Home | History | Annotate | Download | only in UfsPassThruDxe
      1 /** @file
      2 
      3   Copyright (c) 2014 - 2015, Intel Corporation. All rights reserved.<BR>
      4   This program and the accompanying materials
      5   are licensed and made available under the terms and conditions of the BSD License
      6   which accompanies this distribution.  The full text of the license may be found at
      7   http://opensource.org/licenses/bsd-license.php
      8 
      9   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
     10   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
     11 
     12 **/
     13 
     14 #ifndef _UFS_PASS_THRU_H_
     15 #define _UFS_PASS_THRU_H_
     16 
     17 #include <Uefi.h>
     18 
     19 #include <Protocol/ScsiPassThruExt.h>
     20 #include <Protocol/UfsHostController.h>
     21 
     22 #include <Library/DebugLib.h>
     23 #include <Library/UefiDriverEntryPoint.h>
     24 #include <Library/BaseLib.h>
     25 #include <Library/UefiLib.h>
     26 #include <Library/BaseMemoryLib.h>
     27 #include <Library/MemoryAllocationLib.h>
     28 #include <Library/UefiBootServicesTableLib.h>
     29 #include <Library/CacheMaintenanceLib.h>
     30 #include <Library/DevicePathLib.h>
     31 #include <Library/TimerLib.h>
     32 
     33 #include "UfsPassThruHci.h"
     34 
     35 #define UFS_PASS_THRU_SIG           SIGNATURE_32 ('U', 'F', 'S', 'P')
     36 
     37 //
     38 // Lun 0~7 is for 8 common luns.
     39 // Lun 8~11 is for those 4 well known luns (Refer to UFS 2.0 spec Table 10.58 for details):
     40 //  Lun 8:  REPORT LUNS
     41 //  Lun 9:  UFS DEVICE
     42 //  Lun 10: BOOT
     43 //  Lun 11: RPMB
     44 //
     45 #define UFS_MAX_LUNS                12
     46 #define UFS_WLUN_PREFIX             0xC1
     47 
     48 #define UFS_VENDOR_SKHYNIX				0x1AD
     49 #define UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME	(1 << 0)
     50 
     51 typedef struct {
     52   UINT8    Lun[UFS_MAX_LUNS];
     53   UINT16   BitMask:12;              // Bit 0~7 is 1/1 mapping to common luns. Bit 8~11 is 1/1 mapping to well-known luns.
     54   UINT16   Rsvd:4;
     55 } UFS_EXPOSED_LUNS;
     56 
     57 //
     58 // Iterate through the double linked list. This is delete-safe.
     59 // Do not touch NextEntry
     60 //
     61 #define EFI_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead)            \
     62   for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink;\
     63       Entry != (ListHead); Entry = NextEntry, NextEntry = Entry->ForwardLink)
     64 
     65 typedef struct _UFS_PASS_THRU_PRIVATE_DATA {
     66   UINT32                              Signature;
     67   EFI_HANDLE                          Handle;
     68   EFI_EXT_SCSI_PASS_THRU_MODE         ExtScsiPassThruMode;
     69   EFI_EXT_SCSI_PASS_THRU_PROTOCOL     ExtScsiPassThru;
     70   EDKII_UFS_HOST_CONTROLLER_PROTOCOL  *UfsHostController;
     71   UINTN                               UfsHcBase;
     72   UINT32                              Capabilities;
     73 
     74   UINT8                               TaskTag;
     75 
     76   VOID                                *UtpTrlBase;
     77   UINT8                               Nutrs;
     78   VOID                                *TrlMapping;
     79   VOID                                *UtpTmrlBase;
     80   UINT8                               Nutmrs;
     81   VOID                                *TmrlMapping;
     82 
     83   UFS_EXPOSED_LUNS                    Luns;
     84 
     85   //
     86   // For Non-blocking operation.
