Home | History | Annotate | Download | only in api
      1 
      2 
      3 
      4 
      5 <!DOCTYPE html>
      6 <html lang="en">
      7 <head>
      8   <meta charset="utf-8"  />
      9   <meta name="viewport" content="width=device-width,minimum-scale=1,initial-scale=1,shrink-to-fit=no"  />
     10   <title>MagickCore, C API: Morphological Erosions, Dilations, Openings, and Closings @ ImageMagick</title>
     11   <meta name="application-name" content="ImageMagick" />
     12   <meta name="description" content="Use ImageMagick to create, edit, compose, or convert bitmap images. You can resize your image, crop it, change its shades and colors, add captions, among other operations." />
     13   <meta name="application-url" content="https://imagemagick.org" />
     14   <meta name="generator" content="PHP" />
     15   <meta name="keywords" content="magickcore, c, api:, morphological, erosions, dilations, openings, closings, ImageMagick, PerlMagick, image processing, image, photo, software, Magick++, OpenMP, convert" />
     16   <meta name="rating" content="GENERAL" />
     17   <meta name="robots" content="INDEX, FOLLOW" />
     18   <meta name="generator" content="ImageMagick Studio LLC" />
     19   <meta name="author" content="ImageMagick Studio LLC" />
     20   <meta name="revisit-after" content="2 DAYS" />
     21   <meta name="resource-type" content="document" />
     22   <meta name="copyright" content="Copyright (c) 1999-2017 ImageMagick Studio LLC" />
     23   <meta name="distribution" content="Global" />
     24   <meta name="magick-serial" content="P131-S030410-R485315270133-P82224-A6668-G1245-1" />
     25   <meta name="google-site-verification" content="_bMOCDpkx9ZAzBwb2kF3PRHbfUUdFj2uO8Jd1AXArz4" />
     26   <link href="morphology.html" rel="canonical" />
     27   <link href="../../images/wand.png" rel="icon" />
     28   <link href="../../images/wand.ico" rel="shortcut icon" />
     29   <link href="../assets/magick.css" rel="stylesheet" />
     30 </head>
     31 <body>
     32   <header>
     33   <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark">
     34     <a class="navbar-brand" href="../../"><img class="d-block" id="icon" alt="ImageMagick" width="32" height="32" src="../../images/wand.ico"/></a>
     35     <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarsMagick" aria-controls="navbarsMagick" aria-expanded="false" aria-label="Toggle navigation">
     36       <span class="navbar-toggler-icon"></span>
     37     </button>
     38 
     39     <div class="navbar-collapse collapse" id="navbarsMagick" style="">
     40     <ul class="navbar-nav mr-auto">
     41       <li class="nav-item ">
     42         <a class="nav-link" href="quantize.html">Home <span class="sr-only">(current)</span></a>
     43       </li>
     44       <li class="nav-item ">
     45         <a class="nav-link" href="../../www/download.html">Download</a>
     46       </li>
     47       <li class="nav-item ">
     48         <a class="nav-link" href="../../www/command-line-tools.html">Tools</a>
     49       </li>
     50       <li class="nav-item ">
     51         <a class="nav-link" href="../../www/command-line-processing.html">Command-line</a>
     52       </li>
     53       <li class="nav-item ">
     54         <a class="nav-link" href="../../www/resources.html">Resources</a>
     55       </li>
     56       <li class="nav-item ">
     57         <a class="nav-link" href="../../www/develop.html">Develop</a>
     58       </li>
     59       <li class="nav-item">
     60         <a class="nav-link" target="_blank" href="https://imagemagick.org/discourse-server/">Community</a>
     61       </li>
     62     </ul>
     63     <form class="form-inline my-2 my-lg-0" action="https://imagemagick.org/script/search.php">
     64       <input class="form-control mr-sm-2" type="text" name="q" placeholder="Search" aria-label="Search">
     65       <button class="btn btn-outline-success my-2 my-sm-0" type="submit" name="sa">Search</button>
     66     </form>
     67     </div>
     68   </nav>
     69   <div class="container">
     70    <script async="async" src="https://localhost/pagead/js/adsbygoogle.js"></script>    <ins class="adsbygoogle"
     71          style="display:block"
     72          data-ad-client="ca-pub-3129977114552745"
     73          data-ad-slot="6345125851"
     74          data-ad-format="auto"></ins>
     75     <script>
     76       (adsbygoogle = window.adsbygoogle || []).push({});
     77     </script>
     78 
     79   </div>
     80   </header>
     81   <main class="container">
     82     <div class="magick-template">
     83 <div class="magick-header">
     84 <p class="text-center"><a href="morphology.html#AcquireKernelInfo">AcquireKernelInfo</a> &#8226; <a href="morphology.html#AcquireKernelBuiltIn">AcquireKernelBuiltIn</a> &#8226; <a href="morphology.html#CloneKernelInfo">CloneKernelInfo</a> &#8226; <a href="morphology.html#DestroyKernelInfo">DestroyKernelInfo</a> &#8226; <a href="morphology.html#MorphologyApply">MorphologyApply</a> &#8226; <a href="morphology.html#This is almost identical to the MorphologyPrimative">This is almost identical to the MorphologyPrimative</a> &#8226; <a href="morphology.html#MorphologyImage">MorphologyImage</a> &#8226; <a href="morphology.html#ScaleGeometryKernelInfo">ScaleGeometryKernelInfo</a> &#8226; <a href="morphology.html#ScaleKernelInfo">ScaleKernelInfo</a> &#8226; <a href="morphology.html#ShowKernelInfo">ShowKernelInfo</a> &#8226; <a href="morphology.html#UnityAddKernelInfo">UnityAddKernelInfo</a> &#8226; <a href="morphology.html#ZeroKernelNans">ZeroKernelNans</a></p>
