Home | History | Annotate | Download | only in RngDxe
      1 /** @file
      2   Core Primitive Implementation of the Advanced Encryption Standard (AES) algorithm.
      3   Refer to FIPS PUB 197 ("Advanced Encryption Standard (AES)") for detailed algorithm
      4   description of AES.
      5 
      6 Copyright (c) 2013, Intel Corporation. All rights reserved.<BR>
      7 This program and the accompanying materials
      8 are licensed and made available under the terms and conditions of the BSD License
      9 which accompanies this distribution.  The full text of the license may be found at
     10 http://opensource.org/licenses/bsd-license.php
     11 
     12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
     13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
     14 
     15 **/
     16 
     17 #include "AesCore.h"
     18 
     19 //
     20 // Number of columns (32-bit words) comprising the State.
     21 // AES_NB is a constant (value = 4) for NIST FIPS-197.
     22 //
     23 #define AES_NB                     4
     24 
     25 //
     26 // Pre-computed AES Forward Table: AesForwardTable[t] = AES_SBOX[t].[02, 01, 01, 03]
     27 // AES_SBOX (AES S-box) is defined in sec 5.1.1 of FIPS PUB 197.
     28 // This is to speed up execution of the cipher by combining SubBytes and
     29 // ShiftRows with MixColumns steps and transforming them into table lookups.
     30 //
     31 GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 AesForwardTable[] = {
     32   0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd,
     33   0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d,
     34   0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d,
     35   0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b,
     36   0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7,
     37   0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a,
     38   0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4,
     39   0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f,
     40   0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1,
     41   0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d,
     42   0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f, 0x1209091b, 0x1d83839e,
     43   0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb,
     44   0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e,
     45   0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c,
     46   0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46,
     47   0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a,
     48   0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7,
     49   0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81,
     50   0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe,
     51   0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504,
     52   0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a,
     53   0xfdf3f30e, 0xbfd2d26d, 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f,
     54   0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2,
     55   0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395,
     56   0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e,
     57   0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c,
     58   0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256,
     59   0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4,
     60   0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4,
     61   0xd3e4e437, 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7,
     62   0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa,
     63   0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818,
     64   0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1,
     65   0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21,
     66   0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42,
     67   0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12,
     68   0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158,
     69   0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133,
     70   0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22,
     71   0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a,
     72   0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631,
     73   0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11,
     74   0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a
     75 };
     76 
     77 //
     78 // Round constant word array used in AES key expansion.
     79 //
     80 GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 Rcon[] = {
     81   0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
     82   0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000
     83 };
     84 
     85 //
     86 // Rotates x right n bits (circular right shift operation)
     87 //
     88 #define ROTATE_RIGHT32(x, n)    (((x) >> (n)) | ((x) << (32-(n))))
     89 
     90 //
     91 // Loading & Storing 32-bit words in big-endian format: y[3..0] --> x; x --> y[3..0];
     92 //
     93 #define LOAD32H(x, y)    { x = ((UINT32)((y)[0] & 0xFF) << 24) | ((UINT32)((y)[1] & 0xFF) << 16) |  \
     94                                ((UINT32)((y)[2] & 0xFF) <<  8) | ((UINT32)((y)[3] & 0xFF)); }
     95 #define STORE32H(x, y)   { (y)[0] = (UINT8)(((x) >> 24) & 0xFF); (y)[1] = (UINT8)(((x) >> 16) & 0xFF); \
     96                            (y)[2] = (UINT8)(((x) >>  8) & 0xFF); (y)[3] = (UINT8)((x)         & 0xFF); }
     97 
     98 //
     99 // Wrap macros for AES forward tables lookups
    100 //
    101 #define AES_FT0(x)  AesForwardTable[x]
    102 #define AES_FT1(x)  ROTATE_RIGHT32(AesForwardTable[x],  8)
    103 #define AES_FT2(x)  ROTATE_RIGHT32(AesForwardTable[x], 16)
    104 #define AES_FT3(x)  ROTATE_RIGHT32(AesForwardTable[x], 24)
    105 
    106 ///
    107 /// AES Key Schedule which is expanded from symmetric key [Size 60 = 4 * ((Max AES Round, 14) + 1)].
    108 ///
    109 typedef struct {
    110   UINTN     Nk;            // Number of Cipher Key (in 32-bit words);
    111   UINT32    EncKey[60];    // Expanded AES encryption key
    112   UINT32    DecKey[60];    // Expanded AES decryption key (Not used here)
    113 } AES_KEY;
    114 
    115 /**
    116   AES Key Expansion.
    117   This function expands the cipher key into encryption schedule.
    118 
    119   @param[in]  Key                AES symmetric key buffer.