     87   //
     88   EFI_EVENT                           TimerEvent;
     89   LIST_ENTRY                          Queue;
     90 } UFS_PASS_THRU_PRIVATE_DATA;
     91 
     92 #define UFS_PASS_THRU_TRANS_REQ_SIG   SIGNATURE_32 ('U', 'F', 'S', 'T')
     93 
     94 typedef struct {
     95   UINT32                                        Signature;
     96   LIST_ENTRY                                    TransferList;
     97 
     98   UINT8                                         Slot;
     99   UTP_TRD                                       *Trd;
    100   UINT32                                        CmdDescSize;
    101   VOID                                          *CmdDescHost;
    102   VOID                                          *CmdDescMapping;
    103   VOID                                          *DataBufMapping;
    104 
    105   EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET    *Packet;
    106   UINT64                                        TimeoutRemain;
    107   EFI_EVENT                                     CallerEvent;
    108 } UFS_PASS_THRU_TRANS_REQ;
    109 
    110 #define UFS_PASS_THRU_TRANS_REQ_FROM_THIS(a) \
    111     CR(a, UFS_PASS_THRU_TRANS_REQ, TransferList, UFS_PASS_THRU_TRANS_REQ_SIG)
    112 
    113 #define UFS_TIMEOUT                   EFI_TIMER_PERIOD_SECONDS(3)
    114 #define UFS_HC_ASYNC_TIMER            EFI_TIMER_PERIOD_MILLISECONDS(1)
    115 
    116 #define ROUNDUP8(x) (((x) % 8 == 0) ? (x) : ((x) / 8 + 1) * 8)
    117 
    118 #define IS_ALIGNED(addr, size)        (((UINTN) (addr) & (size - 1)) == 0)
    119 
    120 #define UFS_PASS_THRU_PRIVATE_DATA_FROM_THIS(a) \
    121   CR (a, \
    122       UFS_PASS_THRU_PRIVATE_DATA, \
    123       ExtScsiPassThru, \
    124       UFS_PASS_THRU_SIG \
    125       )
    126 
    127 typedef struct _UFS_DEVICE_MANAGEMENT_REQUEST_PACKET {
    128   UINT64           Timeout;
    129   VOID             *InDataBuffer;
    130   VOID             *OutDataBuffer;
    131   UINT8            Opcode;
    132   UINT8            DescId;
    133   UINT8            Index;
    134   UINT8            Selector;
    135   UINT32           InTransferLength;
    136   UINT32           OutTransferLength;
    137   UINT8            DataDirection;
    138   UINT8            Ocs;
    139 } UFS_DEVICE_MANAGEMENT_REQUEST_PACKET;
    140 
    141 //
    142 // function prototype
    143 //
    144 /**
    145   Tests to see if this driver supports a given controller. If a child device is provided,
    146   it further tests to see if this driver supports creating a handle for the specified child device.
    147 
    148   This function checks to see if the driver specified by This supports the device specified by
    149   ControllerHandle. Drivers will typically use the device path attached to
    150   ControllerHandle and/or the services from the bus I/O abstraction attached to
    151   ControllerHandle to determine if the driver supports ControllerHandle. This function
    152   may be called many times during platform initialization. In order to reduce boot times, the tests
    153   performed by this function must be very small, and take as little time as possible to execute. This
    154   function must not change the state of any hardware devices, and this function must be aware that the
    155   device specified by ControllerHandle may already be managed by the same driver or a
    156   different driver. This function must match its calls to AllocatePages() with FreePages(),
    157   AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol().
    158   Since ControllerHandle may have been previously started by the same driver, if a protocol is
    159   already in the opened state, then it must not be closed with CloseProtocol(). This is required
    160   to guarantee the state of ControllerHandle is not modified by this function.
    161 
    162   @param[in]  This                 A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
    163   @param[in]  ControllerHandle     The handle of the controller to test. This handle
    164                                    must support a protocol interface that supplies
    165                                    an I/O abstraction to the driver.
    166   @param[in]  RemainingDevicePath  A pointer to the remaining portion of a device path.  This
    167                                    parameter is ignored by device drivers, and is optional for bus
    168                                    drivers. For bus drivers, if this parameter is not NULL, then
    169                                    the bus driver must determine if the bus controller specified
    170                                    by ControllerHandle and the child controller specified
    171                                    by RemainingDevicePath are both supported by this
    172                                    bus driver.
    173 
    174   @retval EFI_SUCCESS              The device specified by ControllerHandle and
    175                                    RemainingDevicePath is supported by the driver specified by This.
    176   @retval EFI_ALREADY_STARTED      The device specified by ControllerHandle and
    177                                    RemainingDevicePath is already being managed by the driver
    178                                    specified by This.
    179   @retval EFI_ACCESS_DENIED        The device specified by ControllerHandle and
    180                                    RemainingDevicePath is already being managed by a different
    181                                    driver or an application that requires exclusive access.
    182                                    Currently not implemented.
    183   @retval EFI_UNSUPPORTED          The device specified by ControllerHandle and
    184                                    RemainingDevicePath is not supported by the driver specified by This.
    185 **/
    186 EFI_STATUS
    187 EFIAPI
    188 UfsPassThruDriverBindingSupported (
    189   IN EFI_DRIVER_BINDING_PROTOCOL  *This,
    190   IN EFI_HANDLE                   Controller,
    191   IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath
    192   );
    193 
    194 /**
    195   Starts a device controller or a bus controller.
    196 
    197   The Start() function is designed to be invoked from the EFI boot service ConnectController().
    198   As a result, much of the error checking on the parameters to Start() has been moved into this
    199   common boot service. It is legal to call Start() from other locations,
    200   but the following calling restrictions must be followed or the system behavior will not be deterministic.
    201   1. ControllerHandle must be a valid EFI_HANDLE.