     85 
     86 <h2><a href="../../api/MagickCore/morphology_8c.html" id="AcquireKernelInfo">AcquireKernelInfo</a></h2>
     87 
     88 <p>AcquireKernelInfo() takes the given string (generally supplied by the user) and converts it into a Morphology/Convolution Kernel.  This allows users to specify a kernel from a number of pre-defined kernels, or to fully specify their own kernel for a specific Convolution or Morphology Operation.</p>
     89 
     90 <p>The kernel so generated can be any rectangular array of floating point values (doubles) with the 'control point' or 'pixel being affected' anywhere within that array of values.</p>
     91 
     92 <p>Previously IM was restricted to a square of odd size using the exact center as origin, this is no longer the case, and any rectangular kernel with any value being declared the origin. This in turn allows the use of highly asymmetrical kernels.</p>
     93 
     94 <p>The floating point values in the kernel can also include a special value known as 'nan' or 'not a number' to indicate that this value is not part of the kernel array. This allows you to shaped the kernel within its rectangular area. That is 'nan' values provide a 'mask' for the kernel shape.  However at least one non-nan value must be provided for correct working of a kernel.</p>
     95 
     96 <p>The returned kernel should be freed using the DestroyKernelInfo() when you are finished with it.  Do not free this memory yourself.</p>
     97 
     98 <p>Input kernel defintion strings can consist of any of three types.</p>
     99 
    100 <p>"name:args[[@&gt;&lt;]" Select from one of the built in kernels, using the name and geometry arguments supplied.  See AcquireKernelBuiltIn()</p>
    101 
    102 <p>"WxH[+X+Y][@&gt;&lt;]:num, num, num ..." a kernel of size W by H, with W*H floating point numbers following. the 'center' can be optionally be defined at +X+Y (such that +0+0 is top left corner). If not defined the pixel in the center, for odd sizes, or to the immediate top or left of center for even sizes is automatically selected.</p>
    103 
    104 <p>"num, num, num, num, ..." list of floating point numbers defining an 'old style' odd sized square kernel.  At least 9 values should be provided for a 3x3 square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc. Values can be space or comma separated.  This is not recommended.</p>
    105 
    106 <p>You can define a 'list of kernels' which can be used by some morphology operators A list is defined as a semi-colon separated list kernels.</p>
    107 
    108 <p>" kernel ; kernel ; kernel ; "</p>
    109 
    110 <p>Any extra ';' characters, at start, end or between kernel defintions are simply ignored.</p>
    111 
    112 <p>The special flags will expand a single kernel, into a list of rotated kernels. A '@' flag will expand a 3x3 kernel into a list of 45-degree cyclic rotations, while a '&gt;' will generate a list of 90-degree rotations. The '&lt;' also exands using 90-degree rotates, but giving a 180-degree reflected kernel before the +/- 90-degree rotations, which can be important for Thinning operations.</p>
    113 
    114 <p>Note that 'name' kernels will start with an alphabetic character while the new kernel specification has a ':' character in its specification string. If neither is the case, it is assumed an old style of a simple list of numbers generating a odd-sized square kernel has been given.</p>
    115 
    116 <p>The format of the AcquireKernal method is:</p>
    117 
    118 <pre class="text">
    119 KernelInfo *AcquireKernelInfo(const char *kernel_string)
    120 </pre>
    121 
    122 <p>A description of each parameter follows:</p>
    123 
    124 <dd>
    125 </dd>
    126 
    127 <dd> </dd>
    128 <dl class="dl-horizontal">
    129 <dt>kernel_string</dt>
    130 <dd>the Morphology/Convolution kernel wanted. </dd>
    131 
    132 <dd>  </dd>
    133 </dl>
    134 <h2><a href="../../api/MagickCore/morphology_8c.html" id="AcquireKernelBuiltIn">AcquireKernelBuiltIn</a></h2>
    135 
    136 <p>AcquireKernelBuiltIn() returned one of the 'named' built-in types of kernels used for special purposes such as gaussian blurring, skeleton pruning, and edge distance determination.</p>
    137 
    138 <p>They take a KernelType, and a set of geometry style arguments, which were typically decoded from a user supplied string, or from a more complex Morphology Method that was requested.</p>
    139 
    140 <p>The format of the AcquireKernalBuiltIn method is:</p>
    141 
    142 <pre class="text">
    143 KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type,
    144      const GeometryInfo args)
    145 </pre>
    146 
    147 <p>A description of each parameter follows:</p>
    148 
    149 <dd>
    150 </dd>
    151 
    152 <dd> </dd>
    153 <dl class="dl-horizontal">
    154 <dt>type</dt>
    155 <dd>the pre-defined type of kernel wanted </dd>
    156 
    157 <dd> </dd>
    158 <dt>args</dt>
    159 <dd>arguments defining or modifying the kernel </dd>
