and light C functions, 975 are not subject to garbage collection, 976 and therefore are not removed from weak tables 977 (unless its associated value is collected). 978 Although strings are subject to garbage collection, 979 they do not have an explicit construction, 980 and therefore are not removed from weak tables. 981 982 983 <p> 984 Resurrected objects 985 (that is, objects being finalized 986 and objects accessible only through objects being finalized) 987 have a special behavior in weak tables. 988 They are removed from weak values before running their finalizers, 989 but are removed from weak keys only in the next collection 990 after running their finalizers, when such objects are actually freed. 991 This behavior allows the finalizer to access properties 992 associated with the object through weak tables. 993 994 995 <p> 996 If a weak table is among the resurrected objects in a collection cycle, 997 it may not be properly cleared until the next cycle. 998 999 1000 1001 1002 1003 1004 1005 <h2>2.6 – <a name="2.6">Coroutines</a></h2> 1006 1007 <p> 1008 Lua supports coroutines, 1009 also called <em>collaborative multithreading</em>. 1010 A coroutine in Lua represents an independent thread of execution. 1011 Unlike threads in multithread systems, however, 1012 a coroutine only suspends its execution by explicitly calling 1013 a yield function. 1014 1015 1016 <p> 1017 You create a coroutine by calling <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>. 1018 Its sole argument is a function 1019 that is the main function of the coroutine. 1020 The <code>create</code> function only creates a new coroutine and 1021 returns a handle to it (an object of type <em>thread</em>); 1022 it does not start the coroutine. 1023 1024 1025 <p> 1026 You execute a coroutine by calling <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 1027 When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 1028 passing as its first argument 1029 a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>, 1030 the coroutine starts its execution, 1031 at the first line of its main function. 1032 Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed on 1033 to the coroutine main function. 1034 After the coroutine starts running, 1035 it runs until it terminates or <em>yields</em>. 1036 1037 1038 <p> 1039 A coroutine can terminate its execution in two ways: 1040 normally, when its main function returns 1041 (explicitly or implicitly, after the last instruction); 1042 and abnormally, if there is an unprotected error. 1043 In the first case, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>, 1044 plus any values returned by the coroutine main function. 1045 In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b> 1046 plus an error message. 1047 1048 1049 <p> 1050 A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>. 1051 When a coroutine yields, 1052 the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately, 1053 even if the yield happens inside nested function calls 1054 (that is, not in the main function, 1055 but in a function directly or indirectly called by the main function). 1056 In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>, 1057 plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>. 1058 The next time you resume the same coroutine, 1059 it continues its execution from the point where it yielded, 1060 with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra 1061 arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 1062 1063 1064 <p> 1065 Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>, 1066 the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine, 1067 but instead of returning the coroutine itself, 1068 it returns a function that, when called, resumes the coroutine. 1069 Any arguments passed to this function 1070 go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>. 1071 <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 1072 except the first one (the boolean error code). 1073 Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>, 1074 <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors; 1075 any error is propagated to the caller. 1076 1077 1078 <p> 1079 As an example of how coroutines work, 1080 consider the following code: 1081 1082 <pre> 1083 function foo (a) 1084 print("foo", a) 1085 return coroutine.yield(2*a) 1086 end 1087 1088 co = coroutine.create(function (a,b) 1089 print("co-body", a, b) 1090 local r = foo(a+1) 1091 print("co-body", r) 1092 local r, s = coroutine.yield(a+b, a-b) 1093 print("co-body", r, s) 1094 return b, "end" 1095 end) 1096 1097 print("main", coroutine.resume(co, 1, 10)) 1098 print("main", coroutine.resume(co, "r")) 1099 print("main", coroutine.resume(co, "x", "y")) 1100 print("main", coroutine.resume(co, "x", "y")) 1101 </pre><p> 1102 When you run it, it produces the following output: 1103 1104 <pre> 1105 co-body 1 10 1106 foo 2 1107 main true 4 1108 co-body r 1109 main true 11 -9 1110 co-body x y 1111 main true 10 end 1112 main false cannot resume dead coroutine 1113 </pre> 1114 1115 <p> 1116 You can also create and manipulate coroutines through the C API: 1117 see functions <a href="#lua_newthread"><code>lua_newthread</code></a>, <a href="#lua_resume"><code>lua_resume</code></a>, 1118 and <a href="#lua_yield"><code>lua_yield</code></a>. 1119 1120 1121 1122 1123 1124 <h1>3 – <a name="3">The Language</a></h1> 1125 1126 <p> 1127 This section describes the lexis, the syntax, and the semantics of Lua. 1128 In other words, 1129 this section describes 1130 which tokens are valid, 1131 how they can be combined, 1132 and what their combinations mean. 1133 1134 1135 <p> 1136 Language constructs will be explained using the usual extended BNF notation, 1137 in which 1138 {<em>a</em>} means 0 or more <em>a</em>'s, and 1139 [<em>a</em>] means an optional <em>a</em>. 1140 Non-terminals are shown like non-terminal, 1141 keywords are shown like <b>kword</b>, 1142 and other terminal symbols are shown like ‘<b>=</b>’. 1143 The complete syntax of Lua can be found in <a href="#9">§9</a> 1144 at the end of this manual. 1145 1146 1147 1148 <h2>3.1 – <a name="3.1">Lexical Conventions</a></h2> 1149 1150 <p> 1151 Lua is a free-form language. 1152 It ignores spaces (including new lines) and comments 1153 between lexical elements (tokens), 1154 except as delimiters between names and keywords. 1155 1156 1157 <p> 1158 <em>Names</em> 1159 (also called <em>identifiers</em>) 1160 in Lua can be any string of letters, 1161 digits, and underscores, 1162 not beginning with a digit. 1163 Identifiers are used to name variables, table fields, and labels. 1164 1165 1166 <p> 1167 The following <em>keywords</em> are reserved 1168 and cannot be used as names: 1169 1170 1171 <pre> 1172 and break do else elseif end 1173 false for function goto if in 1174 local nil not or repeat return 1175 then true until while 1176 </pre> 1177 1178 <p> 1179 Lua is a case-sensitive language: 1180 <code>and</code> is a reserved word, but <code>And</code> and <code>AND</code> 1181 are two different, valid names. 1182 As a convention, names starting with an underscore followed by 1183 uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>) 1184 are reserved for variables used by Lua. 1185 1186 1187 <p> 1188 The following strings denote other tokens: 1189 1190 <pre> 1191 + - * / % ^ # 1192 == ~= <= >= < > = 1193 ( ) { } [ ] :: 1194 ; : , . .. ... 1195 </pre> 1196 1197 <p> 1198 <em>Literal strings</em> 1199 can be delimited by matching single or double quotes, 1200 and can contain the following C-like escape sequences: 1201 '<code>\a</code>' (bell), 1202 '<code>\b</code>' (backspace), 1203 '<code>\f</code>' (form feed), 1204 '<code>\n</code>' (newline), 1205 '<code>\r</code>' (carriage return), 1206 '<code>\t</code>' (horizontal tab), 1207 '<code>\v</code>' (vertical tab), 1208 '<code>\\</code>' (backslash), 1209 '<code>\"</code>' (quotation mark [double quote]), 1210 and '<code>\'</code>' (apostrophe [single quote]). 1211 A backslash followed by a real newline 1212 results in a newline in the string. 1213 The escape sequence '<code>\z</code>' skips the following span 1214 of white-space characters, 1215 including line breaks; 1216 it is particularly useful to break and indent a long literal string 1217 into multiple lines without adding the newlines and spaces 1218 into the string contents. 1219 1220 1221 <p> 1222 A byte in a literal string can also be specified by its numerical value. 1223 This can be done with the escape sequence <code>\x<em>XX</em></code>, 1224 where <em>XX</em> is a sequence of exactly two hexadecimal digits, 1225 or with the escape sequence <code>\<em>ddd</em></code>, 1226 where <em>ddd</em> is a sequence of up to three decimal digits. 1227 (Note that if a decimal escape is to be followed by a digit, 1228 it must be expressed using exactly three digits.) 1229 Strings in Lua can contain any 8-bit value, including embedded zeros, 1230 which can be specified as '<code>\0</code>'. 1231 1232 1233 <p> 1234 Literal strings can also be defined using a long format 1235 enclosed by <em>long brackets</em>. 1236 We define an <em>opening long bracket of level <em>n</em></em> as an opening 1237 square bracket followed by <em>n</em> equal signs followed by another 1238 opening square bracket. 1239 So, an opening long bracket of level 0 is written as <code>[[</code>, 1240 an opening long bracket of level 1 is written as <code>[=[</code>, 1241 and so on. 1242 A <em>closing long bracket</em> is defined similarly; 1243 for instance, a closing long bracket of level 4 is written as <code>]====]</code>. 1244 A <em>long literal</em> starts with an opening long bracket of any level and 1245 ends at the first closing long bracket of the same level. 1246 It can contain any text except a closing bracket of the proper level. 1247 Literals in this bracketed form can run for several lines, 1248 do not interpret any escape sequences, 1249 and ignore long brackets of any other level. 1250 Any kind of end-of-line sequence 1251 (carriage return, newline, carriage return followed by newline, 1252 or newline followed by carriage return) 1253 is converted to a simple newline. 1254 1255 1256 <p> 1257 Any byte in a literal string not 1258 explicitly affected by the previous rules represents itself. 1259 However, Lua opens files for parsing in text mode, 1260 and the system file functions may have problems with 1261 some control characters. 1262 So, it is safer to represent 1263 non-text data as a quoted literal with 1264 explicit escape sequences for non-text characters. 1265 1266 1267 <p> 1268 For convenience, 1269 when the opening long bracket is immediately followed by a newline, 1270 the newline is not included in the string. 1271 As an example, in a system using ASCII 1272 (in which '<code>a</code>' is coded as 97, 1273 newline is coded as 10, and '<code>1</code>' is coded as 49), 1274 the five literal strings below denote the same string: 1275 1276 <pre> 1277 a = 'alo\n123"' 1278 a = "alo\n123\"" 1279 a = '\97lo\10\04923"' 1280 a = [[alo 1281 123"]] 1282 a = [==[ 1283 alo 1284 123"]==] 1285 </pre> 1286 1287 <p> 1288 A <em>numerical constant</em> can be written with an optional fractional part 1289 and an optional decimal exponent, 1290 marked by a letter '<code>e</code>' or '<code>E</code>'. 1291 Lua also accepts hexadecimal constants, 1292 which start with <code>0x</code> or <code>0X</code>. 1293 Hexadecimal constants also accept an optional fractional part 1294 plus an optional binary exponent, 1295 marked by a letter '<code>p</code>' or '<code>P</code>'. 1296 Examples of valid numerical constants are 1297 1298 <pre> 1299 3 3.0 3.1416 314.16e-2 0.31416E1 1300 0xff 0x0.1E 0xA23p-4 0X1.921FB54442D18P+1 1301 </pre> 1302 1303 <p> 1304 A <em>comment</em> starts with a double hyphen (<code>--</code>) 1305 anywhere outside a string. 1306 If the text immediately after <code>--</code> is not an opening long bracket, 1307 the comment is a <em>short comment</em>, 1308 which runs until the end of the line. 1309 Otherwise, it is a <em>long comment</em>, 1310 which runs until the corresponding closing long bracket. 1311 Long comments are frequently used to disable code temporarily. 1312 1313 1314 1315 1316 1317 <h2>3.2 – <a name="3.2">Variables</a></h2> 1318 1319 <p> 1320 Variables are places that store values. 1321 There are three kinds of variables in Lua: 1322 global variables, local variables, and table fields. 1323 1324 1325 <p> 1326 A single name can denote a global variable or a local variable 1327 (or a function's formal parameter, 1328 which is a particular kind of local variable): 1329 1330 <pre> 1331 var ::= Name 1332 </pre><p> 1333 Name denotes identifiers, as defined in <a href="#3.1">§3.1</a>. 1334 1335 1336 <p> 1337 Any variable name is assumed to be global unless explicitly declared 1338 as a local (see <a href="#3.3.7">§3.3.7</a>). 1339 Local variables are <em>lexically scoped</em>: 1340 local variables can be freely accessed by functions 1341 defined inside their scope (see <a href="#3.5">§3.5</a>). 1342 1343 1344 <p> 1345 Before the first assignment to a variable, its value is <b>nil</b>. 1346 1347 1348 <p> 1349 Square brackets are used to index a table: 1350 1351 <pre> 1352 var ::= prefixexp ‘<b>[</b>’ exp ‘<b>]</b>’ 1353 </pre><p> 1354 The meaning of accesses to table fields can be changed via metatables. 1355 An access to an indexed variable <code>t[i]</code> is equivalent to 1356 a call <code>gettable_event(t,i)</code>. 1357 (See <a href="#2.4">§2.4</a> for a complete description of the 1358 <code>gettable_event</code> function. 1359 This function is not defined or callable in Lua. 1360 We use it here only for explanatory purposes.) 1361 1362 1363 <p> 1364 The syntax <code>var.Name</code> is just syntactic sugar for 1365 <code>var["Name"]</code>: 1366 1367 <pre> 1368 var ::= prefixexp ‘<b>.</b>’ Name 1369 </pre> 1370 1371 <p> 1372 An access to a global variable <code>x</code> 1373 is equivalent to <code>_ENV.x</code>. 1374 Due to the way that chunks are compiled, 1375 <code>_ENV</code> is never a global name (see <a href="#2.2">§2.2</a>). 1376 1377 1378 1379 1380 1381 <h2>3.3 – <a name="3.3">Statements</a></h2> 1382 1383 <p> 1384 Lua supports an almost conventional set of statements, 1385 similar to those in Pascal or C. 1386 This set includes 1387 assignments, control structures, function calls, 1388 and variable declarations. 1389 1390 1391 1392 <h3>3.3.1 – <a name="3.3.1">Blocks</a></h3> 1393 1394 <p> 1395 A block is a list of statements, 1396 which are executed sequentially: 1397 1398 <pre> 1399 block ::= {stat} 1400 </pre><p> 1401 Lua has <em>empty statements</em> 1402 that allow you to separate statements with semicolons, 1403 start a block with a semicolon 1404 or write two semicolons in sequence: 1405 1406 <pre> 1407 stat ::= ‘<b>;</b>’ 1408 </pre> 1409 1410 <p> 1411 Function calls and assignments 1412 can start with an open parenthesis. 1413 This possibility leads to an ambiguity in Lua's grammar. 1414 Consider the following fragment: 1415 1416 <pre> 1417 a = b + c 1418 (print or io.write)('done') 1419 </pre><p> 1420 The grammar could see it in two ways: 1421 1422 <pre> 1423 a = b + c(print or io.write)('done') 1424 1425 a = b + c; (print or io.write)('done') 1426 </pre><p> 1427 The current parser always sees such constructions 1428 in the first way, 1429 interpreting the open parenthesis 1430 as the start of the arguments to a call. 1431 To avoid this ambiguity, 1432 it is a good practice to always precede with a semicolon 1433 statements that start with a parenthesis: 1434 1435 <pre> 1436 ;(print or io.write)('done') 1437 </pre> 1438 1439 <p> 1440 A block can be explicitly delimited to produce a single statement: 1441 1442 <pre> 1443 stat ::= <b>do</b> block <b>end</b> 1444 </pre><p> 1445 Explicit blocks are useful 1446 to control the scope of variable declarations. 1447 Explicit blocks are also sometimes used to 1448 add a <b>return</b> statement in the middle 1449 of another block (see <a href="#3.3.4">§3.3.4</a>). 1450 1451 1452 1453 1454 1455 <h3>3.3.2 – <a name="3.3.2">Chunks</a></h3> 1456 1457 <p> 1458 The unit of compilation of Lua is called a <em>chunk</em>. 1459 Syntactically, 1460 a chunk is simply a block: 1461 1462 <pre> 1463 chunk ::= block 1464 </pre> 1465 1466 <p> 1467 Lua handles a chunk as the body of an anonymous function 1468 with a variable number of arguments 1469 (see <a href="#3.4.10">§3.4.10</a>). 1470 As such, chunks can define local variables, 1471 receive arguments, and return values. 1472 Moreover, such anonymous function is compiled as in the 1473 scope of an external local variable called <code>_ENV</code> (see <a href="#2.2">§2.2</a>). 1474 The resulting function always has <code>_ENV</code> as its only upvalue, 1475 even if it does not use that variable. 1476 1477 1478 <p> 1479 A chunk can be stored in a file or in a string inside the host program. 1480 To execute a chunk, 1481 Lua first precompiles the chunk into instructions for a virtual machine, 1482 and then it executes the compiled code 1483 with an interpreter for the virtual machine. 1484 1485 1486 <p> 1487 Chunks can also be precompiled into binary form; 1488 see program <code>luac</code> for details. 1489 Programs in source and compiled forms are interchangeable; 1490 Lua automatically detects the file type and acts accordingly. 1491 1492 1493 1494 1495 1496 1497 <h3>3.3.3 – <a name="3.3.3">Assignment</a></h3> 1498 1499 <p> 1500 Lua allows multiple assignments. 1501 Therefore, the syntax for assignment 1502 defines a list of variables on the left side 1503 and a list of expressions on the right side. 1504 The elements in both lists are separated by commas: 1505 1506 <pre> 1507 stat ::= varlist ‘<b>=</b>’ explist 1508 varlist ::= var {‘<b>,</b>’ var} 1509 explist ::= exp {‘<b>,</b>’ exp} 1510 </pre><p> 1511 Expressions are discussed in <a href="#3.4">§3.4</a>. 1512 1513 1514 <p> 1515 Before the assignment, 1516 the list of values is <em>adjusted</em> to the length of 1517 the list of variables. 1518 If there are more values than needed, 1519 the excess values are thrown away. 1520 If there are fewer values than needed, 1521 the list is extended with as many <b>nil</b>'s as needed. 1522 If the list of expressions ends with a function call, 1523 then all values returned by that call enter the list of values, 1524 before the adjustment 1525 (except when the call is enclosed in parentheses; see <a href="#3.4">§3.4</a>). 1526 1527 1528 <p> 1529 The assignment statement first evaluates all its expressions 1530 and only then are the assignments performed. 1531 Thus the code 1532 1533 <pre> 1534 i = 3 1535 i, a[i] = i+1, 20 1536 </pre><p> 1537 sets <code>a[3]</code> to 20, without affecting <code>a[4]</code> 1538 because the <code>i</code> in <code>a[i]</code> is evaluated (to 3) 1539 before it is assigned 4. 1540 Similarly, the line 1541 1542 <pre> 1543 x, y = y, x 1544 </pre><p> 1545 exchanges the values of <code>x</code> and <code>y</code>, 1546 and 1547 1548 <pre> 1549 x, y, z = y, z, x 1550 </pre><p> 1551 cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>. 1552 1553 1554 <p> 1555 The meaning of assignments to global variables 1556 and table fields can be changed via metatables. 1557 An assignment to an indexed variable <code>t[i] = val</code> is equivalent to 1558 <code>settable_event(t,i,val)</code>. 1559 (See <a href="#2.4">§2.4</a> for a complete description of the 1560 <code>settable_event</code> function. 1561 This function is not defined or callable in Lua. 1562 We use it here only for explanatory purposes.) 1563 1564 1565 <p> 1566 An assignment to a global variable <code>x = val</code> 1567 is equivalent to the assignment 1568 <code>_ENV.x = val</code> (see <a href="#2.2">§2.2</a>). 1569 1570 1571 1572 1573 1574 <h3>3.3.4 – <a name="3.3.4">Control Structures</a></h3><p> 1575 The control structures 1576 <b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and 1577 familiar syntax: 1578 1579 1580 1581 1582 <pre> 1583 stat ::= <b>while</b> exp <b>do</b> block <b>end</b> 1584 stat ::= <b>repeat</b> block <b>until</b> exp 1585 stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> 1586 </pre><p> 1587 Lua also has a <b>for</b> statement, in two flavors (see <a href="#3.3.5">§3.3.5</a>). 1588 1589 1590 <p> 1591 The condition expression of a 1592 control structure can return any value. 1593 Both <b>false</b> and <b>nil</b> are considered false. 1594 All values different from <b>nil</b> and <b>false</b> are considered true 1595 (in particular, the number 0 and the empty string are also true). 1596 1597 1598 <p> 1599 In the <b>repeat</b>–<b>until</b> loop, 1600 the inner block does not end at the <b>until</b> keyword, 1601 but only after the condition. 1602 So, the condition can refer to local variables 1603 declared inside the loop block. 1604 1605 1606 <p> 1607 The <b>goto</b> statement transfers the program control to a label. 1608 For syntactical reasons, 1609 labels in Lua are considered statements too: 1610 1611 1612 1613 <pre> 1614 stat ::= <b>goto</b> Name 1615 stat ::= label 1616 label ::= ‘<b>::</b>’ Name ‘<b>::</b>’ 1617 </pre> 1618 1619 <p> 1620 A label is visible in the entire block where it is defined, 1621 except 1622 inside nested blocks where a label with the same name is defined and 1623 inside nested functions. 1624 A goto may jump to any visible label as long as it does not 1625 enter into the scope of a local variable. 1626 1627 1628 <p> 1629 Labels and empty statements are called <em>void statements</em>, 1630 as they perform no actions. 1631 1632 1633 <p> 1634 The <b>break</b> statement terminates the execution of a 1635 <b>while</b>, <b>repeat</b>, or <b>for</b> loop, 1636 skipping to the next statement after the loop: 1637 1638 1639 <pre> 1640 stat ::= <b>break</b> 1641 </pre><p> 1642 A <b>break</b> ends the innermost enclosing loop. 1643 1644 1645 <p> 1646 The <b>return</b> statement is used to return values 1647 from a function or a chunk (which is a function in disguise). 1648 1649 Functions can return more than one value, 1650 so the syntax for the <b>return</b> statement is 1651 1652 <pre> 1653 stat ::= <b>return</b> [explist] [‘<b>;</b>’] 1654 </pre> 1655 1656 <p> 1657 The <b>return</b> statement can only be written 1658 as the last statement of a block. 1659 If it is really necessary to <b>return</b> in the middle of a block, 1660 then an explicit inner block can be used, 1661 as in the idiom <code>do return end</code>, 1662 because now <b>return</b> is the last statement in its (inner) block. 1663 1664 1665 1666 1667 1668 <h3>3.3.5 – <a name="3.3.5">For Statement</a></h3> 1669 1670 <p> 1671 1672 The <b>for</b> statement has two forms: 1673 one numeric and one generic. 1674 1675 1676 <p> 1677 The numeric <b>for</b> loop repeats a block of code while a 1678 control variable runs through an arithmetic progression. 1679 It has the following syntax: 1680 1681 <pre> 1682 stat ::= <b>for</b> Name ‘<b>=</b>’ exp ‘<b>,</b>’ exp [‘<b>,</b>’ exp] <b>do</b> block <b>end</b> 1683 </pre><p> 1684 The <em>block</em> is repeated for <em>name</em> starting at the value of 1685 the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the 1686 third <em>exp</em>. 1687 More precisely, a <b>for</b> statement like 1688 1689 <pre> 1690 for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end 1691 </pre><p> 1692 is equivalent to the code: 1693 1694 <pre> 1695 do 1696 local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>) 1697 if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end 1698 while (<em>step</em> > 0 and <em>var</em> <= <em>limit</em>) or (<em>step</em> <= 0 and <em>var</em> >= <em>limit</em>) do 1699 local v = <em>var</em> 1700 <em>block</em> 1701 <em>var</em> = <em>var</em> + <em>step</em> 1702 end 1703 end 1704 </pre><p> 1705 Note the following: 1706 1707 <ul> 1708 1709 <li> 1710 All three control expressions are evaluated only once, 1711 before the loop starts. 1712 They must all result in numbers. 1713 </li> 1714 1715 <li> 1716 <code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables. 1717 The names shown here are for explanatory purposes only. 1718 </li> 1719 1720 <li> 1721 If the third expression (the step) is absent, 1722 then a step of 1 is used. 1723 </li> 1724 1725 <li> 1726 You can use <b>break</b> to exit a <b>for</b> loop. 1727 </li> 1728 1729 <li> 1730 The loop variable <code>v</code> is local to the loop; 1731 you cannot use its value after the <b>for</b> ends or is broken. 1732 If you need this value, 1733 assign it to another variable before breaking or exiting the loop. 1734 </li> 1735 1736 </ul> 1737 1738 <p> 1739 The generic <b>for</b> statement works over functions, 1740 called <em>iterators</em>. 1741 On each iteration, the iterator function is called to produce a new value, 1742 stopping when this new value is <b>nil</b>. 1743 The generic <b>for</b> loop has the following syntax: 1744 1745 <pre> 1746 stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> 1747 namelist ::= Name {‘<b>,</b>’ Name} 1748 </pre><p> 1749 A <b>for</b> statement like 1750 1751 <pre> 1752 for <em>var_1</em>, ···, <em>var_n</em> in <em>explist</em> do <em>block</em> end 1753 </pre><p> 1754 is equivalent to the code: 1755 1756 <pre> 1757 do 1758 local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em> 1759 while true do 1760 local <em>var_1</em>, ···, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>) 1761 if <em>var_1</em> == nil then break end 1762 <em>var</em> = <em>var_1</em> 1763 <em>block</em> 1764 end 1765 end 1766 </pre><p> 1767 Note the following: 1768 1769 <ul> 1770 1771 <li> 1772 <code><em>explist</em></code> is evaluated only once. 1773 Its results are an <em>iterator</em> function, 1774 a <em>state</em>, 1775 and an initial value for the first <em>iterator variable</em>. 1776 </li> 1777 1778 <li> 1779 <code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables. 1780 The names are here for explanatory purposes only. 1781 </li> 1782 1783 <li> 1784 You can use <b>break</b> to exit a <b>for</b> loop. 1785 </li> 1786 1787 <li> 1788 The loop variables <code><em>var_i</em></code> are local to the loop; 1789 you cannot use their values after the <b>for</b> ends. 1790 If you need these values, 1791 then assign them to other variables before breaking or exiting the loop. 1792 </li> 1793 1794 </ul> 1795 1796 1797 1798 1799 <h3>3.3.6 – <a name="3.3.6">Function Calls as Statements</a></h3><p> 1800 To allow possible side-effects, 1801 function calls can be executed as statements: 1802 1803 <pre> 1804 stat ::= functioncall 1805 </pre><p> 1806 In this case, all returned values are thrown away. 1807 Function calls are explained in <a href="#3.4.9">§3.4.9</a>. 1808 1809 1810 1811 1812 1813 <h3>3.3.7 – <a name="3.3.7">Local Declarations</a></h3><p> 1814 Local variables can be declared anywhere inside a block. 1815 The declaration can include an initial assignment: 1816 1817 <pre> 1818 stat ::= <b>local</b> namelist [‘<b>=</b>’ explist] 1819 </pre><p> 1820 If present, an initial assignment has the same semantics 1821 of a multiple assignment (see <a href="#3.3.3">§3.3.3</a>). 1822 Otherwise, all variables are initialized with <b>nil</b>. 1823 1824 1825 <p> 1826 A chunk is also a block (see <a href="#3.3.2">§3.3.2</a>), 1827 and so local variables can be declared in a chunk outside any explicit block. 1828 1829 1830 <p> 1831 The visibility rules for local variables are explained in <a href="#3.5">§3.5</a>. 1832 1833 1834 1835 1836 1837 1838 1839 <h2>3.4 – <a name="3.4">Expressions</a></h2> 1840 1841 <p> 1842 The basic expressions in Lua are the following: 1843 1844 <pre> 1845 exp ::= prefixexp 1846 exp ::= <b>nil</b> | <b>false</b> | <b>true</b> 1847 exp ::= Number 1848 exp ::= String 1849 exp ::= functiondef 1850 exp ::= tableconstructor 1851 exp ::= ‘<b>...</b>’ 1852 exp ::= exp binop exp 1853 exp ::= unop exp 1854 prefixexp ::= var | functioncall | ‘<b>(</b>’ exp ‘<b>)</b>’ 1855 </pre> 1856 1857 <p> 1858 Numbers and literal strings are explained in <a href="#3.1">§3.1</a>; 1859 variables are explained in <a href="#3.2">§3.2</a>; 1860 function definitions are explained in <a href="#3.4.10">§3.4.10</a>; 1861 function calls are explained in <a href="#3.4.9">§3.4.9</a>; 1862 table constructors are explained in <a href="#3.4.8">§3.4.8</a>. 1863 Vararg expressions, 1864 denoted by three dots ('<code>...</code>'), can only be used when 1865 directly inside a vararg function; 1866 they are explained in <a href="#3.4.10">§3.4.10</a>. 1867 1868 1869 <p> 1870 Binary operators comprise arithmetic operators (see <a href="#3.4.1">§3.4.1</a>), 1871 relational operators (see <a href="#3.4.3">§3.4.3</a>), logical operators (see <a href="#3.4.4">§3.4.4</a>), 1872 and the concatenation operator (see <a href="#3.4.5">§3.4.5</a>). 1873 Unary operators comprise the unary minus (see <a href="#3.4.1">§3.4.1</a>), 1874 the unary <b>not</b> (see <a href="#3.4.4">§3.4.4</a>), 1875 and the unary <em>length operator</em> (see <a href="#3.4.6">§3.4.6</a>). 1876 1877 1878 <p> 1879 Both function calls and vararg expressions can result in multiple values. 1880 If a function call is used as a statement (see <a href="#3.3.6">§3.3.6</a>), 1881 then its return list is adjusted to zero elements, 1882 thus discarding all returned values. 1883 If an expression is used as the last (or the only) element 1884 of a list of expressions, 1885 then no adjustment is made 1886 (unless the expression is enclosed in parentheses). 1887 In all other contexts, 1888 Lua adjusts the result list to one element, 1889 either discarding all values except the first one 1890 or adding a single <b>nil</b> if there are no values. 1891 1892 1893 <p> 1894 Here are some examples: 1895 1896 <pre> 1897 f() -- adjusted to 0 results 1898 g(f(), x) -- f() is adjusted to 1 result 1899 g(x, f()) -- g gets x plus all results from f() 1900 a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil) 1901 a,b = ... -- a gets the first vararg parameter, b gets 1902 -- the second (both a and b can get nil if there 1903 -- is no corresponding vararg parameter) 1904 1905 a,b,c = x, f() -- f() is adjusted to 2 results 1906 a,b,c = f() -- f() is adjusted to 3 results 1907 return f() -- returns all results from f() 1908 return ... -- returns all received vararg parameters 1909 return x,y,f() -- returns x, y, and all results from f() 1910 {f()} -- creates a list with all results from f() 1911 {...} -- creates a list with all vararg parameters 1912 {f(), nil} -- f() is adjusted to 1 result 1913 </pre> 1914 1915 <p> 1916 Any expression enclosed in parentheses always results in only one value. 1917 Thus, 1918 <code>(f(x,y,z))</code> is always a single value, 1919 even if <code>f</code> returns several values. 1920 (The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code> 1921 or <b>nil</b> if <code>f</code> does not return any values.) 1922 1923 1924 1925 <h3>3.4.1 – <a name="3.4.1">Arithmetic Operators</a></h3><p> 1926 Lua supports the usual arithmetic operators: 1927 the binary <code>+</code> (addition), 1928 <code>-</code> (subtraction), <code>*</code> (multiplication), 1929 <code>/</code> (division), <code>%</code> (modulo), and <code>^</code> (exponentiation); 1930 and unary <code>-</code> (mathematical negation). 1931 If the operands are numbers, or strings that can be converted to 1932 numbers (see <a href="#3.4.2">§3.4.2</a>), 1933 then all operations have the usual meaning. 1934 Exponentiation works for any exponent. 1935 For instance, <code>x^(-0.5)</code> computes the inverse of the square root of <code>x</code>. 1936 Modulo is defined as 1937 1938 <pre> 1939 a % b == a - math.floor(a/b)*b 1940 </pre><p> 1941 That is, it is the remainder of a division that rounds 1942 the quotient towards minus infinity. 1943 1944 1945 1946 1947 1948 <h3>3.4.2 – <a name="3.4.2">Coercion</a></h3> 1949 1950 <p> 1951 Lua provides automatic conversion between 1952 string and number values at run time. 1953 Any arithmetic operation applied to a string tries to convert 1954 this string to a number, following the rules of the Lua lexer. 1955 (The string may have leading and trailing spaces and a sign.) 1956 Conversely, whenever a number is used where a string is expected, 1957 the number is converted to a string, in a reasonable format. 1958 For complete control over how numbers are converted to strings, 1959 use the <code>format</code> function from the string library 1960 (see <a href="#pdf-string.format"><code>string.format</code></a>). 1961 1962 1963 1964 1965 1966 <h3>3.4.3 – <a name="3.4.3">Relational Operators</a></h3><p> 1967 The relational operators in Lua are 1968 1969 <pre> 1970 == ~= < > <= >= 1971 </pre><p> 1972 These operators always result in <b>false</b> or <b>true</b>. 1973 1974 1975 <p> 1976 Equality (<code>==</code>) first compares the type of its operands. 1977 If the types are different, then the result is <b>false</b>. 1978 Otherwise, the values of the operands are compared. 1979 Numbers and strings are compared in the usual way. 1980 Tables, userdata, and threads 1981 are compared by reference: 1982 two objects are considered equal only if they are the same object. 1983 Every time you create a new object 1984 (a table, userdata, or thread), 1985 this new object is different from any previously existing object. 1986 Closures with the same reference are always equal. 1987 Closures with any detectable difference 1988 (different behavior, different definition) are always different. 1989 1990 1991 <p> 1992 You can change the way that Lua compares tables and userdata 1993 by using the "eq" metamethod (see <a href="#2.4">§2.4</a>). 1994 1995 1996 <p> 1997 The conversion rules of <a href="#3.4.2">§3.4.2</a> 1998 do not apply to equality comparisons. 1999 Thus, <code>"0"==0</code> evaluates to <b>false</b>, 2000 and <code>t[0]</code> and <code>t["0"]</code> denote different 2001 entries in a table. 2002 2003 2004 <p> 2005 The operator <code>~=</code> is exactly the negation of equality (<code>==</code>). 2006 2007 2008 <p> 2009 The order operators work as follows. 2010 If both arguments are numbers, then they are compared as such. 2011 Otherwise, if both arguments are strings, 2012 then their values are compared according to the current locale. 2013 Otherwise, Lua tries to call the "lt" or the "le" 2014 metamethod (see <a href="#2.4">§2.4</a>). 2015 A comparison <code>a > b</code> is translated to <code>b < a</code> 2016 and <code>a >= b</code> is translated to <code>b <= a</code>. 2017 2018 2019 2020 2021 2022 <h3>3.4.4 – <a name="3.4.4">Logical Operators</a></h3><p> 2023 The logical operators in Lua are 2024 <b>and</b>, <b>or</b>, and <b>not</b>. 2025 Like the control structures (see <a href="#3.3.4">§3.3.4</a>), 2026 all logical operators consider both <b>false</b> and <b>nil</b> as false 2027 and anything else as true. 2028 2029 2030 <p> 2031 The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>. 2032 The conjunction operator <b>and</b> returns its first argument 2033 if this value is <b>false</b> or <b>nil</b>; 2034 otherwise, <b>and</b> returns its second argument. 2035 The disjunction operator <b>or</b> returns its first argument 2036 if this value is different from <b>nil</b> and <b>false</b>; 2037 otherwise, <b>or</b> returns its second argument. 2038 Both <b>and</b> and <b>or</b> use short-cut evaluation; 2039 that is, 2040 the second operand is evaluated only if necessary. 2041 Here are some examples: 2042 2043 <pre> 2044 10 or 20 --> 10 2045 10 or error() --> 10 2046 nil or "a" --> "a" 2047 nil and 10 --> nil 2048 false and error() --> false 2049 false and nil --> false 2050 false or nil --> nil 2051 10 and 20 --> 20 2052 </pre><p> 2053 (In this manual, 2054 <code>--></code> indicates the result of the preceding expression.) 2055 2056 2057 2058 2059 2060 <h3>3.4.5 – <a name="3.4.5">Concatenation</a></h3><p> 2061 The string concatenation operator in Lua is 2062 denoted by two dots ('<code>..</code>'). 2063 If both operands are strings or numbers, then they are converted to 2064 strings according to the rules mentioned in <a href="#3.4.2">§3.4.2</a>. 2065 Otherwise, the <code>__concat</code> metamethod is called (see <a href="#2.4">§2.4</a>). 2066 2067 2068 2069 2070 2071 <h3>3.4.6 – <a name="3.4.6">The Length Operator</a></h3> 2072 2073 <p> 2074 The length operator is denoted by the unary prefix operator <code>#</code>. 2075 The length of a string is its number of bytes 2076 (that is, the usual meaning of string length when each 2077 character is one byte). 2078 2079 2080 <p> 2081 A program can modify the behavior of the length operator for 2082 any value but strings through the <code>__len</code> metamethod (see <a href="#2.4">§2.4</a>). 2083 2084 2085 <p> 2086 Unless a <code>__len</code> metamethod is given, 2087 the length of a table <code>t</code> is only defined if the 2088 table is a <em>sequence</em>, 2089 that is, 2090 the set of its positive numeric keys is equal to <em>{1..n}</em> 2091 for some integer <em>n</em>. 2092 In that case, <em>n</em> is its length. 2093 Note that a table like 2094 2095 <pre> 2096 {10, 20, nil, 40} 2097 </pre><p> 2098 is not a sequence, because it has the key <code>4</code> 2099 but does not have the key <code>3</code>. 2100 (So, there is no <em>n</em> such that the set <em>{1..n}</em> is equal 2101 to the set of positive numeric keys of that table.) 2102 Note, however, that non-numeric keys do not interfere 2103 with whether a table is a sequence. 2104 2105 2106 2107 2108 2109 <h3>3.4.7 – <a name="3.4.7">Precedence</a></h3><p> 2110 Operator precedence in Lua follows the table below, 2111 from lower to higher priority: 2112 2113 <pre> 2114 or 2115 and 2116 < > <= >= ~= == 2117 .. 2118 + - 2119 * / % 2120 not # - (unary) 2121 ^ 2122 </pre><p> 2123 As usual, 2124 you can use parentheses to change the precedences of an expression. 