Home | History | Annotate | Download | only in Math
      1 /* @(#)s_tanh.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 #include  <LibConfig.h>
     13 #include  <sys/EfiCdefs.h>
     14 #if defined(LIBM_SCCS) && !defined(lint)
     15 __RCSID("$NetBSD: s_tanh.c,v 1.10 2002/05/26 22:01:59 wiz Exp $");
     16 #endif
     17 
     18 /* Tanh(x)
     19  * Return the Hyperbolic Tangent of x
     20  *
     21  * Method :
     22  *               x    -x
     23  *              e  - e
     24  *  0. tanh(x) is defined to be -----------
     25  *               x    -x
     26  *              e  + e
     27  *  1. reduce x to non-negative by tanh(-x) = -tanh(x).
     28  *  2.  0      <= x <= 2**-55 : tanh(x) := x*(one+x)
     29  *                  -t
     30  *      2**-55 <  x <=  1     : tanh(x) := -----; t = expm1(-2x)
     31  *                 t + 2
     32  *                 2
     33  *      1      <= x <=  22.0  : tanh(x) := 1-  ----- ; t=expm1(2x)
     34  *               t + 2
     35  *      22.0   <  x <= INF    : tanh(x) := 1.
     36  *
     37  * Special cases:
     38  *  tanh(NaN) is NaN;
     39  *  only tanh(0)=0 is exact for finite argument.
     40  */
     41 
     42 #include "math.h"
     43 #include "math_private.h"
     44 
     45 static const double one=1.0, two=2.0, tiny = 1.0e-300;
     46 
     47 double
     48 tanh(double x)
     49 {
     50   double t,z;
     51   int32_t jx,ix;
     52 
     53     /* High word of |x|. */
     54   GET_HIGH_WORD(jx,x);
     55   ix = jx&0x7fffffff;
     56 
     57     /* x is INF or NaN */
     58   if(ix>=0x7ff00000) {
     59       if (jx>=0) return one/x+one;    /* tanh(+-inf)=+-1 */
     60       else       return one/x-one;    /* tanh(NaN) = NaN */
     61   }
     62 
     63     /* |x| < 22 */
     64   if (ix < 0x40360000) {    /* |x|<22 */
     65       if (ix<0x3c800000)    /* |x|<2**-55 */
     66     return x*(one+x);     /* tanh(small) = small */
     67       if (ix>=0x3ff00000) { /* |x|>=1  */
     68     t = expm1(two*fabs(x));
     69     z = one - two/(t+two);
     70       } else {
     71           t = expm1(-two*fabs(x));
     72           z= -t/(t+two);
     73       }
     74     /* |x| > 22, return +-1 */
     75   } else {
     76       z = one - tiny;   /* raised inexact flag */
     77   }
     78   return (jx>=0)? z: -z;
     79 }
     80