    202   2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
    203      EFI_DEVICE_PATH_PROTOCOL.
    204   3. Prior to calling Start(), the Supported() function for the driver specified by This must
    205      have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS.
    206 
    207   @param[in]  This                 A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
    208   @param[in]  ControllerHandle     The handle of the controller to start. This handle
    209                                    must support a protocol interface that supplies
    210                                    an I/O abstraction to the driver.
    211   @param[in]  RemainingDevicePath  A pointer to the remaining portion of a device path.  This
    212                                    parameter is ignored by device drivers, and is optional for bus
    213                                    drivers. For a bus driver, if this parameter is NULL, then handles
    214                                    for all the children of Controller are created by this driver.
    215                                    If this parameter is not NULL and the first Device Path Node is
    216                                    not the End of Device Path Node, then only the handle for the
    217                                    child device specified by the first Device Path Node of
    218                                    RemainingDevicePath is created by this driver.
    219                                    If the first Device Path Node of RemainingDevicePath is
    220                                    the End of Device Path Node, no child handle is created by this
    221                                    driver.
    222 
    223   @retval EFI_SUCCESS              The device was started.
    224   @retval EFI_DEVICE_ERROR         The device could not be started due to a device error.Currently not implemented.
    225   @retval EFI_OUT_OF_RESOURCES     The request could not be completed due to a lack of resources.
    226   @retval Others                   The driver failded to start the device.
    227 
    228 **/
    229 EFI_STATUS
    230 EFIAPI
    231 UfsPassThruDriverBindingStart (
    232   IN EFI_DRIVER_BINDING_PROTOCOL  *This,
    233   IN EFI_HANDLE                   Controller,
    234   IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath
    235   );
    236 
    237 /**
    238   Stops a device controller or a bus controller.
    239 
    240   The Stop() function is designed to be invoked from the EFI boot service DisconnectController().
    241   As a result, much of the error checking on the parameters to Stop() has been moved
    242   into this common boot service. It is legal to call Stop() from other locations,
    243   but the following calling restrictions must be followed or the system behavior will not be deterministic.
    244   1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
    245      same driver's Start() function.
    246   2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
    247      EFI_HANDLE. In addition, all of these handles must have been created in this driver's
    248      Start() function, and the Start() function must have called OpenProtocol() on
    249      ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
    250 
    251   @param[in]  This              A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
    252   @param[in]  ControllerHandle  A handle to the device being stopped. The handle must
    253                                 support a bus specific I/O protocol for the driver
    254                                 to use to stop the device.
    255   @param[in]  NumberOfChildren  The number of child device handles in ChildHandleBuffer.
    256   @param[in]  ChildHandleBuffer An array of child handles to be freed. May be NULL
    257                                 if NumberOfChildren is 0.
    258 
    259   @retval EFI_SUCCESS           The device was stopped.
    260   @retval EFI_DEVICE_ERROR      The device could not be stopped due to a device error.
    261 
    262 **/
    263 EFI_STATUS
    264 EFIAPI
    265 UfsPassThruDriverBindingStop (
    266   IN  EFI_DRIVER_BINDING_PROTOCOL     *This,
    267   IN  EFI_HANDLE                      Controller,
    268   IN  UINTN                           NumberOfChildren,
    269   IN  EFI_HANDLE                      *ChildHandleBuffer
    270   );
    271 
    272 //
    273 // EFI Component Name Functions
    274 //
    275 /**
    276   Retrieves a Unicode string that is the user readable name of the driver.
    277 
    278   This function retrieves the user readable name of a driver in the form of a
    279   Unicode string. If the driver specified by This has a user readable name in
    280   the language specified by Language, then a pointer to the driver name is
    281   returned in DriverName, and EFI_SUCCESS is returned. If the driver specified
    282   by This does not support the language specified by Language,
    283   then EFI_UNSUPPORTED is returned.
    284 
    285   @param  This[in]              A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
    286                                 EFI_COMPONENT_NAME_PROTOCOL instance.
    287 
    288   @param  Language[in]          A pointer to a Null-terminated ASCII string
    289                                 array indicating the language. This is the
    290                                 language of the driver name that the caller is
    291                                 requesting, and it must match one of the
    292                                 languages specified in SupportedLanguages. The
    293                                 number of languages supported by a driver is up
    294                                 to the driver writer. Language is specified
    295                                 in RFC 4646 or ISO 639-2 language code format.
    296 
    297   @param  DriverName[out]       A pointer to the Unicode string to return.
    298                                 This Unicode string is the name of the
    299                                 driver specified by This in the language
    300                                 specified by Language.
    301 
    302   @retval EFI_SUCCESS           The Unicode string for the Driver specified by
    303                                 This and the language specified by Language was
    304                                 returned in DriverName.
    305 
    306   @retval EFI_INVALID_PARAMETER Language is NULL.
    307 
    308   @retval EFI_INVALID_PARAMETER DriverName is NULL.