2125 The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>') 2126 operators are right associative. 2127 All other binary operators are left associative. 2128 2129 2130 2131 2132 2133 <h3>3.4.8 – <a name="3.4.8">Table Constructors</a></h3><p> 2134 Table constructors are expressions that create tables. 2135 Every time a constructor is evaluated, a new table is created. 2136 A constructor can be used to create an empty table 2137 or to create a table and initialize some of its fields. 2138 The general syntax for constructors is 2139 2140 <pre> 2141 tableconstructor ::= ‘<b>{</b>’ [fieldlist] ‘<b>}</b>’ 2142 fieldlist ::= field {fieldsep field} [fieldsep] 2143 field ::= ‘<b>[</b>’ exp ‘<b>]</b>’ ‘<b>=</b>’ exp | Name ‘<b>=</b>’ exp | exp 2144 fieldsep ::= ‘<b>,</b>’ | ‘<b>;</b>’ 2145 </pre> 2146 2147 <p> 2148 Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry 2149 with key <code>exp1</code> and value <code>exp2</code>. 2150 A field of the form <code>name = exp</code> is equivalent to 2151 <code>["name"] = exp</code>. 2152 Finally, fields of the form <code>exp</code> are equivalent to 2153 <code>[i] = exp</code>, where <code>i</code> are consecutive numerical integers, 2154 starting with 1. 2155 Fields in the other formats do not affect this counting. 2156 For example, 2157 2158 <pre> 2159 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 } 2160 </pre><p> 2161 is equivalent to 2162 2163 <pre> 2164 do 2165 local t = {} 2166 t[f(1)] = g 2167 t[1] = "x" -- 1st exp 2168 t[2] = "y" -- 2nd exp 2169 t.x = 1 -- t["x"] = 1 2170 t[3] = f(x) -- 3rd exp 2171 t[30] = 23 2172 t[4] = 45 -- 4th exp 2173 a = t 2174 end 2175 </pre> 2176 2177 <p> 2178 If the last field in the list has the form <code>exp</code> 2179 and the expression is a function call or a vararg expression, 2180 then all values returned by this expression enter the list consecutively 2181 (see <a href="#3.4.9">§3.4.9</a>). 2182 2183 2184 <p> 2185 The field list can have an optional trailing separator, 2186 as a convenience for machine-generated code. 2187 2188 2189 2190 2191 2192 <h3>3.4.9 – <a name="3.4.9">Function Calls</a></h3><p> 2193 A function call in Lua has the following syntax: 2194 2195 <pre> 2196 functioncall ::= prefixexp args 2197 </pre><p> 2198 In a function call, 2199 first prefixexp and args are evaluated. 2200 If the value of prefixexp has type <em>function</em>, 2201 then this function is called 2202 with the given arguments. 2203 Otherwise, the prefixexp "call" metamethod is called, 2204 having as first parameter the value of prefixexp, 2205 followed by the original call arguments 2206 (see <a href="#2.4">§2.4</a>). 2207 2208 2209 <p> 2210 The form 2211 2212 <pre> 2213 functioncall ::= prefixexp ‘<b>:</b>’ Name args 2214 </pre><p> 2215 can be used to call "methods". 2216 A call <code>v:name(<em>args</em>)</code> 2217 is syntactic sugar for <code>v.name(v,<em>args</em>)</code>, 2218 except that <code>v</code> is evaluated only once. 2219 2220 2221 <p> 2222 Arguments have the following syntax: 2223 2224 <pre> 2225 args ::= ‘<b>(</b>’ [explist] ‘<b>)</b>’ 2226 args ::= tableconstructor 2227 args ::= String 2228 </pre><p> 2229 All argument expressions are evaluated before the call. 2230 A call of the form <code>f{<em>fields</em>}</code> is 2231 syntactic sugar for <code>f({<em>fields</em>})</code>; 2232 that is, the argument list is a single new table. 2233 A call of the form <code>f'<em>string</em>'</code> 2234 (or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>) 2235 is syntactic sugar for <code>f('<em>string</em>')</code>; 2236 that is, the argument list is a single literal string. 2237 2238 2239 <p> 2240 A call of the form <code>return <em>functioncall</em></code> is called 2241 a <em>tail call</em>. 2242 Lua implements <em>proper tail calls</em> 2243 (or <em>proper tail recursion</em>): 2244 in a tail call, 2245 the called function reuses the stack entry of the calling function. 2246 Therefore, there is no limit on the number of nested tail calls that 2247 a program can execute. 2248 However, a tail call erases any debug information about the 2249 calling function. 2250 Note that a tail call only happens with a particular syntax, 2251 where the <b>return</b> has one single function call as argument; 2252 this syntax makes the calling function return exactly 2253 the returns of the called function. 2254 So, none of the following examples are tail calls: 2255 2256 <pre> 2257 return (f(x)) -- results adjusted to 1 2258 return 2 * f(x) 2259 return x, f(x) -- additional results 2260 f(x); return -- results discarded 2261 return x or f(x) -- results adjusted to 1 2262 </pre> 2263 2264 2265 2266 2267 <h3>3.4.10 – <a name="3.4.10">Function Definitions</a></h3> 2268 2269 <p> 2270 The syntax for function definition is 2271 2272 <pre> 2273 functiondef ::= <b>function</b> funcbody 2274 funcbody ::= ‘<b>(</b>’ [parlist] ‘<b>)</b>’ block <b>end</b> 2275 </pre> 2276 2277 <p> 2278 The following syntactic sugar simplifies function definitions: 2279 2280 <pre> 2281 stat ::= <b>function</b> funcname funcbody 2282 stat ::= <b>local</b> <b>function</b> Name funcbody 2283 funcname ::= Name {‘<b>.</b>’ Name} [‘<b>:</b>’ Name] 2284 </pre><p> 2285 The statement 2286 2287 <pre> 2288 function f () <em>body</em> end 2289 </pre><p> 2290 translates to 2291 2292 <pre> 2293 f = function () <em>body</em> end 2294 </pre><p> 2295 The statement 2296 2297 <pre> 2298 function t.a.b.c.f () <em>body</em> end 2299 </pre><p> 2300 translates to 2301 2302 <pre> 2303 t.a.b.c.f = function () <em>body</em> end 2304 </pre><p> 2305 The statement 2306 2307 <pre> 2308 local function f () <em>body</em> end 2309 </pre><p> 2310 translates to 2311 2312 <pre> 2313 local f; f = function () <em>body</em> end 2314 </pre><p> 2315 not to 2316 2317 <pre> 2318 local f = function () <em>body</em> end 2319 </pre><p> 2320 (This only makes a difference when the body of the function 2321 contains references to <code>f</code>.) 2322 2323 2324 <p> 2325 A function definition is an executable expression, 2326 whose value has type <em>function</em>. 2327 When Lua precompiles a chunk, 2328 all its function bodies are precompiled too. 2329 Then, whenever Lua executes the function definition, 2330 the function is <em>instantiated</em> (or <em>closed</em>). 2331 This function instance (or <em>closure</em>) 2332 is the final value of the expression. 2333 2334 2335 <p> 2336 Parameters act as local variables that are 2337 initialized with the argument values: 2338 2339 <pre> 2340 parlist ::= namelist [‘<b>,</b>’ ‘<b>...</b>’] | ‘<b>...</b>’ 2341 </pre><p> 2342 When a function is called, 2343 the list of arguments is adjusted to 2344 the length of the list of parameters, 2345 unless the function is a <em>vararg function</em>, 2346 which is indicated by three dots ('<code>...</code>') 2347 at the end of its parameter list. 2348 A vararg function does not adjust its argument list; 2349 instead, it collects all extra arguments and supplies them 2350 to the function through a <em>vararg expression</em>, 2351 which is also written as three dots. 2352 The value of this expression is a list of all actual extra arguments, 2353 similar to a function with multiple results. 2354 If a vararg expression is used inside another expression 2355 or in the middle of a list of expressions, 2356 then its return list is adjusted to one element. 2357 If the expression is used as the last element of a list of expressions, 2358 then no adjustment is made 2359 (unless that last expression is enclosed in parentheses). 2360 2361 2362 <p> 2363 As an example, consider the following definitions: 2364 2365 <pre> 2366 function f(a, b) end 2367 function g(a, b, ...) end 2368 function r() return 1,2,3 end 2369 </pre><p> 2370 Then, we have the following mapping from arguments to parameters and 2371 to the vararg expression: 2372 2373 <pre> 2374 CALL PARAMETERS 2375 2376 f(3) a=3, b=nil 2377 f(3, 4) a=3, b=4 2378 f(3, 4, 5) a=3, b=4 2379 f(r(), 10) a=1, b=10 2380 f(r()) a=1, b=2 2381 2382 g(3) a=3, b=nil, ... --> (nothing) 2383 g(3, 4) a=3, b=4, ... --> (nothing) 2384 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8 2385 g(5, r()) a=5, b=1, ... --> 2 3 2386 </pre> 2387 2388 <p> 2389 Results are returned using the <b>return</b> statement (see <a href="#3.3.4">§3.3.4</a>). 2390 If control reaches the end of a function 2391 without encountering a <b>return</b> statement, 2392 then the function returns with no results. 2393 2394 2395 <p> 2396 2397 There is a system-dependent limit on the number of values 2398 that a function may return. 2399 This limit is guaranteed to be larger than 1000. 2400 2401 2402 <p> 2403 The <em>colon</em> syntax 2404 is used for defining <em>methods</em>, 2405 that is, functions that have an implicit extra parameter <code>self</code>. 2406 Thus, the statement 2407 2408 <pre> 2409 function t.a.b.c:f (<em>params</em>) <em>body</em> end 2410 </pre><p> 2411 is syntactic sugar for 2412 2413 <pre> 2414 t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end 2415 </pre> 2416 2417 2418 2419 2420 2421 2422 <h2>3.5 – <a name="3.5">Visibility Rules</a></h2> 2423 2424 <p> 2425 2426 Lua is a lexically scoped language. 2427 The scope of a local variable begins at the first statement after 2428 its declaration and lasts until the last non-void statement 2429 of the innermost block that includes the declaration. 2430 Consider the following example: 2431 2432 <pre> 2433 x = 10 -- global variable 2434 do -- new block 2435 local x = x -- new 'x', with value 10 2436 print(x) --> 10 2437 x = x+1 2438 do -- another block 2439 local x = x+1 -- another 'x' 2440 print(x) --> 12 2441 end 2442 print(x) --> 11 2443 end 2444 print(x) --> 10 (the global one) 2445 </pre> 2446 2447 <p> 2448 Notice that, in a declaration like <code>local x = x</code>, 2449 the new <code>x</code> being declared is not in scope yet, 2450 and so the second <code>x</code> refers to the outside variable. 2451 2452 2453 <p> 2454 Because of the lexical scoping rules, 2455 local variables can be freely accessed by functions 2456 defined inside their scope. 2457 A local variable used by an inner function is called 2458 an <em>upvalue</em>, or <em>external local variable</em>, 2459 inside the inner function. 2460 2461 2462 <p> 2463 Notice that each execution of a <b>local</b> statement 2464 defines new local variables. 2465 Consider the following example: 2466 2467 <pre> 2468 a = {} 2469 local x = 20 2470 for i=1,10 do 2471 local y = 0 2472 a[i] = function () y=y+1; return x+y end 2473 end 2474 </pre><p> 2475 The loop creates ten closures 2476 (that is, ten instances of the anonymous function). 2477 Each of these closures uses a different <code>y</code> variable, 2478 while all of them share the same <code>x</code>. 2479 2480 2481 2482 2483 2484 <h1>4 – <a name="4">The Application Program Interface</a></h1> 2485 2486 <p> 2487 2488 This section describes the C API for Lua, that is, 2489 the set of C functions available to the host program to communicate 2490 with Lua. 2491 All API functions and related types and constants 2492 are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>. 2493 2494 2495 <p> 2496 Even when we use the term "function", 2497 any facility in the API may be provided as a macro instead. 2498 Except where stated otherwise, 2499 all such macros use each of their arguments exactly once 2500 (except for the first argument, which is always a Lua state), 2501 and so do not generate any hidden side-effects. 2502 2503 2504 <p> 2505 As in most C libraries, 2506 the Lua API functions do not check their arguments for validity or consistency. 2507 However, you can change this behavior by compiling Lua 2508 with the macro <a name="pdf-LUA_USE_APICHECK"><code>LUA_USE_APICHECK</code></a> defined. 2509 2510 2511 2512 <h2>4.1 – <a name="4.1">The Stack</a></h2> 2513 2514 <p> 2515 Lua uses a <em>virtual stack</em> to pass values to and from C. 2516 Each element in this stack represents a Lua value 2517 (<b>nil</b>, number, string, etc.). 2518 2519 2520 <p> 2521 Whenever Lua calls C, the called function gets a new stack, 2522 which is independent of previous stacks and of stacks of 2523 C functions that are still active. 2524 This stack initially contains any arguments to the C function 2525 and it is where the C function pushes its results 2526 to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 2527 2528 2529 <p> 2530 For convenience, 2531 most query operations in the API do not follow a strict stack discipline. 2532 Instead, they can refer to any element in the stack 2533 by using an <em>index</em>: 2534 A positive index represents an absolute stack position 2535 (starting at 1); 2536 a negative index represents an offset relative to the top of the stack. 2537 More specifically, if the stack has <em>n</em> elements, 2538 then index 1 represents the first element 2539 (that is, the element that was pushed onto the stack first) 2540 and 2541 index <em>n</em> represents the last element; 2542 index -1 also represents the last element 2543 (that is, the element at the top) 2544 and index <em>-n</em> represents the first element. 2545 2546 2547 2548 2549 2550 <h2>4.2 – <a name="4.2">Stack Size</a></h2> 2551 2552 <p> 2553 When you interact with the Lua API, 2554 you are responsible for ensuring consistency. 2555 In particular, 2556 <em>you are responsible for controlling stack overflow</em>. 2557 You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a> 2558 to ensure that the stack has extra slots when pushing new elements. 2559 2560 2561 <p> 2562 Whenever Lua calls C, 2563 it ensures that the stack has at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra slots. 2564 <code>LUA_MINSTACK</code> is defined as 20, 2565 so that usually you do not have to worry about stack space 2566 unless your code has loops pushing elements onto the stack. 2567 2568 2569 <p> 2570 When you call a Lua function 2571 without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>), 2572 Lua ensures that the stack has enough size for all results, 2573 but it does not ensure any extra space. 2574 So, before pushing anything in the stack after such a call 2575 you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>. 2576 2577 2578 2579 2580 2581 <h2>4.3 – <a name="4.3">Valid and Acceptable Indices</a></h2> 2582 2583 <p> 2584 Any function in the API that receives stack indices 2585 works only with <em>valid indices</em> or <em>acceptable indices</em>. 2586 2587 2588 <p> 2589 A <em>valid index</em> is an index that refers to a 2590 real position within the stack, that is, 2591 its position lies between 1 and the stack top 2592 (<code>1 ≤ abs(index) ≤ top</code>). 2593 2594 Usually, functions that can modify the value at an index 2595 require valid indices. 2596 2597 2598 <p> 2599 Unless otherwise noted, 2600 any function that accepts valid indices also accepts <em>pseudo-indices</em>, 2601 which represent some Lua values that are accessible to C code 2602 but which are not in the stack. 2603 Pseudo-indices are used to access the registry 2604 and the upvalues of a C function (see <a href="#4.4">§4.4</a>). 2605 2606 2607 <p> 2608 Functions that do not need a specific stack position, 2609 but only a value in the stack (e.g., query functions), 2610 can be called with acceptable indices. 2611 An <em>acceptable index</em> can be any valid index, 2612 including the pseudo-indices, 2613 but it also can be any positive index after the stack top 2614 within the space allocated for the stack, 2615 that is, indices up to the stack size. 2616 (Note that 0 is never an acceptable index.) 2617 Except when noted otherwise, 2618 functions in the API work with acceptable indices. 2619 2620 2621 <p> 2622 Acceptable indices serve to avoid extra tests 2623 against the stack top when querying the stack. 2624 For instance, a C function can query its third argument 2625 without the need to first check whether there is a third argument, 2626 that is, without the need to check whether 3 is a valid index. 2627 2628 2629 <p> 2630 For functions that can be called with acceptable indices, 2631 any non-valid index is treated as if it 2632 contains a value of a virtual type <a name="pdf-LUA_TNONE"><code>LUA_TNONE</code></a>, 2633 which behaves like a nil value. 2634 2635 2636 2637 2638 2639 <h2>4.4 – <a name="4.4">C Closures</a></h2> 2640 2641 <p> 2642 When a C function is created, 2643 it is possible to associate some values with it, 2644 thus creating a <em>C closure</em> 2645 (see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>); 2646 these values are called <em>upvalues</em> and are 2647 accessible to the function whenever it is called. 2648 2649 2650 <p> 2651 Whenever a C function is called, 2652 its upvalues are located at specific pseudo-indices. 2653 These pseudo-indices are produced by the macro 2654 <a href="#lua_upvalueindex"><code>lua_upvalueindex</code></a>. 2655 The first value associated with a function is at position 2656 <code>lua_upvalueindex(1)</code>, and so on. 2657 Any access to <code>lua_upvalueindex(<em>n</em>)</code>, 2658 where <em>n</em> is greater than the number of upvalues of the 2659 current function (but not greater than 256), 2660 produces an acceptable but invalid index. 2661 2662 2663 2664 2665 2666 <h2>4.5 – <a name="4.5">Registry</a></h2> 2667 2668 <p> 2669 Lua provides a <em>registry</em>, 2670 a predefined table that can be used by any C code to 2671 store whatever Lua values it needs to store. 2672 The registry table is always located at pseudo-index 2673 <a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>, 2674 which is a valid index. 2675 Any C library can store data into this table, 2676 but it should take care to choose keys 2677 that are different from those used 2678 by other libraries, to avoid collisions. 2679 Typically, you should use as key a string containing your library name, 2680 or a light userdata with the address of a C object in your code, 2681 or any Lua object created by your code. 2682 As with global names, 2683 string keys starting with an underscore followed by 2684 uppercase letters are reserved for Lua. 2685 2686 2687 <p> 2688 The integer keys in the registry are used by the reference mechanism, 2689 implemented by the auxiliary library, 2690 and by some predefined values. 2691 Therefore, integer keys should not be used for other purposes. 2692 2693 2694 <p> 2695 When you create a new Lua state, 2696 its registry comes with some predefined values. 2697 These predefined values are indexed with integer keys 2698 defined as constants in <code>lua.h</code>. 2699 The following constants are defined: 2700 2701 <ul> 2702 <li><b><a name="pdf-LUA_RIDX_MAINTHREAD"><code>LUA_RIDX_MAINTHREAD</code></a>: </b> At this index the registry has 2703 the main thread of the state. 2704 (The main thread is the one created together with the state.) 2705 </li> 2706 2707 <li><b><a name="pdf-LUA_RIDX_GLOBALS"><code>LUA_RIDX_GLOBALS</code></a>: </b> At this index the registry has 2708 the global environment. 2709 </li> 2710 </ul> 2711 2712 2713 2714 2715 <h2>4.6 – <a name="4.6">Error Handling in C</a></h2> 2716 2717 <p> 2718 Internally, Lua uses the C <code>longjmp</code> facility to handle errors. 2719 (You can also choose to use exceptions if you compile Lua as C++; 2720 search for <code>LUAI_THROW</code> in the source code.) 2721 When Lua faces any error 2722 (such as a memory allocation error, type errors, syntax errors, 2723 and runtime errors) 2724 it <em>raises</em> an error; 2725 that is, it does a long jump. 2726 A <em>protected environment</em> uses <code>setjmp</code> 2727 to set a recovery point; 2728 any error jumps to the most recent active recovery point. 2729 2730 2731 <p> 2732 If an error happens outside any protected environment, 2733 Lua calls a <em>panic function</em> (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>) 2734 and then calls <code>abort</code>, 2735 thus exiting the host application. 2736 Your panic function can avoid this exit by 2737 never returning 2738 (e.g., doing a long jump to your own recovery point outside Lua). 2739 2740 2741 <p> 2742 The panic function runs as if it were a message handler (see <a href="#2.3">§2.3</a>); 2743 in particular, the error message is at the top of the stack. 2744 However, there is no guarantees about stack space. 2745 To push anything on the stack, 2746 the panic function should first check the available space (see <a href="#4.2">§4.2</a>). 2747 2748 2749 <p> 2750 Most functions in the API can throw an error, 2751 for instance due to a memory allocation error. 2752 The documentation for each function indicates whether 2753 it can throw errors. 2754 2755 2756 <p> 2757 Inside a C function you can throw an error by calling <a href="#lua_error"><code>lua_error</code></a>. 2758 2759 2760 2761 2762 2763 <h2>4.7 – <a name="4.7">Handling Yields in C</a></h2> 2764 2765 <p> 2766 Internally, Lua uses the C <code>longjmp</code> facility to yield a coroutine. 2767 Therefore, if a function <code>foo</code> calls an API function 2768 and this API function yields 2769 (directly or indirectly by calling another function that yields), 2770 Lua cannot return to <code>foo</code> any more, 2771 because the <code>longjmp</code> removes its frame from the C stack. 2772 2773 2774 <p> 2775 To avoid this kind of problem, 2776 Lua raises an error whenever it tries to yield across an API call, 2777 except for three functions: 2778 <a href="#lua_yieldk"><code>lua_yieldk</code></a>, <a href="#lua_callk"><code>lua_callk</code></a>, and <a href="#lua_pcallk"><code>lua_pcallk</code></a>. 2779 All those functions receive a <em>continuation function</em> 2780 (as a parameter called <code>k</code>) to continue execution after a yield. 2781 2782 2783 <p> 2784 We need to set some terminology to explain continuations. 2785 We have a C function called from Lua which we will call 2786 the <em>original function</em>. 2787 This original function then calls one of those three functions in the C API, 2788 which we will call the <em>callee function</em>, 2789 that then yields the current thread. 2790 (This can happen when the callee function is <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 2791 or when the callee function is either <a href="#lua_callk"><code>lua_callk</code></a> or <a href="#lua_pcallk"><code>lua_pcallk</code></a> 2792 and the function called by them yields.) 2793 2794 2795 <p> 2796 Suppose the running thread yields while executing the callee function. 2797 After the thread resumes, 2798 it eventually will finish running the callee function. 2799 However, 2800 the callee function cannot return to the original function, 2801 because its frame in the C stack was destroyed by the yield. 2802 Instead, Lua calls a <em>continuation function</em>, 2803 which was given as an argument to the callee function. 2804 As the name implies, 2805 the continuation function should continue the task 2806 of the original function. 2807 2808 2809 <p> 2810 Lua treats the continuation function as if it were the original function. 2811 The continuation function receives the same Lua stack 2812 from the original function, 2813 in the same state it would be if the callee function had returned. 2814 (For instance, 2815 after a <a href="#lua_callk"><code>lua_callk</code></a> the function and its arguments are 2816 removed from the stack and replaced by the results from the call.) 2817 It also has the same upvalues. 2818 Whatever it returns is handled by Lua as if it were the return 2819 of the original function. 2820 2821 2822 <p> 2823 The only difference in the Lua state between the original function 2824 and its continuation is the result of a call to <a href="#lua_getctx"><code>lua_getctx</code></a>. 2825 2826 2827 2828 2829 2830 <h2>4.8 – <a name="4.8">Functions and Types</a></h2> 2831 2832 <p> 2833 Here we list all functions and types from the C API in 2834 alphabetical order. 2835 Each function has an indicator like this: 2836 <span class="apii">[-o, +p, <em>x</em>]</span> 2837 2838 2839 <p> 2840 The first field, <code>o</code>, 2841 is how many elements the function pops from the stack. 2842 The second field, <code>p</code>, 2843 is how many elements the function pushes onto the stack. 2844 (Any function always pushes its results after popping its arguments.) 2845 A field in the form <code>x|y</code> means the function can push (or pop) 2846 <code>x</code> or <code>y</code> elements, 2847 depending on the situation; 2848 an interrogation mark '<code>?</code>' means that 2849 we cannot know how many elements the function pops/pushes 2850 by looking only at its arguments 2851 (e.g., they may depend on what is on the stack). 2852 The third field, <code>x</code>, 2853 tells whether the function may throw errors: 2854 '<code>-</code>' means the function never throws any error; 2855 '<code>e</code>' means the function may throw errors; 2856 '<code>v</code>' means the function may throw an error on purpose. 2857 2858 2859 2860 <hr><h3><a name="lua_absindex"><code>lua_absindex</code></a></h3><p> 2861 <span class="apii">[-0, +0, –]</span> 2862 <pre>int lua_absindex (lua_State *L, int idx);</pre> 2863 2864 <p> 2865 Converts the acceptable index <code>idx</code> into an absolute index 2866 (that is, one that does not depend on the stack top). 2867 2868 2869 2870 2871 2872 <hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3> 2873 <pre>typedef void * (*lua_Alloc) (void *ud, 2874 void *ptr, 2875 size_t osize, 2876 size_t nsize);</pre> 2877 2878 <p> 2879 The type of the memory-allocation function used by Lua states. 2880 The allocator function must provide a 2881 functionality similar to <code>realloc</code>, 2882 but not exactly the same. 2883 Its arguments are 2884 <code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>; 2885 <code>ptr</code>, a pointer to the block being allocated/reallocated/freed; 2886 <code>osize</code>, the original size of the block or some code about what 2887 is being allocated; 2888 <code>nsize</code>, the new size of the block. 2889 2890 2891 <p> 2892 When <code>ptr</code> is not <code>NULL</code>, 2893 <code>osize</code> is the size of the block pointed by <code>ptr</code>, 2894 that is, the size given when it was allocated or reallocated. 2895 2896 2897 <p> 2898 When <code>ptr</code> is <code>NULL</code>, 2899 <code>osize</code> encodes the kind of object that Lua is allocating. 2900 <code>osize</code> is any of 2901 <a href="#pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, <a href="#pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, <a href="#pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>, 2902 <a href="#pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, or <a href="#pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a> when (and only when) 2903 Lua is creating a new object of that type. 2904 When <code>osize</code> is some other value, 2905 Lua is allocating memory for something else. 2906 2907 2908 <p> 2909 Lua assumes the following behavior from the allocator function: 2910 2911 2912 <p> 2913 When <code>nsize</code> is zero, 2914 the allocator should behave like <code>free</code> 2915 and return <code>NULL</code>. 2916 2917 2918 <p> 2919 When <code>nsize</code> is not zero, 2920 the allocator should behave like <code>realloc</code>. 2921 The allocator returns <code>NULL</code> 2922 if and only if it cannot fulfill the request. 2923 Lua assumes that the allocator never fails when 2924 <code>osize >= nsize</code>. 2925 2926 2927 <p> 2928 Here is a simple implementation for the allocator function. 2929 It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>. 2930 2931 <pre> 2932 static void *l_alloc (void *ud, void *ptr, size_t osize, 2933 size_t nsize) { 2934 (void)ud; (void)osize; /* not used */ 2935 if (nsize == 0) { 2936 free(ptr); 2937 return NULL; 2938 } 2939 else 2940 return realloc(ptr, nsize); 2941 } 2942 </pre><p> 2943 Note that Standard C ensures 2944 that <code>free(NULL)</code> has no effect and that 2945 <code>realloc(NULL, size)</code> is equivalent to <code>malloc(size)</code>. 2946 This code assumes that <code>realloc</code> does not fail when shrinking a block. 2947 (Although Standard C does not ensure this behavior, 2948 it seems to be a safe assumption.) 2949 2950 2951 2952 2953 2954 <hr><h3><a name="lua_arith"><code>lua_arith</code></a></h3><p> 2955 <span class="apii">[-(2|1), +1, <em>e</em>]</span> 2956 <pre>void lua_arith (lua_State *L, int op);</pre> 2957 2958 <p> 2959 Performs an arithmetic operation over the two values 2960 (or one, in the case of negation) 2961 at the top of the stack, 2962 with the value at the top being the second operand, 2963 pops these values, and pushes the result of the operation. 2964 The function follows the semantics of the corresponding Lua operator 2965 (that is, it may call metamethods). 2966 2967 2968 <p> 2969 The value of <code>op</code> must be one of the following constants: 2970 2971 <ul> 2972 2973 <li><b><a name="pdf-LUA_OPADD"><code>LUA_OPADD</code></a>: </b> performs addition (<code>+</code>)</li> 2974 <li><b><a name="pdf-LUA_OPSUB"><code>LUA_OPSUB</code></a>: </b> performs subtraction (<code>-</code>)</li> 2975 <li><b><a name="pdf-LUA_OPMUL"><code>LUA_OPMUL</code></a>: </b> performs multiplication (<code>*</code>)</li> 2976 <li><b><a name="pdf-LUA_OPDIV"><code>LUA_OPDIV</code></a>: </b> performs division (<code>/</code>)</li> 2977 <li><b><a name="pdf-LUA_OPMOD"><code>LUA_OPMOD</code></a>: </b> performs modulo (<code>%</code>)</li> 2978 <li><b><a name="pdf-LUA_OPPOW"><code>LUA_OPPOW</code></a>: </b> performs exponentiation (<code>^</code>)</li> 2979 <li><b><a name="pdf-LUA_OPUNM"><code>LUA_OPUNM</code></a>: </b> performs mathematical negation (unary <code>-</code>)</li> 2980 2981 </ul> 2982 2983 2984 2985 2986 <hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p> 2987 <span class="apii">[-0, +0, –]</span> 2988 <pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre> 2989 2990 <p> 2991 Sets a new panic function and returns the old one (see <a href="#4.6">§4.6</a>). 2992 2993 2994 2995 2996 2997 <hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p> 2998 <span class="apii">[-(nargs+1), +nresults, <em>e</em>]</span> 2999 <pre>void lua_call (lua_State *L, int nargs, int nresults);</pre> 3000 3001 <p> 3002 Calls a function. 3003 3004 3005 <p> 3006 To call a function you must use the following protocol: 3007 first, the function to be called is pushed onto the stack; 3008 then, the arguments to the function are pushed 3009 in direct order; 3010 that is, the first argument is pushed first. 3011 Finally you call <a href="#lua_call"><code>lua_call</code></a>; 3012 <code>nargs</code> is the number of arguments that you pushed onto the stack. 3013 All arguments and the function value are popped from the stack 3014 when the function is called. 3015 The function results are pushed onto the stack when the function returns. 3016 The number of results is adjusted to <code>nresults</code>, 3017 unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>. 3018 In this case, all results from the function are pushed. 3019 Lua takes care that the returned values fit into the stack space. 3020 The function results are pushed onto the stack in direct order 3021 (the first result is pushed first), 3022 so that after the call the last result is on the top of the stack. 3023 3024 3025 <p> 3026 Any error inside the called function is propagated upwards 3027 (with a <code>longjmp</code>). 3028 3029 3030 <p> 3031 The following example shows how the host program can do the 3032 equivalent to this Lua code: 3033 3034 <pre> 3035 a = f("how", t.x, 14) 3036 </pre><p> 3037 Here it is in C: 3038 3039 <pre> 3040 lua_getglobal(L, "f"); /* function to be called */ 3041 lua_pushstring(L, "how"); /* 1st argument */ 3042 lua_getglobal(L, "t"); /* table to be indexed */ 3043 lua_getfield(L, -1, "x"); /* push result of t.x (2nd arg) */ 3044 lua_remove(L, -2); /* remove 't' from the stack */ 3045 lua_pushinteger(L, 14); /* 3rd argument */ 3046 lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */ 3047 lua_setglobal(L, "a"); /* set global 'a' */ 3048 </pre><p> 3049 Note that the code above is "balanced": 3050 at its end, the stack is back to its original configuration. 3051 This is considered good programming practice. 3052 3053 3054 3055 3056 3057 <hr><h3><a name="lua_callk"><code>lua_callk</code></a></h3><p> 3058 <span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span> 3059 <pre>void lua_callk (lua_State *L, int nargs, int nresults, int ctx, 3060 lua_CFunction k);</pre> 3061 3062 <p> 3063 This function behaves exactly like <a href="#lua_call"><code>lua_call</code></a>, 3064 but allows the called function to yield (see <a href="#4.7">§4.7</a>). 3065 3066 3067 3068 3069 3070 <hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3> 3071 <pre>typedef int (*lua_CFunction) (lua_State *L);</pre> 3072 3073 <p> 3074 Type for C functions. 3075 3076 3077 <p> 3078 In order to communicate properly with Lua, 3079 a C function must use the following protocol, 3080 which defines the way parameters and results are passed: 3081 a C function receives its arguments from Lua in its stack 3082 in direct order (the first argument is pushed first). 3083 So, when the function starts, 3084 <code>lua_gettop(L)</code> returns the number of arguments received by the function. 3085 The first argument (if any) is at index 1 3086 and its last argument is at index <code>lua_gettop(L)</code>. 3087 To return values to Lua, a C function just pushes them onto the stack, 3088 in direct order (the first result is pushed first), 3089 and returns the number of results. 3090 Any other value in the stack below the results will be properly 3091 discarded by Lua. 3092 Like a Lua function, a C function called by Lua can also return 3093 many results. 3094 3095 3096 <p> 3097 As an example, the following function receives a variable number 3098 of numerical arguments and returns their average and sum: 3099 3100 <pre> 3101 static int foo (lua_State *L) { 3102 int n = lua_gettop(L); /* number of arguments */ 3103 lua_Number sum = 0; 3104 int i; 3105 for (i = 1; i <= n; i++) { 3106 if (!lua_isnumber(L, i)) { 3107 lua_pushstring(L, "incorrect argument"); 3108 lua_error(L); 3109 } 3110 sum += lua_tonumber(L, i); 3111 } 3112 lua_pushnumber(L, sum/n); /* first result */ 3113 lua_pushnumber(L, sum); /* second result */ 3114 return 2; /* number of results */ 3115 } 3116 </pre> 3117 3118 3119 3120 3121 <hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p> 3122 <span class="apii">[-0, +0, –]</span> 3123 <pre>int lua_checkstack (lua_State *L, int extra);</pre> 3124 3125 <p> 3126 Ensures that there are at least <code>extra</code> free stack slots in the stack. 3127 It returns false if it cannot fulfill the request, 3128 because it would cause the stack to be larger than a fixed maximum size 3129 (typically at least a few thousand elements) or 3130 because it cannot allocate memory for the new stack size. 3131 This function never shrinks the stack; 3132 if the stack is already larger than the new size, 3133 it is left unchanged. 3134 3135 3136 3137 3138 3139 <hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p> 3140 <span class="apii">[-0, +0, –]</span> 3141 <pre>void lua_close (lua_State *L);</pre> 3142 3143 <p> 3144 Destroys all objects in the given Lua state 3145 (calling the corresponding garbage-collection metamethods, if any) 3146 and frees all dynamic memory used by this state. 3147 On several platforms, you may not need to call this function, 3148 because all resources are naturally released when the host program ends. 3149 On the other hand, long-running programs that create multiple states, 3150 such as daemons or web servers, 3151 might need to close states as soon as they are not needed. 3152 3153 3154 3155 3156 3157 <hr><h3><a name="lua_compare"><code>lua_compare</code></a></h3><p> 3158 <span class="apii">[-0, +0, <em>e</em>]</span> 3159 <pre>int lua_compare (lua_State *L, int index1, int index2, int op);</pre> 3160 3161 <p> 3162 Compares two Lua values. 3163 Returns 1 if the value at index <code>index1</code> satisfies <code>op</code> 3164 when compared with the value at index <code>index2</code>, 3165 following the semantics of the corresponding Lua operator 3166 (that is, it may call metamethods). 3167 Otherwise returns 0. 3168 Also returns 0 if any of the indices is non valid. 3169 3170 3171 <p> 3172 The value of <code>op</code> must be one of the following constants: 3173 3174 <ul> 3175 3176 <li><b><a name="pdf-LUA_OPEQ"><code>LUA_OPEQ</code></a>: </b> compares for equality (<code>==</code>)</li> 3177 <li><b><a name="pdf-LUA_OPLT"><code>LUA_OPLT</code></a>: </b> compares for less than (<code><</code>)</li> 3178 <li><b><a name="pdf-LUA_OPLE"><code>LUA_OPLE</code></a>: </b> compares for less or equal (<code><=</code>)</li> 3179 3180 </ul> 3181 3182 3183 3184 3185 <hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p> 3186 <span class="apii">[-n, +1, <em>e</em>]</span> 3187 <pre>void lua_concat (lua_State *L, int n);</pre> 3188 3189 <p> 3190 Concatenates the <code>n</code> values at the top of the stack, 3191 pops them, and leaves the result at the top. 3192 If <code>n</code> is 1, the result is the single value on the stack 3193 (that is, the function does nothing); 3194 if <code>n</code> is 0, the result is the empty string. 3195 Concatenation is performed following the usual semantics of Lua 3196 (see <a href="#3.4.5">§3.4.5</a>). 3197 3198 3199 3200 3201 3202 <hr><h3><a name="lua_copy"><code>lua_copy</code></a></h3><p> 3203 <span class="apii">[-0, +0, –]</span> 3204 <pre>void lua_copy (lua_State *L, int fromidx, int toidx);</pre> 3205 3206 <p> 3207 Moves the element at index <code>fromidx</code> 3208 into the valid index <code>toidx</code> 3209 without shifting any element 3210 (therefore replacing the value at that position). 