    120   @param[in]  KeyLenInBits       Key length in bits (128, 192, or 256).
    121   @param[out] AesKey             Expanded AES Key schedule for encryption.
    122 
    123   @retval EFI_SUCCESS            AES key expansion succeeded.
    124   @retval EFI_INVALID_PARAMETER  Unsupported key length.
    125 
    126 **/
    127 EFI_STATUS
    128 EFIAPI
    129 AesExpandKey (
    130   IN UINT8         *Key,
    131   IN UINTN         KeyLenInBits,
    132   OUT AES_KEY      *AesKey
    133   )
    134 {
    135   UINTN       Nk;
    136   UINTN       Nr;
    137   UINTN       Nw;
    138   UINTN       Index1;
    139   UINTN       Index2;
    140   UINTN       Index3;
    141   UINT32      *Ek;
    142   UINT32      Temp;
    143 
    144   //
    145   // Nk - Number of 32-bit words comprising the cipher key. (Nk = 4, 6 or 8)
    146   // Nr - Number of rounds. (Nr = 10, 12, or 14), which is dependent on the key size.
    147   //
    148   Nk = KeyLenInBits >> 5;
    149   if (Nk != 4 && Nk != 6 && Nk != 8) {
    150     return EFI_INVALID_PARAMETER;
    151   }
    152   Nr = Nk + 6;
    153   Nw = AES_NB * (Nr + 1);    // Key Expansion generates a total of Nb * (Nr + 1) words
    154   AesKey->Nk = Nk;
    155 
    156   //
    157   // Load initial symmetric AES key;
    158   // Note that AES was designed on big-endian systems.
    159   //
    160   Ek = AesKey->EncKey;
    161   for (Index1 = Index2 = 0; Index1 < Nk; Index1++, Index2 += 4) {
    162     LOAD32H (Ek[Index1], Key + Index2);
    163   }
    164 
    165   //
    166   // Initialize the encryption key scheduler
    167   //
    168   for (Index2 = Nk, Index3 = 0; Index2 < Nw; Index2 += Nk, Index3++) {
    169     Temp       = Ek[Index2 - 1];
    170     Ek[Index2] = Ek[Index2 - Nk] ^ (AES_FT2((Temp >> 16) & 0xFF) & 0xFF000000) ^
    171                                    (AES_FT3((Temp >>  8) & 0xFF) & 0x00FF0000) ^
    172                                    (AES_FT0((Temp)       & 0xFF) & 0x0000FF00) ^
    173                                    (AES_FT1((Temp >> 24) & 0xFF) & 0x000000FF) ^
    174                                    Rcon[Index3];
    175     if (Nk <= 6) {
    176       //
    177       // If AES Cipher Key is 128 or 192 bits
    178       //
    179       for (Index1 = 1; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {
    180         Ek [Index1 + Index2] = Ek [Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
    181       }
    182     } else {
    183       //
    184       // Different routine for key expansion If Cipher Key is 256 bits,
    185       //
    186       for (Index1 = 1; Index1 < 4 && (Index1 + Index2) < Nw; Index1++) {
    187         Ek [Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
    188       }
    189       if (Index2 + 4 < Nw) {
    190         Temp           = Ek[Index2 + 3];
    191         Ek[Index2 + 4] = Ek[Index2 + 4 - Nk] ^ (AES_FT2((Temp >> 24) & 0xFF) & 0xFF000000) ^
    192                                                (AES_FT3((Temp >> 16) & 0xFF) & 0x00FF0000) ^
    193                                                (AES_FT0((Temp >>  8) & 0xFF) & 0x0000FF00) ^
    194                                                (AES_FT1((Temp)       & 0xFF) & 0x000000FF);
    195       }
    196 
    197       for (Index1 = 5; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {
    198         Ek[Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
    199       }
    200     }
    201   }
    202 
    203   return EFI_SUCCESS;
    204 }
    205 
    206 /**
    207   Encrypts one single block data (128 bits) with AES algorithm.
    208 
    209   @param[in]  Key                AES symmetric key buffer.
    210   @param[in]  InData             One block of input plaintext to be encrypted.
    211   @param[out] OutData            Encrypted output ciphertext.
    212 
    213   @retval EFI_SUCCESS            AES Block Encryption succeeded.
    214   @retval EFI_INVALID_PARAMETER  One or more parameters are invalid.