    309 
    310   @retval EFI_UNSUPPORTED       The driver specified by This does not support
    311                                 the language specified by Language.
    312 
    313 **/
    314 EFI_STATUS
    315 EFIAPI
    316 UfsPassThruComponentNameGetDriverName (
    317   IN  EFI_COMPONENT_NAME_PROTOCOL  *This,
    318   IN  CHAR8                        *Language,
    319   OUT CHAR16                       **DriverName
    320   );
    321 
    322 
    323 /**
    324   Retrieves a Unicode string that is the user readable name of the controller
    325   that is being managed by a driver.
    326 
    327   This function retrieves the user readable name of the controller specified by
    328   ControllerHandle and ChildHandle in the form of a Unicode string. If the
    329   driver specified by This has a user readable name in the language specified by
    330   Language, then a pointer to the controller name is returned in ControllerName,
    331   and EFI_SUCCESS is returned.  If the driver specified by This is not currently
    332   managing the controller specified by ControllerHandle and ChildHandle,
    333   then EFI_UNSUPPORTED is returned.  If the driver specified by This does not
    334   support the language specified by Language, then EFI_UNSUPPORTED is returned.
    335 
    336   @param  This[in]              A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
    337                                 EFI_COMPONENT_NAME_PROTOCOL instance.
    338 
    339   @param  ControllerHandle[in]  The handle of a controller that the driver
    340                                 specified by This is managing.  This handle
    341                                 specifies the controller whose name is to be
    342                                 returned.
    343 
    344   @param  ChildHandle[in]       The handle of the child controller to retrieve
    345                                 the name of.  This is an optional parameter that
    346                                 may be NULL.  It will be NULL for device
    347                                 drivers.  It will also be NULL for a bus drivers
    348                                 that wish to retrieve the name of the bus
    349                                 controller.  It will not be NULL for a bus
    350                                 driver that wishes to retrieve the name of a
    351                                 child controller.
    352 
    353   @param  Language[in]          A pointer to a Null-terminated ASCII string
    354                                 array indicating the language.  This is the
    355                                 language of the driver name that the caller is
    356                                 requesting, and it must match one of the
    357                                 languages specified in SupportedLanguages. The
    358                                 number of languages supported by a driver is up
    359                                 to the driver writer. Language is specified in
    360                                 RFC 4646 or ISO 639-2 language code format.
    361 
    362   @param  ControllerName[out]   A pointer to the Unicode string to return.
    363                                 This Unicode string is the name of the
    364                                 controller specified by ControllerHandle and
    365                                 ChildHandle in the language specified by
    366                                 Language from the point of view of the driver
    367                                 specified by This.
    368 
    369   @retval EFI_SUCCESS           The Unicode string for the user readable name in
    370                                 the language specified by Language for the
    371                                 driver specified by This was returned in
    372                                 DriverName.
    373 
    374   @retval EFI_INVALID_PARAMETER ControllerHandle is NULL.
    375 
    376   @retval EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid
    377                                 EFI_HANDLE.
    378 
    379   @retval EFI_INVALID_PARAMETER Language is NULL.
    380 
    381   @retval EFI_INVALID_PARAMETER ControllerName is NULL.
    382 
    383   @retval EFI_UNSUPPORTED       The driver specified by This is not currently
    384                                 managing the controller specified by
    385                                 ControllerHandle and ChildHandle.
    386 
    387   @retval EFI_UNSUPPORTED       The driver specified by This does not support
    388                                 the language specified by Language.
    389 
    390 **/
    391 EFI_STATUS
    392 EFIAPI
    393 UfsPassThruComponentNameGetControllerName (
    394   IN  EFI_COMPONENT_NAME_PROTOCOL                     *This,
    395   IN  EFI_HANDLE                                      ControllerHandle,
    396   IN  EFI_HANDLE                                      ChildHandle        OPTIONAL,
    397   IN  CHAR8                                           *Language,
    398   OUT CHAR16                                          **ControllerName
    399   );
    400 
    401 /**
    402   Sends a SCSI Request Packet to a SCSI device that is attached to the SCSI channel. This function
    403   supports both blocking I/O and nonblocking I/O. The blocking I/O functionality is required, and the
    404   nonblocking I/O functionality is optional.
    405 
    406   @param  This    A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
    407   @param  Target  The Target is an array of size TARGET_MAX_BYTES and it represents
    408                   the id of the SCSI device to send the SCSI Request Packet. Each
    409                   transport driver may choose to utilize a subset of this size to suit the needs
    410                   of transport target representation. For example, a Fibre Channel driver
    411                   may use only 8 bytes (WWN) to represent an FC target.
    412   @param  Lun     The LUN of the SCSI device to send the SCSI Request Packet.
    413   @param  Packet  A pointer to the SCSI Request Packet to send to the SCSI device
    414                   specified by Target and Lun.