    160 
    161 <dd> Convolution Kernels </dd>
    162 
    163 <dd> Unity The a No-Op or Scaling single element kernel. </dd>
    164 
    165 <dd> Gaussian:{radius},{sigma} Generate a two-dimensional gaussian kernel, as used by -gaussian. The sigma for the curve is required.  The resulting kernel is normalized, </dd>
    166 
    167 <dd> If 'sigma' is zero, you get a single pixel on a field of zeros. </dd>
    168 
    169 <dd> NOTE: that the 'radius' is optional, but if provided can limit (clip) the final size of the resulting kernel to a square 2*radius+1 in size. The radius should be at least 2 times that of the sigma value, or sever clipping and aliasing may result.  If not given or set to 0 the radius will be determined so as to produce the best minimal error result, which is usally much larger than is normally needed. </dd>
    170 
    171 <dd> LoG:{radius},{sigma} "Laplacian of a Gaussian" or "Mexician Hat" Kernel. The supposed ideal edge detection, zero-summing kernel. </dd>
    172 
    173 <dd> An alturnative to this kernel is to use a "DoG" with a sigma ratio of approx 1.6 (according to wikipedia). </dd>
    174 
    175 <dd> DoG:{radius},{sigma1},{sigma2} "Difference of Gaussians" Kernel. As "Gaussian" but with a gaussian produced by 'sigma2' subtracted from the gaussian produced by 'sigma1'. Typically sigma2 &gt; sigma1. The result is a zero-summing kernel. </dd>
    176 
    177 <dd> Blur:{radius},{sigma}[,{angle}] Generates a 1 dimensional or linear gaussian blur, at the angle given (current restricted to orthogonal angles).  If a 'radius' is given the kernel is clipped to a width of 2*radius+1.  Kernel can be rotated by a 90 degree angle. </dd>
    178 
    179 <dd> If 'sigma' is zero, you get a single pixel on a field of zeros. </dd>
    180 
    181 <dd> Note that two convolutions with two "Blur" kernels perpendicular to each other, is equivalent to a far larger "Gaussian" kernel with the same sigma value, However it is much faster to apply. This is how the "-blur" operator actually works. </dd>
    182 
    183 <dd> Comet:{width},{sigma},{angle} Blur in one direction only, much like how a bright object leaves a comet like trail.  The Kernel is actually half a gaussian curve, Adding two such blurs in opposite directions produces a Blur Kernel. Angle can be rotated in multiples of 90 degrees. </dd>
    184 
    185 <dd> Note that the first argument is the width of the kernel and not the radius of the kernel. </dd>
    186 
    187 <dd> Binomial:[{radius}] Generate a discrete kernel using a 2 dimentional Pascel's Triangle of values. Used for special forma of image filters. </dd>
    188 
    189 <dd> # Still to be implemented... # # Filter2D # Filter1D #    Set kernel values using a resize filter, and given scale (sigma) #    Cylindrical or Linear.   Is this possible with an image? # </dd>
    190 
    191 <dd> Named Constant Convolution Kernels </dd>
    192 
    193 <dd> All these are unscaled, zero-summing kernels by default. As such for non-HDRI version of ImageMagick some form of normalization, user scaling, and biasing the results is recommended, to prevent the resulting image being 'clipped'. </dd>
    194 
    195 <dd> The 3x3 kernels (most of these) can be circularly rotated in multiples of 45 degrees to generate the 8 angled varients of each of the kernels. </dd>
    196 
    197 <dd> Laplacian:{type} Discrete Lapacian Kernels, (without normalization) Type 0 :  3x3 with center:8 surounded by -1  (8 neighbourhood) Type 1 :  3x3 with center:4 edge:-1 corner:0 (4 neighbourhood) Type 2 :  3x3 with center:4 edge:1 corner:-2 Type 3 :  3x3 with center:4 edge:-2 corner:1 Type 5 :  5x5 laplacian Type 7 :  7x7 laplacian Type 15 : 5x5 LoG (sigma approx 1.4) Type 19 : 9x9 LoG (sigma approx 1.4) </dd>
    198 
    199 <dd> Sobel:{angle} Sobel 'Edge' convolution kernel (3x3) | -1, 0, 1 | | -2, 0,-2 | | -1, 0, 1 | </dd>
    200 
    201 <dd> Roberts:{angle} Roberts convolution kernel (3x3) |  0, 0, 0 | | -1, 1, 0 | |  0, 0, 0 | </dd>
    202 
    203 <dd> Prewitt:{angle} Prewitt Edge convolution kernel (3x3) | -1, 0, 1 | | -1, 0, 1 | | -1, 0, 1 | </dd>
    204 
    205 <dd> Compass:{angle} Prewitt's "Compass" convolution kernel (3x3) | -1, 1, 1 | | -1,-2, 1 | | -1, 1, 1 | </dd>
    206 
    207 <dd> Kirsch:{angle} Kirsch's "Compass" convolution kernel (3x3) | -3,-3, 5 | | -3, 0, 5 | | -3,-3, 5 | </dd>
    208 
    209 <dd> FreiChen:{angle} Frei-Chen Edge Detector is based on a kernel that is similar to the Sobel Kernel, but is designed to be isotropic. That is it takes into account the distance of the diagonal in the kernel. </dd>
    210 
    211 <dd> |   1,     0,   -1     | | sqrt(2), 0, -sqrt(2) | |   1,     0,   -1     | </dd>
    212 
    213 <dd> FreiChen:{type},{angle} </dd>
    214 
    215 <dd> Frei-Chen Pre-weighted kernels... </dd>
    216 
    217 <dd> Type 0:  default un-nomalized version shown above. </dd>
    218 
    219 <dd> Type 1: Orthogonal Kernel (same as type 11 below) |   1,     0,   -1     | | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |   1,     0,   -1     | </dd>
    220 
    221 <dd> Type 2: Diagonal form of Kernel... |   1,     sqrt(2),    0     | | sqrt(2),   0,     -sqrt(2) | / 2*sqrt(2) |   0,    -sqrt(2)    -1     | </dd>
    222 