3211 3212 3213 3214 3215 3216 <hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p> 3217 <span class="apii">[-0, +1, <em>e</em>]</span> 3218 <pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre> 3219 3220 <p> 3221 Creates a new empty table and pushes it onto the stack. 3222 Parameter <code>narr</code> is a hint for how many elements the table 3223 will have as a sequence; 3224 parameter <code>nrec</code> is a hint for how many other elements 3225 the table will have. 3226 Lua may use these hints to preallocate memory for the new table. 3227 This pre-allocation is useful for performance when you know in advance 3228 how many elements the table will have. 3229 Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>. 3230 3231 3232 3233 3234 3235 <hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p> 3236 <span class="apii">[-0, +0, <em>e</em>]</span> 3237 <pre>int lua_dump (lua_State *L, lua_Writer writer, void *data);</pre> 3238 3239 <p> 3240 Dumps a function as a binary chunk. 3241 Receives a Lua function on the top of the stack 3242 and produces a binary chunk that, 3243 if loaded again, 3244 results in a function equivalent to the one dumped. 3245 As it produces parts of the chunk, 3246 <a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>) 3247 with the given <code>data</code> 3248 to write them. 3249 3250 3251 <p> 3252 The value returned is the error code returned by the last 3253 call to the writer; 3254 0 means no errors. 3255 3256 3257 <p> 3258 This function does not pop the Lua function from the stack. 3259 3260 3261 3262 3263 3264 <hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p> 3265 <span class="apii">[-1, +0, <em>v</em>]</span> 3266 <pre>int lua_error (lua_State *L);</pre> 3267 3268 <p> 3269 Generates a Lua error. 3270 The error message (which can actually be a Lua value of any type) 3271 must be on the stack top. 3272 This function does a long jump, 3273 and therefore never returns 3274 (see <a href="#luaL_error"><code>luaL_error</code></a>). 3275 3276 3277 3278 3279 3280 <hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p> 3281 <span class="apii">[-0, +0, <em>e</em>]</span> 3282 <pre>int lua_gc (lua_State *L, int what, int data);</pre> 3283 3284 <p> 3285 Controls the garbage collector. 3286 3287 3288 <p> 3289 This function performs several tasks, 3290 according to the value of the parameter <code>what</code>: 3291 3292 <ul> 3293 3294 <li><b><code>LUA_GCSTOP</code>: </b> 3295 stops the garbage collector. 3296 </li> 3297 3298 <li><b><code>LUA_GCRESTART</code>: </b> 3299 restarts the garbage collector. 3300 </li> 3301 3302 <li><b><code>LUA_GCCOLLECT</code>: </b> 3303 performs a full garbage-collection cycle. 3304 </li> 3305 3306 <li><b><code>LUA_GCCOUNT</code>: </b> 3307 returns the current amount of memory (in Kbytes) in use by Lua. 3308 </li> 3309 3310 <li><b><code>LUA_GCCOUNTB</code>: </b> 3311 returns the remainder of dividing the current amount of bytes of 3312 memory in use by Lua by 1024. 3313 </li> 3314 3315 <li><b><code>LUA_GCSTEP</code>: </b> 3316 performs an incremental step of garbage collection. 3317 The step "size" is controlled by <code>data</code> 3318 (larger values mean more steps) in a non-specified way. 3319 If you want to control the step size 3320 you must experimentally tune the value of <code>data</code>. 3321 The function returns 1 if the step finished a 3322 garbage-collection cycle. 3323 </li> 3324 3325 <li><b><code>LUA_GCSETPAUSE</code>: </b> 3326 sets <code>data</code> as the new value 3327 for the <em>pause</em> of the collector (see <a href="#2.5">§2.5</a>). 3328 The function returns the previous value of the pause. 3329 </li> 3330 3331 <li><b><code>LUA_GCSETSTEPMUL</code>: </b> 3332 sets <code>data</code> as the new value for the <em>step multiplier</em> of 3333 the collector (see <a href="#2.5">§2.5</a>). 3334 The function returns the previous value of the step multiplier. 3335 </li> 3336 3337 <li><b><code>LUA_GCISRUNNING</code>: </b> 3338 returns a boolean that tells whether the collector is running 3339 (i.e., not stopped). 3340 </li> 3341 3342 <li><b><code>LUA_GCGEN</code>: </b> 3343 changes the collector to generational mode 3344 (see <a href="#2.5">§2.5</a>). 3345 </li> 3346 3347 <li><b><code>LUA_GCINC</code>: </b> 3348 changes the collector to incremental mode. 3349 This is the default mode. 3350 </li> 3351 3352 </ul> 3353 3354 <p> 3355 For more details about these options, 3356 see <a href="#pdf-collectgarbage"><code>collectgarbage</code></a>. 3357 3358 3359 3360 3361 3362 <hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p> 3363 <span class="apii">[-0, +0, –]</span> 3364 <pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre> 3365 3366 <p> 3367 Returns the memory-allocation function of a given state. 3368 If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the 3369 opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>. 3370 3371 3372 3373 3374 3375 <hr><h3><a name="lua_getctx"><code>lua_getctx</code></a></h3><p> 3376 <span class="apii">[-0, +0, –]</span> 3377 <pre>int lua_getctx (lua_State *L, int *ctx);</pre> 3378 3379 <p> 3380 This function is called by a continuation function (see <a href="#4.7">§4.7</a>) 3381 to retrieve the status of the thread and a context information. 3382 3383 3384 <p> 3385 When called in the original function, 3386 <a href="#lua_getctx"><code>lua_getctx</code></a> always returns <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> 3387 and does not change the value of its argument <code>ctx</code>. 3388 When called inside a continuation function, 3389 <a href="#lua_getctx"><code>lua_getctx</code></a> returns <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> and sets 3390 the value of <code>ctx</code> to be the context information 3391 (the value passed as the <code>ctx</code> argument 3392 to the callee together with the continuation function). 3393 3394 3395 <p> 3396 When the callee is <a href="#lua_pcallk"><code>lua_pcallk</code></a>, 3397 Lua may also call its continuation function 3398 to handle errors during the call. 3399 That is, upon an error in the function called by <a href="#lua_pcallk"><code>lua_pcallk</code></a>, 3400 Lua may not return to the original function 3401 but instead may call the continuation function. 3402 In that case, a call to <a href="#lua_getctx"><code>lua_getctx</code></a> will return the error code 3403 (the value that would be returned by <a href="#lua_pcallk"><code>lua_pcallk</code></a>); 3404 the value of <code>ctx</code> will be set to the context information, 3405 as in the case of a yield. 3406 3407 3408 3409 3410 3411 <hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p> 3412 <span class="apii">[-0, +1, <em>e</em>]</span> 3413 <pre>void lua_getfield (lua_State *L, int index, const char *k);</pre> 3414 3415 <p> 3416 Pushes onto the stack the value <code>t[k]</code>, 3417 where <code>t</code> is the value at the given index. 3418 As in Lua, this function may trigger a metamethod 3419 for the "index" event (see <a href="#2.4">§2.4</a>). 3420 3421 3422 3423 3424 3425 <hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p> 3426 <span class="apii">[-0, +1, <em>e</em>]</span> 3427 <pre>void lua_getglobal (lua_State *L, const char *name);</pre> 3428 3429 <p> 3430 Pushes onto the stack the value of the global <code>name</code>. 3431 3432 3433 3434 3435 3436 <hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p> 3437 <span class="apii">[-0, +(0|1), –]</span> 3438 <pre>int lua_getmetatable (lua_State *L, int index);</pre> 3439 3440 <p> 3441 Pushes onto the stack the metatable of the value at the given index. 3442 If the value does not have a metatable, 3443 the function returns 0 and pushes nothing on the stack. 3444 3445 3446 3447 3448 3449 <hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p> 3450 <span class="apii">[-1, +1, <em>e</em>]</span> 3451 <pre>void lua_gettable (lua_State *L, int index);</pre> 3452 3453 <p> 3454 Pushes onto the stack the value <code>t[k]</code>, 3455 where <code>t</code> is the value at the given index 3456 and <code>k</code> is the value at the top of the stack. 3457 3458 3459 <p> 3460 This function pops the key from the stack 3461 (putting the resulting value in its place). 3462 As in Lua, this function may trigger a metamethod 3463 for the "index" event (see <a href="#2.4">§2.4</a>). 3464 3465 3466 3467 3468 3469 <hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p> 3470 <span class="apii">[-0, +0, –]</span> 3471 <pre>int lua_gettop (lua_State *L);</pre> 3472 3473 <p> 3474 Returns the index of the top element in the stack. 3475 Because indices start at 1, 3476 this result is equal to the number of elements in the stack 3477 (and so 0 means an empty stack). 3478 3479 3480 3481 3482 3483 <hr><h3><a name="lua_getuservalue"><code>lua_getuservalue</code></a></h3><p> 3484 <span class="apii">[-0, +1, –]</span> 3485 <pre>void lua_getuservalue (lua_State *L, int index);</pre> 3486 3487 <p> 3488 Pushes onto the stack the Lua value associated with the userdata 3489 at the given index. 3490 This Lua value must be a table or <b>nil</b>. 3491 3492 3493 3494 3495 3496 <hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p> 3497 <span class="apii">[-1, +1, –]</span> 3498 <pre>void lua_insert (lua_State *L, int index);</pre> 3499 3500 <p> 3501 Moves the top element into the given valid index, 3502 shifting up the elements above this index to open space. 3503 This function cannot be called with a pseudo-index, 3504 because a pseudo-index is not an actual stack position. 3505 3506 3507 3508 3509 3510 <hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3> 3511 <pre>typedef ptrdiff_t lua_Integer;</pre> 3512 3513 <p> 3514 The type used by the Lua API to represent signed integral values. 3515 3516 3517 <p> 3518 By default it is a <code>ptrdiff_t</code>, 3519 which is usually the largest signed integral type the machine handles 3520 "comfortably". 3521 3522 3523 3524 3525 3526 <hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p> 3527 <span class="apii">[-0, +0, –]</span> 3528 <pre>int lua_isboolean (lua_State *L, int index);</pre> 3529 3530 <p> 3531 Returns 1 if the value at the given index is a boolean, 3532 and 0 otherwise. 3533 3534 3535 3536 3537 3538 <hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p> 3539 <span class="apii">[-0, +0, –]</span> 3540 <pre>int lua_iscfunction (lua_State *L, int index);</pre> 3541 3542 <p> 3543 Returns 1 if the value at the given index is a C function, 3544 and 0 otherwise. 3545 3546 3547 3548 3549 3550 <hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p> 3551 <span class="apii">[-0, +0, –]</span> 3552 <pre>int lua_isfunction (lua_State *L, int index);</pre> 3553 3554 <p> 3555 Returns 1 if the value at the given index is a function 3556 (either C or Lua), and 0 otherwise. 3557 3558 3559 3560 3561 3562 <hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p> 3563 <span class="apii">[-0, +0, –]</span> 3564 <pre>int lua_islightuserdata (lua_State *L, int index);</pre> 3565 3566 <p> 3567 Returns 1 if the value at the given index is a light userdata, 3568 and 0 otherwise. 3569 3570 3571 3572 3573 3574 <hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p> 3575 <span class="apii">[-0, +0, –]</span> 3576 <pre>int lua_isnil (lua_State *L, int index);</pre> 3577 3578 <p> 3579 Returns 1 if the value at the given index is <b>nil</b>, 3580 and 0 otherwise. 3581 3582 3583 3584 3585 3586 <hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p> 3587 <span class="apii">[-0, +0, –]</span> 3588 <pre>int lua_isnone (lua_State *L, int index);</pre> 3589 3590 <p> 3591 Returns 1 if the given index is not valid, 3592 and 0 otherwise. 3593 3594 3595 3596 3597 3598 <hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p> 3599 <span class="apii">[-0, +0, –]</span> 3600 <pre>int lua_isnoneornil (lua_State *L, int index);</pre> 3601 3602 <p> 3603 Returns 1 if the given index is not valid 3604 or if the value at this index is <b>nil</b>, 3605 and 0 otherwise. 3606 3607 3608 3609 3610 3611 <hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p> 3612 <span class="apii">[-0, +0, –]</span> 3613 <pre>int lua_isnumber (lua_State *L, int index);</pre> 3614 3615 <p> 3616 Returns 1 if the value at the given index is a number 3617 or a string convertible to a number, 3618 and 0 otherwise. 3619 3620 3621 3622 3623 3624 <hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p> 3625 <span class="apii">[-0, +0, –]</span> 3626 <pre>int lua_isstring (lua_State *L, int index);</pre> 3627 3628 <p> 3629 Returns 1 if the value at the given index is a string 3630 or a number (which is always convertible to a string), 3631 and 0 otherwise. 3632 3633 3634 3635 3636 3637 <hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p> 3638 <span class="apii">[-0, +0, –]</span> 3639 <pre>int lua_istable (lua_State *L, int index);</pre> 3640 3641 <p> 3642 Returns 1 if the value at the given index is a table, 3643 and 0 otherwise. 3644 3645 3646 3647 3648 3649 <hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p> 3650 <span class="apii">[-0, +0, –]</span> 3651 <pre>int lua_isthread (lua_State *L, int index);</pre> 3652 3653 <p> 3654 Returns 1 if the value at the given index is a thread, 3655 and 0 otherwise. 3656 3657 3658 3659 3660 3661 <hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p> 3662 <span class="apii">[-0, +0, –]</span> 3663 <pre>int lua_isuserdata (lua_State *L, int index);</pre> 3664 3665 <p> 3666 Returns 1 if the value at the given index is a userdata 3667 (either full or light), and 0 otherwise. 3668 3669 3670 3671 3672 3673 <hr><h3><a name="lua_len"><code>lua_len</code></a></h3><p> 3674 <span class="apii">[-0, +1, <em>e</em>]</span> 3675 <pre>void lua_len (lua_State *L, int index);</pre> 3676 3677 <p> 3678 Returns the "length" of the value at the given index; 3679 it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.6">§3.4.6</a>). 3680 The result is pushed on the stack. 3681 3682 3683 3684 3685 3686 <hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p> 3687 <span class="apii">[-0, +1, –]</span> 3688 <pre>int lua_load (lua_State *L, 3689 lua_Reader reader, 3690 void *data, 3691 const char *source, 3692 const char *mode);</pre> 3693 3694 <p> 3695 Loads a Lua chunk (without running it). 3696 If there are no errors, 3697 <code>lua_load</code> pushes the compiled chunk as a Lua 3698 function on top of the stack. 3699 Otherwise, it pushes an error message. 3700 3701 3702 <p> 3703 The return values of <code>lua_load</code> are: 3704 3705 <ul> 3706 3707 <li><b><a href="#pdf-LUA_OK"><code>LUA_OK</code></a>: </b> no errors;</li> 3708 3709 <li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>: </b> 3710 syntax error during precompilation;</li> 3711 3712 <li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b> 3713 memory allocation error;</li> 3714 3715 <li><b><a href="#pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b> 3716 error while running a <code>__gc</code> metamethod. 3717 (This error has no relation with the chunk being loaded. 3718 It is generated by the garbage collector.) 3719 </li> 3720 3721 </ul> 3722 3723 <p> 3724 The <code>lua_load</code> function uses a user-supplied <code>reader</code> function 3725 to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>). 3726 The <code>data</code> argument is an opaque value passed to the reader function. 3727 3728 3729 <p> 3730 The <code>source</code> argument gives a name to the chunk, 3731 which is used for error messages and in debug information (see <a href="#4.9">§4.9</a>). 3732 3733 3734 <p> 3735 <code>lua_load</code> automatically detects whether the chunk is text or binary 3736 and loads it accordingly (see program <code>luac</code>). 3737 The string <code>mode</code> works as in function <a href="#pdf-load"><code>load</code></a>, 3738 with the addition that 3739 a <code>NULL</code> value is equivalent to the string "<code>bt</code>". 3740 3741 3742 <p> 3743 <code>lua_load</code> uses the stack internally, 3744 so the reader function should always leave the stack 3745 unmodified when returning. 3746 3747 3748 <p> 3749 If the resulting function has one upvalue, 3750 this upvalue is set to the value of the global environment 3751 stored at index <code>LUA_RIDX_GLOBALS</code> in the registry (see <a href="#4.5">§4.5</a>). 3752 When loading main chunks, 3753 this upvalue will be the <code>_ENV</code> variable (see <a href="#2.2">§2.2</a>). 3754 3755 3756 3757 3758 3759 <hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p> 3760 <span class="apii">[-0, +0, –]</span> 3761 <pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre> 3762 3763 <p> 3764 Creates a new thread running in a new, independent state. 3765 Returns <code>NULL</code> if cannot create the thread or the state 3766 (due to lack of memory). 3767 The argument <code>f</code> is the allocator function; 3768 Lua does all memory allocation for this state through this function. 3769 The second argument, <code>ud</code>, is an opaque pointer that Lua 3770 passes to the allocator in every call. 3771 3772 3773 3774 3775 3776 <hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p> 3777 <span class="apii">[-0, +1, <em>e</em>]</span> 3778 <pre>void lua_newtable (lua_State *L);</pre> 3779 3780 <p> 3781 Creates a new empty table and pushes it onto the stack. 3782 It is equivalent to <code>lua_createtable(L, 0, 0)</code>. 3783 3784 3785 3786 3787 3788 <hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p> 3789 <span class="apii">[-0, +1, <em>e</em>]</span> 3790 <pre>lua_State *lua_newthread (lua_State *L);</pre> 3791 3792 <p> 3793 Creates a new thread, pushes it on the stack, 3794 and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread. 3795 The new thread returned by this function shares with the original thread 3796 its global environment, 3797 but has an independent execution stack. 3798 3799 3800 <p> 3801 There is no explicit function to close or to destroy a thread. 3802 Threads are subject to garbage collection, 3803 like any Lua object. 3804 3805 3806 3807 3808 3809 <hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p> 3810 <span class="apii">[-0, +1, <em>e</em>]</span> 3811 <pre>void *lua_newuserdata (lua_State *L, size_t size);</pre> 3812 3813 <p> 3814 This function allocates a new block of memory with the given size, 3815 pushes onto the stack a new full userdata with the block address, 3816 and returns this address. 3817 The host program can freely use this memory. 3818 3819 3820 3821 3822 3823 <hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p> 3824 <span class="apii">[-1, +(2|0), <em>e</em>]</span> 3825 <pre>int lua_next (lua_State *L, int index);</pre> 3826 3827 <p> 3828 Pops a key from the stack, 3829 and pushes a key–value pair from the table at the given index 3830 (the "next" pair after the given key). 3831 If there are no more elements in the table, 3832 then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing). 3833 3834 3835 <p> 3836 A typical traversal looks like this: 3837 3838 <pre> 3839 /* table is in the stack at index 't' */ 3840 lua_pushnil(L); /* first key */ 3841 while (lua_next(L, t) != 0) { 3842 /* uses 'key' (at index -2) and 'value' (at index -1) */ 3843 printf("%s - %s\n", 3844 lua_typename(L, lua_type(L, -2)), 3845 lua_typename(L, lua_type(L, -1))); 3846 /* removes 'value'; keeps 'key' for next iteration */ 3847 lua_pop(L, 1); 3848 } 3849 </pre> 3850 3851 <p> 3852 While traversing a table, 3853 do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key, 3854 unless you know that the key is actually a string. 3855 Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> may change 3856 the value at the given index; 3857 this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>. 3858 3859 3860 <p> 3861 See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying 3862 the table during its traversal. 3863 3864 3865 3866 3867 3868 <hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3> 3869 <pre>typedef double lua_Number;</pre> 3870 3871 <p> 3872 The type of numbers in Lua. 3873 By default, it is double, but that can be changed in <code>luaconf.h</code>. 3874 Through this configuration file you can change 3875 Lua to operate with another type for numbers (e.g., float or long). 3876 3877 3878 3879 3880 3881 <hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p> 3882 <span class="apii">[-(nargs + 1), +(nresults|1), –]</span> 3883 <pre>int lua_pcall (lua_State *L, int nargs, int nresults, int msgh);</pre> 3884 3885 <p> 3886 Calls a function in protected mode. 3887 3888 3889 <p> 3890 Both <code>nargs</code> and <code>nresults</code> have the same meaning as 3891 in <a href="#lua_call"><code>lua_call</code></a>. 3892 If there are no errors during the call, 3893 <a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>. 3894 However, if there is any error, 3895 <a href="#lua_pcall"><code>lua_pcall</code></a> catches it, 3896 pushes a single value on the stack (the error message), 3897 and returns an error code. 3898 Like <a href="#lua_call"><code>lua_call</code></a>, 3899 <a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function 3900 and its arguments from the stack. 3901 3902 3903 <p> 3904 If <code>msgh</code> is 0, 3905 then the error message returned on the stack 3906 is exactly the original error message. 3907 Otherwise, <code>msgh</code> is the stack index of a 3908 <em>message handler</em>. 3909 (In the current implementation, this index cannot be a pseudo-index.) 3910 In case of runtime errors, 3911 this function will be called with the error message 3912 and its return value will be the message 3913 returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>. 3914 3915 3916 <p> 3917 Typically, the message handler is used to add more debug 3918 information to the error message, such as a stack traceback. 3919 Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>, 3920 since by then the stack has unwound. 3921 3922 3923 <p> 3924 The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns one of the following codes 3925 (defined in <code>lua.h</code>): 3926 3927 <ul> 3928 3929 <li><b><a name="pdf-LUA_OK"><code>LUA_OK</code></a> (0): </b> 3930 success.</li> 3931 3932 <li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>: </b> 3933 a runtime error. 3934 </li> 3935 3936 <li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b> 3937 memory allocation error. 3938 For such errors, Lua does not call the message handler. 3939 </li> 3940 3941 <li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>: </b> 3942 error while running the message handler. 3943 </li> 3944 3945 <li><b><a name="pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b> 3946 error while running a <code>__gc</code> metamethod. 3947 (This error typically has no relation with the function being called. 3948 It is generated by the garbage collector.) 3949 </li> 3950 3951 </ul> 3952 3953 3954 3955 3956 <hr><h3><a name="lua_pcallk"><code>lua_pcallk</code></a></h3><p> 3957 <span class="apii">[-(nargs + 1), +(nresults|1), –]</span> 3958 <pre>int lua_pcallk (lua_State *L, 3959 int nargs, 3960 int nresults, 3961 int errfunc, 3962 int ctx, 3963 lua_CFunction k);</pre> 3964 3965 <p> 3966 This function behaves exactly like <a href="#lua_pcall"><code>lua_pcall</code></a>, 3967 but allows the called function to yield (see <a href="#4.7">§4.7</a>). 3968 3969 3970 3971 3972 3973 <hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p> 3974 <span class="apii">[-n, +0, –]</span> 3975 <pre>void lua_pop (lua_State *L, int n);</pre> 3976 3977 <p> 3978 Pops <code>n</code> elements from the stack. 3979 3980 3981 3982 3983 3984 <hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p> 3985 <span class="apii">[-0, +1, –]</span> 3986 <pre>void lua_pushboolean (lua_State *L, int b);</pre> 3987 3988 <p> 3989 Pushes a boolean value with value <code>b</code> onto the stack. 3990 3991 3992 3993 3994 3995 <hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p> 3996 <span class="apii">[-n, +1, <em>e</em>]</span> 3997 <pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre> 3998 3999 <p> 4000 Pushes a new C closure onto the stack. 4001 4002 4003 <p> 4004 When a C function is created, 4005 it is possible to associate some values with it, 4006 thus creating a C closure (see <a href="#4.4">§4.4</a>); 4007 these values are then accessible to the function whenever it is called. 4008 To associate values with a C function, 4009 first these values should be pushed onto the stack 4010 (when there are multiple values, the first value is pushed first). 4011 Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> 4012 is called to create and push the C function onto the stack, 4013 with the argument <code>n</code> telling how many values should be 4014 associated with the function. 4015 <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack. 4016 4017 4018 <p> 4019 The maximum value for <code>n</code> is 255. 4020 4021 4022 <p> 4023 When <code>n</code> is zero, 4024 this function creates a <em>light C function</em>, 4025 which is just a pointer to the C function. 4026 In that case, it never throws a memory error. 4027 4028 4029 4030 4031 4032 <hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p> 4033 <span class="apii">[-0, +1, –]</span> 4034 <pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre> 4035 4036 <p> 4037 Pushes a C function onto the stack. 4038 This function receives a pointer to a C function 4039 and pushes onto the stack a Lua value of type <code>function</code> that, 4040 when called, invokes the corresponding C function. 4041 4042 4043 <p> 4044 Any function to be registered in Lua must 4045 follow the correct protocol to receive its parameters 4046 and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 4047 4048 4049 <p> 4050 <code>lua_pushcfunction</code> is defined as a macro: 4051 4052 <pre> 4053 #define lua_pushcfunction(L,f) lua_pushcclosure(L,f,0) 4054 </pre><p> 4055 Note that <code>f</code> is used twice. 4056 4057 4058 4059 4060 4061 <hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p> 4062 <span class="apii">[-0, +1, <em>e</em>]</span> 4063 <pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre> 4064 4065 <p> 4066 Pushes onto the stack a formatted string 4067 and returns a pointer to this string. 4068 It is similar to the ANSI C function <code>sprintf</code>, 4069 but has some important differences: 4070 4071 <ul> 4072 4073 <li> 4074 You do not have to allocate space for the result: 4075 the result is a Lua string and Lua takes care of memory allocation 4076 (and deallocation, through garbage collection). 4077 </li> 4078 4079 <li> 4080 The conversion specifiers are quite restricted. 4081 There are no flags, widths, or precisions. 4082 The conversion specifiers can only be 4083 '<code>%%</code>' (inserts a '<code>%</code>' in the string), 4084 '<code>%s</code>' (inserts a zero-terminated string, with no size restrictions), 4085 '<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>), 4086 '<code>%p</code>' (inserts a pointer as a hexadecimal numeral), 4087 '<code>%d</code>' (inserts an <code>int</code>), and 4088 '<code>%c</code>' (inserts an <code>int</code> as a byte). 4089 </li> 4090 4091 </ul> 4092 4093 4094 4095 4096 <hr><h3><a name="lua_pushglobaltable"><code>lua_pushglobaltable</code></a></h3><p> 4097 <span class="apii">[-0, +1, –]</span> 4098 <pre>void lua_pushglobaltable (lua_State *L);</pre> 4099 4100 <p> 4101 Pushes the global environment onto the stack. 4102 4103 4104 4105 4106 4107 <hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p> 4108 <span class="apii">[-0, +1, –]</span> 4109 <pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre> 4110 4111 <p> 4112 Pushes a number with value <code>n</code> onto the stack. 4113 4114 4115 4116 4117 4118 <hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p> 4119 <span class="apii">[-0, +1, –]</span> 4120 <pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre> 4121 4122 <p> 4123 Pushes a light userdata onto the stack. 4124 4125 4126 <p> 4127 Userdata represent C values in Lua. 4128 A <em>light userdata</em> represents a pointer, a <code>void*</code>. 4129 It is a value (like a number): 4130 you do not create it, it has no individual metatable, 4131 and it is not collected (as it was never created). 4132 A light userdata is equal to "any" 4133 light userdata with the same C address. 4134 4135 4136 4137 4138 4139 <hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p> 4140 <span class="apii">[-0, +1, <em>e</em>]</span> 4141 <pre>const char *lua_pushliteral (lua_State *L, const char *s);</pre> 4142 4143 <p> 4144 This macro is equivalent to <a href="#lua_pushlstring"><code>lua_pushlstring</code></a>, 4145 but can be used only when <code>s</code> is a literal string. 4146 It automatically provides the string length. 4147 4148 4149 4150 4151 4152 <hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p> 4153 <span class="apii">[-0, +1, <em>e</em>]</span> 4154 <pre>const char *lua_pushlstring (lua_State *L, const char *s, size_t len);</pre> 4155 4156 <p> 4157 Pushes the string pointed to by <code>s</code> with size <code>len</code> 4158 onto the stack. 4159 Lua makes (or reuses) an internal copy of the given string, 4160 so the memory at <code>s</code> can be freed or reused immediately after 4161 the function returns. 4162 The string can contain any binary data, 4163 including embedded zeros. 4164 4165 4166 <p> 4167 Returns a pointer to the internal copy of the string. 4168 4169 4170 4171 4172 4173 <hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p> 4174 <span class="apii">[-0, +1, –]</span> 4175 <pre>void lua_pushnil (lua_State *L);</pre> 4176 4177 <p> 4178 Pushes a nil value onto the stack. 4179 4180 4181 4182 4183 4184 <hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p> 4185 <span class="apii">[-0, +1, –]</span> 4186 <pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre> 4187 4188 <p> 4189 Pushes a number with value <code>n</code> onto the stack. 4190 4191 4192 4193 4194 4195 <hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p> 4196 <span class="apii">[-0, +1, <em>e</em>]</span> 4197 <pre>const char *lua_pushstring (lua_State *L, const char *s);</pre> 4198 4199 <p> 4200 Pushes the zero-terminated string pointed to by <code>s</code> 4201 onto the stack. 4202 Lua makes (or reuses) an internal copy of the given string, 4203 so the memory at <code>s</code> can be freed or reused immediately after 4204 the function returns. 4205 4206 4207 <p> 4208 Returns a pointer to the internal copy of the string. 4209 4210 4211 <p> 4212 If <code>s</code> is <code>NULL</code>, pushes <b>nil</b> and returns <code>NULL</code>. 4213 4214 4215 4216 4217 4218 <hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p> 4219 <span class="apii">[-0, +1, –]</span> 4220 <pre>int lua_pushthread (lua_State *L);</pre> 4221 4222 <p> 4223 Pushes the thread represented by <code>L</code> onto the stack. 4224 Returns 1 if this thread is the main thread of its state. 4225 4226 4227 4228 4229 4230 <hr><h3><a name="lua_pushunsigned"><code>lua_pushunsigned</code></a></h3><p> 4231 <span class="apii">[-0, +1, –]</span> 4232 <pre>void lua_pushunsigned (lua_State *L, lua_Unsigned n);</pre> 4233 4234 <p> 4235 Pushes a number with value <code>n</code> onto the stack. 4236 4237 4238 4239 4240 4241 <hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p> 4242 <span class="apii">[-0, +1, –]</span> 4243 <pre>void lua_pushvalue (lua_State *L, int index);</pre> 4244 4245 <p> 4246 Pushes a copy of the element at the given index 4247 onto the stack. 4248 4249 4250 4251 4252 4253 <hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p> 4254 <span class="apii">[-0, +1, <em>e</em>]</span> 4255 <pre>const char *lua_pushvfstring (lua_State *L, 4256 const char *fmt, 4257 va_list argp);</pre> 4258 4259 <p> 4260 Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code> 4261 instead of a variable number of arguments. 4262 4263 4264 4265 4266 4267 <hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p> 4268 <span class="apii">[-0, +0, –]</span> 4269 <pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre> 4270 4271 <p> 4272 Returns 1 if the two values in indices <code>index1</code> and 4273 <code>index2</code> are primitively equal 4274 (that is, without calling metamethods). 4275 Otherwise returns 0. 4276 Also returns 0 if any of the indices are non valid. 4277 4278 4279 4280 4281 4282 <hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p> 4283 <span class="apii">[-1, +1, –]</span> 4284 <pre>void lua_rawget (lua_State *L, int index);</pre> 4285 4286 <p> 4287 Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access 4288 (i.e., without metamethods). 4289 4290 4291 4292 4293 4294 <hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p> 4295 <span class="apii">[-0, +1, –]</span> 4296 <pre>void lua_rawgeti (lua_State *L, int index, int n);</pre> 4297 4298 <p> 4299 Pushes onto the stack the value <code>t[n]</code>, 4300 where <code>t</code> is the table at the given index. 4301 The access is raw; 4302 that is, it does not invoke metamethods. 4303 4304 4305 4306 4307 4308 <hr><h3><a name="lua_rawgetp"><code>lua_rawgetp</code></a></h3><p> 4309 <span class="apii">[-0, +1, –]</span> 4310 <pre>void lua_rawgetp (lua_State *L, int index, const void *p);</pre> 4311 4312 <p> 4313 Pushes onto the stack the value <code>t[k]</code>, 4314 where <code>t</code> is the table at the given index and 4315 <code>k</code> is the pointer <code>p</code> represented as a light userdata. 4316 The access is raw; 4317 that is, it does not invoke metamethods. 4318 4319 4320 4321 4322 4323 <hr><h3><a name="lua_rawlen"><code>lua_rawlen</code></a></h3><p> 4324 <span class="apii">[-0, +0, –]</span> 4325 <pre>size_t lua_rawlen (lua_State *L, int index);</pre> 4326 4327 <p> 4328 Returns the raw "length" of the value at the given index: 4329 for strings, this is the string length; 4330 for tables, this is the result of the length operator ('<code>#</code>') 4331 with no metamethods; 4332 for userdata, this is the size of the block of memory allocated 4333 for the userdata; 4334 for other values, it is 0. 4335 4336 4337 4338 4339 4340 <hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p> 4341 <span class="apii">[-2, +0, <em>e</em>]</span> 4342 <pre>void lua_rawset (lua_State *L, int index);</pre> 4343 4344 <p> 4345 Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment 4346 (i.e., without metamethods). 4347 4348 4349 4350 4351 4352 <hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p> 4353 <span class="apii">[-1, +0, <em>e</em>]</span> 4354 <pre>void lua_rawseti (lua_State *L, int index, int n);</pre> 4355 4356 <p> 4357 Does the equivalent of <code>t[n] = v</code>, 4358 where <code>t</code> is the table at the given index 4359 and <code>v</code> is the value at the top of the stack. 4360 4361 4362 <p> 4363 This function pops the value from the stack. 4364 The assignment is raw; 4365 that is, it does not invoke metamethods. 4366 4367 4368 4369 4370 4371 <hr><h3><a name="lua_rawsetp"><code>lua_rawsetp</code></a></h3><p> 4372 <span class="apii">[-1, +0, <em>e</em>]</span> 4373 <pre>void lua_rawsetp (lua_State *L, int index, const void *p);</pre> 4374 4375 <p> 4376 Does the equivalent of <code>t[k] = v</code>, 4377 where <code>t</code> is the table at the given index, 4378 <code>k</code> is the pointer <code>p</code> represented as a light userdata, 4379 and <code>v</code> is the value at the top of the stack. 4380 4381 4382 <p> 4383 This function pops the value from the stack. 4384 The assignment is raw; 4385 that is, it does not invoke metamethods. 4386 4387 4388 4389 4390 4391 <hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3> 4392 <pre>typedef const char * (*lua_Reader) (lua_State *L, 4393 void *data, 4394 size_t *size);</pre> 4395 4396 <p> 4397 The reader function used by <a href="#lua_load"><code>lua_load</code></a>. 4398 Every time it needs another piece of the chunk, 4399 <a href="#lua_load"><code>lua_load</code></a> calls the reader, 4400 passing along its <code>data</code> parameter. 4401 The reader must return a pointer to a block of memory 4402 with a new piece of the chunk 4403 and set <code>size</code> to the block size. 4404 The block must exist until the reader function is called again. 4405 To signal the end of the chunk, 4406 the reader must return <code>NULL</code> or set <code>size</code> to zero. 4407 The reader function may return pieces of any size greater than zero. 4408 4409 4410 4411 4412 4413 <hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p> 4414 <span class="apii">[-0, +0, <em>e</em>]</span> 4415 <pre>void lua_register (lua_State *L, const char *name, lua_CFunction f);</pre> 4416 4417 <p> 4418 Sets the C function <code>f</code> as the new value of global <code>name</code>. 4419 It is defined as a macro: 4420 4421 <pre> 4422 #define lua_register(L,n,f) \ 4423 (lua_pushcfunction(L, f), lua_setglobal(L, n)) 4424 </pre> 4425 4426 4427 4428 4429 <hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p> 4430 <span class="apii">[-1, +0, –]</span> 4431 <pre>void lua_remove (lua_State *L, int index);</pre> 4432 4433 <p> 4434 Removes the element at the given valid index, 4435 shifting down the elements above this index to fill the gap. 4436 This function cannot be called with a pseudo-index, 4437 because a pseudo-index is not an actual stack position. 4438 4439 4440 4441 4442 4443 <hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p> 4444 <span class="apii">[-1, +0, –]</span> 4445 <pre>void lua_replace (lua_State *L, int index);</pre> 4446 4447 <p> 4448 Moves the top element into the given valid index 4449 without shifting any element 4450 (therefore replacing the value at the given index), 4451 and then pops the top element. 