    415   @param  Event   If nonblocking I/O is not supported then Event is ignored, and blocking
    416                   I/O is performed. If Event is NULL, then blocking I/O is performed. If
    417                   Event is not NULL and non blocking I/O is supported, then
    418                   nonblocking I/O is performed, and Event will be signaled when the
    419                   SCSI Request Packet completes.
    420 
    421   @retval EFI_SUCCESS           The SCSI Request Packet was sent by the host. For bi-directional
    422                                 commands, InTransferLength bytes were transferred from
    423                                 InDataBuffer. For write and bi-directional commands,
    424                                 OutTransferLength bytes were transferred by
    425                                 OutDataBuffer.
    426   @retval EFI_BAD_BUFFER_SIZE   The SCSI Request Packet was not executed. The number of bytes that
    427                                 could be transferred is returned in InTransferLength. For write
    428                                 and bi-directional commands, OutTransferLength bytes were
    429                                 transferred by OutDataBuffer.
    430   @retval EFI_NOT_READY         The SCSI Request Packet could not be sent because there are too many
    431                                 SCSI Request Packets already queued. The caller may retry again later.
    432   @retval EFI_DEVICE_ERROR      A device error occurred while attempting to send the SCSI Request
    433                                 Packet.
    434   @retval EFI_INVALID_PARAMETER Target, Lun, or the contents of ScsiRequestPacket are invalid.
    435   @retval EFI_UNSUPPORTED       The command described by the SCSI Request Packet is not supported
    436                                 by the host adapter. This includes the case of Bi-directional SCSI
    437                                 commands not supported by the implementation. The SCSI Request
    438                                 Packet was not sent, so no additional status information is available.
    439   @retval EFI_TIMEOUT           A timeout occurred while waiting for the SCSI Request Packet to execute.
    440 
    441 **/
    442 EFI_STATUS
    443 EFIAPI
    444 UfsPassThruPassThru (
    445   IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL                    *This,
    446   IN UINT8                                              *Target,
    447   IN UINT64                                             Lun,
    448   IN OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET     *Packet,
    449   IN EFI_EVENT                                          Event OPTIONAL
    450   );
    451 
    452 /**
    453   Used to retrieve the list of legal Target IDs and LUNs for SCSI devices on a SCSI channel. These
    454   can either be the list SCSI devices that are actually present on the SCSI channel, or the list of legal
    455   Target Ids and LUNs for the SCSI channel. Regardless, the caller of this function must probe the
    456   Target ID and LUN returned to see if a SCSI device is actually present at that location on the SCSI
    457   channel.
    458 
    459   @param  This   A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
    460   @param  Target On input, a pointer to the Target ID (an array of size
    461                  TARGET_MAX_BYTES) of a SCSI device present on the SCSI channel.
    462                  On output, a pointer to the Target ID (an array of
    463                  TARGET_MAX_BYTES) of the next SCSI device present on a SCSI
    464                  channel. An input value of 0xF(all bytes in the array are 0xF) in the
    465                  Target array retrieves the Target ID of the first SCSI device present on a
    466                  SCSI channel.
    467   @param  Lun    On input, a pointer to the LUN of a SCSI device present on the SCSI
    468                  channel. On output, a pointer to the LUN of the next SCSI device present
    469                  on a SCSI channel.
    470 
    471   @retval EFI_SUCCESS           The Target ID and LUN of the next SCSI device on the SCSI
    472                                 channel was returned in Target and Lun.
    473   @retval EFI_INVALID_PARAMETER Target array is not all 0xF, and Target and Lun were
    474                                 not returned on a previous call to GetNextTargetLun().
    475   @retval EFI_NOT_FOUND         There are no more SCSI devices on this SCSI channel.
    476 
    477 **/
    478 EFI_STATUS
    479 EFIAPI
    480 UfsPassThruGetNextTargetLun (
    481   IN  EFI_EXT_SCSI_PASS_THRU_PROTOCOL    *This,
    482   IN OUT UINT8                           **Target,
    483   IN OUT UINT64                          *Lun
    484   );
    485 
    486 /**
    487   Used to allocate and build a device path node for a SCSI device on a SCSI channel.
    488 
    489   @param  This       A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
    490   @param  Target     The Target is an array of size TARGET_MAX_BYTES and it specifies the
    491                      Target ID of the SCSI device for which a device path node is to be
    492                      allocated and built. Transport drivers may chose to utilize a subset of
    493                      this size to suit the representation of targets. For example, a Fibre
    494                      Channel driver may use only 8 bytes (WWN) in the array to represent a
    495                      FC target.
    496   @param  Lun        The LUN of the SCSI device for which a device path node is to be
    497                      allocated and built.