    223 <dd> However this kernel is als at the heart of the FreiChen Edge Detection Process which uses a set of 9 specially weighted kernel.  These 9 kernels not be normalized, but directly applied to the image. The results is then added together, to produce the intensity of an edge in a specific direction.  The square root of the pixel value can then be taken as the cosine of the edge, and at least 2 such runs at 90 degrees from each other, both the direction and the strength of the edge can be determined. </dd>
    224 
    225 <dd> Type 10: All 9 of the following pre-weighted kernels... </dd>
    226 
    227 <dd> Type 11: |   1,     0,   -1     | | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |   1,     0,   -1     | </dd>
    228 
    229 <dd> Type 12: | 1, sqrt(2), 1 | | 0,   0,     0 | / 2*sqrt(2) | 1, sqrt(2), 1 | </dd>
    230 
    231 <dd> Type 13: | sqrt(2), -1,    0     | |  -1,      0,    1     | / 2*sqrt(2) |   0,      1, -sqrt(2) | </dd>
    232 
    233 <dd> Type 14: |    0,     1, -sqrt(2) | |   -1,     0,     1    | / 2*sqrt(2) | sqrt(2), -1,     0    | </dd>
    234 
    235 <dd> Type 15: | 0, -1, 0 | | 1,  0, 1 | / 2 | 0, -1, 0 | </dd>
    236 
    237 <dd> Type 16: |  1, 0, -1 | |  0, 0,  0 | / 2 | -1, 0,  1 | </dd>
    238 
    239 <dd> Type 17: |  1, -2,  1 | | -2,  4, -2 | / 6 | -1, -2,  1 | </dd>
    240 
    241 <dd> Type 18: | -2, 1, -2 | |  1, 4,  1 | / 6 | -2, 1, -2 | </dd>
    242 
    243 <dd> Type 19: | 1, 1, 1 | | 1, 1, 1 | / 3 | 1, 1, 1 | </dd>
    244 
    245 <dd> The first 4 are for edge detection, the next 4 are for line detection and the last is to add a average component to the results. </dd>
    246 
    247 <dd> Using a special type of '-1' will return all 9 pre-weighted kernels as a multi-kernel list, so that you can use them directly (without normalization) with the special "-set option:morphology:compose Plus" setting to apply the full FreiChen Edge Detection Technique. </dd>
    248 
    249 <dd> If 'type' is large it will be taken to be an actual rotation angle for the default FreiChen (type 0) kernel.  As such  FreiChen:45  will look like a  Sobel:45  but with 'sqrt(2)' instead of '2' values. </dd>
    250 
    251 <dd> WARNING: The above was layed out as per http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf But rotated 90 degrees so direction is from left rather than the top. I have yet to find any secondary confirmation of the above. The only other source found was actual source code at http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf Neigher paper defineds the kernels in a way that looks locical or correct when taken as a whole. </dd>
    252 
    253 <dd> Boolean Kernels </dd>
    254 
    255 <dd> Diamond:[{radius}[,{scale}]] Generate a diamond shaped kernel with given radius to the points. Kernel size will again be radius*2+1 square and defaults to radius 1, generating a 3x3 kernel that is slightly larger than a square. </dd>
    256 
    257 <dd> Square:[{radius}[,{scale}]] Generate a square shaped kernel of size radius*2+1, and defaulting to a 3x3 (radius 1). </dd>
    258 
    259 <dd> Octagon:[{radius}[,{scale}]] Generate octagonal shaped kernel of given radius and constant scale. Default radius is 3 producing a 7x7 kernel. A radius of 1 will result in "Diamond" kernel. </dd>
    260 
    261 <dd> Disk:[{radius}[,{scale}]] Generate a binary disk, thresholded at the radius given, the radius may be a float-point value. Final Kernel size is floor(radius)*2+1 square. A radius of 5.3 is the default. </dd>
    262 
    263 <dd> NOTE: That a low radii Disk kernels produce the same results as many of the previously defined kernels, but differ greatly at larger radii.  Here is a table of equivalences... "Disk:1"    =&gt; "Diamond", "Octagon:1", or "Cross:1" "Disk:1.5"  =&gt; "Square" "Disk:2"    =&gt; "Diamond:2" "Disk:2.5"  =&gt; "Octagon" "Disk:2.9"  =&gt; "Square:2" "Disk:3.5"  =&gt; "Octagon:3" "Disk:4.5"  =&gt; "Octagon:4" "Disk:5.4"  =&gt; "Octagon:5" "Disk:6.4"  =&gt; "Octagon:6" All other Disk shapes are unique to this kernel, but because a "Disk" is more circular when using a larger radius, using a larger radius is preferred over iterating the morphological operation. </dd>
    264 
    265 <dd> Rectangle:{geometry} Simply generate a rectangle of 1's with the size given. You can also specify the location of the 'control point', otherwise the closest pixel to the center of the rectangle is selected. </dd>
    266 
    267 <dd> Properly centered and odd sized rectangles work the best. </dd>
    268 
    269 <dd> Symbol Dilation Kernels </dd>
    270 
    271 <dd> These kernel is not a good general morphological kernel, but is used more for highlighting and marking any single pixels in an image using, a "Dilate" method as appropriate. </dd>
    272 
    273 <dd> For the same reasons iterating these kernels does not produce the same result as using a larger radius for the symbol. </dd>
    274 
    275 <dd> Plus:[{radius}[,{scale}]] Cross:[{radius}[,{scale}]] Generate a kernel in the shape of a 'plus' or a 'cross' with a each arm the length of the given radius (default 2). </dd>
    276 
    277 <dd> NOTE: "plus:1" is equivalent to a "Diamond" kernel. </dd>
    278 
    279 <dd> Ring:{radius1},{radius2}[,{scale}] A ring of the values given that falls between the two radii. Defaults to a ring of approximataly 3 radius in a 7x7 kernel. This is the 'edge' pixels of the default "Disk" kernel, More specifically, "Ring" -&gt; "Ring:2.5,3.5,1.0" </dd>