4452 4453 4454 4455 4456 4457 <hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p> 4458 <span class="apii">[-?, +?, –]</span> 4459 <pre>int lua_resume (lua_State *L, lua_State *from, int nargs);</pre> 4460 4461 <p> 4462 Starts and resumes a coroutine in a given thread. 4463 4464 4465 <p> 4466 To start a coroutine, 4467 you push onto the thread stack the main function plus any arguments; 4468 then you call <a href="#lua_resume"><code>lua_resume</code></a>, 4469 with <code>nargs</code> being the number of arguments. 4470 This call returns when the coroutine suspends or finishes its execution. 4471 When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>, 4472 or all values returned by the body function. 4473 <a href="#lua_resume"><code>lua_resume</code></a> returns 4474 <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields, 4475 <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> if the coroutine finishes its execution 4476 without errors, 4477 or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>). 4478 4479 4480 <p> 4481 In case of errors, 4482 the stack is not unwound, 4483 so you can use the debug API over it. 4484 The error message is on the top of the stack. 4485 4486 4487 <p> 4488 To resume a coroutine, 4489 you remove any results from the last <a href="#lua_yield"><code>lua_yield</code></a>, 4490 put on its stack only the values to 4491 be passed as results from <code>yield</code>, 4492 and then call <a href="#lua_resume"><code>lua_resume</code></a>. 4493 4494 4495 <p> 4496 The parameter <code>from</code> represents the coroutine that is resuming <code>L</code>. 4497 If there is no such coroutine, 4498 this parameter can be <code>NULL</code>. 4499 4500 4501 4502 4503 4504 <hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p> 4505 <span class="apii">[-0, +0, –]</span> 4506 <pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre> 4507 4508 <p> 4509 Changes the allocator function of a given state to <code>f</code> 4510 with user data <code>ud</code>. 4511 4512 4513 4514 4515 4516 <hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p> 4517 <span class="apii">[-1, +0, <em>e</em>]</span> 4518 <pre>void lua_setfield (lua_State *L, int index, const char *k);</pre> 4519 4520 <p> 4521 Does the equivalent to <code>t[k] = v</code>, 4522 where <code>t</code> is the value at the given index 4523 and <code>v</code> is the value at the top of the stack. 4524 4525 4526 <p> 4527 This function pops the value from the stack. 4528 As in Lua, this function may trigger a metamethod 4529 for the "newindex" event (see <a href="#2.4">§2.4</a>). 4530 4531 4532 4533 4534 4535 <hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p> 4536 <span class="apii">[-1, +0, <em>e</em>]</span> 4537 <pre>void lua_setglobal (lua_State *L, const char *name);</pre> 4538 4539 <p> 4540 Pops a value from the stack and 4541 sets it as the new value of global <code>name</code>. 4542 4543 4544 4545 4546 4547 <hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p> 4548 <span class="apii">[-1, +0, –]</span> 4549 <pre>void lua_setmetatable (lua_State *L, int index);</pre> 4550 4551 <p> 4552 Pops a table from the stack and 4553 sets it as the new metatable for the value at the given index. 4554 4555 4556 4557 4558 4559 <hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p> 4560 <span class="apii">[-2, +0, <em>e</em>]</span> 4561 <pre>void lua_settable (lua_State *L, int index);</pre> 4562 4563 <p> 4564 Does the equivalent to <code>t[k] = v</code>, 4565 where <code>t</code> is the value at the given index, 4566 <code>v</code> is the value at the top of the stack, 4567 and <code>k</code> is the value just below the top. 4568 4569 4570 <p> 4571 This function pops both the key and the value from the stack. 4572 As in Lua, this function may trigger a metamethod 4573 for the "newindex" event (see <a href="#2.4">§2.4</a>). 4574 4575 4576 4577 4578 4579 <hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p> 4580 <span class="apii">[-?, +?, –]</span> 4581 <pre>void lua_settop (lua_State *L, int index);</pre> 4582 4583 <p> 4584 Accepts any index, or 0, 4585 and sets the stack top to this index. 4586 If the new top is larger than the old one, 4587 then the new elements are filled with <b>nil</b>. 4588 If <code>index</code> is 0, then all stack elements are removed. 4589 4590 4591 4592 4593 4594 <hr><h3><a name="lua_setuservalue"><code>lua_setuservalue</code></a></h3><p> 4595 <span class="apii">[-1, +0, –]</span> 4596 <pre>void lua_setuservalue (lua_State *L, int index);</pre> 4597 4598 <p> 4599 Pops a table or <b>nil</b> from the stack and sets it as 4600 the new value associated to the userdata at the given index. 4601 4602 4603 4604 4605 4606 <hr><h3><a name="lua_State"><code>lua_State</code></a></h3> 4607 <pre>typedef struct lua_State lua_State;</pre> 4608 4609 <p> 4610 An opaque structure that points to a thread and indirectly 4611 (through the thread) to the whole state of a Lua interpreter. 4612 The Lua library is fully reentrant: 4613 it has no global variables. 4614 All information about a state is accessible through this structure. 4615 4616 4617 <p> 4618 A pointer to this structure must be passed as the first argument to 4619 every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>, 4620 which creates a Lua state from scratch. 4621 4622 4623 4624 4625 4626 <hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p> 4627 <span class="apii">[-0, +0, –]</span> 4628 <pre>int lua_status (lua_State *L);</pre> 4629 4630 <p> 4631 Returns the status of the thread <code>L</code>. 4632 4633 4634 <p> 4635 The status can be 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) for a normal thread, 4636 an error code if the thread finished the execution 4637 of a <a href="#lua_resume"><code>lua_resume</code></a> with an error, 4638 or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended. 4639 4640 4641 <p> 4642 You can only call functions in threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>. 4643 You can resume threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> 4644 (to start a new coroutine) or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> 4645 (to resume a coroutine). 4646 4647 4648 4649 4650 4651 <hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p> 4652 <span class="apii">[-0, +0, –]</span> 4653 <pre>int lua_toboolean (lua_State *L, int index);</pre> 4654 4655 <p> 4656 Converts the Lua value at the given index to a C boolean 4657 value (0 or 1). 4658 Like all tests in Lua, 4659 <a href="#lua_toboolean"><code>lua_toboolean</code></a> returns true for any Lua value 4660 different from <b>false</b> and <b>nil</b>; 4661 otherwise it returns false. 4662 (If you want to accept only actual boolean values, 4663 use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.) 4664 4665 4666 4667 4668 4669 <hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p> 4670 <span class="apii">[-0, +0, –]</span> 4671 <pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre> 4672 4673 <p> 4674 Converts a value at the given index to a C function. 4675 That value must be a C function; 4676 otherwise, returns <code>NULL</code>. 4677 4678 4679 4680 4681 4682 <hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p> 4683 <span class="apii">[-0, +0, –]</span> 4684 <pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre> 4685 4686 <p> 4687 Equivalent to <a href="#lua_tointegerx"><code>lua_tointegerx</code></a> with <code>isnum</code> equal to <code>NULL</code>. 4688 4689 4690 4691 4692 4693 <hr><h3><a name="lua_tointegerx"><code>lua_tointegerx</code></a></h3><p> 4694 <span class="apii">[-0, +0, –]</span> 4695 <pre>lua_Integer lua_tointegerx (lua_State *L, int index, int *isnum);</pre> 4696 4697 <p> 4698 Converts the Lua value at the given index 4699 to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>. 4700 The Lua value must be a number or a string convertible to a number 4701 (see <a href="#3.4.2">§3.4.2</a>); 4702 otherwise, <code>lua_tointegerx</code> returns 0. 4703 4704 4705 <p> 4706 If the number is not an integer, 4707 it is truncated in some non-specified way. 4708 4709 4710 <p> 4711 If <code>isnum</code> is not <code>NULL</code>, 4712 its referent is assigned a boolean value that 4713 indicates whether the operation succeeded. 4714 4715 4716 4717 4718 4719 <hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p> 4720 <span class="apii">[-0, +0, <em>e</em>]</span> 4721 <pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre> 4722 4723 <p> 4724 Converts the Lua value at the given index to a C string. 4725 If <code>len</code> is not <code>NULL</code>, 4726 it also sets <code>*len</code> with the string length. 4727 The Lua value must be a string or a number; 4728 otherwise, the function returns <code>NULL</code>. 4729 If the value is a number, 4730 then <code>lua_tolstring</code> also 4731 <em>changes the actual value in the stack to a string</em>. 4732 (This change confuses <a href="#lua_next"><code>lua_next</code></a> 4733 when <code>lua_tolstring</code> is applied to keys during a table traversal.) 4734 4735 4736 <p> 4737 <code>lua_tolstring</code> returns a fully aligned pointer 4738 to a string inside the Lua state. 4739 This string always has a zero ('<code>\0</code>') 4740 after its last character (as in C), 4741 but can contain other zeros in its body. 4742 Because Lua has garbage collection, 4743 there is no guarantee that the pointer returned by <code>lua_tolstring</code> 4744 will be valid after the corresponding value is removed from the stack. 4745 4746 4747 4748 4749 4750 <hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p> 4751 <span class="apii">[-0, +0, –]</span> 4752 <pre>lua_Number lua_tonumber (lua_State *L, int index);</pre> 4753 4754 <p> 4755 Equivalent to <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> with <code>isnum</code> equal to <code>NULL</code>. 4756 4757 4758 4759 4760 4761 <hr><h3><a name="lua_tonumberx"><code>lua_tonumberx</code></a></h3><p> 4762 <span class="apii">[-0, +0, –]</span> 4763 <pre>lua_Number lua_tonumberx (lua_State *L, int index, int *isnum);</pre> 4764 4765 <p> 4766 Converts the Lua value at the given index 4767 to the C type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>). 4768 The Lua value must be a number or a string convertible to a number 4769 (see <a href="#3.4.2">§3.4.2</a>); 4770 otherwise, <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> returns 0. 4771 4772 4773 <p> 4774 If <code>isnum</code> is not <code>NULL</code>, 4775 its referent is assigned a boolean value that 4776 indicates whether the operation succeeded. 4777 4778 4779 4780 4781 4782 <hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p> 4783 <span class="apii">[-0, +0, –]</span> 4784 <pre>const void *lua_topointer (lua_State *L, int index);</pre> 4785 4786 <p> 4787 Converts the value at the given index to a generic 4788 C pointer (<code>void*</code>). 4789 The value can be a userdata, a table, a thread, or a function; 4790 otherwise, <code>lua_topointer</code> returns <code>NULL</code>. 4791 Different objects will give different pointers. 4792 There is no way to convert the pointer back to its original value. 4793 4794 4795 <p> 4796 Typically this function is used only for debug information. 4797 4798 4799 4800 4801 4802 <hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p> 4803 <span class="apii">[-0, +0, <em>e</em>]</span> 4804 <pre>const char *lua_tostring (lua_State *L, int index);</pre> 4805 4806 <p> 4807 Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>. 4808 4809 4810 4811 4812 4813 <hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p> 4814 <span class="apii">[-0, +0, –]</span> 4815 <pre>lua_State *lua_tothread (lua_State *L, int index);</pre> 4816 4817 <p> 4818 Converts the value at the given index to a Lua thread 4819 (represented as <code>lua_State*</code>). 4820 This value must be a thread; 4821 otherwise, the function returns <code>NULL</code>. 4822 4823 4824 4825 4826 4827 <hr><h3><a name="lua_tounsigned"><code>lua_tounsigned</code></a></h3><p> 4828 <span class="apii">[-0, +0, –]</span> 4829 <pre>lua_Unsigned lua_tounsigned (lua_State *L, int index);</pre> 4830 4831 <p> 4832 Equivalent to <a href="#lua_tounsignedx"><code>lua_tounsignedx</code></a> with <code>isnum</code> equal to <code>NULL</code>. 4833 4834 4835 4836 4837 4838 <hr><h3><a name="lua_tounsignedx"><code>lua_tounsignedx</code></a></h3><p> 4839 <span class="apii">[-0, +0, –]</span> 4840 <pre>lua_Unsigned lua_tounsignedx (lua_State *L, int index, int *isnum);</pre> 4841 4842 <p> 4843 Converts the Lua value at the given index 4844 to the unsigned integral type <a href="#lua_Unsigned"><code>lua_Unsigned</code></a>. 4845 The Lua value must be a number or a string convertible to a number 4846 (see <a href="#3.4.2">§3.4.2</a>); 4847 otherwise, <code>lua_tounsignedx</code> returns 0. 4848 4849 4850 <p> 4851 If the number is not an integer, 4852 it is truncated in some non-specified way. 4853 If the number is outside the range of representable values, 4854 it is normalized to the remainder of its division by 4855 one more than the maximum representable value. 4856 4857 4858 <p> 4859 If <code>isnum</code> is not <code>NULL</code>, 4860 its referent is assigned a boolean value that 4861 indicates whether the operation succeeded. 4862 4863 4864 4865 4866 4867 <hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p> 4868 <span class="apii">[-0, +0, –]</span> 4869 <pre>void *lua_touserdata (lua_State *L, int index);</pre> 4870 4871 <p> 4872 If the value at the given index is a full userdata, 4873 returns its block address. 4874 If the value is a light userdata, 4875 returns its pointer. 4876 Otherwise, returns <code>NULL</code>. 4877 4878 4879 4880 4881 4882 <hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p> 4883 <span class="apii">[-0, +0, –]</span> 4884 <pre>int lua_type (lua_State *L, int index);</pre> 4885 4886 <p> 4887 Returns the type of the value in the given valid index, 4888 or <code>LUA_TNONE</code> for a non-valid (but acceptable) index. 4889 The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants 4890 defined in <code>lua.h</code>: 4891 <a name="pdf-LUA_TNIL"><code>LUA_TNIL</code></a>, 4892 <a name="pdf-LUA_TNUMBER"><code>LUA_TNUMBER</code></a>, 4893 <a name="pdf-LUA_TBOOLEAN"><code>LUA_TBOOLEAN</code></a>, 4894 <a name="pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, 4895 <a name="pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, 4896 <a name="pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>, 4897 <a name="pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, 4898 <a name="pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a>, 4899 and 4900 <a name="pdf-LUA_TLIGHTUSERDATA"><code>LUA_TLIGHTUSERDATA</code></a>. 4901 4902 4903 4904 4905 4906 <hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p> 4907 <span class="apii">[-0, +0, –]</span> 4908 <pre>const char *lua_typename (lua_State *L, int tp);</pre> 4909 4910 <p> 4911 Returns the name of the type encoded by the value <code>tp</code>, 4912 which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>. 4913 4914 4915 4916 4917 4918 <hr><h3><a name="lua_Unsigned"><code>lua_Unsigned</code></a></h3> 4919 <pre>typedef unsigned long lua_Unsigned;</pre> 4920 4921 <p> 4922 The type used by the Lua API to represent unsigned integral values. 4923 It must have at least 32 bits. 4924 4925 4926 <p> 4927 By default it is an <code>unsigned int</code> or an <code>unsigned long</code>, 4928 whichever can hold 32-bit values. 4929 4930 4931 4932 4933 4934 <hr><h3><a name="lua_upvalueindex"><code>lua_upvalueindex</code></a></h3><p> 4935 <span class="apii">[-0, +0, –]</span> 4936 <pre>int lua_upvalueindex (int i);</pre> 4937 4938 <p> 4939 Returns the pseudo-index that represents the <code>i</code>-th upvalue of 4940 the running function (see <a href="#4.4">§4.4</a>). 4941 4942 4943 4944 4945 4946 <hr><h3><a name="lua_version"><code>lua_version</code></a></h3><p> 4947 <span class="apii">[-0, +0, <em>v</em>]</span> 4948 <pre>const lua_Number *lua_version (lua_State *L);</pre> 4949 4950 <p> 4951 Returns the address of the version number stored in the Lua core. 4952 When called with a valid <a href="#lua_State"><code>lua_State</code></a>, 4953 returns the address of the version used to create that state. 4954 When called with <code>NULL</code>, 4955 returns the address of the version running the call. 4956 4957 4958 4959 4960 4961 <hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3> 4962 <pre>typedef int (*lua_Writer) (lua_State *L, 4963 const void* p, 4964 size_t sz, 4965 void* ud);</pre> 4966 4967 <p> 4968 The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>. 4969 Every time it produces another piece of chunk, 4970 <a href="#lua_dump"><code>lua_dump</code></a> calls the writer, 4971 passing along the buffer to be written (<code>p</code>), 4972 its size (<code>sz</code>), 4973 and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>. 4974 4975 4976 <p> 4977 The writer returns an error code: 4978 0 means no errors; 4979 any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from 4980 calling the writer again. 4981 4982 4983 4984 4985 4986 <hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p> 4987 <span class="apii">[-?, +?, –]</span> 4988 <pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre> 4989 4990 <p> 4991 Exchange values between different threads of the same state. 4992 4993 4994 <p> 4995 This function pops <code>n</code> values from the stack <code>from</code>, 4996 and pushes them onto the stack <code>to</code>. 4997 4998 4999 5000 5001 5002 <hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p> 5003 <span class="apii">[-?, +?, –]</span> 5004 <pre>int lua_yield (lua_State *L, int nresults);</pre> 5005 5006 <p> 5007 This function is equivalent to <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 5008 but it has no continuation (see <a href="#4.7">§4.7</a>). 5009 Therefore, when the thread resumes, 5010 it returns to the function that called 5011 the function calling <code>lua_yield</code>. 5012 5013 5014 5015 5016 5017 <hr><h3><a name="lua_yieldk"><code>lua_yieldk</code></a></h3><p> 5018 <span class="apii">[-?, +?, –]</span> 5019 <pre>int lua_yieldk (lua_State *L, int nresults, int ctx, lua_CFunction k);</pre> 5020 5021 <p> 5022 Yields a coroutine. 5023 5024 5025 <p> 5026 This function should only be called as the 5027 return expression of a C function, as follows: 5028 5029 <pre> 5030 return lua_yieldk (L, n, i, k); 5031 </pre><p> 5032 When a C function calls <a href="#lua_yieldk"><code>lua_yieldk</code></a> in that way, 5033 the running coroutine suspends its execution, 5034 and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns. 5035 The parameter <code>nresults</code> is the number of values from the stack 5036 that are passed as results to <a href="#lua_resume"><code>lua_resume</code></a>. 5037 5038 5039 <p> 5040 When the coroutine is resumed again, 5041 Lua calls the given continuation function <code>k</code> to continue 5042 the execution of the C function that yielded (see <a href="#4.7">§4.7</a>). 5043 This continuation function receives the same stack 5044 from the previous function, 5045 with the results removed and 5046 replaced by the arguments passed to <a href="#lua_resume"><code>lua_resume</code></a>. 5047 Moreover, 5048 the continuation function may access the value <code>ctx</code> 5049 by calling <a href="#lua_getctx"><code>lua_getctx</code></a>. 5050 5051 5052 5053 5054 5055 5056 5057 <h2>4.9 – <a name="4.9">The Debug Interface</a></h2> 5058 5059 <p> 5060 Lua has no built-in debugging facilities. 5061 Instead, it offers a special interface 5062 by means of functions and <em>hooks</em>. 5063 This interface allows the construction of different 5064 kinds of debuggers, profilers, and other tools 5065 that need "inside information" from the interpreter. 5066 5067 5068 5069 <hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3> 5070 <pre>typedef struct lua_Debug { 5071 int event; 5072 const char *name; /* (n) */ 5073 const char *namewhat; /* (n) */ 5074 const char *what; /* (S) */ 5075 const char *source; /* (S) */ 5076 int currentline; /* (l) */ 5077 int linedefined; /* (S) */ 5078 int lastlinedefined; /* (S) */ 5079 unsigned char nups; /* (u) number of upvalues */ 5080 unsigned char nparams; /* (u) number of parameters */ 5081 char isvararg; /* (u) */ 5082 char istailcall; /* (t) */ 5083 char short_src[LUA_IDSIZE]; /* (S) */ 5084 /* private part */ 5085 <em>other fields</em> 5086 } lua_Debug;</pre> 5087 5088 <p> 5089 A structure used to carry different pieces of 5090 information about a function or an activation record. 5091 <a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part 5092 of this structure, for later use. 5093 To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information, 5094 call <a href="#lua_getinfo"><code>lua_getinfo</code></a>. 5095 5096 5097 <p> 5098 The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning: 5099 5100 <ul> 5101 5102 <li><b><code>source</code>: </b> 5103 the source of the chunk that created the function. 5104 If <code>source</code> starts with a '<code>@</code>', 5105 it means that the function was defined in a file where 5106 the file name follows the '<code>@</code>'. 5107 If <code>source</code> starts with a '<code>=</code>', 5108 the remainder of its contents describe the source in a user-dependent manner. 5109 Otherwise, 5110 the function was defined in a string where 5111 <code>source</code> is that string. 5112 </li> 5113 5114 <li><b><code>short_src</code>: </b> 5115 a "printable" version of <code>source</code>, to be used in error messages. 5116 </li> 5117 5118 <li><b><code>linedefined</code>: </b> 5119 the line number where the definition of the function starts. 5120 </li> 5121 5122 <li><b><code>lastlinedefined</code>: </b> 5123 the line number where the definition of the function ends. 5124 </li> 5125 5126 <li><b><code>what</code>: </b> 5127 the string <code>"Lua"</code> if the function is a Lua function, 5128 <code>"C"</code> if it is a C function, 5129 <code>"main"</code> if it is the main part of a chunk. 5130 </li> 5131 5132 <li><b><code>currentline</code>: </b> 5133 the current line where the given function is executing. 5134 When no line information is available, 5135 <code>currentline</code> is set to -1. 5136 </li> 5137 5138 <li><b><code>name</code>: </b> 5139 a reasonable name for the given function. 5140 Because functions in Lua are first-class values, 5141 they do not have a fixed name: 5142 some functions can be the value of multiple global variables, 5143 while others can be stored only in a table field. 5144 The <code>lua_getinfo</code> function checks how the function was 5145 called to find a suitable name. 5146 If it cannot find a name, 5147 then <code>name</code> is set to <code>NULL</code>. 5148 </li> 5149 5150 <li><b><code>namewhat</code>: </b> 5151 explains the <code>name</code> field. 5152 The value of <code>namewhat</code> can be 5153 <code>"global"</code>, <code>"local"</code>, <code>"method"</code>, 5154 <code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string), 5155 according to how the function was called. 5156 (Lua uses the empty string when no other option seems to apply.) 5157 </li> 5158 5159 <li><b><code>istailcall</code>: </b> 5160 true if this function invocation was called by a tail call. 5161 In this case, the caller of this level is not in the stack. 5162 </li> 5163 5164 <li><b><code>nups</code>: </b> 5165 the number of upvalues of the function. 5166 </li> 5167 5168 <li><b><code>nparams</code>: </b> 5169 the number of fixed parameters of the function 5170 (always 0 for C functions). 5171 </li> 5172 5173 <li><b><code>isvararg</code>: </b> 5174 true if the function is a vararg function 5175 (always true for C functions). 5176 </li> 5177 5178 </ul> 5179 5180 5181 5182 5183 <hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p> 5184 <span class="apii">[-0, +0, –]</span> 5185 <pre>lua_Hook lua_gethook (lua_State *L);</pre> 5186 5187 <p> 5188 Returns the current hook function. 5189 5190 5191 5192 5193 5194 <hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p> 5195 <span class="apii">[-0, +0, –]</span> 5196 <pre>int lua_gethookcount (lua_State *L);</pre> 5197 5198 <p> 5199 Returns the current hook count. 5200 5201 5202 5203 5204 5205 <hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p> 5206 <span class="apii">[-0, +0, –]</span> 5207 <pre>int lua_gethookmask (lua_State *L);</pre> 5208 5209 <p> 5210 Returns the current hook mask. 5211 5212 5213 5214 5215 5216 <hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p> 5217 <span class="apii">[-(0|1), +(0|1|2), <em>e</em>]</span> 5218 <pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre> 5219 5220 <p> 5221 Gets information about a specific function or function invocation. 5222 5223 5224 <p> 5225 To get information about a function invocation, 5226 the parameter <code>ar</code> must be a valid activation record that was 5227 filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or 5228 given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>). 5229 5230 5231 <p> 5232 To get information about a function you push it onto the stack 5233 and start the <code>what</code> string with the character '<code>></code>'. 5234 (In that case, 5235 <code>lua_getinfo</code> pops the function from the top of the stack.) 5236 For instance, to know in which line a function <code>f</code> was defined, 5237 you can write the following code: 5238 5239 <pre> 5240 lua_Debug ar; 5241 lua_getglobal(L, "f"); /* get global 'f' */ 5242 lua_getinfo(L, ">S", &ar); 5243 printf("%d\n", ar.linedefined); 5244 </pre> 5245 5246 <p> 5247 Each character in the string <code>what</code> 5248 selects some fields of the structure <code>ar</code> to be filled or 5249 a value to be pushed on the stack: 5250 5251 <ul> 5252 5253 <li><b>'<code>n</code>': </b> fills in the field <code>name</code> and <code>namewhat</code>; 5254 </li> 5255 5256 <li><b>'<code>S</code>': </b> 5257 fills in the fields <code>source</code>, <code>short_src</code>, 5258 <code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>; 5259 </li> 5260 5261 <li><b>'<code>l</code>': </b> fills in the field <code>currentline</code>; 5262 </li> 5263 5264 <li><b>'<code>t</code>': </b> fills in the field <code>istailcall</code>; 5265 </li> 5266 5267 <li><b>'<code>u</code>': </b> fills in the fields 5268 <code>nups</code>, <code>nparams</code>, and <code>isvararg</code>; 5269 </li> 5270 5271 <li><b>'<code>f</code>': </b> 5272 pushes onto the stack the function that is 5273 running at the given level; 5274 </li> 5275 5276 <li><b>'<code>L</code>': </b> 5277 pushes onto the stack a table whose indices are the 5278 numbers of the lines that are valid on the function. 5279 (A <em>valid line</em> is a line with some associated code, 5280 that is, a line where you can put a break point. 5281 Non-valid lines include empty lines and comments.) 5282 </li> 5283 5284 </ul> 5285 5286 <p> 5287 This function returns 0 on error 5288 (for instance, an invalid option in <code>what</code>). 5289 5290 5291 5292 5293 5294 <hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p> 5295 <span class="apii">[-0, +(0|1), –]</span> 5296 <pre>const char *lua_getlocal (lua_State *L, lua_Debug *ar, int n);</pre> 5297 5298 <p> 5299 Gets information about a local variable of 5300 a given activation record or a given function. 5301 5302 5303 <p> 5304 In the first case, 5305 the parameter <code>ar</code> must be a valid activation record that was 5306 filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or 5307 given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>). 5308 The index <code>n</code> selects which local variable to inspect; 5309 see <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for details about variable indices 5310 and names. 5311 5312 5313 <p> 5314 <a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack 5315 and returns its name. 5316 5317 5318 <p> 5319 In the second case, <code>ar</code> should be <code>NULL</code> and the function 5320 to be inspected must be at the top of the stack. 5321 In this case, only parameters of Lua functions are visible 5322 (as there is no information about what variables are active) 5323 and no values are pushed onto the stack. 5324 5325 5326 <p> 5327 Returns <code>NULL</code> (and pushes nothing) 5328 when the index is greater than 5329 the number of active local variables. 5330 5331 5332 5333 5334 5335 <hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p> 5336 <span class="apii">[-0, +0, –]</span> 5337 <pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre> 5338 5339 <p> 5340 Gets information about the interpreter runtime stack. 5341 5342 5343 <p> 5344 This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with 5345 an identification of the <em>activation record</em> 5346 of the function executing at a given level. 5347 Level 0 is the current running function, 5348 whereas level <em>n+1</em> is the function that has called level <em>n</em> 5349 (except for tail calls, which do not count on the stack). 5350 When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1; 5351 when called with a level greater than the stack depth, 5352 it returns 0. 5353 5354 5355 5356 5357 5358 <hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p> 5359 <span class="apii">[-0, +(0|1), –]</span> 5360 <pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre> 5361 5362 <p> 5363 Gets information about a closure's upvalue. 5364 (For Lua functions, 5365 upvalues are the external local variables that the function uses, 5366 and that are consequently included in its closure.) 5367 <a href="#lua_getupvalue"><code>lua_getupvalue</code></a> gets the index <code>n</code> of an upvalue, 5368 pushes the upvalue's value onto the stack, 5369 and returns its name. 5370 <code>funcindex</code> points to the closure in the stack. 5371 (Upvalues have no particular order, 5372 as they are active through the whole function. 5373 So, they are numbered in an arbitrary order.) 5374 5375 5376 <p> 5377 Returns <code>NULL</code> (and pushes nothing) 5378 when the index is greater than the number of upvalues. 5379 For C functions, this function uses the empty string <code>""</code> 5380 as a name for all upvalues. 5381 5382 5383 5384 5385 5386 <hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3> 5387 <pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre> 5388 5389 <p> 5390 Type for debugging hook functions. 5391 5392 5393 <p> 5394 Whenever a hook is called, its <code>ar</code> argument has its field 5395 <code>event</code> set to the specific event that triggered the hook. 5396 Lua identifies these events with the following constants: 5397 <a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>, 5398 <a name="pdf-LUA_HOOKTAILCALL"><code>LUA_HOOKTAILCALL</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>, 5399 and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>. 5400 Moreover, for line events, the field <code>currentline</code> is also set. 5401 To get the value of any other field in <code>ar</code>, 5402 the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>. 5403 5404 5405 <p> 5406 For call events, <code>event</code> can be <code>LUA_HOOKCALL</code>, 5407 the normal value, or <code>LUA_HOOKTAILCALL</code>, for a tail call; 5408 in this case, there will be no corresponding return event. 5409 5410 5411 <p> 5412 While Lua is running a hook, it disables other calls to hooks. 5413 Therefore, if a hook calls back Lua to execute a function or a chunk, 5414 this execution occurs without any calls to hooks. 5415 5416 5417 <p> 5418 Hook functions cannot have continuations, 5419 that is, they cannot call <a href="#lua_yieldk"><code>lua_yieldk</code></a>, 5420 <a href="#lua_pcallk"><code>lua_pcallk</code></a>, or <a href="#lua_callk"><code>lua_callk</code></a> with a non-null <code>k</code>. 5421 5422 5423 <p> 5424 Hook functions can yield under the following conditions: 5425 Only count and line events can yield 5426 and they cannot yield any value; 5427 to yield a hook function must finish its execution 5428 calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</code> equal to zero. 5429 5430 5431 5432 5433 5434 <hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p> 5435 <span class="apii">[-0, +0, –]</span> 5436 <pre>int lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre> 5437 5438 <p> 5439 Sets the debugging hook function. 5440 5441 5442 <p> 5443 Argument <code>f</code> is the hook function. 5444 <code>mask</code> specifies on which events the hook will be called: 5445 it is formed by a bitwise or of the constants 5446 <a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>, 5447 <a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>, 5448 <a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>, 5449 and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>. 5450 The <code>count</code> argument is only meaningful when the mask 5451 includes <code>LUA_MASKCOUNT</code>. 5452 For each event, the hook is called as explained below: 5453 5454 <ul> 5455 5456 <li><b>The call hook: </b> is called when the interpreter calls a function. 5457 The hook is called just after Lua enters the new function, 5458 before the function gets its arguments. 5459 </li> 5460 5461 <li><b>The return hook: </b> is called when the interpreter returns from a function. 5462 The hook is called just before Lua leaves the function. 5463 There is no standard way to access the values 5464 to be returned by the function. 5465 </li> 5466 5467 <li><b>The line hook: </b> is called when the interpreter is about to 5468 start the execution of a new line of code, 5469 or when it jumps back in the code (even to the same line). 5470 (This event only happens while Lua is executing a Lua function.) 5471 </li> 5472 5473 <li><b>The count hook: </b> is called after the interpreter executes every 5474 <code>count</code> instructions. 5475 (This event only happens while Lua is executing a Lua function.) 5476 </li> 5477 5478 </ul> 5479 5480 <p> 5481 A hook is disabled by setting <code>mask</code> to zero. 5482 5483 5484 5485 5486 5487 <hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p> 5488 <span class="apii">[-(0|1), +0, –]</span> 5489 <pre>const char *lua_setlocal (lua_State *L, lua_Debug *ar, int n);</pre> 5490 5491 <p> 5492 Sets the value of a local variable of a given activation record. 5493 Parameters <code>ar</code> and <code>n</code> are as in <a href="#lua_getlocal"><code>lua_getlocal</code></a> 5494 (see <a href="#lua_getlocal"><code>lua_getlocal</code></a>). 5495 <a href="#lua_setlocal"><code>lua_setlocal</code></a> assigns the value at the top of the stack 5496 to the variable and returns its name. 5497 It also pops the value from the stack. 5498 5499 5500 <p> 5501 Returns <code>NULL</code> (and pops nothing) 5502 when the index is greater than 5503 the number of active local variables. 5504 5505 5506 5507 5508 5509 <hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p> 5510 <span class="apii">[-(0|1), +0, –]</span> 5511 <pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre> 5512 5513 <p> 5514 Sets the value of a closure's upvalue. 5515 It assigns the value at the top of the stack 5516 to the upvalue and returns its name. 5517 It also pops the value from the stack. 5518 Parameters <code>funcindex</code> and <code>n</code> are as in the <a href="#lua_getupvalue"><code>lua_getupvalue</code></a> 5519 (see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>). 5520 5521 5522 <p> 5523 Returns <code>NULL</code> (and pops nothing) 5524 when the index is greater than the number of upvalues. 5525 5526 5527 5528 5529 5530 <hr><h3><a name="lua_upvalueid"><code>lua_upvalueid</code></a></h3><p> 5531 <span class="apii">[-0, +0, –]</span> 5532 <pre>void *lua_upvalueid (lua_State *L, int funcindex, int n);</pre> 5533 5534 <p> 5535 Returns an unique identifier for the upvalue numbered <code>n</code> 5536 from the closure at index <code>funcindex</code>. 5537 Parameters <code>funcindex</code> and <code>n</code> are as in the <a href="#lua_getupvalue"><code>lua_getupvalue</code></a> 5538 (see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>) 5539 (but <code>n</code> cannot be greater than the number of upvalues). 5540 5541 5542 <p> 5543 These unique identifiers allow a program to check whether different 5544 closures share upvalues. 5545 Lua closures that share an upvalue 5546 (that is, that access a same external local variable) 5547 will return identical ids for those upvalue indices. 5548 5549 5550 5551 5552 5553 <hr><h3><a name="lua_upvaluejoin"><code>lua_upvaluejoin</code></a></h3><p> 5554 <span class="apii">[-0, +0, –]</span> 5555 <pre>void lua_upvaluejoin (lua_State *L, int funcindex1, int n1, 5556 int funcindex2, int n2);</pre> 5557 5558 <p> 5559 Make the <code>n1</code>-th upvalue of the Lua closure at index <code>funcindex1</code> 5560 refer to the <code>n2</code>-th upvalue of the Lua closure at index <code>funcindex2</code>. 5561 5562 5563 5564 5565 5566 5567 5568 <h1>5 – <a name="5">The Auxiliary Library</a></h1> 5569 5570 <p> 5571 5572 The <em>auxiliary library</em> provides several convenient functions 5573 to interface C with Lua. 5574 While the basic API provides the primitive functions for all 5575 interactions between C and Lua, 5576 the auxiliary library provides higher-level functions for some 5577 common tasks. 5578 5579 5580 <p> 5581 All functions and types from the auxiliary library 5582 are defined in header file <code>lauxlib.h</code> and 5583 have a prefix <code>luaL_</code>. 5584 5585 5586 <p> 5587 All functions in the auxiliary library are built on 5588 top of the basic API, 5589 and so they provide nothing that cannot be done with that API. 5590 Nevertheless, the use of the auxiliary library ensures 5591 more consistency to your code. 5592 5593 5594 <p> 5595 Several functions in the auxiliary library use internally some 5596 extra stack slots. 