    498   @param  DevicePath A pointer to a single device path node that describes the SCSI device
    499                      specified by Target and Lun. This function is responsible for
    500                      allocating the buffer DevicePath with the boot service
    501                      AllocatePool(). It is the caller's responsibility to free
    502                      DevicePath when the caller is finished with DevicePath.
    503 
    504   @retval EFI_SUCCESS           The device path node that describes the SCSI device specified by
    505                                 Target and Lun was allocated and returned in
    506                                 DevicePath.
    507   @retval EFI_INVALID_PARAMETER DevicePath is NULL.
    508   @retval EFI_NOT_FOUND         The SCSI devices specified by Target and Lun does not exist
    509                                 on the SCSI channel.
    510   @retval EFI_OUT_OF_RESOURCES  There are not enough resources to allocate DevicePath.
    511 
    512 **/
    513 EFI_STATUS
    514 EFIAPI
    515 UfsPassThruBuildDevicePath (
    516   IN     EFI_EXT_SCSI_PASS_THRU_PROTOCOL    *This,
    517   IN     UINT8                              *Target,
    518   IN     UINT64                             Lun,
    519   IN OUT EFI_DEVICE_PATH_PROTOCOL           **DevicePath
    520   );
    521 
    522 /**
    523   Used to translate a device path node to a Target ID and LUN.
    524 
    525   @param  This       A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
    526   @param  DevicePath A pointer to a single device path node that describes the SCSI device
    527                      on the SCSI channel.
    528   @param  Target     A pointer to the Target Array which represents the ID of a SCSI device
    529                      on the SCSI channel.
    530   @param  Lun        A pointer to the LUN of a SCSI device on the SCSI channel.
    531 
    532   @retval EFI_SUCCESS           DevicePath was successfully translated to a Target ID and
    533                                 LUN, and they were returned in Target and Lun.
    534   @retval EFI_INVALID_PARAMETER DevicePath or Target or Lun is NULL.
    535   @retval EFI_NOT_FOUND         A valid translation from DevicePath to a Target ID and LUN
    536                                 does not exist.
    537   @retval EFI_UNSUPPORTED       This driver does not support the device path node type in
    538                                  DevicePath.
    539 
    540 **/
    541 EFI_STATUS
    542 EFIAPI
    543 UfsPassThruGetTargetLun (
    544   IN  EFI_EXT_SCSI_PASS_THRU_PROTOCOL    *This,
    545   IN  EFI_DEVICE_PATH_PROTOCOL           *DevicePath,
    546   OUT UINT8                              **Target,
    547   OUT UINT64                             *Lun
    548   );
    549 
    550 /**
    551   Resets a SCSI channel. This operation resets all the SCSI devices connected to the SCSI channel.
    552 
    553   @param  This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
    554 
    555   @retval EFI_SUCCESS      The SCSI channel was reset.
    556   @retval EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI channel.
    557   @retval EFI_TIMEOUT      A timeout occurred while attempting to reset the SCSI channel.
    558   @retval EFI_UNSUPPORTED  The SCSI channel does not support a channel reset operation.
    559 
    560 **/
    561 EFI_STATUS
    562 EFIAPI
    563 UfsPassThruResetChannel (
    564   IN  EFI_EXT_SCSI_PASS_THRU_PROTOCOL   *This
    565   );
    566 
    567 /**
    568   Resets a SCSI logical unit that is connected to a SCSI channel.
    569 
    570   @param  This   A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
    571   @param  Target The Target is an array of size TARGET_MAX_BYTE and it represents the
    572                  target port ID of the SCSI device containing the SCSI logical unit to
    573                  reset. Transport drivers may chose to utilize a subset of this array to suit
    574                  the representation of their targets.
    575   @param  Lun    The LUN of the SCSI device to reset.
    576 
    577   @retval EFI_SUCCESS           The SCSI device specified by Target and Lun was reset.
    578   @retval EFI_INVALID_PARAMETER Target or Lun is NULL.
    579   @retval EFI_TIMEOUT           A timeout occurred while attempting to reset the SCSI device
    580                                 specified by Target and Lun.
    581   @retval EFI_UNSUPPORTED       The SCSI channel does not support a target reset operation.
    582   @retval EFI_DEVICE_ERROR      A device error occurred while attempting to reset the SCSI device
    583                                  specified by Target and Lun.
    584 
    585 **/
    586 EFI_STATUS
    587 EFIAPI
    588 UfsPassThruResetTargetLun (
    589   IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL    *This,
    590   IN UINT8                              *Target,
    591   IN UINT64                             Lun
    592   );
    593 
    594 /**
    595   Used to retrieve the list of legal Target IDs for SCSI devices on a SCSI channel. These can either
    596   be the list SCSI devices that are actually present on the SCSI channel, or the list of legal Target IDs
    597   for the SCSI channel. Regardless, the caller of this function must probe the Target ID returned to
    598   see if a SCSI device is actually present at that location on the SCSI channel.
    599 
    600   @param  This   A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
    601   @param  Target (TARGET_MAX_BYTES) of a SCSI device present on the SCSI channel.