    280 
    281 <dd> Hit and Miss Kernels </dd>
    282 
    283 <dd> Peak:radius1,radius2 Find any peak larger than the pixels the fall between the two radii. The default ring of pixels is as per "Ring". Edges Find flat orthogonal edges of a binary shape Corners Find 90 degree corners of a binary shape Diagonals:type A special kernel to thin the 'outside' of diagonals LineEnds:type Find end points of lines (for pruning a skeletion) Two types of lines ends (default to both) can be searched for Type 0: All line ends Type 1: single kernel for 4-conneected line ends Type 2: single kernel for simple line ends LineJunctions Find three line junctions (within a skeletion) Type 0: all line junctions Type 1: Y Junction kernel Type 2: Diagonal T Junction kernel Type 3: Orthogonal T Junction kernel Type 4: Diagonal X Junction kernel Type 5: Orthogonal + Junction kernel Ridges:type Find single pixel ridges or thin lines Type 1: Fine single pixel thick lines and ridges Type 2: Find two pixel thick lines and ridges ConvexHull Octagonal Thickening Kernel, to generate convex hulls of 45 degrees Skeleton:type Traditional skeleton generating kernels. Type 1: Tradional Skeleton kernel (4 connected skeleton) Type 2: HIPR2 Skeleton kernel (8 connected skeleton) Type 3: Thinning skeleton based on a ressearch paper by Dan S. Bloomberg (Default Type) ThinSE:type A huge variety of Thinning Kernels designed to preserve conectivity. many other kernel sets use these kernels as source definitions. Type numbers are 41-49, 81-89, 481, and 482 which are based on the super and sub notations used in the source research paper. </dd>
    284 
    285 <dd> Distance Measuring Kernels </dd>
    286 
    287 <dd> Different types of distance measuring methods, which are used with the a 'Distance' morphology method for generating a gradient based on distance from an edge of a binary shape, though there is a technique for handling a anti-aliased shape. </dd>
    288 
    289 <dd> See the 'Distance' Morphological Method, for information of how it is applied. </dd>
    290 
    291 <dd> Chebyshev:[{radius}][x{scale}[!]] Chebyshev Distance (also known as Tchebychev or Chessboard distance) is a value of one to any neighbour, orthogonal or diagonal. One why of thinking of it is the number of squares a 'King' or 'Queen' in chess needs to traverse reach any other position on a chess board. It results in a 'square' like distance function, but one where diagonals are given a value that is closer than expected. </dd>
    292 
    293 <dd> Manhattan:[{radius}][x{scale}[!]] Manhattan Distance (also known as Rectilinear, City Block, or the Taxi Cab distance metric), it is the distance needed when you can only travel in horizontal or vertical directions only.  It is the distance a 'Rook' in chess would have to travel, and results in a diamond like distances, where diagonals are further than expected. </dd>
    294 
    295 <dd> Octagonal:[{radius}][x{scale}[!]] An interleving of Manhatten and Chebyshev metrics producing an increasing octagonally shaped distance.  Distances matches those of the "Octagon" shaped kernel of the same radius.  The minimum radius and default is 2, producing a 5x5 kernel. </dd>
    296 
    297 <dd> Euclidean:[{radius}][x{scale}[!]] Euclidean distance is the 'direct' or 'as the crow flys' distance. However by default the kernel size only has a radius of 1, which limits the distance to 'Knight' like moves, with only orthogonal and diagonal measurements being correct.  As such for the default kernel you will get octagonal like distance function. </dd>
    298 
    299 <dd> However using a larger radius such as "Euclidean:4" you will get a much smoother distance gradient from the edge of the shape. Especially if the image is pre-processed to include any anti-aliasing pixels. Of course a larger kernel is slower to use, and not always needed. </dd>
    300 
    301 <dd> The first three Distance Measuring Kernels will only generate distances of exact multiples of {scale} in binary images. As such you can use a scale of 1 without loosing any information.  However you also need some scaling when handling non-binary anti-aliased shapes. </dd>
    302 
    303 <dd> The "Euclidean" Distance Kernel however does generate a non-integer fractional results, and as such scaling is vital even for binary shapes. </dd>
    304 
    305 <dd>  </dd>
    306 </dl>
    307 <h2><a href="../../api/MagickCore/morphology_8c.html" id="CloneKernelInfo">CloneKernelInfo</a></h2>
    308 
    309 <p>CloneKernelInfo() creates a new clone of the given Kernel List so that its can be modified without effecting the original.  The cloned kernel should be destroyed using DestoryKernelInfo() when no longer needed.</p>
    310 
    311 <p>The format of the CloneKernelInfo method is:</p>
    312 
    313 <pre class="text">
    314 KernelInfo *CloneKernelInfo(const KernelInfo *kernel)
    315 </pre>
    316 
    317 <p>A description of each parameter follows:</p>
    318 
    319 <dd>
    320 </dd>
    321 
    322 <dd> </dd>
    323 <dl class="dl-horizontal">
    324 <dt>kernel</dt>
    325 <dd>the Morphology/Convolution kernel to be cloned </dd>
    326 
    327 <dd>  </dd>
    328 </dl>