5597 When a function in the auxiliary library uses less than five slots, 5598 it does not check the stack size; 5599 it simply assumes that there are enough slots. 5600 5601 5602 <p> 5603 Several functions in the auxiliary library are used to 5604 check C function arguments. 5605 Because the error message is formatted for arguments 5606 (e.g., "<code>bad argument #1</code>"), 5607 you should not use these functions for other stack values. 5608 5609 5610 <p> 5611 Functions called <code>luaL_check*</code> 5612 always throw an error if the check is not satisfied. 5613 5614 5615 5616 <h2>5.1 – <a name="5.1">Functions and Types</a></h2> 5617 5618 <p> 5619 Here we list all functions and types from the auxiliary library 5620 in alphabetical order. 5621 5622 5623 5624 <hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p> 5625 <span class="apii">[-?, +?, <em>e</em>]</span> 5626 <pre>void luaL_addchar (luaL_Buffer *B, char c);</pre> 5627 5628 <p> 5629 Adds the byte <code>c</code> to the buffer <code>B</code> 5630 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5631 5632 5633 5634 5635 5636 <hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p> 5637 <span class="apii">[-?, +?, <em>e</em>]</span> 5638 <pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre> 5639 5640 <p> 5641 Adds the string pointed to by <code>s</code> with length <code>l</code> to 5642 the buffer <code>B</code> 5643 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5644 The string can contain embedded zeros. 5645 5646 5647 5648 5649 5650 <hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p> 5651 <span class="apii">[-?, +?, <em>e</em>]</span> 5652 <pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre> 5653 5654 <p> 5655 Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>) 5656 a string of length <code>n</code> previously copied to the 5657 buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>). 5658 5659 5660 5661 5662 5663 <hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p> 5664 <span class="apii">[-?, +?, <em>e</em>]</span> 5665 <pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre> 5666 5667 <p> 5668 Adds the zero-terminated string pointed to by <code>s</code> 5669 to the buffer <code>B</code> 5670 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5671 The string cannot contain embedded zeros. 5672 5673 5674 5675 5676 5677 <hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p> 5678 <span class="apii">[-1, +?, <em>e</em>]</span> 5679 <pre>void luaL_addvalue (luaL_Buffer *B);</pre> 5680 5681 <p> 5682 Adds the value at the top of the stack 5683 to the buffer <code>B</code> 5684 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5685 Pops the value. 5686 5687 5688 <p> 5689 This is the only function on string buffers that can (and must) 5690 be called with an extra element on the stack, 5691 which is the value to be added to the buffer. 5692 5693 5694 5695 5696 5697 <hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p> 5698 <span class="apii">[-0, +0, <em>v</em>]</span> 5699 <pre>void luaL_argcheck (lua_State *L, 5700 int cond, 5701 int arg, 5702 const char *extramsg);</pre> 5703 5704 <p> 5705 Checks whether <code>cond</code> is true. 5706 If not, raises an error with a standard message. 5707 5708 5709 5710 5711 5712 <hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p> 5713 <span class="apii">[-0, +0, <em>v</em>]</span> 5714 <pre>int luaL_argerror (lua_State *L, int arg, const char *extramsg);</pre> 5715 5716 <p> 5717 Raises an error with a standard message 5718 that includes <code>extramsg</code> as a comment. 5719 5720 5721 <p> 5722 This function never returns, 5723 but it is an idiom to use it in C functions 5724 as <code>return luaL_argerror(<em>args</em>)</code>. 5725 5726 5727 5728 5729 5730 <hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3> 5731 <pre>typedef struct luaL_Buffer luaL_Buffer;</pre> 5732 5733 <p> 5734 Type for a <em>string buffer</em>. 5735 5736 5737 <p> 5738 A string buffer allows C code to build Lua strings piecemeal. 5739 Its pattern of use is as follows: 5740 5741 <ul> 5742 5743 <li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li> 5744 5745 <li>Then initialize it with a call <code>luaL_buffinit(L, &b)</code>.</li> 5746 5747 <li> 5748 Then add string pieces to the buffer calling any of 5749 the <code>luaL_add*</code> functions. 5750 </li> 5751 5752 <li> 5753 Finish by calling <code>luaL_pushresult(&b)</code>. 5754 This call leaves the final string on the top of the stack. 5755 </li> 5756 5757 </ul> 5758 5759 <p> 5760 If you know beforehand the total size of the resulting string, 5761 you can use the buffer like this: 5762 5763 <ul> 5764 5765 <li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li> 5766 5767 <li>Then initialize it and preallocate a space of 5768 size <code>sz</code> with a call <code>luaL_buffinitsize(L, &b, sz)</code>.</li> 5769 5770 <li>Then copy the string into that space.</li> 5771 5772 <li> 5773 Finish by calling <code>luaL_pushresultsize(&b, sz)</code>, 5774 where <code>sz</code> is the total size of the resulting string 5775 copied into that space. 5776 </li> 5777 5778 </ul> 5779 5780 <p> 5781 During its normal operation, 5782 a string buffer uses a variable number of stack slots. 5783 So, while using a buffer, you cannot assume that you know where 5784 the top of the stack is. 5785 You can use the stack between successive calls to buffer operations 5786 as long as that use is balanced; 5787 that is, 5788 when you call a buffer operation, 5789 the stack is at the same level 5790 it was immediately after the previous buffer operation. 5791 (The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.) 5792 After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its 5793 level when the buffer was initialized, 5794 plus the final string on its top. 5795 5796 5797 5798 5799 5800 <hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p> 5801 <span class="apii">[-0, +0, –]</span> 5802 <pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre> 5803 5804 <p> 5805 Initializes a buffer <code>B</code>. 5806 This function does not allocate any space; 5807 the buffer must be declared as a variable 5808 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 5809 5810 5811 5812 5813 5814 <hr><h3><a name="luaL_buffinitsize"><code>luaL_buffinitsize</code></a></h3><p> 5815 <span class="apii">[-?, +?, <em>e</em>]</span> 5816 <pre>char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz);</pre> 5817 5818 <p> 5819 Equivalent to the sequence 5820 <a href="#luaL_buffinit"><code>luaL_buffinit</code></a>, <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>. 5821 5822 5823 5824 5825 5826 <hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p> 5827 <span class="apii">[-0, +(0|1), <em>e</em>]</span> 5828 <pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre> 5829 5830 <p> 5831 Calls a metamethod. 5832 5833 5834 <p> 5835 If the object at index <code>obj</code> has a metatable and this 5836 metatable has a field <code>e</code>, 5837 this function calls this field passing the object as its only argument. 5838 In this case this function returns true and pushes onto the 5839 stack the value returned by the call. 5840 If there is no metatable or no metamethod, 5841 this function returns false (without pushing any value on the stack). 5842 5843 5844 5845 5846 5847 <hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p> 5848 <span class="apii">[-0, +0, <em>v</em>]</span> 5849 <pre>void luaL_checkany (lua_State *L, int arg);</pre> 5850 5851 <p> 5852 Checks whether the function has an argument 5853 of any type (including <b>nil</b>) at position <code>arg</code>. 5854 5855 5856 5857 5858 5859 <hr><h3><a name="luaL_checkint"><code>luaL_checkint</code></a></h3><p> 5860 <span class="apii">[-0, +0, <em>v</em>]</span> 5861 <pre>int luaL_checkint (lua_State *L, int arg);</pre> 5862 5863 <p> 5864 Checks whether the function argument <code>arg</code> is a number 5865 and returns this number cast to an <code>int</code>. 5866 5867 5868 5869 5870 5871 <hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p> 5872 <span class="apii">[-0, +0, <em>v</em>]</span> 5873 <pre>lua_Integer luaL_checkinteger (lua_State *L, int arg);</pre> 5874 5875 <p> 5876 Checks whether the function argument <code>arg</code> is a number 5877 and returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>. 5878 5879 5880 5881 5882 5883 <hr><h3><a name="luaL_checklong"><code>luaL_checklong</code></a></h3><p> 5884 <span class="apii">[-0, +0, <em>v</em>]</span> 5885 <pre>long luaL_checklong (lua_State *L, int arg);</pre> 5886 5887 <p> 5888 Checks whether the function argument <code>arg</code> is a number 5889 and returns this number cast to a <code>long</code>. 5890 5891 5892 5893 5894 5895 <hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p> 5896 <span class="apii">[-0, +0, <em>v</em>]</span> 5897 <pre>const char *luaL_checklstring (lua_State *L, int arg, size_t *l);</pre> 5898 5899 <p> 5900 Checks whether the function argument <code>arg</code> is a string 5901 and returns this string; 5902 if <code>l</code> is not <code>NULL</code> fills <code>*l</code> 5903 with the string's length. 5904 5905 5906 <p> 5907 This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result, 5908 so all conversions and caveats of that function apply here. 5909 5910 5911 5912 5913 5914 <hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p> 5915 <span class="apii">[-0, +0, <em>v</em>]</span> 5916 <pre>lua_Number luaL_checknumber (lua_State *L, int arg);</pre> 5917 5918 <p> 5919 Checks whether the function argument <code>arg</code> is a number 5920 and returns this number. 5921 5922 5923 5924 5925 5926 <hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p> 5927 <span class="apii">[-0, +0, <em>v</em>]</span> 5928 <pre>int luaL_checkoption (lua_State *L, 5929 int arg, 5930 const char *def, 5931 const char *const lst[]);</pre> 5932 5933 <p> 5934 Checks whether the function argument <code>arg</code> is a string and 5935 searches for this string in the array <code>lst</code> 5936 (which must be NULL-terminated). 5937 Returns the index in the array where the string was found. 5938 Raises an error if the argument is not a string or 5939 if the string cannot be found. 5940 5941 5942 <p> 5943 If <code>def</code> is not <code>NULL</code>, 5944 the function uses <code>def</code> as a default value when 5945 there is no argument <code>arg</code> or when this argument is <b>nil</b>. 5946 5947 5948 <p> 5949 This is a useful function for mapping strings to C enums. 5950 (The usual convention in Lua libraries is 5951 to use strings instead of numbers to select options.) 5952 5953 5954 5955 5956 5957 <hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p> 5958 <span class="apii">[-0, +0, <em>v</em>]</span> 5959 <pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre> 5960 5961 <p> 5962 Grows the stack size to <code>top + sz</code> elements, 5963 raising an error if the stack cannot grow to that size. 5964 <code>msg</code> is an additional text to go into the error message 5965 (or <code>NULL</code> for no additional text). 5966 5967 5968 5969 5970 5971 <hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p> 5972 <span class="apii">[-0, +0, <em>v</em>]</span> 5973 <pre>const char *luaL_checkstring (lua_State *L, int arg);</pre> 5974 5975 <p> 5976 Checks whether the function argument <code>arg</code> is a string 5977 and returns this string. 5978 5979 5980 <p> 5981 This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result, 5982 so all conversions and caveats of that function apply here. 5983 5984 5985 5986 5987 5988 <hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p> 5989 <span class="apii">[-0, +0, <em>v</em>]</span> 5990 <pre>void luaL_checktype (lua_State *L, int arg, int t);</pre> 5991 5992 <p> 5993 Checks whether the function argument <code>arg</code> has type <code>t</code>. 5994 See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>. 5995 5996 5997 5998 5999 6000 <hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p> 6001 <span class="apii">[-0, +0, <em>v</em>]</span> 6002 <pre>void *luaL_checkudata (lua_State *L, int arg, const char *tname);</pre> 6003 6004 <p> 6005 Checks whether the function argument <code>arg</code> is a userdata 6006 of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>) and 6007 returns the userdata address (see <a href="#lua_touserdata"><code>lua_touserdata</code></a>). 6008 6009 6010 6011 6012 6013 <hr><h3><a name="luaL_checkunsigned"><code>luaL_checkunsigned</code></a></h3><p> 6014 <span class="apii">[-0, +0, <em>v</em>]</span> 6015 <pre>lua_Unsigned luaL_checkunsigned (lua_State *L, int arg);</pre> 6016 6017 <p> 6018 Checks whether the function argument <code>arg</code> is a number 6019 and returns this number cast to a <a href="#lua_Unsigned"><code>lua_Unsigned</code></a>. 6020 6021 6022 6023 6024 6025 <hr><h3><a name="luaL_checkversion"><code>luaL_checkversion</code></a></h3><p> 6026 <span class="apii">[-0, +0, –]</span> 6027 <pre>void luaL_checkversion (lua_State *L);</pre> 6028 6029 <p> 6030 Checks whether the core running the call, 6031 the core that created the Lua state, 6032 and the code making the call are all using the same version of Lua. 6033 Also checks whether the core running the call 6034 and the core that created the Lua state 6035 are using the same address space. 6036 6037 6038 6039 6040 6041 <hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p> 6042 <span class="apii">[-0, +?, <em>e</em>]</span> 6043 <pre>int luaL_dofile (lua_State *L, const char *filename);</pre> 6044 6045 <p> 6046 Loads and runs the given file. 6047 It is defined as the following macro: 6048 6049 <pre> 6050 (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0)) 6051 </pre><p> 6052 It returns false if there are no errors 6053 or true in case of errors. 6054 6055 6056 6057 6058 6059 <hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p> 6060 <span class="apii">[-0, +?, –]</span> 6061 <pre>int luaL_dostring (lua_State *L, const char *str);</pre> 6062 6063 <p> 6064 Loads and runs the given string. 6065 It is defined as the following macro: 6066 6067 <pre> 6068 (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0)) 6069 </pre><p> 6070 It returns false if there are no errors 6071 or true in case of errors. 6072 6073 6074 6075 6076 6077 <hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p> 6078 <span class="apii">[-0, +0, <em>v</em>]</span> 6079 <pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre> 6080 6081 <p> 6082 Raises an error. 6083 The error message format is given by <code>fmt</code> 6084 plus any extra arguments, 6085 following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>. 6086 It also adds at the beginning of the message the file name and 6087 the line number where the error occurred, 6088 if this information is available. 6089 6090 6091 <p> 6092 This function never returns, 6093 but it is an idiom to use it in C functions 6094 as <code>return luaL_error(<em>args</em>)</code>. 6095 6096 6097 6098 6099 6100 <hr><h3><a name="luaL_execresult"><code>luaL_execresult</code></a></h3><p> 6101 <span class="apii">[-0, +3, <em>e</em>]</span> 6102 <pre>int luaL_execresult (lua_State *L, int stat);</pre> 6103 6104 <p> 6105 This function produces the return values for 6106 process-related functions in the standard library 6107 (<a href="#pdf-os.execute"><code>os.execute</code></a> and <a href="#pdf-io.close"><code>io.close</code></a>). 6108 6109 6110 6111 6112 6113 <hr><h3><a name="luaL_fileresult"><code>luaL_fileresult</code></a></h3><p> 6114 <span class="apii">[-0, +(1|3), <em>e</em>]</span> 6115 <pre>int luaL_fileresult (lua_State *L, int stat, const char *fname);</pre> 6116 6117 <p> 6118 This function produces the return values for 6119 file-related functions in the standard library 6120 (<a href="#pdf-io.open"><code>io.open</code></a>, <a href="#pdf-os.rename"><code>os.rename</code></a>, <a href="#pdf-file:seek"><code>file:seek</code></a>, etc.). 6121 6122 6123 6124 6125 6126 <hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p> 6127 <span class="apii">[-0, +(0|1), <em>e</em>]</span> 6128 <pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre> 6129 6130 <p> 6131 Pushes onto the stack the field <code>e</code> from the metatable 6132 of the object at index <code>obj</code>. 6133 If the object does not have a metatable, 6134 or if the metatable does not have this field, 6135 returns false and pushes nothing. 6136 6137 6138 6139 6140 6141 <hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p> 6142 <span class="apii">[-0, +1, –]</span> 6143 <pre>void luaL_getmetatable (lua_State *L, const char *tname);</pre> 6144 6145 <p> 6146 Pushes onto the stack the metatable associated with name <code>tname</code> 6147 in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>). 6148 6149 6150 6151 6152 6153 <hr><h3><a name="luaL_getsubtable"><code>luaL_getsubtable</code></a></h3><p> 6154 <span class="apii">[-0, +1, <em>e</em>]</span> 6155 <pre>int luaL_getsubtable (lua_State *L, int idx, const char *fname);</pre> 6156 6157 <p> 6158 Ensures that the value <code>t[fname]</code>, 6159 where <code>t</code> is the value at index <code>idx</code>, 6160 is a table, 6161 and pushes that table onto the stack. 6162 Returns true if it finds a previous table there 6163 and false if it creates a new table. 6164 6165 6166 6167 6168 6169 <hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p> 6170 <span class="apii">[-0, +1, <em>e</em>]</span> 6171 <pre>const char *luaL_gsub (lua_State *L, 6172 const char *s, 6173 const char *p, 6174 const char *r);</pre> 6175 6176 <p> 6177 Creates a copy of string <code>s</code> by replacing 6178 any occurrence of the string <code>p</code> 6179 with the string <code>r</code>. 6180 Pushes the resulting string on the stack and returns it. 6181 6182 6183 6184 6185 6186 <hr><h3><a name="luaL_len"><code>luaL_len</code></a></h3><p> 6187 <span class="apii">[-0, +0, <em>e</em>]</span> 6188 <pre>int luaL_len (lua_State *L, int index);</pre> 6189 6190 <p> 6191 Returns the "length" of the value at the given index 6192 as a number; 6193 it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.6">§3.4.6</a>). 6194 Raises an error if the result of the operation is not a number. 6195 (This case only can happen through metamethods.) 6196 6197 6198 6199 6200 6201 <hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p> 6202 <span class="apii">[-0, +1, –]</span> 6203 <pre>int luaL_loadbuffer (lua_State *L, 6204 const char *buff, 6205 size_t sz, 6206 const char *name);</pre> 6207 6208 <p> 6209 Equivalent to <a href="#luaL_loadbufferx"><code>luaL_loadbufferx</code></a> with <code>mode</code> equal to <code>NULL</code>. 6210 6211 6212 6213 6214 6215 <hr><h3><a name="luaL_loadbufferx"><code>luaL_loadbufferx</code></a></h3><p> 6216 <span class="apii">[-0, +1, –]</span> 6217 <pre>int luaL_loadbufferx (lua_State *L, 6218 const char *buff, 6219 size_t sz, 6220 const char *name, 6221 const char *mode);</pre> 6222 6223 <p> 6224 Loads a buffer as a Lua chunk. 6225 This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the 6226 buffer pointed to by <code>buff</code> with size <code>sz</code>. 6227 6228 6229 <p> 6230 This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>. 6231 <code>name</code> is the chunk name, 6232 used for debug information and error messages. 6233 The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>. 6234 6235 6236 6237 6238 6239 <hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p> 6240 <span class="apii">[-0, +1, <em>e</em>]</span> 6241 <pre>int luaL_loadfile (lua_State *L, const char *filename);</pre> 6242 6243 <p> 6244 Equivalent to <a href="#luaL_loadfilex"><code>luaL_loadfilex</code></a> with <code>mode</code> equal to <code>NULL</code>. 6245 6246 6247 6248 6249 6250 <hr><h3><a name="luaL_loadfilex"><code>luaL_loadfilex</code></a></h3><p> 6251 <span class="apii">[-0, +1, <em>e</em>]</span> 6252 <pre>int luaL_loadfilex (lua_State *L, const char *filename, 6253 const char *mode);</pre> 6254 6255 <p> 6256 Loads a file as a Lua chunk. 6257 This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file 6258 named <code>filename</code>. 6259 If <code>filename</code> is <code>NULL</code>, 6260 then it loads from the standard input. 6261 The first line in the file is ignored if it starts with a <code>#</code>. 6262 6263 6264 <p> 6265 The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>. 6266 6267 6268 <p> 6269 This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>, 6270 but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a> 6271 if it cannot open/read the file or the file has a wrong mode. 6272 6273 6274 <p> 6275 As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk; 6276 it does not run it. 6277 6278 6279 6280 6281 6282 <hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p> 6283 <span class="apii">[-0, +1, –]</span> 6284 <pre>int luaL_loadstring (lua_State *L, const char *s);</pre> 6285 6286 <p> 6287 Loads a string as a Lua chunk. 6288 This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in 6289 the zero-terminated string <code>s</code>. 6290 6291 6292 <p> 6293 This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>. 6294 6295 6296 <p> 6297 Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk; 6298 it does not run it. 6299 6300 6301 6302 6303 6304 <hr><h3><a name="luaL_newlib"><code>luaL_newlib</code></a></h3><p> 6305 <span class="apii">[-0, +1, <em>e</em>]</span> 6306 <pre>void luaL_newlib (lua_State *L, const luaL_Reg *l);</pre> 6307 6308 <p> 6309 Creates a new table and registers there 6310 the functions in list <code>l</code>. 6311 It is implemented as the following macro: 6312 6313 <pre> 6314 (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0)) 6315 </pre> 6316 6317 6318 6319 6320 <hr><h3><a name="luaL_newlibtable"><code>luaL_newlibtable</code></a></h3><p> 6321 <span class="apii">[-0, +1, <em>e</em>]</span> 6322 <pre>void luaL_newlibtable (lua_State *L, const luaL_Reg l[]);</pre> 6323 6324 <p> 6325 Creates a new table with a size optimized 6326 to store all entries in the array <code>l</code> 6327 (but does not actually store them). 6328 It is intended to be used in conjunction with <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a> 6329 (see <a href="#luaL_newlib"><code>luaL_newlib</code></a>). 6330 6331 6332 <p> 6333 It is implemented as a macro. 6334 The array <code>l</code> must be the actual array, 6335 not a pointer to it. 6336 6337 6338 6339 6340 6341 <hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p> 6342 <span class="apii">[-0, +1, <em>e</em>]</span> 6343 <pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre> 6344 6345 <p> 6346 If the registry already has the key <code>tname</code>, 6347 returns 0. 6348 Otherwise, 6349 creates a new table to be used as a metatable for userdata, 6350 adds it to the registry with key <code>tname</code>, 6351 and returns 1. 6352 6353 6354 <p> 6355 In both cases pushes onto the stack the final value associated 6356 with <code>tname</code> in the registry. 6357 6358 6359 6360 6361 6362 <hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p> 6363 <span class="apii">[-0, +0, –]</span> 6364 <pre>lua_State *luaL_newstate (void);</pre> 6365 6366 <p> 6367 Creates a new Lua state. 6368 It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an 6369 allocator based on the standard C <code>realloc</code> function 6370 and then sets a panic function (see <a href="#4.6">§4.6</a>) that prints 6371 an error message to the standard error output in case of fatal 6372 errors. 6373 6374 6375 <p> 6376 Returns the new state, 6377 or <code>NULL</code> if there is a memory allocation error. 6378 6379 6380 6381 6382 6383 <hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p> 6384 <span class="apii">[-0, +0, <em>e</em>]</span> 6385 <pre>void luaL_openlibs (lua_State *L);</pre> 6386 6387 <p> 6388 Opens all standard Lua libraries into the given state. 6389 6390 6391 6392 6393 6394 <hr><h3><a name="luaL_optint"><code>luaL_optint</code></a></h3><p> 6395 <span class="apii">[-0, +0, <em>v</em>]</span> 6396 <pre>int luaL_optint (lua_State *L, int arg, int d);</pre> 6397 6398 <p> 6399 If the function argument <code>arg</code> is a number, 6400 returns this number cast to an <code>int</code>. 6401 If this argument is absent or is <b>nil</b>, 6402 returns <code>d</code>. 6403 Otherwise, raises an error. 6404 6405 6406 6407 6408 6409 <hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p> 6410 <span class="apii">[-0, +0, <em>v</em>]</span> 6411 <pre>lua_Integer luaL_optinteger (lua_State *L, 6412 int arg, 6413 lua_Integer d);</pre> 6414 6415 <p> 6416 If the function argument <code>arg</code> is a number, 6417 returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>. 6418 If this argument is absent or is <b>nil</b>, 6419 returns <code>d</code>. 6420 Otherwise, raises an error. 6421 6422 6423 6424 6425 6426 <hr><h3><a name="luaL_optlong"><code>luaL_optlong</code></a></h3><p> 6427 <span class="apii">[-0, +0, <em>v</em>]</span> 6428 <pre>long luaL_optlong (lua_State *L, int arg, long d);</pre> 6429 6430 <p> 6431 If the function argument <code>arg</code> is a number, 6432 returns this number cast to a <code>long</code>. 6433 If this argument is absent or is <b>nil</b>, 6434 returns <code>d</code>. 6435 Otherwise, raises an error. 6436 6437 6438 6439 6440 6441 <hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p> 6442 <span class="apii">[-0, +0, <em>v</em>]</span> 6443 <pre>const char *luaL_optlstring (lua_State *L, 6444 int arg, 6445 const char *d, 6446 size_t *l);</pre> 6447 6448 <p> 6449 If the function argument <code>arg</code> is a string, 6450 returns this string. 6451 If this argument is absent or is <b>nil</b>, 6452 returns <code>d</code>. 6453 Otherwise, raises an error. 6454 6455 6456 <p> 6457 If <code>l</code> is not <code>NULL</code>, 6458 fills the position <code>*l</code> with the result's length. 6459 6460 6461 6462 6463 6464 <hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p> 6465 <span class="apii">[-0, +0, <em>v</em>]</span> 6466 <pre>lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number d);</pre> 6467 6468 <p> 6469 If the function argument <code>arg</code> is a number, 6470 returns this number. 6471 If this argument is absent or is <b>nil</b>, 6472 returns <code>d</code>. 6473 Otherwise, raises an error. 6474 6475 6476 6477 6478 6479 <hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p> 6480 <span class="apii">[-0, +0, <em>v</em>]</span> 6481 <pre>const char *luaL_optstring (lua_State *L, 6482 int arg, 6483 const char *d);</pre> 6484 6485 <p> 6486 If the function argument <code>arg</code> is a string, 6487 returns this string. 6488 If this argument is absent or is <b>nil</b>, 6489 returns <code>d</code>. 6490 Otherwise, raises an error. 6491 6492 6493 6494 6495 6496 <hr><h3><a name="luaL_optunsigned"><code>luaL_optunsigned</code></a></h3><p> 6497 <span class="apii">[-0, +0, <em>v</em>]</span> 6498 <pre>lua_Unsigned luaL_optunsigned (lua_State *L, 6499 int arg, 6500 lua_Unsigned u);</pre> 6501 6502 <p> 6503 If the function argument <code>arg</code> is a number, 6504 returns this number cast to a <a href="#lua_Unsigned"><code>lua_Unsigned</code></a>. 6505 If this argument is absent or is <b>nil</b>, 6506 returns <code>u</code>. 6507 Otherwise, raises an error. 6508 6509 6510 6511 6512 6513 <hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p> 6514 <span class="apii">[-?, +?, <em>e</em>]</span> 6515 <pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre> 6516 6517 <p> 6518 Equivalent to <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a> 6519 with the predefined size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>. 6520 6521 6522 6523 6524 6525 <hr><h3><a name="luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a></h3><p> 6526 <span class="apii">[-?, +?, <em>e</em>]</span> 6527 <pre>char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz);</pre> 6528 6529 <p> 6530 Returns an address to a space of size <code>sz</code> 6531 where you can copy a string to be added to buffer <code>B</code> 6532 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>). 6533 After copying the string into this space you must call 6534 <a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add 6535 it to the buffer. 6536 6537 6538 6539 6540 6541 <hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p> 6542 <span class="apii">[-?, +1, <em>e</em>]</span> 6543 <pre>void luaL_pushresult (luaL_Buffer *B);</pre> 6544 6545 <p> 6546 Finishes the use of buffer <code>B</code> leaving the final string on 6547 the top of the stack. 6548 6549 6550 6551 6552 6553 <hr><h3><a name="luaL_pushresultsize"><code>luaL_pushresultsize</code></a></h3><p> 6554 <span class="apii">[-?, +1, <em>e</em>]</span> 6555 <pre>void luaL_pushresultsize (luaL_Buffer *B, size_t sz);</pre> 6556 6557 <p> 6558 Equivalent to the sequence <a href="#luaL_addsize"><code>luaL_addsize</code></a>, <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>. 6559 6560 6561 6562 6563 6564 <hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p> 6565 <span class="apii">[-1, +0, <em>e</em>]</span> 6566 <pre>int luaL_ref (lua_State *L, int t);</pre> 6567 6568 <p> 6569 Creates and returns a <em>reference</em>, 6570 in the table at index <code>t</code>, 6571 for the object at the top of the stack (and pops the object). 6572 6573 6574 <p> 6575 A reference is a unique integer key. 6576 As long as you do not manually add integer keys into table <code>t</code>, 6577 <a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns. 6578 You can retrieve an object referred by reference <code>r</code> 6579 by calling <code>lua_rawgeti(L, t, r)</code>. 6580 Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object. 6581 6582 6583 <p> 6584 If the object at the top of the stack is <b>nil</b>, 6585 <a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>. 6586 The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different 6587 from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>. 6588 6589 6590 6591 6592 6593 <hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3> 6594 <pre>typedef struct luaL_Reg { 6595 const char *name; 6596 lua_CFunction func; 6597 } luaL_Reg;</pre> 6598 6599 <p> 6600 Type for arrays of functions to be registered by 6601 <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>. 6602 <code>name</code> is the function name and <code>func</code> is a pointer to 6603 the function. 6604 Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with an sentinel entry 6605 in which both <code>name</code> and <code>func</code> are <code>NULL</code>. 6606 6607 6608 6609 6610 6611 <hr><h3><a name="luaL_requiref"><code>luaL_requiref</code></a></h3><p> 6612 <span class="apii">[-0, +1, <em>e</em>]</span> 6613 <pre>void luaL_requiref (lua_State *L, const char *modname, 6614 lua_CFunction openf, int glb);</pre> 6615 6616 <p> 6617 Calls function <code>openf</code> with string <code>modname</code> as an argument 6618 and sets the call result in <code>package.loaded[modname]</code>, 6619 as if that function has been called through <a href="#pdf-require"><code>require</code></a>. 6620 6621 6622 <p> 6623 If <code>glb</code> is true, 6624 also stores the result into global <code>modname</code>. 6625 6626 6627 <p> 6628 Leaves a copy of that result on the stack. 6629 6630 6631 6632 6633 6634 <hr><h3><a name="luaL_setfuncs"><code>luaL_setfuncs</code></a></h3><p> 6635 <span class="apii">[-nup, +0, <em>e</em>]</span> 6636 <pre>void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);</pre> 6637 6638 <p> 6639 Registers all functions in the array <code>l</code> 6640 (see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack 6641 (below optional upvalues, see next). 6642 6643 6644 <p> 6645 When <code>nup</code> is not zero, 6646 all functions are created sharing <code>nup</code> upvalues, 6647 which must be previously pushed on the stack 6648 on top of the library table. 6649 These values are popped from the stack after the registration. 6650 6651 6652 6653 6654 6655 <hr><h3><a name="luaL_setmetatable"><code>luaL_setmetatable</code></a></h3><p> 6656 <span class="apii">[-0, +0, –]</span> 6657 <pre>void luaL_setmetatable (lua_State *L, const char *tname);</pre> 6658 6659 <p> 6660 Sets the metatable of the object at the top of the stack 6661 as the metatable associated with name <code>tname</code> 6662 in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>). 6663 6664 6665 6666 6667 6668 <hr><h3><a name="luaL_testudata"><code>luaL_testudata</code></a></h3><p> 6669 <span class="apii">[-0, +0, <em>e</em>]</span> 6670 <pre>void *luaL_testudata (lua_State *L, int arg, const char *tname);</pre> 6671 6672 <p> 6673 This function works like <a href="#luaL_checkudata"><code>luaL_checkudata</code></a>, 6674 except that, when the test fails, 6675 it returns <code>NULL</code> instead of throwing an error. 6676 6677 6678 6679 6680 6681 <hr><h3><a name="luaL_tolstring"><code>luaL_tolstring</code></a></h3><p> 6682 <span class="apii">[-0, +1, <em>e</em>]</span> 6683 <pre>const char *luaL_tolstring (lua_State *L, int idx, size_t *len);</pre> 6684 6685 <p> 6686 Converts any Lua value at the given index to a C string 6687 in a reasonable format. 6688 The resulting string is pushed onto the stack and also 6689 returned by the function. 6690 If <code>len</code> is not <code>NULL</code>, 6691 the function also sets <code>*len</code> with the string length. 6692 6693 6694 <p> 6695 If the value has a metatable with a <code>"__tostring"</code> field, 6696 then <code>luaL_tolstring</code> calls the corresponding metamethod 6697 with the value as argument, 6698 and uses the result of the call as its result. 6699 6700 6701 6702 6703 6704 <hr><h3><a name="luaL_traceback"><code>luaL_traceback</code></a></h3><p> 6705 <span class="apii">[-0, +1, <em>e</em>]</span> 6706 <pre>void luaL_traceback (lua_State *L, lua_State *L1, const char *msg, 6707 int level);</pre> 6708 6709 <p> 6710 Creates and pushes a traceback of the stack <code>L1</code>. 6711 If <code>msg</code> is not <code>NULL</code> it is appended 6712 at the beginning of the traceback. 6713 The <code>level</code> parameter tells at which level 6714 to start the traceback. 6715 6716 6717 6718 6719 6720 <hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p> 6721 <span class="apii">[-0, +0, –]</span> 6722 <pre>const char *luaL_typename (lua_State *L, int index);</pre> 6723 6724 <p> 6725 Returns the name of the type of the value at the given index. 6726 6727 6728 6729 6730 6731 <hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p> 6732 <span class="apii">[-0, +0, –]</span> 6733 <pre>void luaL_unref (lua_State *L, int t, int ref);</pre> 6734 6735 <p> 6736 Releases reference <code>ref</code> from the table at index <code>t</code> 6737 (see <a href="#luaL_ref"><code>luaL_ref</code></a>). 6738 The entry is removed from the table, 6739 so that the referred object can be collected. 6740 The reference <code>ref</code> is also freed to be used again. 6741 6742 6743 <p> 6744 If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>, 6745 <a href="#luaL_unref"><code>luaL_unref</code></a> does nothing. 6746 6747 6748 6749 6750 6751 <hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p> 6752 <span class="apii">[-0, +1, <em>e</em>]</span> 6753 <pre>void luaL_where (lua_State *L, int lvl);</pre> 6754 6755 <p> 6756 Pushes onto the stack a string identifying the current position 6757 of the control at level <code>lvl</code> in the call stack. 6758 Typically this string has the following format: 6759 6760 <pre> 6761 <em>chunkname</em>:<em>currentline</em>: 6762 </pre><p> 6763 Level 0 is the running function, 6764 level 1 is the function that called the running function, 6765 etc. 6766 6767 6768 <p> 6769 This function is used to build a prefix for error messages. 6770 6771 6772 6773 6774 6775 6776 6777 <h1>6 – <a name="6">Standard Libraries</a></h1> 6778 6779 <p> 6780 The standard Lua libraries provide useful functions 6781 that are implemented directly through the C API. 6782 Some of these functions provide essential services to the language 6783 (e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>); 6784 others provide access to "outside" services (e.g., I/O); 6785 and others could be implemented in Lua itself, 6786 but are quite useful or have critical performance requirements that 6787 deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>). 6788 6789 6790 <p> 6791 All libraries are implemented through the official C API 6792 and are provided as separate C modules. 6793 Currently, Lua has the following standard libraries: 6794 6795 <ul> 6796 6797 <li>basic library (<a href="#6.1">§6.1</a>);</li> 6798 6799 <li>coroutine library (<a href="#6.2">§6.2</a>);</li> 6800 6801 <li>package library (<a href="#6.3">§6.3</a>);</li> 6802 6803 <li>string manipulation (<a href="#6.4">§6.4</a>);</li> 6804 6805 <li>table manipulation (<a href="#6.5">§6.5</a>);</li> 6806 6807 <li>mathematical functions (<a href="#6.6">§6.6</a>) (sin, log, etc.);</li> 6808 6809 <li>bitwise operations (<a href="#6.7">§6.7</a>);</li> 6810 6811 <li>input and output (<a href="#6.8">§6.8</a>);</li> 6812 6813 <li>operating system facilities (<a href="#6.9">§6.9</a>);</li> 6814 6815 <li>debug facilities (<a href="#6.10">§6.10</a>).</li> 6816 6817 </ul><p> 6818 Except for the basic and the package libraries, 6819 each library provides all its functions as fields of a global table 6820 or as methods of its objects. 6821 6822 6823 <p> 6824 To have access to these libraries, 6825 the C host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function, 6826 which opens all standard libraries. 