    602                  On output, a pointer to the Target ID (an array of
    603                  TARGET_MAX_BYTES) of the next SCSI device present on a SCSI
    604                  channel. An input value of 0xF(all bytes in the array are 0xF) in the
    605                  Target array retrieves the Target ID of the first SCSI device present on a
    606                  SCSI channel.
    607 
    608   @retval EFI_SUCCESS           The Target ID of the next SCSI device on the SCSI
    609                                 channel was returned in Target.
    610   @retval EFI_INVALID_PARAMETER Target or Lun is NULL.
    611   @retval EFI_TIMEOUT           Target array is not all 0xF, and Target was not
    612                                 returned on a previous call to GetNextTarget().
    613   @retval EFI_NOT_FOUND         There are no more SCSI devices on this SCSI channel.
    614 
    615 **/
    616 EFI_STATUS
    617 EFIAPI
    618 UfsPassThruGetNextTarget (
    619   IN  EFI_EXT_SCSI_PASS_THRU_PROTOCOL    *This,
    620   IN OUT UINT8                           **Target
    621   );
    622 
    623 /**
    624   Sends a UFS-supported SCSI Request Packet to a UFS device that is attached to the UFS host controller.
    625 
    626   @param[in]      Private       The pointer to the UFS_PASS_THRU_PRIVATE_DATA data structure.
    627   @param[in]      Lun           The LUN of the UFS device to send the SCSI Request Packet.
    628   @param[in, out] Packet        A pointer to the SCSI Request Packet to send to a specified Lun of the
    629                                 UFS device.
    630   @param[in]      Event         If nonblocking I/O is not supported then Event is ignored, and blocking
    631                                 I/O is performed. If Event is NULL, then blocking I/O is performed. If
    632                                 Event is not NULL and non blocking I/O is supported, then
    633                                 nonblocking I/O is performed, and Event will be signaled when the
    634                                 SCSI Request Packet completes.
    635 
    636   @retval EFI_SUCCESS           The SCSI Request Packet was sent by the host. For bi-directional
    637                                 commands, InTransferLength bytes were transferred from
    638                                 InDataBuffer. For write and bi-directional commands,
    639                                 OutTransferLength bytes were transferred by
    640                                 OutDataBuffer.
    641   @retval EFI_DEVICE_ERROR      A device error occurred while attempting to send the SCSI Request
    642                                 Packet.
    643   @retval EFI_OUT_OF_RESOURCES  The resource for transfer is not available.
    644   @retval EFI_TIMEOUT           A timeout occurred while waiting for the SCSI Request Packet to execute.
    645 
    646 **/
    647 EFI_STATUS
    648 UfsExecScsiCmds (
    649   IN     UFS_PASS_THRU_PRIVATE_DATA                  *Private,
    650   IN     UINT8                                       Lun,
    651   IN OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET  *Packet,
    652   IN     EFI_EVENT                                   Event    OPTIONAL
    653   );
    654 
    655 /**
    656   Initialize the UFS host controller.
    657 
    658   @param[in] Private                 The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure.
    659 
    660   @retval EFI_SUCCESS                The NVM Express Controller is initialized successfully.
    661   @retval Others                     A device error occurred while initializing the controller.
    662 
    663 **/
    664 EFI_STATUS
    665 UfsControllerInit (
    666   IN  UFS_PASS_THRU_PRIVATE_DATA     *Private
    667   );
    668 
    669 /**
    670   Stop the UFS host controller.
    671 
    672   @param[in] Private                 The pointer to the UFS_PASS_THRU_PRIVATE_DATA data structure.
    673 
    674   @retval EFI_SUCCESS                The Ufs Host Controller is stopped successfully.
    675   @retval Others                     A device error occurred while stopping the controller.
    676 
    677 **/
    678 EFI_STATUS
    679 UfsControllerStop (
    680   IN  UFS_PASS_THRU_PRIVATE_DATA     *Private
    681   );
    682 
    683 /**
    684   Allocate common buffer for host and UFS bus master access simultaneously.
    685 
    686   @param[in]  Private                The pointer to the UFS_PASS_THRU_PRIVATE_DATA data structure.
    687   @param[in]  Size                   The length of buffer to be allocated.
    688   @param[out] CmdDescHost            A pointer to store the base system memory address of the allocated range.
    689   @param[out] CmdDescPhyAddr         The resulting map address for the UFS bus master to use to access the hosts CmdDescHost.
    690   @param[out] CmdDescMapping         A resulting value to pass to Unmap().
    691 
    692   @retval EFI_SUCCESS                The common buffer was allocated successfully.
    693   @retval EFI_DEVICE_ERROR           The allocation fails.
    694   @retval EFI_OUT_OF_RESOURCES       The memory resource is insufficient.