    329 <h2><a href="../../api/MagickCore/morphology_8c.html" id="DestroyKernelInfo">DestroyKernelInfo</a></h2>
    330 
    331 <p>DestroyKernelInfo() frees the memory used by a Convolution/Morphology kernel.</p>
    332 
    333 <p>The format of the DestroyKernelInfo method is:</p>
    334 
    335 <pre class="text">
    336 KernelInfo *DestroyKernelInfo(KernelInfo *kernel)
    337 </pre>
    338 
    339 <p>A description of each parameter follows:</p>
    340 
    341 <dd>
    342 </dd>
    343 
    344 <dd> </dd>
    345 <dl class="dl-horizontal">
    346 <dt>kernel</dt>
    347 <dd>the Morphology/Convolution kernel to be destroyed </dd>
    348 
    349 <dd>  </dd>
    350 </dl>
    351 <h2><a href="../../api/MagickCore/morphology_8c.html" id="MorphologyApply">MorphologyApply</a></h2>
    352 
    353 <p>MorphologyApply() applies a morphological method, multiple times using a list of multiple kernels.  This is the method that should be called by other 'operators' that internally use morphology operations as part of their processing.</p>
    354 
    355 <p>It is basically equivalent to as MorphologyImage() (see below) but without any user controls.  This allows internel programs to use this method to perform a specific task without possible interference by any API user supplied settings.</p>
    356 
    357 <p>It is MorphologyImage() task to extract any such user controls, and pass them to this function for processing.</p>
    358 
    359 <p>More specifically all given kernels should already be scaled, normalised, and blended appropriatally before being parred to this routine. The appropriate bias, and compose (typically 'UndefinedComposeOp') given.</p>
    360 
    361 <p>The format of the MorphologyApply method is:</p>
    362 
    363 <pre class="text">
    364 Image *MorphologyApply(const Image *image,MorphologyMethod method,
    365   const ssize_t iterations,const KernelInfo *kernel,
    366   const CompositeMethod compose,const double bias,
    367   ExceptionInfo *exception)
    368 </pre>
    369 
    370 <p>A description of each parameter follows:</p>
    371 
    372 <dd>
    373 </dd>
    374 
    375 <dd> </dd>
    376 <dl class="dl-horizontal">
    377 <dt>image</dt>
    378 <dd>the source image </dd>
    379 
    380 <dd> </dd>
    381 <dt>method</dt>
    382 <dd>the morphology method to be applied. </dd>
    383 
    384 <dd> </dd>
    385 <dt>iterations</dt>
    386 <dd>apply the operation this many times (or no change). A value of -1 means loop until no change found. How this is applied may depend on the morphology method. Typically this is a value of 1. </dd>
    387 
    388 <dd> </dd>
    389 <dt>channel</dt>
    390 <dd>the channel type. </dd>
    391 
    392 <dd> </dd>
    393 <dt>kernel</dt>
    394 <dd>An array of double representing the morphology kernel. </dd>
    395 
    396 <dd> </dd>
    397 <dt>compose</dt>
    398 <dd>How to handle or merge multi-kernel results. If 'UndefinedCompositeOp' use default for the Morphology method. If 'NoCompositeOp' force image to be re-iterated by each kernel. Otherwise merge the results using the compose method given. </dd>
    399 
    400 <dd> </dd>
    401 <dt>bias</dt>
    402 <dd>Convolution Output Bias. </dd>
    403 
    404 <dd> </dd>
    405 <dt>exception</dt>
    406 <dd>return any errors or warnings in this structure. </dd>
    407 
    408 <dd>  </dd>
    409 </dl>
    410 <h2><a href="../../api/MagickCore/morphology_8c.html" id="This_is almost identical to the MorphologyPrimative">This is almost identical to the MorphologyPrimative</a></h2>
    411 
    412 <p>This is almost identical to the MorphologyPrimative() function above, but applies the primitive directly to the actual image using two passes, once in each direction, with the results of the previous (and current) row being re-used.</p>
    413 
    414 <p>That is after each row is 'Sync'ed' into the image, the next row makes use of those values as part of the calculation of the next row.  It repeats, but going in the oppisite (bottom-up) direction.</p>
    415 
    416 <p>Because of this 're-use of results' this function can not make use of multi- threaded, parellel processing. </p>
    417 <h2><a href="../../api/MagickCore/morphology_8c.html" id="MorphologyImage">MorphologyImage</a></h2>
    418 
    419 <p>MorphologyImage() applies a user supplied kernel to the image according to the given mophology method.</p>
    420 
    421 <p>This function applies any and all user defined settings before calling the above internal function MorphologyApply().</p>
    422 
    423 <p>User defined settings include... * Output Bias for Convolution and correlation ("-define convolve:bias=??") * Kernel Scale/normalize settings            ("-define convolve:scale=??") This can also includes the addition of a scaled unity kernel. * Show Kernel being applied            ("-define morphology:showKernel=1")</p>
    424 
    425 <p>Other operators that do not want user supplied options interfering, especially "convolve:bias" and "morphology:showKernel" should use MorphologyApply() directly.</p>
    426 
    427 <p>The format of the MorphologyImage method is:</p>
    428 
    429 <pre class="text">
    430 Image *MorphologyImage(const Image *image,MorphologyMethod method,
    431   const ssize_t iterations,KernelInfo *kernel,ExceptionInfo *exception)