6827 Alternatively, 6828 the host program can open them individually by using 6829 <a href="#luaL_requiref"><code>luaL_requiref</code></a> to call 6830 <a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library), 6831 <a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library), 6832 <a name="pdf-luaopen_coroutine"><code>luaopen_coroutine</code></a> (for the coroutine library), 6833 <a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library), 6834 <a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library), 6835 <a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library), 6836 <a name="pdf-luaopen_bit32"><code>luaopen_bit32</code></a> (for the bit library), 6837 <a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library), 6838 <a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the Operating System library), 6839 and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library). 6840 These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>. 6841 6842 6843 6844 <h2>6.1 – <a name="6.1">Basic Functions</a></h2> 6845 6846 <p> 6847 The basic library provides core functions to Lua. 6848 If you do not include this library in your application, 6849 you should check carefully whether you need to provide 6850 implementations for some of its facilities. 6851 6852 6853 <p> 6854 <hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3> 6855 Issues an error when 6856 the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>); 6857 otherwise, returns all its arguments. 6858 <code>message</code> is an error message; 6859 when absent, it defaults to "assertion failed!" 6860 6861 6862 6863 6864 <p> 6865 <hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3> 6866 6867 6868 <p> 6869 This function is a generic interface to the garbage collector. 6870 It performs different functions according to its first argument, <code>opt</code>: 6871 6872 <ul> 6873 6874 <li><b>"<code>collect</code>": </b> 6875 performs a full garbage-collection cycle. 6876 This is the default option. 6877 </li> 6878 6879 <li><b>"<code>stop</code>": </b> 6880 stops automatic execution of the garbage collector. 6881 The collector will run only when explicitly invoked, 6882 until a call to restart it. 6883 </li> 6884 6885 <li><b>"<code>restart</code>": </b> 6886 restarts automatic execution of the garbage collector. 6887 </li> 6888 6889 <li><b>"<code>count</code>": </b> 6890 returns the total memory in use by Lua (in Kbytes) and 6891 a second value with the total memory in bytes modulo 1024. 6892 The first value has a fractional part, 6893 so the following equality is always true: 6894 6895 <pre> 6896 k, b = collectgarbage("count") 6897 assert(k*1024 == math.floor(k)*1024 + b) 6898 </pre><p> 6899 (The second result is useful when Lua is compiled 6900 with a non floating-point type for numbers.) 6901 </li> 6902 6903 <li><b>"<code>step</code>": </b> 6904 performs a garbage-collection step. 6905 The step "size" is controlled by <code>arg</code> 6906 (larger values mean more steps) in a non-specified way. 6907 If you want to control the step size 6908 you must experimentally tune the value of <code>arg</code>. 6909 Returns <b>true</b> if the step finished a collection cycle. 6910 </li> 6911 6912 <li><b>"<code>setpause</code>": </b> 6913 sets <code>arg</code> as the new value for the <em>pause</em> of 6914 the collector (see <a href="#2.5">§2.5</a>). 6915 Returns the previous value for <em>pause</em>. 6916 </li> 6917 6918 <li><b>"<code>setstepmul</code>": </b> 6919 sets <code>arg</code> as the new value for the <em>step multiplier</em> of 6920 the collector (see <a href="#2.5">§2.5</a>). 6921 Returns the previous value for <em>step</em>. 6922 </li> 6923 6924 <li><b>"<code>isrunning</code>": </b> 6925 returns a boolean that tells whether the collector is running 6926 (i.e., not stopped). 6927 </li> 6928 6929 <li><b>"<code>generational</code>": </b> 6930 changes the collector to generational mode. 6931 This is an experimental feature (see <a href="#2.5">§2.5</a>). 6932 </li> 6933 6934 <li><b>"<code>incremental</code>": </b> 6935 changes the collector to incremental mode. 6936 This is the default mode. 6937 </li> 6938 6939 </ul> 6940 6941 6942 6943 <p> 6944 <hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3> 6945 Opens the named file and executes its contents as a Lua chunk. 6946 When called without arguments, 6947 <code>dofile</code> executes the contents of the standard input (<code>stdin</code>). 6948 Returns all values returned by the chunk. 6949 In case of errors, <code>dofile</code> propagates the error 6950 to its caller (that is, <code>dofile</code> does not run in protected mode). 6951 6952 6953 6954 6955 <p> 6956 <hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3> 6957 Terminates the last protected function called 6958 and returns <code>message</code> as the error message. 6959 Function <code>error</code> never returns. 6960 6961 6962 <p> 6963 Usually, <code>error</code> adds some information about the error position 6964 at the beginning of the message, if the message is a string. 6965 The <code>level</code> argument specifies how to get the error position. 6966 With level 1 (the default), the error position is where the 6967 <code>error</code> function was called. 6968 Level 2 points the error to where the function 6969 that called <code>error</code> was called; and so on. 6970 Passing a level 0 avoids the addition of error position information 6971 to the message. 6972 6973 6974 6975 6976 <p> 6977 <hr><h3><a name="pdf-_G"><code>_G</code></a></h3> 6978 A global variable (not a function) that 6979 holds the global environment (see <a href="#2.2">§2.2</a>). 6980 Lua itself does not use this variable; 6981 changing its value does not affect any environment, 6982 nor vice-versa. 6983 6984 6985 6986 6987 <p> 6988 <hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3> 6989 6990 6991 <p> 6992 If <code>object</code> does not have a metatable, returns <b>nil</b>. 6993 Otherwise, 6994 if the object's metatable has a <code>"__metatable"</code> field, 6995 returns the associated value. 6996 Otherwise, returns the metatable of the given object. 6997 6998 6999 7000 7001 <p> 7002 <hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3> 7003 7004 7005 <p> 7006 If <code>t</code> has a metamethod <code>__ipairs</code>, 7007 calls it with <code>t</code> as argument and returns the first three 7008 results from the call. 7009 7010 7011 <p> 7012 Otherwise, 7013 returns three values: an iterator function, the table <code>t</code>, and 0, 7014 so that the construction 7015 7016 <pre> 7017 for i,v in ipairs(t) do <em>body</em> end 7018 </pre><p> 7019 will iterate over the pairs (<code>1,t[1]</code>), (<code>2,t[2]</code>), ..., 7020 up to the first integer key absent from the table. 7021 7022 7023 7024 7025 <p> 7026 <hr><h3><a name="pdf-load"><code>load (ld [, source [, mode [, env]]])</code></a></h3> 7027 7028 7029 <p> 7030 Loads a chunk. 7031 7032 7033 <p> 7034 If <code>ld</code> is a string, the chunk is this string. 7035 If <code>ld</code> is a function, 7036 <code>load</code> calls it repeatedly to get the chunk pieces. 7037 Each call to <code>ld</code> must return a string that concatenates 7038 with previous results. 7039 A return of an empty string, <b>nil</b>, or no value signals the end of the chunk. 7040 7041 7042 <p> 7043 If there are no syntactic errors, 7044 returns the compiled chunk as a function; 7045 otherwise, returns <b>nil</b> plus the error message. 7046 7047 7048 <p> 7049 If the resulting function has upvalues, 7050 the first upvalue is set to the value of <code>env</code>, 7051 if that parameter is given, 7052 or to the value of the global environment. 7053 (When you load a main chunk, 7054 the resulting function will always have exactly one upvalue, 7055 the <code>_ENV</code> variable (see <a href="#2.2">§2.2</a>). 7056 When you load a binary chunk created from a function (see <a href="#pdf-string.dump"><code>string.dump</code></a>), 7057 the resulting function can have arbitrary upvalues.) 7058 7059 7060 <p> 7061 <code>source</code> is used as the source of the chunk for error messages 7062 and debug information (see <a href="#4.9">§4.9</a>). 7063 When absent, 7064 it defaults to <code>ld</code>, if <code>ld</code> is a string, 7065 or to "<code>=(load)</code>" otherwise. 7066 7067 7068 <p> 7069 The string <code>mode</code> controls whether the chunk can be text or binary 7070 (that is, a precompiled chunk). 7071 It may be the string "<code>b</code>" (only binary chunks), 7072 "<code>t</code>" (only text chunks), 7073 or "<code>bt</code>" (both binary and text). 7074 The default is "<code>bt</code>". 7075 7076 7077 7078 7079 <p> 7080 <hr><h3><a name="pdf-loadfile"><code>loadfile ([filename [, mode [, env]]])</code></a></h3> 7081 7082 7083 <p> 7084 Similar to <a href="#pdf-load"><code>load</code></a>, 7085 but gets the chunk from file <code>filename</code> 7086 or from the standard input, 7087 if no file name is given. 7088 7089 7090 7091 7092 <p> 7093 <hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3> 7094 7095 7096 <p> 7097 Allows a program to traverse all fields of a table. 7098 Its first argument is a table and its second argument 7099 is an index in this table. 7100 <code>next</code> returns the next index of the table 7101 and its associated value. 7102 When called with <b>nil</b> as its second argument, 7103 <code>next</code> returns an initial index 7104 and its associated value. 7105 When called with the last index, 7106 or with <b>nil</b> in an empty table, 7107 <code>next</code> returns <b>nil</b>. 7108 If the second argument is absent, then it is interpreted as <b>nil</b>. 7109 In particular, 7110 you can use <code>next(t)</code> to check whether a table is empty. 7111 7112 7113 <p> 7114 The order in which the indices are enumerated is not specified, 7115 <em>even for numeric indices</em>. 7116 (To traverse a table in numeric order, 7117 use a numerical <b>for</b>.) 7118 7119 7120 <p> 7121 The behavior of <code>next</code> is undefined if, 7122 during the traversal, 7123 you assign any value to a non-existent field in the table. 7124 You may however modify existing fields. 7125 In particular, you may clear existing fields. 7126 7127 7128 7129 7130 <p> 7131 <hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3> 7132 7133 7134 <p> 7135 If <code>t</code> has a metamethod <code>__pairs</code>, 7136 calls it with <code>t</code> as argument and returns the first three 7137 results from the call. 7138 7139 7140 <p> 7141 Otherwise, 7142 returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>, 7143 so that the construction 7144 7145 <pre> 7146 for k,v in pairs(t) do <em>body</em> end 7147 </pre><p> 7148 will iterate over all key–value pairs of table <code>t</code>. 7149 7150 7151 <p> 7152 See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying 7153 the table during its traversal. 7154 7155 7156 7157 7158 <p> 7159 <hr><h3><a name="pdf-pcall"><code>pcall (f [, arg1, ···])</code></a></h3> 7160 7161 7162 <p> 7163 Calls function <code>f</code> with 7164 the given arguments in <em>protected mode</em>. 7165 This means that any error inside <code>f</code> is not propagated; 7166 instead, <code>pcall</code> catches the error 7167 and returns a status code. 7168 Its first result is the status code (a boolean), 7169 which is true if the call succeeds without errors. 7170 In such case, <code>pcall</code> also returns all results from the call, 7171 after this first result. 7172 In case of any error, <code>pcall</code> returns <b>false</b> plus the error message. 7173 7174 7175 7176 7177 <p> 7178 <hr><h3><a name="pdf-print"><code>print (···)</code></a></h3> 7179 Receives any number of arguments 7180 and prints their values to <code>stdout</code>, 7181 using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert each argument to a string. 7182 <code>print</code> is not intended for formatted output, 7183 but only as a quick way to show a value, 7184 for instance for debugging. 7185 For complete control over the output, 7186 use <a href="#pdf-string.format"><code>string.format</code></a> and <a href="#pdf-io.write"><code>io.write</code></a>. 7187 7188 7189 7190 7191 <p> 7192 <hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3> 7193 Checks whether <code>v1</code> is equal to <code>v2</code>, 7194 without invoking any metamethod. 7195 Returns a boolean. 7196 7197 7198 7199 7200 <p> 7201 <hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3> 7202 Gets the real value of <code>table[index]</code>, 7203 without invoking any metamethod. 7204 <code>table</code> must be a table; 7205 <code>index</code> may be any value. 7206 7207 7208 7209 7210 <p> 7211 <hr><h3><a name="pdf-rawlen"><code>rawlen (v)</code></a></h3> 7212 Returns the length of the object <code>v</code>, 7213 which must be a table or a string, 7214 without invoking any metamethod. 7215 Returns an integer number. 7216 7217 7218 7219 7220 <p> 7221 <hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3> 7222 Sets the real value of <code>table[index]</code> to <code>value</code>, 7223 without invoking any metamethod. 7224 <code>table</code> must be a table, 7225 <code>index</code> any value different from <b>nil</b> and NaN, 7226 and <code>value</code> any Lua value. 7227 7228 7229 <p> 7230 This function returns <code>table</code>. 7231 7232 7233 7234 7235 <p> 7236 <hr><h3><a name="pdf-select"><code>select (index, ···)</code></a></h3> 7237 7238 7239 <p> 7240 If <code>index</code> is a number, 7241 returns all arguments after argument number <code>index</code>; 7242 a negative number indexes from the end (-1 is the last argument). 7243 Otherwise, <code>index</code> must be the string <code>"#"</code>, 7244 and <code>select</code> returns the total number of extra arguments it received. 7245 7246 7247 7248 7249 <p> 7250 <hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3> 7251 7252 7253 <p> 7254 Sets the metatable for the given table. 7255 (You cannot change the metatable of other types from Lua, only from C.) 7256 If <code>metatable</code> is <b>nil</b>, 7257 removes the metatable of the given table. 7258 If the original metatable has a <code>"__metatable"</code> field, 7259 raises an error. 7260 7261 7262 <p> 7263 This function returns <code>table</code>. 7264 7265 7266 7267 7268 <p> 7269 <hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3> 7270 7271 7272 <p> 7273 When called with no <code>base</code>, 7274 <code>tonumber</code> tries to convert its argument to a number. 7275 If the argument is already a number or 7276 a string convertible to a number (see <a href="#3.4.2">§3.4.2</a>), 7277 then <code>tonumber</code> returns this number; 7278 otherwise, it returns <b>nil</b>. 7279 7280 7281 <p> 7282 When called with <code>base</code>, 7283 then <code>e</code> should be a string to be interpreted as 7284 an integer numeral in that base. 7285 The base may be any integer between 2 and 36, inclusive. 7286 In bases above 10, the letter '<code>A</code>' (in either upper or lower case) 7287 represents 10, '<code>B</code>' represents 11, and so forth, 7288 with '<code>Z</code>' representing 35. 7289 If the string <code>e</code> is not a valid numeral in the given base, 7290 the function returns <b>nil</b>. 7291 7292 7293 7294 7295 <p> 7296 <hr><h3><a name="pdf-tostring"><code>tostring (v)</code></a></h3> 7297 Receives a value of any type and 7298 converts it to a string in a reasonable format. 7299 (For complete control of how numbers are converted, 7300 use <a href="#pdf-string.format"><code>string.format</code></a>.) 7301 7302 7303 <p> 7304 If the metatable of <code>v</code> has a <code>"__tostring"</code> field, 7305 then <code>tostring</code> calls the corresponding value 7306 with <code>v</code> as argument, 7307 and uses the result of the call as its result. 7308 7309 7310 7311 7312 <p> 7313 <hr><h3><a name="pdf-type"><code>type (v)</code></a></h3> 7314 Returns the type of its only argument, coded as a string. 7315 The possible results of this function are 7316 "<code>nil</code>" (a string, not the value <b>nil</b>), 7317 "<code>number</code>", 7318 "<code>string</code>", 7319 "<code>boolean</code>", 7320 "<code>table</code>", 7321 "<code>function</code>", 7322 "<code>thread</code>", 7323 and "<code>userdata</code>". 7324 7325 7326 7327 7328 <p> 7329 <hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3> 7330 A global variable (not a function) that 7331 holds a string containing the current interpreter version. 7332 The current contents of this variable is "<code>Lua 5.2</code>". 7333 7334 7335 7336 7337 <p> 7338 <hr><h3><a name="pdf-xpcall"><code>xpcall (f, msgh [, arg1, ···])</code></a></h3> 7339 7340 7341 <p> 7342 This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>, 7343 except that it sets a new message handler <code>msgh</code>. 7344 7345 7346 7347 7348 7349 7350 7351 <h2>6.2 – <a name="6.2">Coroutine Manipulation</a></h2> 7352 7353 <p> 7354 The operations related to coroutines comprise a sub-library of 7355 the basic library and come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>. 7356 See <a href="#2.6">§2.6</a> for a general description of coroutines. 7357 7358 7359 <p> 7360 <hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3> 7361 7362 7363 <p> 7364 Creates a new coroutine, with body <code>f</code>. 7365 <code>f</code> must be a Lua function. 7366 Returns this new coroutine, 7367 an object with type <code>"thread"</code>. 7368 7369 7370 7371 7372 <p> 7373 <hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, ···])</code></a></h3> 7374 7375 7376 <p> 7377 Starts or continues the execution of coroutine <code>co</code>. 7378 The first time you resume a coroutine, 7379 it starts running its body. 7380 The values <code>val1</code>, ... are passed 7381 as the arguments to the body function. 7382 If the coroutine has yielded, 7383 <code>resume</code> restarts it; 7384 the values <code>val1</code>, ... are passed 7385 as the results from the yield. 7386 7387 7388 <p> 7389 If the coroutine runs without any errors, 7390 <code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code> 7391 (if the coroutine yields) or any values returned by the body function 7392 (if the coroutine terminates). 7393 If there is any error, 7394 <code>resume</code> returns <b>false</b> plus the error message. 7395 7396 7397 7398 7399 <p> 7400 <hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3> 7401 7402 7403 <p> 7404 Returns the running coroutine plus a boolean, 7405 true when the running coroutine is the main one. 7406 7407 7408 7409 7410 <p> 7411 <hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3> 7412 7413 7414 <p> 7415 Returns the status of coroutine <code>co</code>, as a string: 7416 <code>"running"</code>, 7417 if the coroutine is running (that is, it called <code>status</code>); 7418 <code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>, 7419 or if it has not started running yet; 7420 <code>"normal"</code> if the coroutine is active but not running 7421 (that is, it has resumed another coroutine); 7422 and <code>"dead"</code> if the coroutine has finished its body function, 7423 or if it has stopped with an error. 7424 7425 7426 7427 7428 <p> 7429 <hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3> 7430 7431 7432 <p> 7433 Creates a new coroutine, with body <code>f</code>. 7434 <code>f</code> must be a Lua function. 7435 Returns a function that resumes the coroutine each time it is called. 7436 Any arguments passed to the function behave as the 7437 extra arguments to <code>resume</code>. 7438 Returns the same values returned by <code>resume</code>, 7439 except the first boolean. 7440 In case of error, propagates the error. 7441 7442 7443 7444 7445 <p> 7446 <hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (···)</code></a></h3> 7447 7448 7449 <p> 7450 Suspends the execution of the calling coroutine. 7451 Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>. 7452 7453 7454 7455 7456 7457 7458 7459 <h2>6.3 – <a name="6.3">Modules</a></h2> 7460 7461 <p> 7462 The package library provides basic 7463 facilities for loading modules in Lua. 7464 It exports one function directly in the global environment: 7465 <a href="#pdf-require"><code>require</code></a>. 7466 Everything else is exported in a table <a name="pdf-package"><code>package</code></a>. 7467 7468 7469 <p> 7470 <hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3> 7471 7472 7473 <p> 7474 Loads the given module. 7475 The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table 7476 to determine whether <code>modname</code> is already loaded. 7477 If it is, then <code>require</code> returns the value stored 7478 at <code>package.loaded[modname]</code>. 7479 Otherwise, it tries to find a <em>loader</em> for the module. 7480 7481 7482 <p> 7483 To find a loader, 7484 <code>require</code> is guided by the <a href="#pdf-package.searchers"><code>package.searchers</code></a> sequence. 7485 By changing this sequence, 7486 we can change how <code>require</code> looks for a module. 7487 The following explanation is based on the default configuration 7488 for <a href="#pdf-package.searchers"><code>package.searchers</code></a>. 7489 7490 7491 <p> 7492 First <code>require</code> queries <code>package.preload[modname]</code>. 7493 If it has a value, 7494 this value (which should be a function) is the loader. 7495 Otherwise <code>require</code> searches for a Lua loader using the 7496 path stored in <a href="#pdf-package.path"><code>package.path</code></a>. 7497 If that also fails, it searches for a C loader using the 7498 path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>. 7499 If that also fails, 7500 it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.searchers"><code>package.searchers</code></a>). 7501 7502 7503 <p> 7504 Once a loader is found, 7505 <code>require</code> calls the loader with two arguments: 7506 <code>modname</code> and an extra value dependent on how it got the loader. 7507 (If the loader came from a file, 7508 this extra value is the file name.) 7509 If the loader returns any non-nil value, 7510 <code>require</code> assigns the returned value to <code>package.loaded[modname]</code>. 7511 If the loader does not return a non-nil value and 7512 has not assigned any value to <code>package.loaded[modname]</code>, 7513 then <code>require</code> assigns <b>true</b> to this entry. 7514 In any case, <code>require</code> returns the 7515 final value of <code>package.loaded[modname]</code>. 7516 7517 7518 <p> 7519 If there is any error loading or running the module, 7520 or if it cannot find any loader for the module, 7521 then <code>require</code> raises an error. 7522 7523 7524 7525 7526 <p> 7527 <hr><h3><a name="pdf-package.config"><code>package.config</code></a></h3> 7528 7529 7530 <p> 7531 A string describing some compile-time configurations for packages. 7532 This string is a sequence of lines: 7533 7534 <ul> 7535 7536 <li>The first line is the directory separator string. 7537 Default is '<code>\</code>' for Windows and '<code>/</code>' for all other systems.</li> 7538 7539 <li>The second line is the character that separates templates in a path. 7540 Default is '<code>;</code>'.</li> 7541 7542 <li>The third line is the string that marks the 7543 substitution points in a template. 7544 Default is '<code>?</code>'.</li> 7545 7546 <li>The fourth line is a string that, in a path in Windows, 7547 is replaced by the executable's directory. 7548 Default is '<code>!</code>'.</li> 7549 7550 <li>The fifth line is a mark to ignore all text before it 7551 when building the <code>luaopen_</code> function name. 7552 Default is '<code>-</code>'.</li> 7553 7554 </ul> 7555 7556 7557 7558 <p> 7559 <hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3> 7560 7561 7562 <p> 7563 The path used by <a href="#pdf-require"><code>require</code></a> to search for a C loader. 7564 7565 7566 <p> 7567 Lua initializes the C path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way 7568 it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>, 7569 using the environment variable <a name="pdf-LUA_CPATH_5_2"><code>LUA_CPATH_5_2</code></a> 7570 or the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a> 7571 or a default path defined in <code>luaconf.h</code>. 7572 7573 7574 7575 7576 <p> 7577 <hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3> 7578 7579 7580 <p> 7581 A table used by <a href="#pdf-require"><code>require</code></a> to control which 7582 modules are already loaded. 7583 When you require a module <code>modname</code> and 7584 <code>package.loaded[modname]</code> is not false, 7585 <a href="#pdf-require"><code>require</code></a> simply returns the value stored there. 7586 7587 7588 <p> 7589 This variable is only a reference to the real table; 7590 assignments to this variable do not change the 7591 table used by <a href="#pdf-require"><code>require</code></a>. 7592 7593 7594 7595 7596 <p> 7597 <hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3> 7598 7599 7600 <p> 7601 Dynamically links the host program with the C library <code>libname</code>. 7602 7603 7604 <p> 7605 If <code>funcname</code> is "<code>*</code>", 7606 then it only links with the library, 7607 making the symbols exported by the library 7608 available to other dynamically linked libraries. 7609 Otherwise, 7610 it looks for a function <code>funcname</code> inside the library 7611 and returns this function as a C function. 7612 So, <code>funcname</code> must follow the <a href="#lua_CFunction"><code>lua_CFunction</code></a> prototype 7613 (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>). 7614 7615 7616 <p> 7617 This is a low-level function. 7618 It completely bypasses the package and module system. 7619 Unlike <a href="#pdf-require"><code>require</code></a>, 7620 it does not perform any path searching and 7621 does not automatically adds extensions. 7622 <code>libname</code> must be the complete file name of the C library, 7623 including if necessary a path and an extension. 7624 <code>funcname</code> must be the exact name exported by the C library 7625 (which may depend on the C compiler and linker used). 7626 7627 7628 <p> 7629 This function is not supported by Standard C. 7630 As such, it is only available on some platforms 7631 (Windows, Linux, Mac OS X, Solaris, BSD, 7632 plus other Unix systems that support the <code>dlfcn</code> standard). 7633 7634 7635 7636 7637 <p> 7638 <hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3> 7639 7640 7641 <p> 7642 The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader. 7643 7644 7645 <p> 7646 At start-up, Lua initializes this variable with 7647 the value of the environment variable <a name="pdf-LUA_PATH_5_2"><code>LUA_PATH_5_2</code></a> or 7648 the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or 7649 with a default path defined in <code>luaconf.h</code>, 7650 if those environment variables are not defined. 7651 Any "<code>;;</code>" in the value of the environment variable 7652 is replaced by the default path. 7653 7654 7655 7656 7657 <p> 7658 <hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3> 7659 7660 7661 <p> 7662 A table to store loaders for specific modules 7663 (see <a href="#pdf-require"><code>require</code></a>). 7664 7665 7666 <p> 7667 This variable is only a reference to the real table; 7668 assignments to this variable do not change the 7669 table used by <a href="#pdf-require"><code>require</code></a>. 7670 7671 7672 7673 7674 <p> 7675 <hr><h3><a name="pdf-package.searchers"><code>package.searchers</code></a></h3> 7676 7677 7678 <p> 7679 A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules. 7680 7681 7682 <p> 7683 Each entry in this table is a <em>searcher function</em>. 7684 When looking for a module, 7685 <a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order, 7686 with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its 7687 sole parameter. 7688 The function can return another function (the module <em>loader</em>) 7689 plus an extra value that will be passed to that loader, 7690 or a string explaining why it did not find that module 7691 (or <b>nil</b> if it has nothing to say). 7692 7693 7694 <p> 7695 Lua initializes this table with four searcher functions. 7696 7697 7698 <p> 7699 The first searcher simply looks for a loader in the 7700 <a href="#pdf-package.preload"><code>package.preload</code></a> table. 7701 7702 7703 <p> 7704 The second searcher looks for a loader as a Lua library, 7705 using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>. 7706 The search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>. 7707 7708 7709 <p> 7710 The third searcher looks for a loader as a C library, 7711 using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>. 7712 Again, 7713 the search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>. 7714 For instance, 7715 if the C path is the string 7716 7717 <pre> 7718 "./?.so;./?.dll;/usr/local/?/init.so" 7719 </pre><p> 7720 the searcher for module <code>foo</code> 7721 will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>, 7722 and <code>/usr/local/foo/init.so</code>, in that order. 7723 Once it finds a C library, 7724 this searcher first uses a dynamic link facility to link the 7725 application with the library. 7726 Then it tries to find a C function inside the library to 7727 be used as the loader. 7728 The name of this C function is the string "<code>luaopen_</code>" 7729 concatenated with a copy of the module name where each dot 7730 is replaced by an underscore. 7731 Moreover, if the module name has a hyphen, 7732 its prefix up to (and including) the first hyphen is removed. 7733 For instance, if the module name is <code>a.v1-b.c</code>, 7734 the function name will be <code>luaopen_b_c</code>. 7735 7736 7737 <p> 7738 The fourth searcher tries an <em>all-in-one loader</em>. 7739 It searches the C path for a library for 7740 the root name of the given module. 7741 For instance, when requiring <code>a.b.c</code>, 7742 it will search for a C library for <code>a</code>. 7743 If found, it looks into it for an open function for 7744 the submodule; 7745 in our example, that would be <code>luaopen_a_b_c</code>. 7746 With this facility, a package can pack several C submodules 7747 into one single library, 7748 with each submodule keeping its original open function. 7749 7750 7751 <p> 7752 All searchers except the first one (preload) return as the extra value 7753 the file name where the module was found, 7754 as returned by <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>. 7755 The first searcher returns no extra value. 7756 7757 7758 7759 7760 <p> 7761 <hr><h3><a name="pdf-package.searchpath"><code>package.searchpath (name, path [, sep [, rep]])</code></a></h3> 7762 7763 7764 <p> 7765 Searches for the given <code>name</code> in the given <code>path</code>. 7766 7767 7768 <p> 7769 A path is a string containing a sequence of 7770 <em>templates</em> separated by semicolons. 7771 For each template, 7772 the function replaces each interrogation mark (if any) 7773 in the template with a copy of <code>name</code> 7774 wherein all occurrences of <code>sep</code> 7775 (a dot, by default) 7776 were replaced by <code>rep</code> 7777 (the system's directory separator, by default), 7778 and then tries to open the resulting file name. 7779 7780 7781 <p> 7782 For instance, if the path is the string 7783 7784 <pre> 7785 "./?.lua;./?.lc;/usr/local/?/init.lua" 7786 </pre><p> 7787 the search for the name <code>foo.a</code> 7788 will try to open the files 7789 <code>./foo/a.lua</code>, <code>./foo/a.lc</code>, and 7790 <code>/usr/local/foo/a/init.lua</code>, in that order. 7791 7792 7793 <p> 7794 Returns the resulting name of the first file that it can 7795 open in read mode (after closing the file), 7796 or <b>nil</b> plus an error message if none succeeds. 7797 (This error message lists all file names it tried to open.) 7798 7799 7800 7801 7802 7803 7804 7805 <h2>6.4 – <a name="6.4">String Manipulation</a></h2> 7806 7807 <p> 7808 This library provides generic functions for string manipulation, 7809 such as finding and extracting substrings, and pattern matching. 7810 When indexing a string in Lua, the first character is at position 1 7811 (not at 0, as in C). 7812 Indices are allowed to be negative and are interpreted as indexing backwards, 7813 from the end of the string. 7814 Thus, the last character is at position -1, and so on. 7815 7816 7817 <p> 7818 The string library provides all its functions inside the table 7819 <a name="pdf-string"><code>string</code></a>. 7820 It also sets a metatable for strings 7821 where the <code>__index</code> field points to the <code>string</code> table. 7822 Therefore, you can use the string functions in object-oriented style. 7823 For instance, <code>string.byte(s,i)</code> 7824 can be written as <code>s:byte(i)</code>. 7825 7826 7827 <p> 7828 The string library assumes one-byte character encodings. 7829 7830 7831 <p> 7832 <hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3> 7833 Returns the internal numerical codes of the characters <code>s[i]</code>, 7834 <code>s[i+1]</code>, ..., <code>s[j]</code>. 7835 The default value for <code>i</code> is 1; 7836 the default value for <code>j</code> is <code>i</code>. 7837 These indices are corrected 7838 following the same rules of function <a href="#pdf-string.sub"><code>string.sub</code></a>. 7839 7840 7841 <p> 7842 Numerical codes are not necessarily portable across platforms. 7843 7844 7845 7846 7847 <p> 7848 <hr><h3><a name="pdf-string.char"><code>string.char (···)</code></a></h3> 7849 Receives zero or more integers. 7850 Returns a string with length equal to the number of arguments, 7851 in which each character has the internal numerical code equal 7852 to its corresponding argument. 7853 7854 7855 <p> 7856 Numerical codes are not necessarily portable across platforms. 7857 7858 7859 7860 7861 <p> 7862 <hr><h3><a name="pdf-string.dump"><code>string.dump (function)</code></a></h3> 7863 7864 7865 <p> 7866 Returns a string containing a binary representation of the given function, 7867 so that a later <a href="#pdf-load"><code>load</code></a> on this string returns 7868 a copy of the function (but with new upvalues). 7869 7870 7871 7872 7873 <p> 7874 <hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3> 7875 7876 7877 <p> 7878 Looks for the first match of 7879 <code>pattern</code> in the string <code>s</code>. 7880 If it finds a match, then <code>find</code> returns the indices of <code>s</code> 7881 where this occurrence starts and ends; 7882 otherwise, it returns <b>nil</b>. 7883 A third, optional numerical argument <code>init</code> specifies 7884 where to start the search; 7885 its default value is 1 and can be negative. 7886 A value of <b>true</b> as a fourth, optional argument <code>plain</code> 7887 turns off the pattern matching facilities, 7888 so the function does a plain "find substring" operation, 7889 with no characters in <code>pattern</code> being considered magic. 7890 Note that if <code>plain</code> is given, then <code>init</code> must be given as well. 7891 7892 7893 <p> 7894 If the pattern has captures, 7895 then in a successful match 7896 the captured values are also returned, 7897 after the two indices. 7898 7899 7900 7901 7902 <p> 7903 <hr><h3><a name="pdf-string.format"><code>string.format (formatstring, ···)</code></a></h3> 7904 7905 7906 <p> 7907 Returns a formatted version of its variable number of arguments 7908 following the description given in its first argument (which must be a string). 7909 The format string follows the same rules as the ANSI C function <code>sprintf</code>. 7910 The only differences are that the options/modifiers 7911 <code>*</code>, <code>h</code>, <code>L</code>, <code>l</code>, <code>n</code>, 7912 and <code>p</code> are not supported 7913 and that there is an extra option, <code>q</code>. 7914 The <code>q</code> option formats a string between double quotes, 7915 using escape sequences when necessary to ensure that 7916 it can safely be read back by the Lua interpreter. 7917 For instance, the call 7918 7919 <pre> 7920 string.format('%q', 'a string with "quotes" and \n new line') 7921 </pre><p> 7922 may produce the string: 7923 7924 <pre> 7925 "a string with \"quotes\" and \ 7926 new line" 7927 </pre> 7928 7929 <p> 7930 Options 7931 <code>A</code> and <code>a</code> (when available), 7932 <code>E</code>, <code>e</code>, <code>f</code>, 7933 <code>G</code>, and <code>g</code> all expect a number as argument. 7934 Options <code>c</code>, <code>d</code>, 7935 <code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code> 7936 also expect a number, 7937 but the range of that number may be limited by 7938 the underlying C implementation. 7939 For options <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code>, 7940 the number cannot be negative. 7941 Option <code>q</code> expects a string; 7942 option <code>s</code> expects a string without embedded zeros. 7943 If the argument to option <code>s</code> is not a string, 7944 it is converted to one following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>. 7945 7946 7947 7948 7949 <p> 7950 <hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3> 7951 Returns an iterator function that, 7952 each time it is called, 7953 returns the next captures from <code>pattern</code> over the string <code>s</code>. 7954 If <code>pattern</code> specifies no captures, 7955 then the whole match is produced in each call. 7956 7957 7958 <p> 7959 As an example, the following loop 7960 will iterate over all the words from string <code>s</code>, 7961 printing one per line: 7962 7963 <pre> 7964 s = "hello world from Lua" 7965 for w in string.gmatch(s, "%a+") do 7966 print(w) 7967 end 7968 </pre><p> 7969 The next example collects all pairs <code>key=value</code> from the 7970 given string into a table: 7971 7972 <pre> 7973 t = {} 7974 s = "from=world, to=Lua" 7975 for k, v in string.gmatch(s, "(%w+)=(%w+)") do 7976 t[k] = v 7977 end 7978 </pre> 7979 7980 <p> 7981 For this function, a caret '<code>^</code>' at the start of a pattern does not 7982 work as an anchor, as this would prevent the iteration. 