    215 
    216 **/
    217 EFI_STATUS
    218 EFIAPI
    219 AesEncrypt (
    220   IN  UINT8        *Key,
    221   IN  UINT8        *InData,
    222   OUT UINT8        *OutData
    223   )
    224 {
    225   AES_KEY  AesKey;
    226   UINTN    Nr;
    227   UINT32   *Ek;
    228   UINT32   State[4];
    229   UINT32   TempState[4];
    230   UINT32   *StateX;
    231   UINT32   *StateY;
    232   UINT32   *Temp;
    233   UINTN    Index;
    234   UINTN    NbIndex;
    235   UINTN    Round;
    236 
    237   if ((Key == NULL) || (InData == NULL) || (OutData == NULL)) {
    238     return EFI_INVALID_PARAMETER;
    239   }
    240 
    241   //
    242   // Expands AES Key for encryption.
    243   //
    244   AesExpandKey (Key, 128, &AesKey);
    245 
    246   Nr = AesKey.Nk + 6;
    247   Ek = AesKey.EncKey;
    248 
    249   //
    250   // Initialize the cipher State array with the initial round key
    251   //
    252   for (Index = 0; Index < AES_NB; Index++) {
    253     LOAD32H (State[Index], InData + 4 * Index);
    254     State[Index] ^= Ek[Index];
    255   }
    256 
    257   NbIndex = AES_NB;
    258   StateX  = State;
    259   StateY  = TempState;
    260 
    261   //
    262   // AES Cipher transformation rounds (Nr - 1 rounds), in which SubBytes(),
    263   // ShiftRows() and MixColumns() operations were combined by a sequence of
    264   // table lookups to speed up the execution.
    265   //
    266   for (Round = 1; Round < Nr; Round++) {
    267     StateY[0] = AES_FT0 ((StateX[0] >> 24)       ) ^ AES_FT1 ((StateX[1] >> 16) & 0xFF) ^
    268                 AES_FT2 ((StateX[2] >>  8) & 0xFF) ^ AES_FT3 ((StateX[3]      ) & 0xFF) ^ Ek[NbIndex];
    269     StateY[1] = AES_FT0 ((StateX[1] >> 24)       ) ^ AES_FT1 ((StateX[2] >> 16) & 0xFF) ^
    270                 AES_FT2 ((StateX[3] >>  8) & 0xFF) ^ AES_FT3 ((StateX[0]      ) & 0xFF) ^ Ek[NbIndex + 1];
    271     StateY[2] = AES_FT0 ((StateX[2] >> 24)       ) ^ AES_FT1 ((StateX[3] >> 16) & 0xFF) ^
    272                 AES_FT2 ((StateX[0] >>  8) & 0xFF) ^ AES_FT3 ((StateX[1]      ) & 0xFF) ^ Ek[NbIndex + 2];
    273     StateY[3] = AES_FT0 ((StateX[3] >> 24)       ) ^ AES_FT1 ((StateX[0] >> 16) & 0xFF) ^
    274                 AES_FT2 ((StateX[1] >>  8) & 0xFF) ^ AES_FT3 ((StateX[2]      ) & 0xFF) ^ Ek[NbIndex + 3];
    275 
    276     NbIndex += 4;
    277     Temp = StateX; StateX = StateY; StateY = Temp;
    278   }
    279 
    280   //
    281   // Apply the final round, which does not include MixColumns() transformation
    282   //
    283   StateY[0] = (AES_FT2 ((StateX[0] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((StateX[1] >> 16) & 0xFF) & 0x00FF0000) ^
    284               (AES_FT0 ((StateX[2] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[3]      ) & 0xFF) & 0x000000FF) ^
    285               Ek[NbIndex];
    286   StateY[1] = (AES_FT2 ((StateX[1] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((StateX[2] >> 16) & 0xFF) & 0x00FF0000) ^
    287               (AES_FT0 ((StateX[3] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[0]      ) & 0xFF) & 0x000000FF) ^
    288               Ek[NbIndex + 1];
    289   StateY[2] = (AES_FT2 ((StateX[2] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((StateX[3] >> 16) & 0xFF) & 0x00FF0000) ^
    290               (AES_FT0 ((StateX[0] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[1]      ) & 0xFF) & 0x000000FF) ^
    291               Ek[NbIndex + 2];
    292   StateY[3] = (AES_FT2 ((StateX[3] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((StateX[0] >> 16) & 0xFF) & 0x00FF0000) ^
    293               (AES_FT0 ((StateX[1] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[2]      ) & 0xFF) & 0x000000FF) ^
    294               Ek[NbIndex + 3];
    295 
    296   //
    297   // Output the transformed result;
    298   //
    299   for (Index = 0; Index < AES_NB; Index++) {
    300     STORE32H (StateY[Index], OutData + 4 * Index);
    301   }
    302 
    303   return EFI_SUCCESS;
    304 }