    432 </pre>
    433 
    434 <p>A description of each parameter follows:</p>
    435 
    436 <dd>
    437 </dd>
    438 
    439 <dd> </dd>
    440 <dl class="dl-horizontal">
    441 <dt>image</dt>
    442 <dd>the image. </dd>
    443 
    444 <dd> </dd>
    445 <dt>method</dt>
    446 <dd>the morphology method to be applied. </dd>
    447 
    448 <dd> </dd>
    449 <dt>iterations</dt>
    450 <dd>apply the operation this many times (or no change). A value of -1 means loop until no change found. How this is applied may depend on the morphology method. Typically this is a value of 1. </dd>
    451 
    452 <dd> </dd>
    453 <dt>kernel</dt>
    454 <dd>An array of double representing the morphology kernel. Warning: kernel may be normalized for the Convolve method. </dd>
    455 
    456 <dd> </dd>
    457 <dt>exception</dt>
    458 <dd>return any errors or warnings in this structure. </dd>
    459 
    460 <dd>  </dd>
    461 </dl>
    462 <h2><a href="../../api/MagickCore/morphology_8c.html" id="ScaleGeometryKernelInfo">ScaleGeometryKernelInfo</a></h2>
    463 
    464 <p>ScaleGeometryKernelInfo() takes a geometry argument string, typically provided as a  "-set option:convolve:scale {geometry}" user setting, and modifies the kernel according to the parsed arguments of that setting.</p>
    465 
    466 <p>The first argument (and any normalization flags) are passed to ScaleKernelInfo() to scale/normalize the kernel.  The second argument is then passed to UnityAddKernelInfo() to add a scled unity kernel into the scaled/normalized kernel.</p>
    467 
    468 <p>The format of the ScaleGeometryKernelInfo method is:</p>
    469 
    470 <pre class="text">
    471 void ScaleGeometryKernelInfo(KernelInfo *kernel,
    472   const double scaling_factor,const MagickStatusType normalize_flags)
    473 </pre>
    474 
    475 <p>A description of each parameter follows:</p>
    476 
    477 <dd>
    478 </dd>
    479 
    480 <dd> </dd>
    481 <dl class="dl-horizontal">
    482 <dt>kernel</dt>
    483 <dd>the Morphology/Convolution kernel to modify </dd>
    484 
    485 <dd> o geometry: </dd>
    486 
    487 <pre class="text">
    488        "-set option:convolve:scale {geometry}" setting.
    489 </pre>
    490 
    491 <p></dd>
    492 </dl>
    493 <h2><a href="../../api/MagickCore/morphology_8c.html" id="ScaleKernelInfo">ScaleKernelInfo</a></h2>
    494 
    495 <p>ScaleKernelInfo() scales the given kernel list by the given amount, with or without normalization of the sum of the kernel values (as per given flags).</p>
    496 
    497 <p>By default (no flags given) the values within the kernel is scaled directly using given scaling factor without change.</p>
    498 
    499 <p>If either of the two 'normalize_flags' are given the kernel will first be normalized and then further scaled by the scaling factor value given.</p>
    500 
    501 <p>Kernel normalization ('normalize_flags' given) is designed to ensure that any use of the kernel scaling factor with 'Convolve' or 'Correlate' morphology methods will fall into -1.0 to +1.0 range.  Note that for non-HDRI versions of IM this may cause images to have any negative results clipped, unless some 'bias' is used.</p>
    502 
    503 <p>More specifically.  Kernels which only contain positive values (such as a 'Gaussian' kernel) will be scaled so that those values sum to +1.0, ensuring a 0.0 to +1.0 output range for non-HDRI images.</p>
    504 
    505 <p>For Kernels that contain some negative values, (such as 'Sharpen' kernels) the kernel will be scaled by the absolute of the sum of kernel values, so that it will generally fall within the +/- 1.0 range.</p>
    506 
    507 <p>For kernels whose values sum to zero, (such as 'Laplician' kernels) kernel will be scaled by just the sum of the postive values, so that its output range will again fall into the  +/- 1.0 range.</p>
    508 
    509 <p>For special kernels designed for locating shapes using 'Correlate', (often only containing +1 and -1 values, representing foreground/brackground matching) a special normalization method is provided to scale the positive values separately to those of the negative values, so the kernel will be forced to become a zero-sum kernel better suited to such searches.</p>
    510 
    511 <p>WARNING: Correct normalization of the kernel assumes that the '*_range' attributes within the kernel structure have been correctly set during the kernels creation.</p>
    512 
    513 <p>NOTE: The values used for 'normalize_flags' have been selected specifically to match the use of geometry options, so that '!' means NormalizeValue, '^' means CorrelateNormalizeValue.  All other GeometryFlags values are ignored.</p>
    514 
    515 <p>The format of the ScaleKernelInfo method is:</p>
    516 
    517 <pre class="text">
    518 void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor,
    519          const MagickStatusType normalize_flags )
    520 </pre>
    521 
    522 <p>A description of each parameter follows:</p>
    523 
    524 <dd>
    525 </dd>
    526 
    527 <dd> </dd>
    528 <dl class="dl-horizontal">
    529 <dt>kernel</dt>
    530 <dd>the Morphology/Convolution kernel </dd>
    531 
    532 <dd> o scaling_factor: </dd>
    533 
    534 <pre class="text">
    535        zero.  If the kernel is normalized regardless of any flags.