7983 7984 7985 7986 7987 <p> 7988 <hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3> 7989 Returns a copy of <code>s</code> 7990 in which all (or the first <code>n</code>, if given) 7991 occurrences of the <code>pattern</code> have been 7992 replaced by a replacement string specified by <code>repl</code>, 7993 which can be a string, a table, or a function. 7994 <code>gsub</code> also returns, as its second value, 7995 the total number of matches that occurred. 7996 The name <code>gsub</code> comes from <em>Global SUBstitution</em>. 7997 7998 7999 <p> 8000 If <code>repl</code> is a string, then its value is used for replacement. 8001 The character <code>%</code> works as an escape character: 8002 any sequence in <code>repl</code> of the form <code>%<em>d</em></code>, 8003 with <em>d</em> between 1 and 9, 8004 stands for the value of the <em>d</em>-th captured substring. 8005 The sequence <code>%0</code> stands for the whole match. 8006 The sequence <code>%%</code> stands for a single <code>%</code>. 8007 8008 8009 <p> 8010 If <code>repl</code> is a table, then the table is queried for every match, 8011 using the first capture as the key. 8012 8013 8014 <p> 8015 If <code>repl</code> is a function, then this function is called every time a 8016 match occurs, with all captured substrings passed as arguments, 8017 in order. 8018 8019 8020 <p> 8021 In any case, 8022 if the pattern specifies no captures, 8023 then it behaves as if the whole pattern was inside a capture. 8024 8025 8026 <p> 8027 If the value returned by the table query or by the function call 8028 is a string or a number, 8029 then it is used as the replacement string; 8030 otherwise, if it is <b>false</b> or <b>nil</b>, 8031 then there is no replacement 8032 (that is, the original match is kept in the string). 8033 8034 8035 <p> 8036 Here are some examples: 8037 8038 <pre> 8039 x = string.gsub("hello world", "(%w+)", "%1 %1") 8040 --> x="hello hello world world" 8041 8042 x = string.gsub("hello world", "%w+", "%0 %0", 1) 8043 --> x="hello hello world" 8044 8045 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1") 8046 --> x="world hello Lua from" 8047 8048 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv) 8049 --> x="home = /home/roberto, user = roberto" 8050 8051 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s) 8052 return load(s)() 8053 end) 8054 --> x="4+5 = 9" 8055 8056 local t = {name="lua", version="5.2"} 8057 x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t) 8058 --> x="lua-5.2.tar.gz" 8059 </pre> 8060 8061 8062 8063 <p> 8064 <hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3> 8065 Receives a string and returns its length. 8066 The empty string <code>""</code> has length 0. 8067 Embedded zeros are counted, 8068 so <code>"a\000bc\000"</code> has length 5. 8069 8070 8071 8072 8073 <p> 8074 <hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3> 8075 Receives a string and returns a copy of this string with all 8076 uppercase letters changed to lowercase. 8077 All other characters are left unchanged. 8078 The definition of what an uppercase letter is depends on the current locale. 8079 8080 8081 8082 8083 <p> 8084 <hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3> 8085 Looks for the first <em>match</em> of 8086 <code>pattern</code> in the string <code>s</code>. 8087 If it finds one, then <code>match</code> returns 8088 the captures from the pattern; 8089 otherwise it returns <b>nil</b>. 8090 If <code>pattern</code> specifies no captures, 8091 then the whole match is returned. 8092 A third, optional numerical argument <code>init</code> specifies 8093 where to start the search; 8094 its default value is 1 and can be negative. 8095 8096 8097 8098 8099 <p> 8100 <hr><h3><a name="pdf-string.rep"><code>string.rep (s, n [, sep])</code></a></h3> 8101 Returns a string that is the concatenation of <code>n</code> copies of 8102 the string <code>s</code> separated by the string <code>sep</code>. 8103 The default value for <code>sep</code> is the empty string 8104 (that is, no separator). 8105 8106 8107 8108 8109 <p> 8110 <hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3> 8111 Returns a string that is the string <code>s</code> reversed. 8112 8113 8114 8115 8116 <p> 8117 <hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3> 8118 Returns the substring of <code>s</code> that 8119 starts at <code>i</code> and continues until <code>j</code>; 8120 <code>i</code> and <code>j</code> can be negative. 8121 If <code>j</code> is absent, then it is assumed to be equal to -1 8122 (which is the same as the string length). 8123 In particular, 8124 the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code> 8125 with length <code>j</code>, 8126 and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code> 8127 with length <code>i</code>. 8128 8129 8130 <p> 8131 If, after the translation of negative indices, 8132 <code>i</code> is less than 1, 8133 it is corrected to 1. 8134 If <code>j</code> is greater than the string length, 8135 it is corrected to that length. 8136 If, after these corrections, 8137 <code>i</code> is greater than <code>j</code>, 8138 the function returns the empty string. 8139 8140 8141 8142 8143 <p> 8144 <hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3> 8145 Receives a string and returns a copy of this string with all 8146 lowercase letters changed to uppercase. 8147 All other characters are left unchanged. 8148 The definition of what a lowercase letter is depends on the current locale. 8149 8150 8151 8152 <h3>6.4.1 – <a name="6.4.1">Patterns</a></h3> 8153 8154 8155 <h4>Character Class:</h4><p> 8156 A <em>character class</em> is used to represent a set of characters. 8157 The following combinations are allowed in describing a character class: 8158 8159 <ul> 8160 8161 <li><b><em>x</em>: </b> 8162 (where <em>x</em> is not one of the <em>magic characters</em> 8163 <code>^$()%.[]*+-?</code>) 8164 represents the character <em>x</em> itself. 8165 </li> 8166 8167 <li><b><code>.</code>: </b> (a dot) represents all characters.</li> 8168 8169 <li><b><code>%a</code>: </b> represents all letters.</li> 8170 8171 <li><b><code>%c</code>: </b> represents all control characters.</li> 8172 8173 <li><b><code>%d</code>: </b> represents all digits.</li> 8174 8175 <li><b><code>%g</code>: </b> represents all printable characters except space.</li> 8176 8177 <li><b><code>%l</code>: </b> represents all lowercase letters.</li> 8178 8179 <li><b><code>%p</code>: </b> represents all punctuation characters.</li> 8180 8181 <li><b><code>%s</code>: </b> represents all space characters.</li> 8182 8183 <li><b><code>%u</code>: </b> represents all uppercase letters.</li> 8184 8185 <li><b><code>%w</code>: </b> represents all alphanumeric characters.</li> 8186 8187 <li><b><code>%x</code>: </b> represents all hexadecimal digits.</li> 8188 8189 <li><b><code>%<em>x</em></code>: </b> (where <em>x</em> is any non-alphanumeric character) 8190 represents the character <em>x</em>. 8191 This is the standard way to escape the magic characters. 8192 Any punctuation character (even the non magic) 8193 can be preceded by a '<code>%</code>' 8194 when used to represent itself in a pattern. 8195 </li> 8196 8197 <li><b><code>[<em>set</em>]</code>: </b> 8198 represents the class which is the union of all 8199 characters in <em>set</em>. 8200 A range of characters can be specified by 8201 separating the end characters of the range, 8202 in ascending order, with a '<code>-</code>', 8203 All classes <code>%</code><em>x</em> described above can also be used as 8204 components in <em>set</em>. 8205 All other characters in <em>set</em> represent themselves. 8206 For example, <code>[%w_]</code> (or <code>[_%w]</code>) 8207 represents all alphanumeric characters plus the underscore, 8208 <code>[0-7]</code> represents the octal digits, 8209 and <code>[0-7%l%-]</code> represents the octal digits plus 8210 the lowercase letters plus the '<code>-</code>' character. 8211 8212 8213 <p> 8214 The interaction between ranges and classes is not defined. 8215 Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code> 8216 have no meaning. 8217 </li> 8218 8219 <li><b><code>[^<em>set</em>]</code>: </b> 8220 represents the complement of <em>set</em>, 8221 where <em>set</em> is interpreted as above. 8222 </li> 8223 8224 </ul><p> 8225 For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.), 8226 the corresponding uppercase letter represents the complement of the class. 8227 For instance, <code>%S</code> represents all non-space characters. 8228 8229 8230 <p> 8231 The definitions of letter, space, and other character groups 8232 depend on the current locale. 8233 In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>. 8234 8235 8236 8237 8238 8239 <h4>Pattern Item:</h4><p> 8240 A <em>pattern item</em> can be 8241 8242 <ul> 8243 8244 <li> 8245 a single character class, 8246 which matches any single character in the class; 8247 </li> 8248 8249 <li> 8250 a single character class followed by '<code>*</code>', 8251 which matches 0 or more repetitions of characters in the class. 8252 These repetition items will always match the longest possible sequence; 8253 </li> 8254 8255 <li> 8256 a single character class followed by '<code>+</code>', 8257 which matches 1 or more repetitions of characters in the class. 8258 These repetition items will always match the longest possible sequence; 8259 </li> 8260 8261 <li> 8262 a single character class followed by '<code>-</code>', 8263 which also matches 0 or more repetitions of characters in the class. 8264 Unlike '<code>*</code>', 8265 these repetition items will always match the shortest possible sequence; 8266 </li> 8267 8268 <li> 8269 a single character class followed by '<code>?</code>', 8270 which matches 0 or 1 occurrence of a character in the class; 8271 </li> 8272 8273 <li> 8274 <code>%<em>n</em></code>, for <em>n</em> between 1 and 9; 8275 such item matches a substring equal to the <em>n</em>-th captured string 8276 (see below); 8277 </li> 8278 8279 <li> 8280 <code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters; 8281 such item matches strings that start with <em>x</em>, end with <em>y</em>, 8282 and where the <em>x</em> and <em>y</em> are <em>balanced</em>. 8283 This means that, if one reads the string from left to right, 8284 counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>, 8285 the ending <em>y</em> is the first <em>y</em> where the count reaches 0. 8286 For instance, the item <code>%b()</code> matches expressions with 8287 balanced parentheses. 8288 </li> 8289 8290 <li> 8291 <code>%f[<em>set</em>]</code>, a <em>frontier pattern</em>; 8292 such item matches an empty string at any position such that 8293 the next character belongs to <em>set</em> 8294 and the previous character does not belong to <em>set</em>. 8295 The set <em>set</em> is interpreted as previously described. 8296 The beginning and the end of the subject are handled as if 8297 they were the character '<code>\0</code>'. 8298 </li> 8299 8300 </ul> 8301 8302 8303 8304 8305 <h4>Pattern:</h4><p> 8306 A <em>pattern</em> is a sequence of pattern items. 8307 A caret '<code>^</code>' at the beginning of a pattern anchors the match at the 8308 beginning of the subject string. 8309 A '<code>$</code>' at the end of a pattern anchors the match at the 8310 end of the subject string. 8311 At other positions, 8312 '<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves. 8313 8314 8315 8316 8317 8318 <h4>Captures:</h4><p> 8319 A pattern can contain sub-patterns enclosed in parentheses; 8320 they describe <em>captures</em>. 8321 When a match succeeds, the substrings of the subject string 8322 that match captures are stored (<em>captured</em>) for future use. 8323 Captures are numbered according to their left parentheses. 8324 For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>, 8325 the part of the string matching <code>"a*(.)%w(%s*)"</code> is 8326 stored as the first capture (and therefore has number 1); 8327 the character matching "<code>.</code>" is captured with number 2, 8328 and the part matching "<code>%s*</code>" has number 3. 8329 8330 8331 <p> 8332 As a special case, the empty capture <code>()</code> captures 8333 the current string position (a number). 8334 For instance, if we apply the pattern <code>"()aa()"</code> on the 8335 string <code>"flaaap"</code>, there will be two captures: 3 and 5. 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 <h2>6.5 – <a name="6.5">Table Manipulation</a></h2> 8348 8349 <p> 8350 This library provides generic functions for table manipulation. 8351 It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>. 8352 8353 8354 <p> 8355 Remember that, whenever an operation needs the length of a table, 8356 the table should be a proper sequence 8357 or have a <code>__len</code> metamethod (see <a href="#3.4.6">§3.4.6</a>). 8358 All functions ignore non-numeric keys 8359 in tables given as arguments. 8360 8361 8362 <p> 8363 For performance reasons, 8364 all table accesses (get/set) performed by these functions are raw. 8365 8366 8367 <p> 8368 <hr><h3><a name="pdf-table.concat"><code>table.concat (list [, sep [, i [, j]]])</code></a></h3> 8369 8370 8371 <p> 8372 Given a list where all elements are strings or numbers, 8373 returns the string <code>list[i]..sep..list[i+1] ··· sep..list[j]</code>. 8374 The default value for <code>sep</code> is the empty string, 8375 the default for <code>i</code> is 1, 8376 and the default for <code>j</code> is <code>#list</code>. 8377 If <code>i</code> is greater than <code>j</code>, returns the empty string. 8378 8379 8380 8381 8382 <p> 8383 <hr><h3><a name="pdf-table.insert"><code>table.insert (list, [pos,] value)</code></a></h3> 8384 8385 8386 <p> 8387 Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>, 8388 shifting up the elements 8389 <code>list[pos], list[pos+1], ···, list[#list]</code>. 8390 The default value for <code>pos</code> is <code>#list+1</code>, 8391 so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end 8392 of list <code>t</code>. 8393 8394 8395 8396 8397 <p> 8398 <hr><h3><a name="pdf-table.pack"><code>table.pack (···)</code></a></h3> 8399 8400 8401 <p> 8402 Returns a new table with all parameters stored into keys 1, 2, etc. 8403 and with a field "<code>n</code>" with the total number of parameters. 8404 Note that the resulting table may not be a sequence. 8405 8406 8407 8408 8409 <p> 8410 <hr><h3><a name="pdf-table.remove"><code>table.remove (list [, pos])</code></a></h3> 8411 8412 8413 <p> 8414 Removes from <code>list</code> the element at position <code>pos</code>, 8415 returning the value of the removed element. 8416 When <code>pos</code> is an integer between 1 and <code>#list</code>, 8417 it shifts down the elements 8418 <code>list[pos+1], list[pos+2], ···, list[#list]</code> 8419 and erases element <code>list[#list]</code>; 8420 The index <code>pos</code> can also be 0 when <code>#list</code> is 0, 8421 or <code>#list + 1</code>; 8422 in those cases, the function erases the element <code>list[pos]</code>. 8423 8424 8425 <p> 8426 The default value for <code>pos</code> is <code>#list</code>, 8427 so that a call <code>table.remove(t)</code> removes the last element 8428 of list <code>t</code>. 8429 8430 8431 8432 8433 <p> 8434 <hr><h3><a name="pdf-table.sort"><code>table.sort (list [, comp])</code></a></h3> 8435 8436 8437 <p> 8438 Sorts list elements in a given order, <em>in-place</em>, 8439 from <code>list[1]</code> to <code>list[#list]</code>. 8440 If <code>comp</code> is given, 8441 then it must be a function that receives two list elements 8442 and returns true when the first element must come 8443 before the second in the final order 8444 (so that <code>not comp(list[i+1],list[i])</code> will be true after the sort). 8445 If <code>comp</code> is not given, 8446 then the standard Lua operator <code><</code> is used instead. 8447 8448 8449 <p> 8450 The sort algorithm is not stable; 8451 that is, elements considered equal by the given order 8452 may have their relative positions changed by the sort. 8453 8454 8455 8456 8457 <p> 8458 <hr><h3><a name="pdf-table.unpack"><code>table.unpack (list [, i [, j]])</code></a></h3> 8459 8460 8461 <p> 8462 Returns the elements from the given table. 8463 This function is equivalent to 8464 8465 <pre> 8466 return list[i], list[i+1], ···, list[j] 8467 </pre><p> 8468 By default, <code>i</code> is 1 and <code>j</code> is <code>#list</code>. 8469 8470 8471 8472 8473 8474 8475 8476 <h2>6.6 – <a name="6.6">Mathematical Functions</a></h2> 8477 8478 <p> 8479 This library is an interface to the standard C math library. 8480 It provides all its functions inside the table <a name="pdf-math"><code>math</code></a>. 8481 8482 8483 <p> 8484 <hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3> 8485 8486 8487 <p> 8488 Returns the absolute value of <code>x</code>. 8489 8490 8491 8492 8493 <p> 8494 <hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3> 8495 8496 8497 <p> 8498 Returns the arc cosine of <code>x</code> (in radians). 8499 8500 8501 8502 8503 <p> 8504 <hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3> 8505 8506 8507 <p> 8508 Returns the arc sine of <code>x</code> (in radians). 8509 8510 8511 8512 8513 <p> 8514 <hr><h3><a name="pdf-math.atan"><code>math.atan (x)</code></a></h3> 8515 8516 8517 <p> 8518 Returns the arc tangent of <code>x</code> (in radians). 8519 8520 8521 8522 8523 <p> 8524 <hr><h3><a name="pdf-math.atan2"><code>math.atan2 (y, x)</code></a></h3> 8525 8526 8527 <p> 8528 Returns the arc tangent of <code>y/x</code> (in radians), 8529 but uses the signs of both parameters to find the 8530 quadrant of the result. 8531 (It also handles correctly the case of <code>x</code> being zero.) 8532 8533 8534 8535 8536 <p> 8537 <hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3> 8538 8539 8540 <p> 8541 Returns the smallest integer larger than or equal to <code>x</code>. 8542 8543 8544 8545 8546 <p> 8547 <hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3> 8548 8549 8550 <p> 8551 Returns the cosine of <code>x</code> (assumed to be in radians). 8552 8553 8554 8555 8556 <p> 8557 <hr><h3><a name="pdf-math.cosh"><code>math.cosh (x)</code></a></h3> 8558 8559 8560 <p> 8561 Returns the hyperbolic cosine of <code>x</code>. 8562 8563 8564 8565 8566 <p> 8567 <hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3> 8568 8569 8570 <p> 8571 Returns the angle <code>x</code> (given in radians) in degrees. 8572 8573 8574 8575 8576 <p> 8577 <hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3> 8578 8579 8580 <p> 8581 Returns the value <em>e<sup>x</sup></em>. 8582 8583 8584 8585 8586 <p> 8587 <hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3> 8588 8589 8590 <p> 8591 Returns the largest integer smaller than or equal to <code>x</code>. 8592 8593 8594 8595 8596 <p> 8597 <hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3> 8598 8599 8600 <p> 8601 Returns the remainder of the division of <code>x</code> by <code>y</code> 8602 that rounds the quotient towards zero. 8603 8604 8605 8606 8607 <p> 8608 <hr><h3><a name="pdf-math.frexp"><code>math.frexp (x)</code></a></h3> 8609 8610 8611 <p> 8612 Returns <code>m</code> and <code>e</code> such that <em>x = m2<sup>e</sup></em>, 8613 <code>e</code> is an integer and the absolute value of <code>m</code> is 8614 in the range <em>[0.5, 1)</em> 8615 (or zero when <code>x</code> is zero). 8616 8617 8618 8619 8620 <p> 8621 <hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3> 8622 8623 8624 <p> 8625 The value <code>HUGE_VAL</code>, 8626 a value larger than or equal to any other numerical value. 8627 8628 8629 8630 8631 <p> 8632 <hr><h3><a name="pdf-math.ldexp"><code>math.ldexp (m, e)</code></a></h3> 8633 8634 8635 <p> 8636 Returns <em>m2<sup>e</sup></em> (<code>e</code> should be an integer). 8637 8638 8639 8640 8641 <p> 8642 <hr><h3><a name="pdf-math.log"><code>math.log (x [, base])</code></a></h3> 8643 8644 8645 <p> 8646 Returns the logarithm of <code>x</code> in the given base. 8647 The default for <code>base</code> is <em>e</em> 8648 (so that the function returns the natural logarithm of <code>x</code>). 8649 8650 8651 8652 8653 <p> 8654 <hr><h3><a name="pdf-math.max"><code>math.max (x, ···)</code></a></h3> 8655 8656 8657 <p> 8658 Returns the maximum value among its arguments. 8659 8660 8661 8662 8663 <p> 8664 <hr><h3><a name="pdf-math.min"><code>math.min (x, ···)</code></a></h3> 8665 8666 8667 <p> 8668 Returns the minimum value among its arguments. 8669 8670 8671 8672 8673 <p> 8674 <hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3> 8675 8676 8677 <p> 8678 Returns two numbers, 8679 the integral part of <code>x</code> and the fractional part of <code>x</code>. 8680 8681 8682 8683 8684 <p> 8685 <hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3> 8686 8687 8688 <p> 8689 The value of <em>π</em>. 8690 8691 8692 8693 8694 <p> 8695 <hr><h3><a name="pdf-math.pow"><code>math.pow (x, y)</code></a></h3> 8696 8697 8698 <p> 8699 Returns <em>x<sup>y</sup></em>. 8700 (You can also use the expression <code>x^y</code> to compute this value.) 8701 8702 8703 8704 8705 <p> 8706 <hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3> 8707 8708 8709 <p> 8710 Returns the angle <code>x</code> (given in degrees) in radians. 8711 8712 8713 8714 8715 <p> 8716 <hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3> 8717 8718 8719 <p> 8720 This function is an interface to the simple 8721 pseudo-random generator function <code>rand</code> provided by Standard C. 8722 (No guarantees can be given for its statistical properties.) 8723 8724 8725 <p> 8726 When called without arguments, 8727 returns a uniform pseudo-random real number 8728 in the range <em>[0,1)</em>. 8729 When called with an integer number <code>m</code>, 8730 <code>math.random</code> returns 8731 a uniform pseudo-random integer in the range <em>[1, m]</em>. 8732 When called with two integer numbers <code>m</code> and <code>n</code>, 8733 <code>math.random</code> returns a uniform pseudo-random 8734 integer in the range <em>[m, n]</em>. 8735 8736 8737 8738 8739 <p> 8740 <hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3> 8741 8742 8743 <p> 8744 Sets <code>x</code> as the "seed" 8745 for the pseudo-random generator: 8746 equal seeds produce equal sequences of numbers. 8747 8748 8749 8750 8751 <p> 8752 <hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3> 8753 8754 8755 <p> 8756 Returns the sine of <code>x</code> (assumed to be in radians). 8757 8758 8759 8760 8761 <p> 8762 <hr><h3><a name="pdf-math.sinh"><code>math.sinh (x)</code></a></h3> 8763 8764 8765 <p> 8766 Returns the hyperbolic sine of <code>x</code>. 8767 8768 8769 8770 8771 <p> 8772 <hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3> 8773 8774 8775 <p> 8776 Returns the square root of <code>x</code>. 8777 (You can also use the expression <code>x^0.5</code> to compute this value.) 8778 8779 8780 8781 8782 <p> 8783 <hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3> 8784 8785 8786 <p> 8787 Returns the tangent of <code>x</code> (assumed to be in radians). 8788 8789 8790 8791 8792 <p> 8793 <hr><h3><a name="pdf-math.tanh"><code>math.tanh (x)</code></a></h3> 8794 8795 8796 <p> 8797 Returns the hyperbolic tangent of <code>x</code>. 8798 8799 8800 8801 8802 8803 8804 8805 <h2>6.7 – <a name="6.7">Bitwise Operations</a></h2> 8806 8807 <p> 8808 This library provides bitwise operations. 8809 It provides all its functions inside the table <a name="pdf-bit32"><code>bit32</code></a>. 8810 8811 8812 <p> 8813 Unless otherwise stated, 8814 all functions accept numeric arguments in the range 8815 <em>(-2<sup>51</sup>,+2<sup>51</sup>)</em>; 8816 each argument is normalized to 8817 the remainder of its division by <em>2<sup>32</sup></em> 8818 and truncated to an integer (in some unspecified way), 8819 so that its final value falls in the range <em>[0,2<sup>32</sup> - 1]</em>. 8820 Similarly, all results are in the range <em>[0,2<sup>32</sup> - 1]</em>. 8821 Note that <code>bit32.bnot(0)</code> is <code>0xFFFFFFFF</code>, 8822 which is different from <code>-1</code>. 8823 8824 8825 <p> 8826 <hr><h3><a name="pdf-bit32.arshift"><code>bit32.arshift (x, disp)</code></a></h3> 8827 8828 8829 <p> 8830 Returns the number <code>x</code> shifted <code>disp</code> bits to the right. 8831 The number <code>disp</code> may be any representable integer. 8832 Negative displacements shift to the left. 8833 8834 8835 <p> 8836 This shift operation is what is called arithmetic shift. 8837 Vacant bits on the left are filled 8838 with copies of the higher bit of <code>x</code>; 8839 vacant bits on the right are filled with zeros. 8840 In particular, 8841 displacements with absolute values higher than 31 8842 result in zero or <code>0xFFFFFFFF</code> (all original bits are shifted out). 8843 8844 8845 8846 8847 <p> 8848 <hr><h3><a name="pdf-bit32.band"><code>bit32.band (···)</code></a></h3> 8849 8850 8851 <p> 8852 Returns the bitwise <em>and</em> of its operands. 8853 8854 8855 8856 8857 <p> 8858 <hr><h3><a name="pdf-bit32.bnot"><code>bit32.bnot (x)</code></a></h3> 8859 8860 8861 <p> 8862 Returns the bitwise negation of <code>x</code>. 8863 For any integer <code>x</code>, 8864 the following identity holds: 8865 8866 <pre> 8867 assert(bit32.bnot(x) == (-1 - x) % 2^32) 8868 </pre> 8869 8870 8871 8872 <p> 8873 <hr><h3><a name="pdf-bit32.bor"><code>bit32.bor (···)</code></a></h3> 8874 8875 8876 <p> 8877 Returns the bitwise <em>or</em> of its operands. 8878 8879 8880 8881 8882 <p> 8883 <hr><h3><a name="pdf-bit32.btest"><code>bit32.btest (···)</code></a></h3> 8884 8885 8886 <p> 8887 Returns a boolean signaling 8888 whether the bitwise <em>and</em> of its operands is different from zero. 8889 8890 8891 8892 8893 <p> 8894 <hr><h3><a name="pdf-bit32.bxor"><code>bit32.bxor (···)</code></a></h3> 8895 8896 8897 <p> 8898 Returns the bitwise <em>exclusive or</em> of its operands. 8899 8900 8901 8902 8903 <p> 8904 <hr><h3><a name="pdf-bit32.extract"><code>bit32.extract (n, field [, width])</code></a></h3> 8905 8906 8907 <p> 8908 Returns the unsigned number formed by the bits 8909 <code>field</code> to <code>field + width - 1</code> from <code>n</code>. 8910 Bits are numbered from 0 (least significant) to 31 (most significant). 8911 All accessed bits must be in the range <em>[0, 31]</em>. 8912 8913 8914 <p> 8915 The default for <code>width</code> is 1. 8916 8917 8918 8919 8920 <p> 8921 <hr><h3><a name="pdf-bit32.replace"><code>bit32.replace (n, v, field [, width])</code></a></h3> 8922 8923 8924 <p> 8925 Returns a copy of <code>n</code> with 8926 the bits <code>field</code> to <code>field + width - 1</code> 8927 replaced by the value <code>v</code>. 8928 See <a href="#pdf-bit32.extract"><code>bit32.extract</code></a> for details about <code>field</code> and <code>width</code>. 8929 8930 8931 8932 8933 <p> 8934 <hr><h3><a name="pdf-bit32.lrotate"><code>bit32.lrotate (x, disp)</code></a></h3> 8935 8936 8937 <p> 8938 Returns the number <code>x</code> rotated <code>disp</code> bits to the left. 8939 The number <code>disp</code> may be any representable integer. 8940 8941 8942 <p> 8943 For any valid displacement, 8944 the following identity holds: 8945 8946 <pre> 8947 assert(bit32.lrotate(x, disp) == bit32.lrotate(x, disp % 32)) 8948 </pre><p> 8949 In particular, 8950 negative displacements rotate to the right. 8951 8952 8953 8954 8955 <p> 8956 <hr><h3><a name="pdf-bit32.lshift"><code>bit32.lshift (x, disp)</code></a></h3> 8957 8958 8959 <p> 8960 Returns the number <code>x</code> shifted <code>disp</code> bits to the left. 8961 The number <code>disp</code> may be any representable integer. 8962 Negative displacements shift to the right. 8963 In any direction, vacant bits are filled with zeros. 8964 In particular, 8965 displacements with absolute values higher than 31 8966 result in zero (all bits are shifted out). 8967 8968 8969 <p> 8970 For positive displacements, 8971 the following equality holds: 8972 8973 <pre> 8974 assert(bit32.lshift(b, disp) == (b * 2^disp) % 2^32) 8975 </pre> 8976 8977 8978 8979 <p> 8980 <hr><h3><a name="pdf-bit32.rrotate"><code>bit32.rrotate (x, disp)</code></a></h3> 8981 8982 8983 <p> 8984 Returns the number <code>x</code> rotated <code>disp</code> bits to the right. 8985 The number <code>disp</code> may be any representable integer. 8986 8987 8988 <p> 8989 For any valid displacement, 8990 the following identity holds: 8991 8992 <pre> 8993 assert(bit32.rrotate(x, disp) == bit32.rrotate(x, disp % 32)) 8994 </pre><p> 8995 In particular, 8996 negative displacements rotate to the left. 8997 8998 8999 9000 9001 <p> 9002 <hr><h3><a name="pdf-bit32.rshift"><code>bit32.rshift (x, disp)</code></a></h3> 9003 9004 9005 <p> 9006 Returns the number <code>x</code> shifted <code>disp</code> bits to the right. 9007 The number <code>disp</code> may be any representable integer. 9008 Negative displacements shift to the left. 9009 In any direction, vacant bits are filled with zeros. 9010 In particular, 9011 displacements with absolute values higher than 31 9012 result in zero (all bits are shifted out). 9013 9014 9015 <p> 9016 For positive displacements, 9017 the following equality holds: 9018 9019 <pre> 9020 assert(bit32.rshift(b, disp) == math.floor(b % 2^32 / 2^disp)) 9021 </pre> 9022 9023 <p> 9024 This shift operation is what is called logical shift. 9025 9026 9027 9028 9029 9030 9031 9032 <h2>6.8 – <a name="6.8">Input and Output Facilities</a></h2> 9033 9034 <p> 9035 The I/O library provides two different styles for file manipulation. 9036 The first one uses implicit file descriptors; 9037 that is, there are operations to set a default input file and a 9038 default output file, 9039 and all input/output operations are over these default files. 9040 The second style uses explicit file descriptors. 9041 9042 9043 <p> 9044 When using implicit file descriptors, 9045 all operations are supplied by table <a name="pdf-io"><code>io</code></a>. 9046 When using explicit file descriptors, 9047 the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file descriptor 9048 and then all operations are supplied as methods of the file descriptor. 9049 9050 9051 <p> 9052 The table <code>io</code> also provides 9053 three predefined file descriptors with their usual meanings from C: 9054 <a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>. 9055 The I/O library never closes these files. 9056 9057 9058 <p> 9059 Unless otherwise stated, 9060 all I/O functions return <b>nil</b> on failure 9061 (plus an error message as a second result and 9062 a system-dependent error code as a third result) 9063 and some value different from <b>nil</b> on success. 9064 On non-Posix systems, 9065 the computation of the error message and error code 9066 in case of errors 9067 may be not thread safe, 9068 because they rely on the global C variable <code>errno</code>. 9069 9070 9071 <p> 9072 <hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3> 9073 9074 9075 <p> 9076 Equivalent to <code>file:close()</code>. 9077 Without a <code>file</code>, closes the default output file. 9078 9079 9080 9081 9082 <p> 9083 <hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3> 9084 9085 9086 <p> 9087 Equivalent to <code>io.output():flush()</code>. 9088 9089 9090 9091 9092 <p> 9093 <hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3> 9094 9095 9096 <p> 9097 When called with a file name, it opens the named file (in text mode), 9098 and sets its handle as the default input file. 9099 When called with a file handle, 9100 it simply sets this file handle as the default input file. 9101 When called without parameters, 9102 it returns the current default input file. 9103 9104 9105 <p> 9106 In case of errors this function raises the error, 9107 instead of returning an error code. 9108 9109 9110 9111 9112 <p> 9113 <hr><h3><a name="pdf-io.lines"><code>io.lines ([filename ···])</code></a></h3> 9114 9115 9116 <p> 9117 Opens the given file name in read mode 9118 and returns an iterator function that 9119 works like <code>file:lines(···)</code> over the opened file. 9120 When the iterator function detects the end of file, 9121 it returns <b>nil</b> (to finish the loop) and automatically closes the file. 9122 9123 9124 <p> 9125 The call <code>io.lines()</code> (with no file name) is equivalent 9126 to <code>io.input():lines()</code>; 9127 that is, it iterates over the lines of the default input file. 9128 In this case it does not close the file when the loop ends. 9129 9130 9131 <p> 9132 In case of errors this function raises the error, 9133 instead of returning an error code. 9134 9135 9136 9137 9138 <p> 9139 <hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3> 9140 9141 9142 <p> 9143 This function opens a file, 9144 in the mode specified in the string <code>mode</code>. 9145 It returns a new file handle, 9146 or, in case of errors, <b>nil</b> plus an error message. 9147 9148 9149 <p> 9150 The <code>mode</code> string can be any of the following: 9151 9152 <ul> 9153 <li><b>"<code>r</code>": </b> read mode (the default);</li> 9154 <li><b>"<code>w</code>": </b> write mode;</li> 9155 <li><b>"<code>a</code>": </b> append mode;</li> 9156 <li><b>"<code>r+</code>": </b> update mode, all previous data is preserved;</li> 9157 <li><b>"<code>w+</code>": </b> update mode, all previous data is erased;</li> 9158 <li><b>"<code>a+</code>": </b> append update mode, previous data is preserved, 9159 writing is only allowed at the end of file.</li> 9160 </ul><p> 9161 The <code>mode</code> string can also have a '<code>b</code>' at the end, 9162 which is needed in some systems to open the file in binary mode. 9163 9164 9165 9166 9167 <p> 9168 <hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3> 9169 9170 9171 <p> 9172 Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file. 9173 9174 9175 9176 9177 <p> 9178 <hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3> 9179 9180 9181 <p> 9182 This function is system dependent and is not available 9183 on all platforms. 9184 9185 9186 <p> 9187 Starts program <code>prog</code> in a separated process and returns 9188 a file handle that you can use to read data from this program 9189 (if <code>mode</code> is <code>"r"</code>, the default) 9190 or to write data to this program 9191 (if <code>mode</code> is <code>"w"</code>). 9192 9193 9194 9195 9196 <p> 9197 <hr><h3><a name="pdf-io.read"><code>io.read (···)</code></a></h3> 9198 9199 9200 <p> 9201 Equivalent to <code>io.input():read(···)</code>. 9202 9203 9204 9205 9206 <p> 9207 <hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3> 9208 9209 9210 <p> 9211 Returns a handle for a temporary file. 9212 This file is opened in update mode 9213 and it is automatically removed when the program ends. 9214 9215 9216 9217 9218 <p> 9219 <hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3> 9220 9221 9222 <p> 9223 Checks whether <code>obj</code> is a valid file handle. 9224 Returns the string <code>"file"</code> if <code>obj</code> is an open file handle, 9225 <code>"closed file"</code> if <code>obj</code> is a closed file handle, 9226 or <b>nil</b> if <code>obj</code> is not a file handle. 9227 9228 9229 9230 9231 <p> 9232 <hr><h3><a name="pdf-io.write"><code>io.write (···)</code></a></h3> 9233 9234 9235 <p> 9236 Equivalent to <code>io.output():write(···)</code>. 9237 9238 9239 9240 9241 <p> 9242 <hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3> 9243 9244 9245 <p> 9246 Closes <code>file</code>. 9247 Note that files are automatically closed when 9248 their handles are garbage collected, 9249 but that takes an unpredictable amount of time to happen. 9250 9251 9252 <p> 9253 When closing a file handle created with <a href="#pdf-io.popen"><code>io.popen</code></a>, 9254 <a href="#pdf-file:close"><code>file:close</code></a> returns the same values 9255 returned by <a href="#pdf-os.execute"><code>os.execute</code></a>. 9256 9257 9258 9259 9260 <p> 9261 <hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3> 9262 9263 9264 <p> 9265 Saves any written data to <code>file</code>. 9266 9267 9268 9269 9270 <p> 9271 <hr><h3><a name="pdf-file:lines"><code>file:lines (···)</code></a></h3> 9272 9273 9274 <p> 9275 Returns an iterator function that, 9276 each time it is called, 9277 reads the file according to the given formats. 9278 When no format is given, 9279 uses "*l" as a default. 9280 As an example, the construction 9281 9282 <pre> 9283 for c in file:lines(1) do <em>body</em> end 9284 </pre><p> 9285 will iterate over all characters of the file, 9286 starting at the current position. 9287 Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file 9288 when the loop ends. 9289 9290 9291 <p> 9292 In case of errors this function raises the error, 9293 instead of returning an error code. 9294 9295 9296 9297 9298 <p> 9299 <hr><h3><a name="pdf-file:read"><code>file:read (···)</code></a></h3> 9300 9301 9302 <p> 9303 Reads the file <code>file</code>, 9304 according to the given formats, which specify what to read. 9305 For each format, 9306 the function returns a string (or a number) with the characters read, 9307 or <b>nil</b> if it cannot read data with the specified format. 9308 When called without formats, 9309 it uses a default format that reads the next line 9310 (see below). 9311 9312 9313 <p> 9314 The available formats are 9315 9316 <ul> 9317 9318 <li><b>"<code>*n</code>": </b> 9319 reads a number; 9320 this is the only format that returns a number instead of a string. 9321 </li> 9322 9323 <li><b>"<code>*a</code>": </b> 9324 reads the whole file, starting at the current position. 