    695 
    696 **/
    697 EFI_STATUS
    698 UfsAllocateAlignCommonBuffer (
    699   IN     UFS_PASS_THRU_PRIVATE_DATA    *Private,
    700   IN     UINTN                         Size,
    701      OUT VOID                          **CmdDescHost,
    702      OUT EFI_PHYSICAL_ADDRESS          *CmdDescPhyAddr,
    703      OUT VOID                          **CmdDescMapping
    704   );
    705 
    706 /**
    707   Set specified flag to 1 on a UFS device.
    708 
    709   @param[in]  Private           The pointer to the UFS_PASS_THRU_PRIVATE_DATA data structure.
    710   @param[in]  FlagId            The ID of flag to be set.
    711 
    712   @retval EFI_SUCCESS           The flag was set successfully.
    713   @retval EFI_DEVICE_ERROR      A device error occurred while attempting to set the flag.
    714   @retval EFI_TIMEOUT           A timeout occurred while waiting for the completion of setting the flag.
    715 
    716 **/
    717 EFI_STATUS
    718 UfsSetFlag (
    719   IN  UFS_PASS_THRU_PRIVATE_DATA   *Private,
    720   IN  UINT8                        FlagId
    721   );
    722 
    723 /**
    724   Read or write specified device descriptor of a UFS device.
    725 
    726   @param[in]      Private       The pointer to the UFS_PASS_THRU_PRIVATE_DATA data structure.
    727   @param[in]      Read          The boolean variable to show r/w direction.
    728   @param[in]      DescId        The ID of device descriptor.
    729   @param[in]      Index         The Index of device descriptor.
    730   @param[in]      Selector      The Selector of device descriptor.
    731   @param[in, out] Descriptor    The buffer of device descriptor to be read or written.
    732   @param[in]      DescSize      The size of device descriptor buffer.
    733 
    734   @retval EFI_SUCCESS           The device descriptor was read/written successfully.
    735   @retval EFI_DEVICE_ERROR      A device error occurred while attempting to r/w the device descriptor.
    736   @retval EFI_TIMEOUT           A timeout occurred while waiting for the completion of r/w the device descriptor.
    737 
    738 **/
    739 EFI_STATUS
    740 UfsRwDeviceDesc (
    741   IN     UFS_PASS_THRU_PRIVATE_DATA   *Private,
    742   IN     BOOLEAN                      Read,
    743   IN     UINT8                        DescId,
    744   IN     UINT8                        Index,
    745   IN     UINT8                        Selector,
    746   IN OUT VOID                         *Descriptor,
    747   IN     UINT32                       DescSize
    748   );
    749 
    750 /**
    751   Sends NOP IN cmd to a UFS device for initialization process request.
    752   For more details, please refer to UFS 2.0 spec Figure 13.3.
    753 
    754   @param[in]  Private           The pointer to the UFS_PASS_THRU_PRIVATE_DATA data structure.
    755 
    756   @retval EFI_SUCCESS           The NOP IN command was sent by the host. The NOP OUT response was
    757                                 received successfully.
    758   @retval EFI_DEVICE_ERROR      A device error occurred while attempting to execute NOP IN command.
    759   @retval EFI_OUT_OF_RESOURCES  The resource for transfer is not available.
    760   @retval EFI_TIMEOUT           A timeout occurred while waiting for the NOP IN command to execute.
    761 
    762 **/
    763 EFI_STATUS
    764 UfsExecNopCmds (
    765   IN  UFS_PASS_THRU_PRIVATE_DATA       *Private
    766   );
    767 
    768 /**
    769   Call back function when the timer event is signaled.
    770 
    771   @param[in]  Event     The Event this notify function registered to.
    772   @param[in]  Context   Pointer to the context data registered to the Event.
    773 
    774 **/
    775 VOID
    776 EFIAPI
    777 ProcessAsyncTaskList (
    778   IN EFI_EVENT          Event,
    779   IN VOID               *Context
    780   );
    781 
    782 /**
    783   Internal helper function which will signal the caller event and clean up
    784   resources.
    785 
    786   @param[in] Private   The pointer to the UFS_PASS_THRU_PRIVATE_DATA data
    787                        structure.
    788   @param[in] TransReq  The pointer to the UFS_PASS_THRU_TRANS_REQ data
    789                        structure.
    790 
    791 **/
    792 VOID
    793 EFIAPI
    794 SignalCallerEvent (
    795   IN UFS_PASS_THRU_PRIVATE_DATA      *Private,
    796   IN UFS_PASS_THRU_TRANS_REQ         *TransReq
    797   );
    798 
    799 extern EFI_COMPONENT_NAME_PROTOCOL  gUfsPassThruComponentName;
    800 extern EFI_COMPONENT_NAME2_PROTOCOL gUfsPassThruComponentName2;
    801 extern EFI_DRIVER_BINDING_PROTOCOL  gUfsPassThruDriverBinding;
    802 
    803 #endif
    804