    536 </pre>
    537 
    538 <p>o normalize_flags: </dd>
    539 
    540 <pre class="text">
    541        specifically: NormalizeValue, CorrelateNormalizeValue,
    542                      and/or PercentValue
    543 </pre>
    544 
    545 <p></dd>
    546 </dl>
    547 <h2><a href="../../api/MagickCore/morphology_8c.html" id="ShowKernelInfo">ShowKernelInfo</a></h2>
    548 
    549 <p>ShowKernelInfo() outputs the details of the given kernel defination to standard error, generally due to a users 'morphology:showKernel' option request.</p>
    550 
    551 <p>The format of the ShowKernel method is:</p>
    552 
    553 <pre class="text">
    554 void ShowKernelInfo(const KernelInfo *kernel)
    555 </pre>
    556 
    557 <p>A description of each parameter follows:</p>
    558 
    559 <dd>
    560 </dd>
    561 
    562 <dd> </dd>
    563 <dl class="dl-horizontal">
    564 <dt>kernel</dt>
    565 <dd>the Morphology/Convolution kernel </dd>
    566 
    567 <dd>  </dd>
    568 </dl>
    569 <h2><a href="../../api/MagickCore/morphology_8c.html" id="UnityAddKernelInfo">UnityAddKernelInfo</a></h2>
    570 
    571 <p>UnityAddKernelInfo() Adds a given amount of the 'Unity' Convolution Kernel to the given pre-scaled and normalized Kernel.  This in effect adds that amount of the original image into the resulting convolution kernel.  This value is usually provided by the user as a percentage value in the 'convolve:scale' setting.</p>
    572 
    573 <p>The resulting effect is to convert the defined kernels into blended soft-blurs, unsharp kernels or into sharpening kernels.</p>
    574 
    575 <p>The format of the UnityAdditionKernelInfo method is:</p>
    576 
    577 <pre class="text">
    578 void UnityAdditionKernelInfo(KernelInfo *kernel, const double scale )
    579 </pre>
    580 
    581 <p>A description of each parameter follows:</p>
    582 
    583 <dd>
    584 </dd>
    585 
    586 <dd> </dd>
    587 <dl class="dl-horizontal">
    588 <dt>kernel</dt>
    589 <dd>the Morphology/Convolution kernel </dd>
    590 
    591 <dd> o scale: </dd>
    592 
    593 <pre class="text">
    594        the given kernel.
    595 </pre>
    596 
    597 <p></dd>
    598 </dl>
    599 <h2><a href="../../api/MagickCore/morphology_8c.html" id="ZeroKernelNans">ZeroKernelNans</a></h2>
    600 
    601 <p>ZeroKernelNans() replaces any special 'nan' value that may be present in the kernel with a zero value.  This is typically done when the kernel will be used in special hardware (GPU) convolution processors, to simply matters.</p>
    602 
    603 <p>The format of the ZeroKernelNans method is:</p>
    604 
    605 <pre class="text">
    606 void ZeroKernelNans (KernelInfo *kernel)
    607 </pre>
    608 
    609 <p>A description of each parameter follows:</p>
    610 
    611 <dd>
    612 </dd>
    613 
    614 <dd> </dd>
    615 <dl class="dl-horizontal">
    616 <dt>kernel</dt>
    617 <dd>the Morphology/Convolution kernel </dd>
    618 
    619 <dd>  </dd>
    620 </dl>
    621 </div>
    622     </div>
    623   </main><!-- /.container -->
    624   <footer class="magick-footer">
    625     <p><a href="../../www/security-policy.html">Security</a> 
    626     <a href="../../www/architecture.html">Architecture</a> 
    627     <a href="../../www/links.html">Related</a> 
    628      <a href="../../www/sitemap.html">Sitemap</a>
    629        
    630     <a href="morphology.html#"><img class="d-inline" id="wand" alt="And Now a Touch of Magick" width="16" height="16" src="../../images/wand.ico"/></a>
    631        
    632     <a href="http://pgp.mit.edu/pks/lookup?op=get&search=0x89AB63D48277377A">Public Key</a> 
    633     <a href="../../www/support.html">Donate</a> 
    634     <a href="../../www/contact.html">Contact Us</a>
    635     <br/>
    636     <small> 1999-2019 ImageMagick Studio LLC</small></p>
    637   </footer>
    638 
    639   <!-- Javascript assets -->
    640   <script src="../assets/magick.js" crossorigin="anonymous"></script>
    641   <script>window.jQuery || document.write('<script src="https://localhost/ajax/libs/jquery/3.3.1/jquery.min.js"><\/script>')</script>
    642 </body>
    643 </html>
    644 <!-- Magick Cache 2nd January 2019 23:14 -->