9325 On end of file, it returns the empty string. 9326 </li> 9327 9328 <li><b>"<code>*l</code>": </b> 9329 reads the next line skipping the end of line, 9330 returning <b>nil</b> on end of file. 9331 This is the default format. 9332 </li> 9333 9334 <li><b>"<code>*L</code>": </b> 9335 reads the next line keeping the end of line (if present), 9336 returning <b>nil</b> on end of file. 9337 </li> 9338 9339 <li><b><em>number</em>: </b> 9340 reads a string with up to this number of bytes, 9341 returning <b>nil</b> on end of file. 9342 If number is zero, 9343 it reads nothing and returns an empty string, 9344 or <b>nil</b> on end of file. 9345 </li> 9346 9347 </ul> 9348 9349 9350 9351 <p> 9352 <hr><h3><a name="pdf-file:seek"><code>file:seek ([whence [, offset]])</code></a></h3> 9353 9354 9355 <p> 9356 Sets and gets the file position, 9357 measured from the beginning of the file, 9358 to the position given by <code>offset</code> plus a base 9359 specified by the string <code>whence</code>, as follows: 9360 9361 <ul> 9362 <li><b>"<code>set</code>": </b> base is position 0 (beginning of the file);</li> 9363 <li><b>"<code>cur</code>": </b> base is current position;</li> 9364 <li><b>"<code>end</code>": </b> base is end of file;</li> 9365 </ul><p> 9366 In case of success, <code>seek</code> returns the final file position, 9367 measured in bytes from the beginning of the file. 9368 If <code>seek</code> fails, it returns <b>nil</b>, 9369 plus a string describing the error. 9370 9371 9372 <p> 9373 The default value for <code>whence</code> is <code>"cur"</code>, 9374 and for <code>offset</code> is 0. 9375 Therefore, the call <code>file:seek()</code> returns the current 9376 file position, without changing it; 9377 the call <code>file:seek("set")</code> sets the position to the 9378 beginning of the file (and returns 0); 9379 and the call <code>file:seek("end")</code> sets the position to the 9380 end of the file, and returns its size. 9381 9382 9383 9384 9385 <p> 9386 <hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3> 9387 9388 9389 <p> 9390 Sets the buffering mode for an output file. 9391 There are three available modes: 9392 9393 <ul> 9394 9395 <li><b>"<code>no</code>": </b> 9396 no buffering; the result of any output operation appears immediately. 9397 </li> 9398 9399 <li><b>"<code>full</code>": </b> 9400 full buffering; output operation is performed only 9401 when the buffer is full or when 9402 you explicitly <code>flush</code> the file (see <a href="#pdf-io.flush"><code>io.flush</code></a>). 9403 </li> 9404 9405 <li><b>"<code>line</code>": </b> 9406 line buffering; output is buffered until a newline is output 9407 or there is any input from some special files 9408 (such as a terminal device). 9409 </li> 9410 9411 </ul><p> 9412 For the last two cases, <code>size</code> 9413 specifies the size of the buffer, in bytes. 9414 The default is an appropriate size. 9415 9416 9417 9418 9419 <p> 9420 <hr><h3><a name="pdf-file:write"><code>file:write (···)</code></a></h3> 9421 9422 9423 <p> 9424 Writes the value of each of its arguments to <code>file</code>. 9425 The arguments must be strings or numbers. 9426 9427 9428 <p> 9429 In case of success, this function returns <code>file</code>. 9430 Otherwise it returns <b>nil</b> plus a string describing the error. 9431 9432 9433 9434 9435 9436 9437 9438 <h2>6.9 – <a name="6.9">Operating System Facilities</a></h2> 9439 9440 <p> 9441 This library is implemented through table <a name="pdf-os"><code>os</code></a>. 9442 9443 9444 <p> 9445 <hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3> 9446 9447 9448 <p> 9449 Returns an approximation of the amount in seconds of CPU time 9450 used by the program. 9451 9452 9453 9454 9455 <p> 9456 <hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3> 9457 9458 9459 <p> 9460 Returns a string or a table containing date and time, 9461 formatted according to the given string <code>format</code>. 9462 9463 9464 <p> 9465 If the <code>time</code> argument is present, 9466 this is the time to be formatted 9467 (see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value). 9468 Otherwise, <code>date</code> formats the current time. 9469 9470 9471 <p> 9472 If <code>format</code> starts with '<code>!</code>', 9473 then the date is formatted in Coordinated Universal Time. 9474 After this optional character, 9475 if <code>format</code> is the string "<code>*t</code>", 9476 then <code>date</code> returns a table with the following fields: 9477 <code>year</code> (four digits), <code>month</code> (1–12), <code>day</code> (1–31), 9478 <code>hour</code> (0–23), <code>min</code> (0–59), <code>sec</code> (0–61), 9479 <code>wday</code> (weekday, Sunday is 1), 9480 <code>yday</code> (day of the year), 9481 and <code>isdst</code> (daylight saving flag, a boolean). 9482 This last field may be absent 9483 if the information is not available. 9484 9485 9486 <p> 9487 If <code>format</code> is not "<code>*t</code>", 9488 then <code>date</code> returns the date as a string, 9489 formatted according to the same rules as the ANSI C function <code>strftime</code>. 9490 9491 9492 <p> 9493 When called without arguments, 9494 <code>date</code> returns a reasonable date and time representation that depends on 9495 the host system and on the current locale 9496 (that is, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>). 9497 9498 9499 <p> 9500 On non-Posix systems, 9501 this function may be not thread safe 9502 because of its reliance on C function <code>gmtime</code> and C function <code>localtime</code>. 9503 9504 9505 9506 9507 <p> 9508 <hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3> 9509 9510 9511 <p> 9512 Returns the number of seconds from time <code>t1</code> to time <code>t2</code>. 9513 In POSIX, Windows, and some other systems, 9514 this value is exactly <code>t2</code><em>-</em><code>t1</code>. 9515 9516 9517 9518 9519 <p> 9520 <hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3> 9521 9522 9523 <p> 9524 This function is equivalent to the ANSI C function <code>system</code>. 9525 It passes <code>command</code> to be executed by an operating system shell. 9526 Its first result is <b>true</b> 9527 if the command terminated successfully, 9528 or <b>nil</b> otherwise. 9529 After this first result 9530 the function returns a string and a number, 9531 as follows: 9532 9533 <ul> 9534 9535 <li><b>"<code>exit</code>": </b> 9536 the command terminated normally; 9537 the following number is the exit status of the command. 9538 </li> 9539 9540 <li><b>"<code>signal</code>": </b> 9541 the command was terminated by a signal; 9542 the following number is the signal that terminated the command. 9543 </li> 9544 9545 </ul> 9546 9547 <p> 9548 When called without a <code>command</code>, 9549 <code>os.execute</code> returns a boolean that is true if a shell is available. 9550 9551 9552 9553 9554 <p> 9555 <hr><h3><a name="pdf-os.exit"><code>os.exit ([code [, close])</code></a></h3> 9556 9557 9558 <p> 9559 Calls the ANSI C function <code>exit</code> to terminate the host program. 9560 If <code>code</code> is <b>true</b>, 9561 the returned status is <code>EXIT_SUCCESS</code>; 9562 if <code>code</code> is <b>false</b>, 9563 the returned status is <code>EXIT_FAILURE</code>; 9564 if <code>code</code> is a number, 9565 the returned status is this number. 9566 The default value for <code>code</code> is <b>true</b>. 9567 9568 9569 <p> 9570 If the optional second argument <code>close</code> is true, 9571 closes the Lua state before exiting. 9572 9573 9574 9575 9576 <p> 9577 <hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3> 9578 9579 9580 <p> 9581 Returns the value of the process environment variable <code>varname</code>, 9582 or <b>nil</b> if the variable is not defined. 9583 9584 9585 9586 9587 <p> 9588 <hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3> 9589 9590 9591 <p> 9592 Deletes the file (or empty directory, on POSIX systems) 9593 with the given name. 9594 If this function fails, it returns <b>nil</b>, 9595 plus a string describing the error and the error code. 9596 9597 9598 9599 9600 <p> 9601 <hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3> 9602 9603 9604 <p> 9605 Renames file or directory named <code>oldname</code> to <code>newname</code>. 9606 If this function fails, it returns <b>nil</b>, 9607 plus a string describing the error and the error code. 9608 9609 9610 9611 9612 <p> 9613 <hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3> 9614 9615 9616 <p> 9617 Sets the current locale of the program. 9618 <code>locale</code> is a system-dependent string specifying a locale; 9619 <code>category</code> is an optional string describing which category to change: 9620 <code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>, 9621 <code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>; 9622 the default category is <code>"all"</code>. 9623 The function returns the name of the new locale, 9624 or <b>nil</b> if the request cannot be honored. 9625 9626 9627 <p> 9628 If <code>locale</code> is the empty string, 9629 the current locale is set to an implementation-defined native locale. 9630 If <code>locale</code> is the string "<code>C</code>", 9631 the current locale is set to the standard C locale. 9632 9633 9634 <p> 9635 When called with <b>nil</b> as the first argument, 9636 this function only returns the name of the current locale 9637 for the given category. 9638 9639 9640 <p> 9641 This function may be not thread safe 9642 because of its reliance on C function <code>setlocale</code>. 9643 9644 9645 9646 9647 <p> 9648 <hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3> 9649 9650 9651 <p> 9652 Returns the current time when called without arguments, 9653 or a time representing the date and time specified by the given table. 9654 This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>, 9655 and may have fields 9656 <code>hour</code> (default is 12), 9657 <code>min</code> (default is 0), 9658 <code>sec</code> (default is 0), 9659 and <code>isdst</code> (default is <b>nil</b>). 9660 For a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function. 9661 9662 9663 <p> 9664 The returned value is a number, whose meaning depends on your system. 9665 In POSIX, Windows, and some other systems, 9666 this number counts the number 9667 of seconds since some given start time (the "epoch"). 9668 In other systems, the meaning is not specified, 9669 and the number returned by <code>time</code> can be used only as an argument to 9670 <a href="#pdf-os.date"><code>os.date</code></a> and <a href="#pdf-os.difftime"><code>os.difftime</code></a>. 9671 9672 9673 9674 9675 <p> 9676 <hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3> 9677 9678 9679 <p> 9680 Returns a string with a file name that can 9681 be used for a temporary file. 9682 The file must be explicitly opened before its use 9683 and explicitly removed when no longer needed. 9684 9685 9686 <p> 9687 On POSIX systems, 9688 this function also creates a file with that name, 9689 to avoid security risks. 9690 (Someone else might create the file with wrong permissions 9691 in the time between getting the name and creating the file.) 9692 You still have to open the file to use it 9693 and to remove it (even if you do not use it). 9694 9695 9696 <p> 9697 When possible, 9698 you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>, 9699 which automatically removes the file when the program ends. 9700 9701 9702 9703 9704 9705 9706 9707 <h2>6.10 – <a name="6.10">The Debug Library</a></h2> 9708 9709 <p> 9710 This library provides 9711 the functionality of the debug interface (<a href="#4.9">§4.9</a>) to Lua programs. 9712 You should exert care when using this library. 9713 Several of its functions 9714 violate basic assumptions about Lua code 9715 (e.g., that variables local to a function 9716 cannot be accessed from outside; 9717 that userdata metatables cannot be changed by Lua code; 9718 that Lua programs do not crash) 9719 and therefore can compromise otherwise secure code. 9720 Moreover, some functions in this library may be slow. 9721 9722 9723 <p> 9724 All functions in this library are provided 9725 inside the <a name="pdf-debug"><code>debug</code></a> table. 9726 All functions that operate over a thread 9727 have an optional first argument which is the 9728 thread to operate over. 9729 The default is always the current thread. 9730 9731 9732 <p> 9733 <hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3> 9734 9735 9736 <p> 9737 Enters an interactive mode with the user, 9738 running each string that the user enters. 9739 Using simple commands and other debug facilities, 9740 the user can inspect global and local variables, 9741 change their values, evaluate expressions, and so on. 9742 A line containing only the word <code>cont</code> finishes this function, 9743 so that the caller continues its execution. 9744 9745 9746 <p> 9747 Note that commands for <code>debug.debug</code> are not lexically nested 9748 within any function and so have no direct access to local variables. 9749 9750 9751 9752 9753 <p> 9754 <hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3> 9755 9756 9757 <p> 9758 Returns the current hook settings of the thread, as three values: 9759 the current hook function, the current hook mask, 9760 and the current hook count 9761 (as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function). 9762 9763 9764 9765 9766 <p> 9767 <hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] f [, what])</code></a></h3> 9768 9769 9770 <p> 9771 Returns a table with information about a function. 9772 You can give the function directly 9773 or you can give a number as the value of <code>f</code>, 9774 which means the function running at level <code>f</code> of the call stack 9775 of the given thread: 9776 level 0 is the current function (<code>getinfo</code> itself); 9777 level 1 is the function that called <code>getinfo</code> 9778 (except for tail calls, which do not count on the stack); 9779 and so on. 9780 If <code>f</code> is a number larger than the number of active functions, 9781 then <code>getinfo</code> returns <b>nil</b>. 9782 9783 9784 <p> 9785 The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>, 9786 with the string <code>what</code> describing which fields to fill in. 9787 The default for <code>what</code> is to get all information available, 9788 except the table of valid lines. 9789 If present, 9790 the option '<code>f</code>' 9791 adds a field named <code>func</code> with the function itself. 9792 If present, 9793 the option '<code>L</code>' 9794 adds a field named <code>activelines</code> with the table of 9795 valid lines. 9796 9797 9798 <p> 9799 For instance, the expression <code>debug.getinfo(1,"n").name</code> returns 9800 a table with a name for the current function, 9801 if a reasonable name can be found, 9802 and the expression <code>debug.getinfo(print)</code> 9803 returns a table with all available information 9804 about the <a href="#pdf-print"><code>print</code></a> function. 9805 9806 9807 9808 9809 <p> 9810 <hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] f, local)</code></a></h3> 9811 9812 9813 <p> 9814 This function returns the name and the value of the local variable 9815 with index <code>local</code> of the function at level <code>f</code> of the stack. 9816 This function accesses not only explicit local variables, 9817 but also parameters, temporaries, etc. 9818 9819 9820 <p> 9821 The first parameter or local variable has index 1, and so on, 9822 until the last active variable. 9823 Negative indices refer to vararg parameters; 9824 -1 is the first vararg parameter. 9825 The function returns <b>nil</b> if there is no variable with the given index, 9826 and raises an error when called with a level out of range. 9827 (You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.) 9828 9829 9830 <p> 9831 Variable names starting with '<code>(</code>' (open parenthesis) 9832 represent internal variables 9833 (loop control variables, temporaries, varargs, and C function locals). 9834 9835 9836 <p> 9837 The parameter <code>f</code> may also be a function. 9838 In that case, <code>getlocal</code> returns only the name of function parameters. 9839 9840 9841 9842 9843 <p> 9844 <hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (value)</code></a></h3> 9845 9846 9847 <p> 9848 Returns the metatable of the given <code>value</code> 9849 or <b>nil</b> if it does not have a metatable. 9850 9851 9852 9853 9854 <p> 9855 <hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3> 9856 9857 9858 <p> 9859 Returns the registry table (see <a href="#4.5">§4.5</a>). 9860 9861 9862 9863 9864 <p> 9865 <hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (f, up)</code></a></h3> 9866 9867 9868 <p> 9869 This function returns the name and the value of the upvalue 9870 with index <code>up</code> of the function <code>f</code>. 9871 The function returns <b>nil</b> if there is no upvalue with the given index. 9872 9873 9874 9875 9876 <p> 9877 <hr><h3><a name="pdf-debug.getuservalue"><code>debug.getuservalue (u)</code></a></h3> 9878 9879 9880 <p> 9881 Returns the Lua value associated to <code>u</code>. 9882 If <code>u</code> is not a userdata, 9883 returns <b>nil</b>. 9884 9885 9886 9887 9888 <p> 9889 <hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3> 9890 9891 9892 <p> 9893 Sets the given function as a hook. 9894 The string <code>mask</code> and the number <code>count</code> describe 9895 when the hook will be called. 9896 The string mask may have the following characters, 9897 with the given meaning: 9898 9899 <ul> 9900 <li><b>'<code>c</code>': </b> the hook is called every time Lua calls a function;</li> 9901 <li><b>'<code>r</code>': </b> the hook is called every time Lua returns from a function;</li> 9902 <li><b>'<code>l</code>': </b> the hook is called every time Lua enters a new line of code.</li> 9903 </ul><p> 9904 With a <code>count</code> different from zero, 9905 the hook is called after every <code>count</code> instructions. 9906 9907 9908 <p> 9909 When called without arguments, 9910 <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook. 9911 9912 9913 <p> 9914 When the hook is called, its first parameter is a string 9915 describing the event that has triggered its call: 9916 <code>"call"</code> (or <code>"tail call"</code>), 9917 <code>"return"</code>, 9918 <code>"line"</code>, and <code>"count"</code>. 9919 For line events, 9920 the hook also gets the new line number as its second parameter. 9921 Inside a hook, 9922 you can call <code>getinfo</code> with level 2 to get more information about 9923 the running function 9924 (level 0 is the <code>getinfo</code> function, 9925 and level 1 is the hook function). 9926 9927 9928 9929 9930 <p> 9931 <hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3> 9932 9933 9934 <p> 9935 This function assigns the value <code>value</code> to the local variable 9936 with index <code>local</code> of the function at level <code>level</code> of the stack. 9937 The function returns <b>nil</b> if there is no local 9938 variable with the given index, 9939 and raises an error when called with a <code>level</code> out of range. 9940 (You can call <code>getinfo</code> to check whether the level is valid.) 9941 Otherwise, it returns the name of the local variable. 9942 9943 9944 <p> 9945 See <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for more information about 9946 variable indices and names. 9947 9948 9949 9950 9951 <p> 9952 <hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (value, table)</code></a></h3> 9953 9954 9955 <p> 9956 Sets the metatable for the given <code>value</code> to the given <code>table</code> 9957 (which can be <b>nil</b>). 9958 Returns <code>value</code>. 9959 9960 9961 9962 9963 <p> 9964 <hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (f, up, value)</code></a></h3> 9965 9966 9967 <p> 9968 This function assigns the value <code>value</code> to the upvalue 9969 with index <code>up</code> of the function <code>f</code>. 9970 The function returns <b>nil</b> if there is no upvalue 9971 with the given index. 9972 Otherwise, it returns the name of the upvalue. 9973 9974 9975 9976 9977 <p> 9978 <hr><h3><a name="pdf-debug.setuservalue"><code>debug.setuservalue (udata, value)</code></a></h3> 9979 9980 9981 <p> 9982 Sets the given <code>value</code> as 9983 the Lua value associated to the given <code>udata</code>. 9984 <code>value</code> must be a table or <b>nil</b>; 9985 <code>udata</code> must be a full userdata. 9986 9987 9988 <p> 9989 Returns <code>udata</code>. 9990 9991 9992 9993 9994 <p> 9995 <hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3> 9996 9997 9998 <p> 9999 If <code>message</code> is present but is neither a string nor <b>nil</b>, 10000 this function returns <code>message</code> without further processing. 10001 Otherwise, 10002 it returns a string with a traceback of the call stack. 10003 An optional <code>message</code> string is appended 10004 at the beginning of the traceback. 10005 An optional <code>level</code> number tells at which level 10006 to start the traceback 10007 (default is 1, the function calling <code>traceback</code>). 10008 10009 10010 10011 10012 <p> 10013 <hr><h3><a name="pdf-debug.upvalueid"><code>debug.upvalueid (f, n)</code></a></h3> 10014 10015 10016 <p> 10017 Returns an unique identifier (as a light userdata) 10018 for the upvalue numbered <code>n</code> 10019 from the given function. 10020 10021 10022 <p> 10023 These unique identifiers allow a program to check whether different 10024 closures share upvalues. 10025 Lua closures that share an upvalue 10026 (that is, that access a same external local variable) 10027 will return identical ids for those upvalue indices. 10028 10029 10030 10031 10032 <p> 10033 <hr><h3><a name="pdf-debug.upvaluejoin"><code>debug.upvaluejoin (f1, n1, f2, n2)</code></a></h3> 10034 10035 10036 <p> 10037 Make the <code>n1</code>-th upvalue of the Lua closure <code>f1</code> 10038 refer to the <code>n2</code>-th upvalue of the Lua closure <code>f2</code>. 10039 10040 10041 10042 10043 10044 10045 10046 <h1>7 – <a name="7">Lua Standalone</a></h1> 10047 10048 <p> 10049 Although Lua has been designed as an extension language, 10050 to be embedded in a host C program, 10051 it is also frequently used as a standalone language. 10052 An interpreter for Lua as a standalone language, 10053 called simply <code>lua</code>, 10054 is provided with the standard distribution. 10055 The standalone interpreter includes 10056 all standard libraries, including the debug library. 10057 Its usage is: 10058 10059 <pre> 10060 lua [options] [script [args]] 10061 </pre><p> 10062 The options are: 10063 10064 <ul> 10065 <li><b><code>-e <em>stat</em></code>: </b> executes string <em>stat</em>;</li> 10066 <li><b><code>-l <em>mod</em></code>: </b> "requires" <em>mod</em>;</li> 10067 <li><b><code>-i</code>: </b> enters interactive mode after running <em>script</em>;</li> 10068 <li><b><code>-v</code>: </b> prints version information;</li> 10069 <li><b><code>-E</code>: </b> ignores environment variables;</li> 10070 <li><b><code>--</code>: </b> stops handling options;</li> 10071 <li><b><code>-</code>: </b> executes <code>stdin</code> as a file and stops handling options.</li> 10072 </ul><p> 10073 After handling its options, <code>lua</code> runs the given <em>script</em>, 10074 passing to it the given <em>args</em> as string arguments. 10075 When called without arguments, 10076 <code>lua</code> behaves as <code>lua -v -i</code> 10077 when the standard input (<code>stdin</code>) is a terminal, 10078 and as <code>lua -</code> otherwise. 10079 10080 10081 <p> 10082 When called without option <code>-E</code>, 10083 the interpreter checks for an environment variable <a name="pdf-LUA_INIT_5_2"><code>LUA_INIT_5_2</code></a> 10084 (or <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a> if it is not defined) 10085 before running any argument. 10086 If the variable content has the format <code>@<em>filename</em></code>, 10087 then <code>lua</code> executes the file. 10088 Otherwise, <code>lua</code> executes the string itself. 10089 10090 10091 <p> 10092 When called with option <code>-E</code>, 10093 besides ignoring <code>LUA_INIT</code>, 10094 Lua also ignores 10095 the values of <code>LUA_PATH</code> and <code>LUA_CPATH</code>, 10096 setting the values of 10097 <a href="#pdf-package.path"><code>package.path</code></a> and <a href="#pdf-package.cpath"><code>package.cpath</code></a> 10098 with the default paths defined in <code>luaconf.h</code>. 10099 10100 10101 <p> 10102 All options are handled in order, except <code>-i</code> and <code>-E</code>. 10103 For instance, an invocation like 10104 10105 <pre> 10106 $ lua -e'a=1' -e 'print(a)' script.lua 10107 </pre><p> 10108 will first set <code>a</code> to 1, then print the value of <code>a</code>, 10109 and finally run the file <code>script.lua</code> with no arguments. 10110 (Here <code>$</code> is the shell prompt. Your prompt may be different.) 10111 10112 10113 <p> 10114 Before starting to run the script, 10115 <code>lua</code> collects all arguments in the command line 10116 in a global table called <code>arg</code>. 10117 The script name is stored at index 0, 10118 the first argument after the script name goes to index 1, 10119 and so on. 10120 Any arguments before the script name 10121 (that is, the interpreter name plus the options) 10122 go to negative indices. 10123 For instance, in the call 10124 10125 <pre> 10126 $ lua -la b.lua t1 t2 10127 </pre><p> 10128 the interpreter first runs the file <code>a.lua</code>, 10129 then creates a table 10130 10131 <pre> 10132 arg = { [-2] = "lua", [-1] = "-la", 10133 [0] = "b.lua", 10134 [1] = "t1", [2] = "t2" } 10135 </pre><p> 10136 and finally runs the file <code>b.lua</code>. 10137 The script is called with <code>arg[1]</code>, <code>arg[2]</code>, ... 10138 as arguments; 10139 it can also access these arguments with the vararg expression '<code>...</code>'. 10140 10141 10142 <p> 10143 In interactive mode, 10144 if you write an incomplete statement, 10145 the interpreter waits for its completion 10146 by issuing a different prompt. 10147 10148 10149 <p> 10150 In case of unprotected errors in the script, 10151 the interpreter reports the error to the standard error stream. 10152 If the error object is a string, 10153 the interpreter adds a stack traceback to it. 10154 Otherwise, if the error object has a metamethod <code>__tostring</code>, 10155 the interpreter calls this metamethod to produce the final message. 10156 Finally, if the error object is <b>nil</b>, 10157 the interpreter does not report the error. 10158 10159 10160 <p> 10161 When finishing normally, 10162 the interpreter closes its main Lua state 10163 (see <a href="#lua_close"><code>lua_close</code></a>). 10164 The script can avoid this step by 10165 calling <a href="#pdf-os.exit"><code>os.exit</code></a> to terminate. 10166 10167 10168 <p> 10169 To allow the use of Lua as a 10170 script interpreter in Unix systems, 10171 the standalone interpreter skips 10172 the first line of a chunk if it starts with <code>#</code>. 10173 Therefore, Lua scripts can be made into executable programs 10174 by using <code>chmod +x</code> and the <code>#!</code> form, 10175 as in 10176 10177 <pre> 10178 #!/usr/local/bin/lua 10179 </pre><p> 10180 (Of course, 10181 the location of the Lua interpreter may be different in your machine. 10182 If <code>lua</code> is in your <code>PATH</code>, 10183 then 10184 10185 <pre> 10186 #!/usr/bin/env lua 10187 </pre><p> 10188 is a more portable solution.) 10189 10190 10191 10192 <h1>8 – <a name="8">Incompatibilities with the Previous Version</a></h1> 10193 10194 <p> 10195 Here we list the incompatibilities that you may find when moving a program 10196 from Lua 5.1 to Lua 5.2. 10197 You can avoid some incompatibilities by compiling Lua with 10198 appropriate options (see file <code>luaconf.h</code>). 10199 However, 10200 all these compatibility options will be removed in the next version of Lua. 10201 Similarly, 10202 all features marked as deprecated in Lua 5.1 10203 have been removed in Lua 5.2. 10204 10205 10206 10207 <h2>8.1 – <a name="8.1">Changes in the Language</a></h2> 10208 <ul> 10209 10210 <li> 10211 The concept of <em>environment</em> changed. 10212 Only Lua functions have environments. 10213 To set the environment of a Lua function, 10214 use the variable <code>_ENV</code> or the function <a href="#pdf-load"><code>load</code></a>. 10215 10216 10217 <p> 10218 C functions no longer have environments. 10219 Use an upvalue with a shared table if you need to keep 10220 shared state among several C functions. 10221 (You may use <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a> to open a C library 10222 with all functions sharing a common upvalue.) 10223 10224 10225 <p> 10226 To manipulate the "environment" of a userdata 10227 (which is now called user value), 10228 use the new functions 10229 <a href="#lua_getuservalue"><code>lua_getuservalue</code></a> and <a href="#lua_setuservalue"><code>lua_setuservalue</code></a>. 10230 </li> 10231 10232 <li> 10233 Lua identifiers cannot use locale-dependent letters. 10234 </li> 10235 10236 <li> 10237 Doing a step or a full collection in the garbage collector 10238 does not restart the collector if it has been stopped. 10239 </li> 10240 10241 <li> 10242 Weak tables with weak keys now perform like <em>ephemeron tables</em>. 10243 </li> 10244 10245 <li> 10246 The event <em>tail return</em> in debug hooks was removed. 10247 Instead, tail calls generate a special new event, 10248 <em>tail call</em>, so that the debugger can know that 10249 there will not be a corresponding return event. 10250 </li> 10251 10252 <li> 10253 Equality between function values has changed. 10254 Now, a function definition may not create a new value; 10255 it may reuse some previous value if there is no 10256 observable difference to the new function. 10257 </li> 10258 10259 </ul> 10260 10261 10262 10263 10264 <h2>8.2 – <a name="8.2">Changes in the Libraries</a></h2> 10265 <ul> 10266 10267 <li> 10268 Function <code>module</code> is deprecated. 10269 It is easy to set up a module with regular Lua code. 10270 Modules are not expected to set global variables. 10271 </li> 10272 10273 <li> 10274 Functions <code>setfenv</code> and <code>getfenv</code> were removed, 10275 because of the changes in environments. 10276 </li> 10277 10278 <li> 10279 Function <code>math.log10</code> is deprecated. 10280 Use <a href="#pdf-math.log"><code>math.log</code></a> with 10 as its second argument, instead. 10281 </li> 10282 10283 <li> 10284 Function <code>loadstring</code> is deprecated. 10285 Use <code>load</code> instead; it now accepts string arguments 10286 and are exactly equivalent to <code>loadstring</code>. 10287 </li> 10288 10289 <li> 10290 Function <code>table.maxn</code> is deprecated. 10291 Write it in Lua if you really need it. 10292 </li> 10293 10294 <li> 10295 Function <code>os.execute</code> now returns <b>true</b> when command 10296 terminates successfully and <b>nil</b> plus error information 10297 otherwise. 10298 </li> 10299 10300 <li> 10301 Function <code>unpack</code> was moved into the table library 10302 and therefore must be called as <a href="#pdf-table.unpack"><code>table.unpack</code></a>. 10303 </li> 10304 10305 <li> 10306 Character class <code>%z</code> in patterns is deprecated, 10307 as now patterns may contain '<code>\0</code>' as a regular character. 10308 </li> 10309 10310 <li> 10311 The table <code>package.loaders</code> was renamed <code>package.searchers</code>. 10312 </li> 10313 10314 <li> 10315 Lua does not have bytecode verification anymore. 10316 So, all functions that load code 10317 (<a href="#pdf-load"><code>load</code></a> and <a href="#pdf-loadfile"><code>loadfile</code></a>) 10318 are potentially insecure when loading untrusted binary data. 10319 (Actually, those functions were already insecure because 10320 of flaws in the verification algorithm.) 10321 When in doubt, 10322 use the <code>mode</code> argument of those functions 10323 to restrict them to loading textual chunks. 10324 </li> 10325 10326 <li> 10327 The standard paths in the official distribution may 10328 change between versions. 10329 </li> 10330 10331 </ul> 10332 10333 10334 10335 10336 <h2>8.3 – <a name="8.3">Changes in the API</a></h2> 10337 <ul> 10338 10339 <li> 10340 Pseudoindex <code>LUA_GLOBALSINDEX</code> was removed. 10341 You must get the global environment from the registry 10342 (see <a href="#4.5">§4.5</a>). 10343 </li> 10344 10345 <li> 10346 Pseudoindex <code>LUA_ENVIRONINDEX</code> 10347 and functions <code>lua_getfenv</code>/<code>lua_setfenv</code> 10348 were removed, 10349 as C functions no longer have environments. 10350 </li> 10351 10352 <li> 10353 Function <code>luaL_register</code> is deprecated. 10354 Use <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a> so that your module does not create globals. 10355 (Modules are not expected to set global variables anymore.) 10356 </li> 10357 10358 <li> 10359 The <code>osize</code> argument to the allocation function 10360 may not be zero when creating a new block, 10361 that is, when <code>ptr</code> is <code>NULL</code> 10362 (see <a href="#lua_Alloc"><code>lua_Alloc</code></a>). 10363 Use only the test <code>ptr == NULL</code> to check whether 10364 the block is new. 10365 </li> 10366 10367 <li> 10368 Finalizers (<code>__gc</code> metamethods) for userdata are called in the 10369 reverse order that they were marked for finalization, 10370 not that they were created (see <a href="#2.5.1">§2.5.1</a>). 10371 (Most userdata are marked immediately after they are created.) 10372 Moreover, 10373 if the metatable does not have a <code>__gc</code> field when set, 10374 the finalizer will not be called, 10375 even if it is set later. 10376 </li> 10377 10378 <li> 10379 <code>luaL_typerror</code> was removed. 10380 Write your own version if you need it. 10381 </li> 10382 10383 <li> 10384 Function <code>lua_cpcall</code> is deprecated. 10385 You can simply push the function with <a href="#lua_pushcfunction"><code>lua_pushcfunction</code></a> 10386 and call it with <a href="#lua_pcall"><code>lua_pcall</code></a>. 10387 </li> 10388 10389 <li> 10390 Functions <code>lua_equal</code> and <code>lua_lessthan</code> are deprecated. 10391 Use the new <a href="#lua_compare"><code>lua_compare</code></a> with appropriate options instead. 10392 </li> 10393 10394 <li> 10395 Function <code>lua_objlen</code> was renamed <a href="#lua_rawlen"><code>lua_rawlen</code></a>. 10396 </li> 10397 10398 <li> 10399 Function <a href="#lua_load"><code>lua_load</code></a> has an extra parameter, <code>mode</code>. 10400 Pass <code>NULL</code> to simulate the old behavior. 10401 </li> 10402 10403 <li> 10404 Function <a href="#lua_resume"><code>lua_resume</code></a> has an extra parameter, <code>from</code>. 10405 Pass <code>NULL</code> or the thread doing the call. 10406 </li> 10407 10408 </ul> 10409 10410 10411 10412 10413 <h1>9 – <a name="9">The Complete Syntax of Lua</a></h1> 10414 10415 <p> 10416 Here is the complete syntax of Lua in extended BNF. 10417 (It does not describe operator precedences.) 10418 10419 10420 10421 10422 <pre> 10423 10424 chunk ::= block 10425 10426 block ::= {stat} [retstat] 10427 10428 stat ::= ‘<b>;</b>’ | 10429 varlist ‘<b>=</b>’ explist | 10430 functioncall | 10431 label | 10432 <b>break</b> | 10433 <b>goto</b> Name | 10434 <b>do</b> block <b>end</b> | 10435 <b>while</b> exp <b>do</b> block <b>end</b> | 10436 <b>repeat</b> block <b>until</b> exp | 10437 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> | 10438 <b>for</b> Name ‘<b>=</b>’ exp ‘<b>,</b>’ exp [‘<b>,</b>’ exp] <b>do</b> block <b>end</b> | 10439 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> | 10440 <b>function</b> funcname funcbody | 10441 <b>local</b> <b>function</b> Name funcbody | 10442 <b>local</b> namelist [‘<b>=</b>’ explist] 10443 10444 retstat ::= <b>return</b> [explist] [‘<b>;</b>’] 10445 10446 label ::= ‘<b>::</b>’ Name ‘<b>::</b>’ 10447 10448 funcname ::= Name {‘<b>.</b>’ Name} [‘<b>:</b>’ Name] 10449 10450 varlist ::= var {‘<b>,</b>’ var} 10451 10452 var ::= Name | prefixexp ‘<b>[</b>’ exp ‘<b>]</b>’ | prefixexp ‘<b>.</b>’ Name 10453 10454 namelist ::= Name {‘<b>,</b>’ Name} 10455 10456 explist ::= exp {‘<b>,</b>’ exp} 10457 10458 exp ::= <b>nil</b> | <b>false</b> | <b>true</b> | Number | String | ‘<b>...</b>’ | functiondef | 10459 prefixexp | tableconstructor | exp binop exp | unop exp 10460 10461 prefixexp ::= var | functioncall | ‘<b>(</b>’ exp ‘<b>)</b>’ 10462 10463 functioncall ::= prefixexp args | prefixexp ‘<b>:</b>’ Name args 10464 10465 args ::= ‘<b>(</b>’ [explist] ‘<b>)</b>’ | tableconstructor | String 10466 10467 functiondef ::= <b>function</b> funcbody 10468 10469 funcbody ::= ‘<b>(</b>’ [parlist] ‘<b>)</b>’ block <b>end</b> 10470 10471 parlist ::= namelist [‘<b>,</b>’ ‘<b>...</b>’] | ‘<b>...</b>’ 10472 10473 tableconstructor ::= ‘<b>{</b>’ [fieldlist] ‘<b>}</b>’ 10474 10475 fieldlist ::= field {fieldsep field} [fieldsep] 10476 10477 field ::= ‘<b>[</b>’ exp ‘<b>]</b>’ ‘<b>=</b>’ exp | Name ‘<b>=</b>’ exp | exp 10478 10479 fieldsep ::= ‘<b>,</b>’ | ‘<b>;</b>’ 10480 10481 binop ::= ‘<b>+</b>’ | ‘<b>-</b>’ | ‘<b>*</b>’ | ‘<b>/</b>’ | ‘<b>^</b>’ | ‘<b>%</b>’ | ‘<b>..</b>’ | 10482 ‘<b><</b>’ | ‘<b><=</b>’ | ‘<b>></b>’ | ‘<b>>=</b>’ | ‘<b>==</b>’ | ‘<b>~=</b>’ | 10483 <b>and</b> | <b>or</b> 10484 10485 unop ::= ‘<b>-</b>’ | <b>not</b> | ‘<b>#</b>’ 10486 10487 </pre> 10488 10489 <p> 10490 10491 10492 10493 10494 10495 10496 10497 <HR> 10498 <SMALL CLASS="footer"> 10499 Last update: 10500 Thu Mar 21 12:58:59 BRT 2013 10501 </SMALL> 10502 <!-- 10503 Last change: revised for Lua 5.2.2 10504 --> 10505 10506 </body></html> 10507 10508